Age | Commit message (Collapse) | Author | Files | Lines |
|
RFC:
https://discourse.llvm.org/t/rfc-support-pseudo-probe-for-windows-coff/83820
Support emitting pseudo probe to .pseudo_probe and .pseudo_probe_desc
COFF sections.
|
|
|
|
mdconst::extract is more rigorous than mdconst::dyn_exract in this
context.
|
|
This PR is part of #123870.
The pseudo probe desc emission code can be reused by other target.
|
|
This is a follow-up patch of
https://github.com/llvm/llvm-project/pull/125756
In this PR, static-data-splitter pass produces the aggregated profile
counts of constants for constant pools in a global state
(`StateDataProfileInfo`), and asm printer consumes the profile counts to
produce `.hot` or `.unlikely` prefixes.
This implementation covers both x86 and aarch64 asm printer.
|
|
The test file is over 4GiB, which is too big, so I didn’t submit it.
|
|
|
|
(read-only) data sections (#122215)
https://github.com/llvm/llvm-project/pull/122183 adds a codegen pass to
infer machine jump table entry's hotness from the MBB hotness. This is a
follow-up PR to produce `.hot` and or `.unlikely` section prefix for
jump table's (read-only) data sections in the relocatable `.o` files.
When this patch is enabled, linker will see {`.rodata`, `.rodata.hot`,
`.rodata.unlikely`} in input sections. It can map `.rodata.hot` and
`.rodata` in the input sections to `.rodata.hot` in the executable, and
map `.rodata.unlikely` into `.rodata` with a pending extension to
`--keep-text-section-prefix` like
https://github.com/llvm/llvm-project/commit/059e7cbb66a30ce35f3ee43197eed1a106b50c5b,
or with a linker script.
1. To partition hot and jump tables, the AsmPrinter pass slices a function's jump table indices into two groups, one for hot and the other for cold jump tables. It then emits hot jump tables into a `.hot`-prefixed data section and cold ones into a `.unlikely`-prefixed data section, retaining the relative order of `LJT<N>` labels within each group.
2. [ELF only] To have data sections with _dynamic_ names (e.g., `.rodata.hot[.func]`), we implement
`TargetLoweringObjectFile::getSectionForJumpTable` method that accepts a `MachineJumpTableEntry` parameter, and update `selectELFSectionForGlobal` to generate `.hot` or `.unlikely` based on
MJTE's hotness.
- The dynamic JT section name doesn't depend on `-ffunction-section=true` or `-funique-section-names=true`, even though it leverages the similar underlying mechanism to have a MCSection with on-demand name as `-ffunction-section` does.
3. The new code path is off by default.
- Typically, `TargetOptions` conveys clang or LLVM tools' options to code generation passes. To follow the pattern, add option `EnableStaticDataPartitioning` bit in `TargetOptions` and make it
readable through `TargetMachine`.
- To enable the new code path in tools like `llc`, `partition-static-data-sections` option is introduced in
`CodeGen/CommandFlags.h/cpp`.
- A subsequent patch
([draft](https://github.com/llvm/llvm-project/commit/8f36a1374365862b3ca9be5615dd38f02a318c45)) will add a clang option to enable the new code path.
---------
Co-authored-by: Ellis Hoag <ellis.sparky.hoag@gmail.com>
|
|
Re-apply #113148 after revert in #119331
If function pointer signing is enabled, sign personality function
pointer stored in `.DW.ref.__gxx_personality_v0` section with IA key,
0x7EAD = `ptrauth_string_discriminator("personality")` constant
discriminator and address diversity enabled.
|
|
(#119331)
Reverts llvm/llvm-project#113148
See buildbot failure
https://lab.llvm.org/buildbot/#/builders/190/builds/11048
|
|
If function pointer signing is enabled, sign personality function
pointer stored in `.DW.ref.__gxx_personality_v0` section with IA key,
0x7EAD = `ptrauth_string_discriminator("personality")` constant
discriminator and address diversity enabled.
|
|
Similar to https://github.com/llvm/llvm-project/pull/96902, this adds
`getDataLayout()` helpers to Function and GlobalValue, replacing the
current `getParent()->getDataLayout()` pattern.
|
|
D33412/D33413 introduced this to support a clang pragma to set section
names for a symbol depending on if it would be placed in
bss/data/rodata/text, which may not be known until the backend. However,
for text we know that only functions will go there, so just directly set
the section in clang instead of going through a completely separate
attribute.
Autoupgrade the "implicit-section-name" attribute to directly setting
the section on a Fuction.
|
|
Identified with readability-qualified-auto.
|
|
This patchs adds a new metadata kind `exclude` which implies that the
global variable should be given the necessary flags during code
generation to not be included in the final executable. This is done
using the ``SHF_EXCLUDE`` flag on ELF for example. This should make it
easier to specify this flag on a variable without needing to explicitly
check the section name in the target backend.
Depends on D129053 D129052
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129151
|
|
Most notably, Pass.h is no longer included by TargetMachine.h
before: 1063570306
after: 1063332844
Differential Revision: https://reviews.llvm.org/D121168
|
|
This untangles the MCContext and the MCObjectFileInfo. There is a circular
dependency between MCContext and MCObjectFileInfo. Currently this dependency
also exists during construction: You can't contruct a MOFI without a MCContext
without constructing the MCContext with a dummy version of that MOFI first.
This removes this dependency during construction. In a perfect world,
MCObjectFileInfo wouldn't depend on MCContext at all, but only be stored in the
MCContext, like other MC information. This is future work.
This also shifts/adds more information to the MCContext making it more
available to the different targets. Namely:
- TargetTriple
- ObjectFileType
- SubtargetInfo
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101462
|
|
This patch allows generating TLS variables in assembly files on AIX.
Initialized and external uninitialized variables are generated with the
.csect pseudo-op and local uninitialized variables are generated with
the .comm/.lcomm pseudo-ops. The patch also adds a check to
explicitly say that TLS is not yet supported on AIX.
Reviewed by: daltenty, jasonliu, lei, nemanjai, sfertile
Originally patched by: bsaleil
Commandeered by: NeHuang
Differential Revision: https://reviews.llvm.org/D96184
|
|
This patch provides two major changes:
1. Add getRelocationInfo to check if a constant will have static, dynamic, or
no relocations. (Also rename the original needsRelocation to needsDynamicRelocation.)
2. Only allow a constant with no relocations (static or dynamic) to be placed
in a mergeable section.
This will allow unused symbols that contain static relocations and happen to
fit in mergeable constant sections (.rodata.cstN) to instead be placed in
unique-named sections if -fdata-sections is used and subsequently garbage collected
by --gc-sections.
See https://lists.llvm.org/pipermail/llvm-dev/2021-February/148281.html.
Differential Revision: https://reviews.llvm.org/D95960
|
|
Basic block sections enables function sections implicitly, this is not needed
and is inefficient with "=list" option.
We had basic block sections enable function sections implicitly in clang. This
is particularly inefficient with "=list" option as it places functions that do
not have any basic block sections in separate sections. This causes unnecessary
object file overhead for large applications.
This patch disables this implicit behavior. It only creates function sections
for those functions that require basic block sections.
Further, there was an inconistent behavior with llc as llc was not turning on
function sections by default. This patch makes llc and clang consistent and
tests are added to check the new behavior.
This is the first of two patches and this adds functionality in LLVM to
create a new section for the entry block if function sections is not
enabled.
Differential Revision: https://reviews.llvm.org/D93876
|
|
Differential Revision: https://reviews.llvm.org/D93150
|
|
uleb128 support
Summary:
Not all system assembler supports `.uleb128 label2 - label1` form.
When the target do not support this form, we have to take
alternative manual calculation to get the offsets from them.
Reviewed By: hubert.reinterpretcast
Diffierential Revision: https://reviews.llvm.org/D92058
|
|
This reverts commit 506b6170cb513f1cb6e93a3b690c758f9ded18ac.
This still causes link errors, see https://crbug.com/1130780.
|
|
This reverts commit 90242caca2074dab5a9b76e5bc36d9fafd2179a7.
Error fixed at f5435399e823746bbe1737b95c853d77a42e1ac3
Differential Revision: https://reviews.llvm.org/D87811
|
|
This reverts commit 91aed9bf975f1e4346cc8f4bdefc98436386ced2, it is
causing link errors.
|
|
I forgot to add emission of CG profile for COFF object file, when adding the support (https://reviews.llvm.org/D81775)
Differential Revision: https://reviews.llvm.org/D87811
|
|
Since on AIX, our strategy is to not use -u to suppress any undefined
symbols, we need to emit .extern for the symbols with AvailableExternally
linkage.
Differential Revision: https://reviews.llvm.org/D80642
|
|
Differential Revision: https://reviews.llvm.org/D80363
|
|
Replace with forward declarations and move includes down to source files where required.
I also needed to move the TargetLoweringObjectFile::SectionForGlobal wrapper implementation down into TargetLoweringObjectFile.cpp
|
|
the same section.
Differential Revision: https://reviews.llvm.org/D76954
|
|
This reverts commit 0d4ec16d3db3a92514e14101f635e8536c208c4f Because
tests were not added to the commit.
|
|
in the same section.
This allows specifying BasicBlock clusters like the following example:
!foo
!!0 1 2
!!4
This places basic blocks 0, 1, and 2 in one section in this order, and
places basic block #4 in a single section of its own.
|
|
We can use the parent MCObjectFileInfo::Ctx which has the same value.
|
|
This is the second patch in a series of patches to enable basic block
sections support.
This patch adds support for:
* Creating direct jumps at the end of basic blocks that have fall
through instructions.
* New pass, bbsections-prepare, that analyzes placement of basic blocks
in sections.
* Actual placing of a basic block in a unique section with special
handling of exception handling blocks.
* Supports placing a subset of basic blocks in a unique section.
* Support for MIR serialization and deserialization with basic block
sections.
Parent patch : D68063
Differential Revision: https://reviews.llvm.org/D73674
|
|
Emit{ValueTo,Code}Alignment Emit{DTP,TP,GP}* EmitSymbolValue etc
|
|
Differential Revision: https://reviews.llvm.org/D68806
llvm-svn: 374934
|
|
configurable and use for RISC-V
The original behavior was to always emit the offsets to each call site in the
call site table as uleb128 values, however on some architectures (eg RISCV)
these uleb128 offsets into the code cannot always be resolved until link time
(because relaxation will invalidate any calculated offsets), and there are no
appropriate relocations for uleb128 values. As a consequence it needs to be
possible to specify an alternative.
This also switches RISCV to use DW_EH_PE_udata4 for call side encodings in
.gcc_except_table
Differential Revision: https://reviews.llvm.org/D63415
Patch by Edward Jones.
llvm-svn: 366329
|
|
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
Summary:
The TType encoding, LSDA encoding, and personality encoding are all
passed explicitly by CodeGen to the assembler through .cfi_* directives,
so only the AsmPrinter needs to know about them.
The FDE CFI encoding however, controls the encoding of the label
implicitly created by the .cfi_startproc directive. That directive seems
to be special in that it doesn't take an encoding, so the assembler just
has to know how to encode one DSO-local label reference from .eh_frame
to .text.
As a result, it looks like MC will continue to have to know when the
large code model is in use. Perhaps we could invent a '.cfi_startproc
[large]' flag so that this knowledge doesn't need to pollute the
assembler.
Reviewers: davide, lliu0, JDevlieghere
Subscribers: hiraditya, fedor.sergeev, llvm-commits
Differential Revision: https://reviews.llvm.org/D50533
llvm-svn: 339397
|
|
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}
llvm-svn: 338293
|
|
The argument was used as an additional negative condition and can be
expressed in the if conditional without needing to pass it down.
Update bss commentary around main use.
llvm-svn: 333357
|
|
- Clarify block comment
- Make Function/GlobalVariable split more explicit.
- Move locals closer to uses.
llvm-svn: 333356
|
|
Target/TargetLoweringObjectFile on a CodeGen header
llvm-svn: 328549
|
|
It's implemented in Target & include from other Target headers, so the
header should be in Target.
llvm-svn: 328392
|
|
Following up on the discussion from
http://lists.llvm.org/pipermail/llvm-dev/2017-April/112305.html, undef
values are now placed in the .bss as well as null values. This prevents
undef global values taking up potentially huge amounts of space in the
.data section.
The following two lines now both generate equivalent .bss data:
@vals1 = internal unnamed_addr global [20000000 x i32] zeroinitializer, align 4
@vals2 = internal unnamed_addr global [20000000 x i32] undef, align 4 ; previously unaccounted for
This is primarily motivated by the corresponding issue in the Rust
compiler (https://github.com/rust-lang/rust/issues/41315).
Differential Revision: https://reviews.llvm.org/D41705
Patch by varkor!
llvm-svn: 324424
|
|
llvm-svn: 320633
|
|
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
|
|
I was surprised to see the code model being passed to MC. After all,
it assembles code, it doesn't create it.
The one place it is used is in the expansion of .cfi directives to
handle .eh_frame being more that 2gb away from the code.
As far as I can tell, gnu assembler doesn't even have an option to
enable this. Compiling a c file with gcc -mcmodel=large produces a
regular looking .eh_frame. This is probably because in practice linker
parse and recreate .eh_frames.
In llvm this is used because the JIT can place the code and .eh_frame
very far apart. Ideally we would fix the jit and delete this
option. This is hard.
Apart from confusion another problem with the current interface is
that most callers pass CodeModel::Default, which is bad since MC has
no way to map it to the target default if it actually needed to.
This patch then replaces the argument with a boolean with a default
value. The vast majority of users don't ever need to look at it. In
fact, only CodeGen and llvm-mc use it and llvm-mc just to enable more
testing.
llvm-svn: 309884
|
|
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
|
|
This patch provides a means to specify section-names for global variables,
functions and static variables, using #pragma directives.
This feature is only defined to work sensibly for ELF targets.
One can specify section names as:
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"
One can "unspecify" a section name with empty string e.g.
#pragma clang section bss="" data="" text="" rodata=""
Reviewers: Roger Ferrer, Jonathan Roelofs, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D33413
llvm-svn: 304704
|