Age | Commit message (Collapse) | Author | Files | Lines |
|
Clang and other frontends generally need the LLVM data layout string in
order to generate LLVM IR modules for LLVM. MLIR clients often need it
as well, since MLIR users often lower to LLVM IR.
Before this change, the LLVM datalayout string was computed in the
LLVM${TGT}CodeGen library in the relevant TargetMachine subclass.
However, none of the logic for computing the data layout string requires
any details of code generation. Clients who want to avoid duplicating
this information were forced to link in LLVMCodeGen and all registered
targets, leading to bloated binaries. This happened in PR #145899,
which measurably increased binary size for some of our users.
By moving this information to the TargetParser library, we
can delete the duplicate datalayout strings in Clang, and retain the
ability to generate IR for unregistered targets.
This is intended to be a very mechanical LLVM-only change, but there is
an immediately obvious follow-up to clang, which will be prepared
separately.
The vast majority of data layouts are computable with two inputs: the
triple and the "ABI name". There is only one exception, NVPTX, which has
a cl::opt to enable short device pointers. I invented a "shortptr" ABI
name to pass this option through the target independent interface.
Everything else fits. Mips is a bit awkward because it uses a special
MipsABIInfo abstraction, which includes members with codegen-like
concepts like ABI physical registers that can't live in TargetParser. I
think the string logic of looking for "n32" "n64" etc is reasonable to
duplicate. We have plenty of other minor duplication to preserve
layering.
---------
Co-authored-by: Matt Arsenault <arsenm2@gmail.com>
Co-authored-by: Sergei Barannikov <barannikov88@gmail.com>
|
|
## Purpose
This patch is one in a series of code-mods that annotate LLVM’s public
interface for export. This patch annotates the `llvm/Target` library.
These annotations currently have no meaningful impact on the LLVM build;
however, they are a prerequisite to support an LLVM Windows DLL (shared
library) build.
## Background
This effort is tracked in #109483. Additional context is provided in
[this
discourse](https://discourse.llvm.org/t/psa-annotating-llvm-public-interface/85307),
and documentation for `LLVM_ABI` and related annotations is found in the
LLVM repo
[here](https://github.com/llvm/llvm-project/blob/main/llvm/docs/InterfaceExportAnnotations.rst).
A sub-set of these changes were generated automatically using the
[Interface Definition Scanner (IDS)](https://github.com/compnerd/ids)
tool, followed formatting with `git clang-format`.
The bulk of this change is manual additions of `LLVM_ABI` to
`LLVMInitializeX` functions defined in .cpp files under llvm/lib/Target.
Adding `LLVM_ABI` to the function implementation is required here
because they do not `#include "llvm/Support/TargetSelect.h"`, which
contains the declarations for this functions and was already updated
with `LLVM_ABI` in a previous patch. I considered patching these files
with `#include "llvm/Support/TargetSelect.h"` instead, but since
TargetSelect.h is a large file with a bunch of preprocessor x-macro
stuff in it I was concerned it would unnecessarily impact compile times.
In addition, a number of unit tests under llvm/unittests/Target required
additional dependencies to make them build correctly against the LLVM
DLL on Windows using MSVC.
## Validation
Local builds and tests to validate cross-platform compatibility. This
included llvm, clang, and lldb on the following configurations:
- Windows with MSVC
- Windows with Clang
- Linux with GCC
- Linux with Clang
- Darwin with Clang
|
|
Register assembly printer passes in the pass registry.
This makes it possible to use `llc -start-before=<target>-asm-printer ...` in tests.
Adds a `char &ID` parameter to the AssemblyPrinter constructor to allow
targets to use the `INITIALIZE_PASS` macros and register the pass in the
pass registry. This currently has a default parameter so it won't break
any targets that have not been updated.
|
|
Replace "concept based polymorphism" with simpler PImpl idiom.
This pursues two goals:
* Enforce static type checking. Previously, target implementations hid
base class methods and type checking was impossible. Now that they
override the methods, the compiler will complain on mismatched
signatures.
* Make the code easier to navigate. Previously, if you asked your
favorite LSP server to show a method (e.g. `getInstructionCost()`), it
would show you methods from `TTI`, `TTI::Concept`, `TTI::Model`,
`TTIImplBase`, and target overrides. Now it is two less :)
There are three commits to hopefully simplify the review.
The first commit removes `TTI::Model`. This is done by deriving
`TargetTransformInfoImplBase` from `TTI::Concept`. This is possible
because they implement the same set of interfaces with identical
signatures.
The first commit makes `TargetTransformImplBase` polymorphic, which
means all derived classes should `override` its methods. This is done in
second commit to make the first one smaller. It appeared infeasible to
extract this into a separate PR because the first commit landed
separately would result in tons of `-Woverloaded-virtual` warnings (and
break `-Werror` builds).
The third commit eliminates `TTI::Concept` by merging it with the only
derived class `TargetTransformImplBase`. This commit could be extracted
into a separate PR, but it touches the same lines in
`TargetTransformInfoImpl.h` (removes `override` added by the second
commit and adds `virtual`), so I thought it may make sense to land these
two commits together.
Pull Request: https://github.com/llvm/llvm-project/pull/136674
|
|
- Remove pass initialization calls from pass constructors.
- Move pass initialization and creation function declarations to
Hexagon.h and remove them from individual .cpp files.
- Add calls for pass initialization in Hexagon target initialization.
- https://github.com/llvm/llvm-project/issues/111767
|
|
The createSIMachineScheduler & createPostMachineScheduler
target hooks are currently placed in the PassConfig interface.
Moving it out to TargetMachine so that both legacy and
the new pass manager can effectively use them.
|
|
Extend existing store widening pass to widen load instructions.
This patch also borrows the alias check algorithm from AMDGPU's load
store widening pass.
Widened load instruction is inserted before the first candidate load
instruction.
Widened store instruction is inserted after the last candidate store
instruction.
This method helps avoid moving uses/defs when replacing load/store
instructions with their widened equivalents.
The pass has also been extended to
* Generate 64-bit widened stores
* Handle 32-bit post increment load/store
* Handle stores of non-immediate values
* Handle stores where the offset is a GlobalValue
|
|
Identified with misc-include-cleaner.
|
|
Following discussions in #110443, and the following earlier discussions
in https://lists.llvm.org/pipermail/llvm-dev/2017-October/117907.html,
https://reviews.llvm.org/D38482, https://reviews.llvm.org/D38489, this
PR attempts to overhaul the `TargetMachine` and `LLVMTargetMachine`
interface classes. More specifically:
1. Makes `TargetMachine` the only class implemented under
`TargetMachine.h` in the `Target` library.
2. `TargetMachine` contains target-specific interface functions that
relate to IR/CodeGen/MC constructs, whereas before (at least on paper)
it was supposed to have only IR/MC constructs. Any Target that doesn't
want to use the independent code generator simply does not implement
them, and returns either `false` or `nullptr`.
3. Renames `LLVMTargetMachine` to `CodeGenCommonTMImpl`. This renaming
aims to make the purpose of `LLVMTargetMachine` clearer. Its interface
was moved under the CodeGen library, to further emphasis its usage in
Targets that use CodeGen directly.
4. Makes `TargetMachine` the only interface used across LLVM and its
projects. With these changes, `CodeGenCommonTMImpl` is simply a set of
shared function implementations of `TargetMachine`, and CodeGen users
don't need to static cast to `LLVMTargetMachine` every time they need a
CodeGen-specific feature of the `TargetMachine`.
5. More importantly, does not change any requirements regarding library
linking.
cc @arsenm @aeubanks
|
|
This pass utilizes the new Hexagon Mask Instruction.
Authored by : Harsha Jagasia, Krzysztof Parzyszek
Co-authored-by: Harsha Jagasia <harsha.jagasia@gmail.com>
Co-authored-by: Krzysztof Parzyszek <Krzysztof.Parzyszek@amd.com>
|
|
(#96462)
On MSVC the `this` uses inside `decltype` require a lambda capture. On
clang they result in an unused capture warning instead. Add the capture
and suppress the warning with `(void)this`.
-----
Initializing this map is somewhat expensive (especially for O0), so we
currently only do it if certain flags are used. I would like to make use
of it for crash dumps (#96078), where we don't know in advance whether
it will be needed or not.
This patch changes the initialization to a lazy approach, where a
callback is registered that does the actual initialization. The
callbacks will be run the first time the pass name is requested.
This way there is no compile-time impact if the mapping is not used.
|
|
My attempt to fix the Windows build made things worse,
revert entirely for now.
This reverts commit e7137f2fed5cfee822ae3c4c6d39188adb59a16c.
This reverts commit 6eaf204dbb0a6a81cddfd02f625c130f7bb1aae5.
This reverts commit 957dc4366dd2ce9d5d2991c3ad76bbf438e9954e.
|
|
Initializing this map is somewhat expensive (especially for O0), so we
currently only do it if certain flags are used. I would like to make use
of it for crash dumps (#96078), where we don't know in advance whether
it will be needed or not.
This patch changes the initialization to a lazy approach, where a
callback is registered that does the actual initialization. The
callbacks will be run the first time the pass name is requested.
This way there is no compile-time impact if the mapping is not used.
|
|
- Fix build with `EXPENSIVE_CHECKS`
- Remove unused `PassName::ID` to resolve warning
- Mark `~SelectionDAGISel` virtual so AArch64 backend can work properly
|
|
This reverts commit de37c06f01772e02465ccc9f538894c76d89a7a1 to
de37c06f01772e02465ccc9f538894c76d89a7a1
It still breaks EXPENSIVE_CHECKS build. Sorry.
|
|
Port selection dag isel to new pass manager.
Only `AMDGPU` and `X86` support new pass version. `-verify-machineinstrs` in new pass manager belongs to verify instrumentation, it is enabled by default.
|
|
Adds the HexagonCopyHoisting pass, which moves a common copy instruction
into a basic block if it is present in all successor basic blocks.
---------
Co-authored-by: Jyotsna Verma <jverma@quicinc.com>
|
|
Prepare for dag-isel, also migrate some test case
|
|
Inspect a basic block and if its single basic block loop with a small
number of instructions, set the Loop Alignment to 32 bytes. This will
avoid the cache line break in the first packet of loop which will cause
a stall per each execution of loop.
|
|
(#83151)
…#82418)"
This reverts commit d62ca8def395ac165f253fdde1d93725394a4d53.
|
|
Port the `atomicexpand` pass to the new Pass Manager.
Fixes #64559
|
|
This patch adds a Hexagon specific backend pass that cleans up redundant
transfers after register allocation.
|
|
This patch optimizes the post-increment instructions so that we can
packetize them together.
v1 = phi(v0, v3')
v2,v3 = post_load v1, 4
v2',v3'= post_load v3, 4
This can be optimized in two ways
v1 = phi(v0, v3')
v2,v3' = post_load v1, 8
v2' = load v1, 4
|
|
The optimization finds the loads/stores of a specific form and translate
the first load/store to an absolute-set form there by optimizing out the
transfer and eliminate the constant extenders.
|
|
This reverts commit 0e6a48c3e8cc53f9eb5945ec04f8e03f6d2bae37.
Temporary revert as it causes bad codegen: https://github.com/llvm/llvm-project/pull/82011#issuecomment-1951426107
|
|
This patch optimizes the post-increment instructions so that we can
packetize them together.
v1 = phi(v0, v3')
v2,v3 = post_load v1, 4
v2',v3'= post_load v3, 4
This can be optimized in two ways
v1 = phi(v0, v3')
v2,v3' = post_load v1, 8
v2' = load v1, 4
|
|
Skip RDF optimizations if a function contains a number of basic blocks
that is more than a limit
---------
Co-authored-by: Yashas Andaluri <quic_yandalur@quicinc.com>
|
|
`print-pipeline-passes` can show target pass names.
|
|
(#66295)
This will make it easy for callers to see issues with and fix up calls
to createTargetMachine after a future change to the params of
TargetMachine.
This matches other nearby enums.
For downstream users, this should be a fairly straightforward
replacement,
e.g. s/CodeGenOpt::Aggressive/CodeGenOptLevel::Aggressive
or s/CGFT_/CodeGenFileType::
|
|
Most of the removed includes should probably have been removed already
when we removed TargetMachine::adjustPassManager.
|
|
targets
Follow up to the series:
1. https://reviews.llvm.org/D140161
2. https://reviews.llvm.org/D140349
3. https://reviews.llvm.org/D140331
4. https://reviews.llvm.org/D140323
Completes the work from the previous two for remaining targets.
This creates the following named passes that can be run via
`llc -{start|stop}-{before|after}`:
- arc-isel
- arm-isel
- avr-isel
- bpf-isel
- csky-isel
- hexagon-isel
- lanai-isel
- loongarch-isel
- m68k-isel
- msp430-isel
- mips-isel
- nvptx-isel
- ppc-codegen
- riscv-isel
- sparc-isel
- systemz-isel
- ve-isel
- wasm-isel
- xcore-isel
A nice way to write tests for SelectionDAGISel might be to use a RUN:
line like:
llc -mtriple=<triple> -start-before=<arch>-isel -stop-after=finalize-isel -o -
Fixes: https://github.com/llvm/llvm-project/issues/59538
Reviewed By: asb, zixuan-wu
Differential Revision: https://reviews.llvm.org/D140364
|
|
This fixes what I consider to be an API flaw I've tripped over
multiple times. The point this is constructed isn't well defined, so
depending on where this is first called, you can conclude different
information based on the MachineFunction. For example, the AMDGPU
implementation inspected the MachineFrameInfo on construction for the
stack objects and if the frame has calls. This kind of worked in
SelectionDAG which visited all allocas up front, but broke in
GlobalISel which hasn't visited any of the IR when arguments are
lowered.
I've run into similar problems before with the MIR parser and trying
to make use of other MachineFunction fields, so I think it's best to
just categorically disallow dependency on the MachineFunction state in
the constructor and to always construct this at the same time as the
MachineFunction itself.
A missing feature I still could use is a way to access an custom
analysis pass on the IR here.
|
|
|
|
|
|
Since opt no longer supports to run default (O0/O1/O2/O3/Os/Oz)
pipelines using the legacy PM, there are no in-tree uses of
TargetMachine::adjustPassManager remaining. This patch removes the
no longer used adjustPassManager functions.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D137796
|
|
|
|
|
|
Similar to 557efc9a8b68628c2c944678c6471dac30ed9e8e
|
|
Some cl::ZeroOrMore were added to avoid the `may only occur zero or one times!`
error. More were added due to cargo cult. Since the error has been removed,
cl::ZeroOrMore is unneeded.
Also remove cl::init(false) while touching the lines.
|
|
Seems like this can be const, since Passes shouldn't modify it.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D120518
|
|
comparison and branch until after at least the IPSCCP
That transformation is lossy, as discussed in
https://github.com/llvm/llvm-project/issues/53853
and https://github.com/rust-lang/rust/issues/85133#issuecomment-904185574
This is an alternative to D119839,
which would add a limited IPSCCP into SimplifyCFG.
Unlike lowering switch to lookup, we still want this transformation
to happen relatively early, but after giving a chance for the things
like CVP to do their thing. It seems like deferring it just until
the IPSCCP is enough for the tests at hand, but perhaps we need to
be more aggressive and disable it until CVP.
Fixes https://github.com/llvm/llvm-project/issues/53853
Refs. https://github.com/rust-lang/rust/issues/85133
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D119854
|
|
|
|
|
|
ConvergingVLIWScheduler
The Pre-RA VLIWMachineScheduler used by Hexagon is a relatively generic
implementation that would make sense to use on other VLIW targets.
This commit lifts those classes into their own header/source file with the
root VLIWMachineScheduler. I chose this path rather than adding the
strategy et al. into MachineScheduler to avoid bloating the file with other
implementations.
Target-specific behaviors have been captured and replicated through
function overloads.
- Added an overloadable DFAPacketizer creation member function. This is
mainly done for our downstream, which has the capability to override
the DFAPacketizer with custom implementations. This is an upstreamable
TODO on our end. Currently, it always returns the result of
TargetInstrInfo::CreateTargetScheduleState
- Added an extra helper which returns the number of instructions in the
current packet. This is used in our downstream, and may be useful
elsewhere.
- Placed the priority heuristic values into the ConvergingVLIWscheduler
class instead of defining them as local statics in the implementation
- Added a overridable helper in ConvergingVLIWScheduler so that targets
can create their own VLIWResourceModel
Differential Revision: https://reviews.llvm.org/D113150
|
|
Differential Revision: https://reviews.llvm.org/D111872
|
|
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
|
|
|
|
Pulled out the OptimizationLevel class from PassBuilder in order to be able to access it from within the PassManager and avoid include conflicts.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D107025
|
|
Printing pass manager invocations is fairly verbose and not super
useful.
This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.
This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D101797
|
|
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
|