aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/AST/ByteCode/Context.cpp
blob: b35b30cc20d81277cbec30f6944b62f79e699cca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Context.h"
#include "ByteCodeEmitter.h"
#include "Compiler.h"
#include "EvalEmitter.h"
#include "Interp.h"
#include "InterpFrame.h"
#include "InterpStack.h"
#include "PrimType.h"
#include "Program.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"

using namespace clang;
using namespace clang::interp;

Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) {}

Context::~Context() {}

bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) {
  assert(Stk.empty());

  // Get a function handle.
  const Function *Func = getOrCreateFunction(FD);
  if (!Func)
    return false;

  // Compile the function.
  Compiler<ByteCodeEmitter>(*this, *P).compileFunc(
      FD, const_cast<Function *>(Func));

  // And run it.
  if (!Run(Parent, Func))
    return false;

  return Func->isConstexpr();
}

bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/E->isGLValue());

  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);
    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();

  return true;
}

bool Context::evaluate(State &Parent, const Expr *E, APValue &Result,
                       ConstantExprKind Kind) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/false,
                             /*DestroyToplevelScope=*/true);
  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);
    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();
  return true;
}

bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD,
                                    APValue &Result) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  bool CheckGlobalInitialized =
      shouldBeGloballyIndexed(VD) &&
      (VD->getType()->isRecordType() || VD->getType()->isArrayType());
  auto Res = C.interpretDecl(VD, CheckGlobalInitialized);
  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);

    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();
  return true;
}

const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); }

std::optional<PrimType> Context::classify(QualType T) const {
  if (T->isBooleanType())
    return PT_Bool;

  // We map these to primitive arrays.
  if (T->isAnyComplexType() || T->isVectorType())
    return std::nullopt;

  if (T->isSignedIntegerOrEnumerationType()) {
    switch (Ctx.getIntWidth(T)) {
    case 64:
      return PT_Sint64;
    case 32:
      return PT_Sint32;
    case 16:
      return PT_Sint16;
    case 8:
      return PT_Sint8;
    default:
      return PT_IntAPS;
    }
  }

  if (T->isUnsignedIntegerOrEnumerationType()) {
    switch (Ctx.getIntWidth(T)) {
    case 64:
      return PT_Uint64;
    case 32:
      return PT_Uint32;
    case 16:
      return PT_Uint16;
    case 8:
      return PT_Uint8;
    case 1:
      // Might happen for enum types.
      return PT_Bool;
    default:
      return PT_IntAP;
    }
  }

  if (T->isNullPtrType())
    return PT_Ptr;

  if (T->isFloatingType())
    return PT_Float;

  if (T->isSpecificBuiltinType(BuiltinType::BoundMember) ||
      T->isMemberPointerType())
    return PT_MemberPtr;

  if (T->isFunctionPointerType() || T->isFunctionReferenceType() ||
      T->isFunctionType() || T->isBlockPointerType())
    return PT_Ptr;

  if (T->isPointerOrReferenceType() || T->isObjCObjectPointerType())
    return PT_Ptr;

  if (const auto *AT = T->getAs<AtomicType>())
    return classify(AT->getValueType());

  if (const auto *DT = dyn_cast<DecltypeType>(T))
    return classify(DT->getUnderlyingType());

  if (T->isFixedPointType())
    return PT_FixedPoint;

  return std::nullopt;
}

unsigned Context::getCharBit() const {
  return Ctx.getTargetInfo().getCharWidth();
}

/// Simple wrapper around getFloatTypeSemantics() to make code a
/// little shorter.
const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const {
  return Ctx.getFloatTypeSemantics(T);
}

bool Context::Run(State &Parent, const Function *Func) {

  {
    InterpState State(Parent, *P, Stk, *this, Func);
    if (Interpret(State)) {
      assert(Stk.empty());
      return true;
    }
    // State gets destroyed here, so the Stk.clear() below doesn't accidentally
    // remove values the State's destructor might access.
  }

  Stk.clear();
  return false;
}

// TODO: Virtual bases?
const CXXMethodDecl *
Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl,
                               const CXXRecordDecl *StaticDecl,
                               const CXXMethodDecl *InitialFunction) const {
  assert(DynamicDecl);
  assert(StaticDecl);
  assert(InitialFunction);

  const CXXRecordDecl *CurRecord = DynamicDecl;
  const CXXMethodDecl *FoundFunction = InitialFunction;
  for (;;) {
    const CXXMethodDecl *Overrider =
        FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false);
    if (Overrider)
      return Overrider;

    // Common case of only one base class.
    if (CurRecord->getNumBases() == 1) {
      CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl();
      continue;
    }

    // Otherwise, go to the base class that will lead to the StaticDecl.
    for (const CXXBaseSpecifier &Spec : CurRecord->bases()) {
      const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl();
      if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) {
        CurRecord = Base;
        break;
      }
    }
  }

  llvm_unreachable(
      "Couldn't find an overriding function in the class hierarchy?");
  return nullptr;
}

const Function *Context::getOrCreateFunction(const FunctionDecl *FuncDecl) {
  assert(FuncDecl);
  FuncDecl = FuncDecl->getMostRecentDecl();

  if (const Function *Func = P->getFunction(FuncDecl))
    return Func;

  // Manually created functions that haven't been assigned proper
  // parameters yet.
  if (!FuncDecl->param_empty() && !FuncDecl->param_begin())
    return nullptr;

  bool IsLambdaStaticInvoker = false;
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
      MD && MD->isLambdaStaticInvoker()) {
    // For a lambda static invoker, we might have to pick a specialized
    // version if the lambda is generic. In that case, the picked function
    // will *NOT* be a static invoker anymore. However, it will still
    // be a non-static member function, this (usually) requiring an
    // instance pointer. We suppress that later in this function.
    IsLambdaStaticInvoker = true;

    const CXXRecordDecl *ClosureClass = MD->getParent();
    assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
    if (ClosureClass->isGenericLambda()) {
      const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
      assert(MD->isFunctionTemplateSpecialization() &&
             "A generic lambda's static-invoker function must be a "
             "template specialization");
      const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
      FunctionTemplateDecl *CallOpTemplate =
          LambdaCallOp->getDescribedFunctionTemplate();
      void *InsertPos = nullptr;
      const FunctionDecl *CorrespondingCallOpSpecialization =
          CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
      assert(CorrespondingCallOpSpecialization);
      FuncDecl = CorrespondingCallOpSpecialization;
    }
  }
  // Set up argument indices.
  unsigned ParamOffset = 0;
  SmallVector<PrimType, 8> ParamTypes;
  SmallVector<unsigned, 8> ParamOffsets;
  llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;

  // If the return is not a primitive, a pointer to the storage where the
  // value is initialized in is passed as the first argument. See 'RVO'
  // elsewhere in the code.
  QualType Ty = FuncDecl->getReturnType();
  bool HasRVO = false;
  if (!Ty->isVoidType() && !classify(Ty)) {
    HasRVO = true;
    ParamTypes.push_back(PT_Ptr);
    ParamOffsets.push_back(ParamOffset);
    ParamOffset += align(primSize(PT_Ptr));
  }

  // If the function decl is a member decl, the next parameter is
  // the 'this' pointer. This parameter is pop()ed from the
  // InterpStack when calling the function.
  bool HasThisPointer = false;
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) {
    if (!IsLambdaStaticInvoker) {
      HasThisPointer = MD->isInstance();
      if (MD->isImplicitObjectMemberFunction()) {
        ParamTypes.push_back(PT_Ptr);
        ParamOffsets.push_back(ParamOffset);
        ParamOffset += align(primSize(PT_Ptr));
      }
    }

    if (isLambdaCallOperator(MD)) {
      // The parent record needs to be complete, we need to know about all
      // the lambda captures.
      if (!MD->getParent()->isCompleteDefinition())
        return nullptr;
      llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
      FieldDecl *LTC;

      MD->getParent()->getCaptureFields(LC, LTC);

      if (MD->isStatic() && !LC.empty()) {
        // Static lambdas cannot have any captures. If this one does,
        // it has already been diagnosed and we can only ignore it.
        return nullptr;
      }
    }
  }

  // Assign descriptors to all parameters.
  // Composite objects are lowered to pointers.
  for (const ParmVarDecl *PD : FuncDecl->parameters()) {
    std::optional<PrimType> T = classify(PD->getType());
    PrimType PT = T.value_or(PT_Ptr);
    Descriptor *Desc = P->createDescriptor(PD, PT);
    ParamDescriptors.insert({ParamOffset, {PT, Desc}});
    ParamOffsets.push_back(ParamOffset);
    ParamOffset += align(primSize(PT));
    ParamTypes.push_back(PT);
  }

  // Create a handle over the emitted code.
  assert(!P->getFunction(FuncDecl));
  const Function *Func = P->createFunction(
      FuncDecl, ParamOffset, std::move(ParamTypes), std::move(ParamDescriptors),
      std::move(ParamOffsets), HasThisPointer, HasRVO, IsLambdaStaticInvoker);
  return Func;
}

const Function *Context::getOrCreateObjCBlock(const BlockExpr *E) {
  const BlockDecl *BD = E->getBlockDecl();
  // Set up argument indices.
  unsigned ParamOffset = 0;
  SmallVector<PrimType, 8> ParamTypes;
  SmallVector<unsigned, 8> ParamOffsets;
  llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;

  // Assign descriptors to all parameters.
  // Composite objects are lowered to pointers.
  for (const ParmVarDecl *PD : BD->parameters()) {
    std::optional<PrimType> T = classify(PD->getType());
    PrimType PT = T.value_or(PT_Ptr);
    Descriptor *Desc = P->createDescriptor(PD, PT);
    ParamDescriptors.insert({ParamOffset, {PT, Desc}});
    ParamOffsets.push_back(ParamOffset);
    ParamOffset += align(primSize(PT));
    ParamTypes.push_back(PT);
  }

  if (BD->hasCaptures())
    return nullptr;

  // Create a handle over the emitted code.
  Function *Func =
      P->createFunction(E, ParamOffset, std::move(ParamTypes),
                        std::move(ParamDescriptors), std::move(ParamOffsets),
                        /*HasThisPointer=*/false, /*HasRVO=*/false,
                        /*IsLambdaStaticInvoker=*/false);

  assert(Func);
  Func->setDefined(true);
  // We don't compile the BlockDecl code at all right now.
  Func->setIsFullyCompiled(true);
  return Func;
}

unsigned Context::collectBaseOffset(const RecordDecl *BaseDecl,
                                    const RecordDecl *DerivedDecl) const {
  assert(BaseDecl);
  assert(DerivedDecl);
  const auto *FinalDecl = cast<CXXRecordDecl>(BaseDecl);
  const RecordDecl *CurDecl = DerivedDecl;
  const Record *CurRecord = P->getOrCreateRecord(CurDecl);
  assert(CurDecl && FinalDecl);

  unsigned OffsetSum = 0;
  for (;;) {
    assert(CurRecord->getNumBases() > 0);
    // One level up
    for (const Record::Base &B : CurRecord->bases()) {
      const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl);

      if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) {
        OffsetSum += B.Offset;
        CurRecord = B.R;
        CurDecl = BaseDecl;
        break;
      }
    }
    if (CurDecl == FinalDecl)
      break;
  }

  assert(OffsetSum > 0);
  return OffsetSum;
}

const Record *Context::getRecord(const RecordDecl *D) const {
  return P->getOrCreateRecord(D);
}

bool Context::isUnevaluatedBuiltin(unsigned ID) {
  return ID == Builtin::BI__builtin_classify_type ||
         ID == Builtin::BI__builtin_os_log_format_buffer_size ||
         ID == Builtin::BI__builtin_constant_p || ID == Builtin::BI__noop;
}