| Age | Commit message (Collapse) | Author | Files | Lines |
|
Remove `UnsafeFPMath` uses, next is removing the command line option.
|
|
Remove "approx-func-fp-math" attribute and related command line option,
users should always use afn flag in IR.
Resolve FIXME in `TargetMachine::resetTargetOptions` partially.
|
|
This reverts commit 05e08cdb3e576cc0887d1507ebd2f756460c7db7.
Adding the missing -mtriple flags in MIR/X86 test files which caused
these tests to fail which was the reason for reverting the patch.
|
|
Reverts llvm/llvm-project#87574, which breaks LLVM ::
CodeGen/MIR/X86/call-site-info-ambiguous-indirect-call-typeid.mir tests
on linux-arm64 builders.
|
|
Introducing `EnableCallGraphSection` target option to add
CalleeTypeIds field in CallSiteInfo. Read the callee type ids
in and out by the MIR parser/printer.
Reviewers: ilovepi
Reviewed By: ilovepi
Pull Request: https://github.com/llvm/llvm-project/pull/87574
|
|
(#140823)
## Purpose
This patch is one in a series of code-mods that annotate LLVM’s public
interface for export. This patch annotates the `llvm/CGData` and
`llvm/CodeGen` libraries. These annotations currently have no meaningful
impact on the LLVM build; however, they are a prerequisite to support an
LLVM Windows DLL (shared library) build.
## Background
This effort is tracked in #109483. Additional context is provided in
[this
discourse](https://discourse.llvm.org/t/psa-annotating-llvm-public-interface/85307),
and documentation for `LLVM_ABI` and related annotations is found in the
LLVM repo
[here](https://github.com/llvm/llvm-project/blob/main/llvm/docs/InterfaceExportAnnotations.rst).
The bulk of these changes were generated automatically using the
[Interface Definition Scanner (IDS)](https://github.com/compnerd/ids)
tool, followed formatting with `git clang-format`.
The following manual adjustments were also applied after running IDS on
Linux:
- Add `LLVM_ABI` to a subset of private class methods and fields that
require export
- Add `LLVM_TEMPLATE_ABI` and `LLVM_EXPORT_TEMPLATE` to exported
instantiated templates defined via X-macro
- Add `LLVM_ABI_FRIEND` to friend member functions declared with
`LLVM_ABI`
- Explicitly make classes non-copyable where needed to due IDS adding
LLVM_ABI at the class level
- Add `#include "llvm/Support/Compiler.h"` to files where it was not
auto-added by IDS due to no pre-existing block of include statements.
- Add `LLVM_ABI` to a small number of symbols that require export but
are not declared in headers
## Validation
Local builds and tests to validate cross-platform compatibility. This
included llvm, clang, and lldb on the following configurations:
- Windows with MSVC
- Windows with Clang
- Linux with GCC
- Linux with Clang
- Darwin with Clang
|
|
(read-only) data sections (#122215)
https://github.com/llvm/llvm-project/pull/122183 adds a codegen pass to
infer machine jump table entry's hotness from the MBB hotness. This is a
follow-up PR to produce `.hot` and or `.unlikely` section prefix for
jump table's (read-only) data sections in the relocatable `.o` files.
When this patch is enabled, linker will see {`.rodata`, `.rodata.hot`,
`.rodata.unlikely`} in input sections. It can map `.rodata.hot` and
`.rodata` in the input sections to `.rodata.hot` in the executable, and
map `.rodata.unlikely` into `.rodata` with a pending extension to
`--keep-text-section-prefix` like
https://github.com/llvm/llvm-project/commit/059e7cbb66a30ce35f3ee43197eed1a106b50c5b,
or with a linker script.
1. To partition hot and jump tables, the AsmPrinter pass slices a function's jump table indices into two groups, one for hot and the other for cold jump tables. It then emits hot jump tables into a `.hot`-prefixed data section and cold ones into a `.unlikely`-prefixed data section, retaining the relative order of `LJT<N>` labels within each group.
2. [ELF only] To have data sections with _dynamic_ names (e.g., `.rodata.hot[.func]`), we implement
`TargetLoweringObjectFile::getSectionForJumpTable` method that accepts a `MachineJumpTableEntry` parameter, and update `selectELFSectionForGlobal` to generate `.hot` or `.unlikely` based on
MJTE's hotness.
- The dynamic JT section name doesn't depend on `-ffunction-section=true` or `-funique-section-names=true`, even though it leverages the similar underlying mechanism to have a MCSection with on-demand name as `-ffunction-section` does.
3. The new code path is off by default.
- Typically, `TargetOptions` conveys clang or LLVM tools' options to code generation passes. To follow the pattern, add option `EnableStaticDataPartitioning` bit in `TargetOptions` and make it
readable through `TargetMachine`.
- To enable the new code path in tools like `llc`, `partition-static-data-sections` option is introduced in
`CodeGen/CommandFlags.h/cpp`.
- A subsequent patch
([draft](https://github.com/llvm/llvm-project/commit/8f36a1374365862b3ca9be5615dd38f02a318c45)) will add a clang option to enable the new code path.
---------
Co-authored-by: Ellis Hoag <ellis.sparky.hoag@gmail.com>
|
|
When set, the compiler will use separate unique sections for global
symbols in named special sections (e.g. symbols that are annotated with
__attribute__((section(...)))). Doing so enables linker GC to collect
unused symbols without having to use a different section per-symbol.
|
|
TargetOptions/MCAsmInfo to MCTargetOptions
The convention is for such MC-specific options to reside in
MCTargetOptions. However, CompressDebugSections/RelaxELFRelocations do
not follow the convention: `CompressDebugSections` is defined in both
TargetOptions and MCAsmInfo and there is forwarding complexity.
Move the option to MCTargetOptions and hereby simplify the code. Rename
the misleading RelaxELFRelocations to X86RelaxRelocations. llvm-mc
-relax-relocations and llc -x86-relax-relocations can now be unified.
|
|
together by decoupling the handling of the two features. (#74128)
Today `-split-machine-functions` and `-fbasic-block-sections={all,list}`
cannot be combined with `-basic-block-sections=labels` (the labels
option will be ignored).
The inconsistency comes from the way basic block address map -- the
underlying mechanism for basic block labels -- encodes basic block
addresses
(https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html).
Specifically, basic block offsets are computed relative to the function
begin symbol. This relies on functions being contiguous which is not the
case for MFS and basic block section binaries. This means Propeller
cannot use binary profiles collected from these binaries, which limits
the applicability of Propeller for iterative optimization.
To make the `SHT_LLVM_BB_ADDR_MAP` feature work with basic block section
binaries, we propose modifying the encoding of this section as follows.
First let us review the current encoding which emits the address of each
function and its number of basic blocks, followed by basic block entries
for each basic block.
| | |
|--|--|
| Address of the function | Function Address |
| Number of basic blocks in this function | NumBlocks |
| BB entry 1
| BB entry 2
| ...
| BB entry #NumBlocks
To make this work for basic block sections, we treat each basic block
section similar to a function, except that basic block sections of the
same function must be encapsulated in the same structure so we can map
all of them to their single function.
We modify the encoding to first emit the number of basic block sections
(BB ranges) in the function. Then we emit the address map of each basic
block section section as before: the base address of the section, its
number of blocks, and BB entries for its basic block. The first section
in the BB address map is always the function entry section.
| | |
|--|--|
| Number of sections for this function | NumBBRanges |
| Section 1 begin address | BaseAddress[1] |
| Number of basic blocks in section 1 | NumBlocks[1] |
| BB entries for Section 1
|..................|
| Section #NumBBRanges begin address | BaseAddress[NumBBRanges] |
| Number of basic blocks in section #NumBBRanges |
NumBlocks[NumBBRanges] |
| BB entries for Section #NumBBRanges
The encoding of basic block entries remains as before with the minor
change that each basic block offset is now computed relative to the
begin symbol of its containing BB section.
This patch adds a new boolean codegen option `-basic-block-address-map`.
Correspondingly, the front-end flag `-fbasic-block-address-map` and LLD
flag `--lto-basic-block-address-map` are introduced.
Analogously, we add a new TargetOption field `BBAddrMap`. This means BB
address maps are either generated for all functions in the compiling
unit, or for none (depending on `TargetOptions::BBAddrMap`).
This patch keeps the functionality of the old
`-fbasic-block-sections=labels` option but does not remove it. A
subsequent patch will remove the obsolete option.
We refactor the `BasicBlockSections` pass by separating the BB address
map and BB sections handing to their own functions (named
`handleBBAddrMap` and `handleBBSections`). `handleBBSections` renumbers
basic blocks and places them in their assigned sections.
`handleBBAddrMap` is invoked after `handleBBSections` (if requested) and
only renumbers the blocks.
- New tests added:
- Two tests basic-block-address-map-with-basic-block-sections.ll and
basic-block-address-map-with-mfs.ll to exercise the combination of
`-basic-block-address-map` with `-basic-block-sections=list` and
'-split-machine-functions`.
- A driver sanity test for the `-fbasic-block-address-map` option
(basic-block-address-map.c).
- An LLD test for testing the `--lto-basic-block-address-map` option.
This reuses the LLVM IR from `lld/test/ELF/lto/basic-block-sections.ll`.
- Renamed and modified the two existing codegen tests for basic block
address map (`basic-block-sections-labels-functions-sections.ll` and
`basic-block-sections-labels.ll`)
- Removed `SHT_LLVM_BB_ADDR_MAP_V0` tests. Full deprecation of
`SHT_LLVM_BB_ADDR_MAP_V0` and `SHT_LLVM_BB_ADDR_MAP` version less than 2
will happen in a separate PR in a few months.
|
|
This patch adds basic TLSDESC support in the RISC-V backend.
Specifically, we add new relocation types for TLSDESC, as prescribed in
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/373, and add a
new pseudo instruction to simplify code generation.
This patch does not try to optimize the local dynamic case, which can be
improved in separate patches.
Linker side changes will also be handled separately.
The current implementation is only enabled when passing the new
`-enable-tlsdesc` codegen flag.
|
|
The corresponding function definition was removed by:
commit 3787ee457173c3612aac4c9b1a2b6d6ab0202616
Author: Nick Desaulniers <ndesaulniers@google.com>
Date: Tue Jun 8 08:57:12 2021 -0700
|
|
This creates a TargetMachine with the default options (from the command
line flags). This allows us to share a bit more code between tools.
Differential Revision: https://reviews.llvm.org/D141057
|
|
Currently clang's medium code model treats all data as large, putting them in a large data section and using more expensive instruction sequences to access them.
Following gcc's -mlarge-data-threshold, which allows putting data under a certain size in a normal data section as opposed to a large data section. This allows using cheaper code sequences to access some portion of data in the binary (which will be implemented in LLVM in a future patch).
And under the medium codel mode, only put data above the large data threshold into large data sections, not all data.
Reviewed By: MaskRay, rnk
Differential Revision: https://reviews.llvm.org/D149288
|
|
`libLTO` currently ignores the `-f[no-]integrated-as` flags. This patch teaches `libLTO` to respect them on AIX.
The implementation consists of two parts:
# Migrate `llc`'s `-no-integrated-as` option to a codegen option so that the option is available to `libLTO`/`lld`/`gold`.
# Teach `clang` to pass `-no-integrated-as` accordingly to `libLTO` depending on the `-f[no-]integrated-as` flags.
On platforms other than AIX, the `-f[no-]integrated-as` flags are ignored.
Reviewed By: MaskRay, steven_wu
Differential Revision: https://reviews.llvm.org/D152924
|
|
Apply my post-commit comment on D81995. The negative name misguided commit
d8a8e5d6240a1db809cd95106910358e69bbf299 (`[clang][cli] Remove marshalling from
Opt{In,Out}FFlag`) to:
* accidentally flip the option to not emit the xray_fn_idx section.
* change -fno-xray-function-index (instead of -fxray-function-index) to emit xray_fn_idx
This patch renames XRayOmitFunctionIndex and makes -fxray-function-index emit
xray_fn_idx, but the default remains -fno-xray-function-index .
|
|
Currently clangDriver passes -femulated-tls and -fno-emulated-tls to cc1.
cc1 forwards the option to LLVMCodeGen and ExplicitEmulatedTLS is used
to decide the value. Simplify this by moving the Clang decision to
clangDriver and moving the LLVM decision to InitTargetOptionsFromCodeGenFlags.
|
|
This patch adds an `llc` option `-mroptr` to specify storage locations for constant pointers on AIX.
When the `-mroptr` option is specified, constant pointers, virtual function tables, and virtual type tables are placed in read-only storage. Otherwise, by default, pointers, virtual function tables, and virtual type tables are placed are placed in read/write storage.
https://reviews.llvm.org/D144190 enables the `-mroptr` option for `clang`.
Reviewed By: hubert.reinterpretcast, stephenpeckham, myhsu, MaskRay, serge-sans-paille
Differential Revision: https://reviews.llvm.org/D144189
|
|
Remove the `-lower-global-dtors-via-cxa-atexit` escape hatch introduced
in D121736 [1], which switched the default lowering of global
destructors on MachO to use `__cxa_atexit()` to avoid emitting
deprecated `__mod_term_func` sections.
I added this flag as an escape hatch in case the switch causes any
problems. We didn't discover any problems so now we can remove it.
[1] https://reviews.llvm.org/D121736
rdar://90277838
Differential Revision: https://reviews.llvm.org/D145715
|
|
|
|
|
|
|
|
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
|
|
This reverts commit 22570bac694396514fff18dec926558951643fa6.
|
|
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
|
|
This is a (fixed) recommit of https://reviews.llvm.org/D121169
after: 1061034926
before: 1063332844
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D121681
|
|
`@llvm.global_dtors` using `__cxa_atexit` on MachO"
Mane of the build bots are complaining: Unknown command line argument '-lower-global-dtors'
|
|
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121327
|
|
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
|
|
after: 1061034926
before: 1063332844
Differential Revision: https://reviews.llvm.org/D121169
|
|
This relands commit b380a31de084a540cfa38b72e609b25ea0569bb7.
Restrict the tests to Windows only since the flag symbol hash depends on
system-dependent path normalization.
|
|
This reverts commit bd3a1de683f80d174ea9c97000db3ec3276bc022.
Break bots:
https://luci-milo.appspot.com/ui/p/fuchsia/builders/toolchain.ci/clang-windows-x64/b8822587673277278177/overview
|
|
The introduction and some examples are on this page:
https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/
The `/JMC` flag enables these instrumentations:
- Insert at the beginning of every function immediately after the prologue with
a call to `void __fastcall __CheckForDebuggerJustMyCode(unsigned char *JMC_flag)`.
The argument for `__CheckForDebuggerJustMyCode` is the address of a boolean
global variable (the global variable is initialized to 1) with the name
convention `__<hash>_<filename>`. All such global variables are placed in
the `.msvcjmc` section.
- The `<hash>` part of `__<hash>_<filename>` has a one-to-one mapping
with a directory path. MSVC uses some unknown hashing function. Here I
used DJB.
- Add a dummy/empty COMDAT function `__JustMyCode_Default`.
- Add `/alternatename:__CheckForDebuggerJustMyCode=__JustMyCode_Default` link
option via ".drectve" section. This is to prevent failure in
case `__CheckForDebuggerJustMyCode` is not provided during linking.
Implementation:
All the instrumentations are implemented in an IR codegen pass. The pass is placed immediately before CodeGenPrepare pass. This is to not interfere with mid-end optimizations and make the instrumentation target-independent (I'm still working on an ELF port in a separate patch).
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D118428
|
|
This patch introduces the conversions from math function calls
to MASS library calls. To resolves calls generated with these conversions, one
need to link libxlopt.a library. This patch is tested on PowerPC Linux and AIX.
Differential: https://reviews.llvm.org/D101759
Reviewer: bmahjour
|
|
Over in D114631 and [0] there's a plan for turning instruction referencing
on by default for x86. This patch adds / removes all the relevant bits of
code, with the aim that the final patch is extremely small, for an easy
revert. It should just be a condition in CommandFlags.cpp and removing the
XFail on instr-ref-flag.ll.
[0] https://lists.llvm.org/pipermail/llvm-dev/2021-November/153653.html
|
|
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when the backend is called separately (i.e, through the linker or llc), where user has always to pass -pseudo-probe-for-profiling explictly. I'm making the pass a default pass that requires no command line arg to trigger, but will be actually run depending on whether the CU comes with `llvm.pseudo_probe_desc` metadata.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110209
|
|
|
|
Introduce a new command-line flag `-swift-async-fp={auto|always|never}`
that controls how code generation sets the Swift extended async frame
info bit. There are three possibilities:
* `auto`: which determines how to set the bit based on deployment target, either
statically or dynamically via `swift_async_extendedFramePointerFlags`.
* `always`: the default, always set the bit statically, regardless of deployment
target.
* `never`: never set the bit, regardless of deployment target.
Patch by Doug Gregor <dgregor@apple.com>
Reviewed By: doug.gregor
Differential Revision: https://reviews.llvm.org/D109392
|
|
to `lib/CodeGen/CommandFlags.cpp`. It can replace
-x86-experimental-pref-loop-alignment=.
The loop alignment is only used by MachineBlockPlacement.
The implementation uses a new `llvm::TargetOptions` for now, as
an IR function attribute/module flags metadata may be overkill.
This is the llvm part of D106701.
|
|
D88631 added initial support for:
- -mstack-protector-guard=
- -mstack-protector-guard-reg=
- -mstack-protector-guard-offset=
flags, and D100919 extended these to AArch64. Unfortunately, these flags
aren't retained for LTO. Make them module attributes rather than
TargetOptions.
Link: https://github.com/ClangBuiltLinux/linux/issues/1378
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102742
|
|
Reviewed By: dblaikie, probinson
Differential Revision: https://reviews.llvm.org/D100826
|
|
GCC supports negative values for -mstack-protector-guard-offset=, this
should be a signed value. Pre-req to D100919.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101325
|
|
-mframe-pointer={non-leaf,all}
The Linux kernel objtool diagnostic `call without frame pointer save/setup`
arise in multiple instrumentation passes (asan/tsan/gcov). With the mechanism
introduced in D100251, it's trivial to respect the command line
-m[no-]omit-leaf-frame-pointer/-f[no-]omit-frame-pointer, so let's do it.
Fix: https://github.com/ClangBuiltLinux/linux/issues/1236 (tsan)
Fix: https://github.com/ClangBuiltLinux/linux/issues/1238 (asan)
Also document the function attribute "frame-pointer" which is long overdue.
Differential Revision: https://reviews.llvm.org/D101016
|
|
Identified with llvm-header-guard.
|
|
SUMMARY:
1. added a new option -xcoff-traceback-table to control whether generate traceback table for function.
2. implement the functionality of emit traceback table of a function.
Reviewers: hubert.reinterpretcast, Jason Liu
Differential Revision: https://reviews.llvm.org/D92398
|
|
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
|
|
vector ABIs.
Added support for the options mabi=vec-extabi and mabi=vec-default which are analogous to qvecnvol and qnovecnvol when using XL on AIX.
The extended Altivec ABI on AIX is enabled using mabi=vec-extabi in clang and vec-extabi in llc.
Reviewed By: Xiangling_L, DiggerLin
Differential Revision: https://reviews.llvm.org/D89684
|
|
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D88631
|
|
Summary:
This patch does the following:
1. Make InitTargetOptionsFromCodeGenFlags() accepts Triple as a
parameter, because some options' default value is triple dependant.
2. DataSections is turned on by default on AIX for llc.
3. Test cases change accordingly because of the default behaviour change.
4. Clang Driver passes in -fdata-sections by default on AIX.
Reviewed By: MaskRay, DiggerLin
Differential Revision: https://reviews.llvm.org/D88737
|
|
SUMMARY:
In IBM compiler xlclang , there is an option -fnovisibility which suppresses visibility. For more details see: https://www.ibm.com/support/knowledgecenter/SSGH3R_16.1.0/com.ibm.xlcpp161.aix.doc/compiler_ref/opt_visibility.html.
We need to add the option -mignore-xcoff-visibility for compatibility with the IBM AIX OS (as the option is enabled by default in AIX). With this option llvm does not emit any visibility attribute to ASM or XCOFF object file.
The option only work on the AIX OS, for other non-AIX OS using the option will report an unsupported options error.
In AIX OS:
1.1 the option -mignore-xcoff-visibility is enabled by default , if there is not -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command .
1.2 if there is -fvisibility=* explicitly but not -mignore-xcoff-visibility explicitly in the clang command. it will generate visibility attributes.
1.3 if there are both -fvisibility=* and -mignore-xcoff-visibility explicitly in the clang command. The option "-mignore-xcoff-visibility" wins , it do not emit the visibility attribute.
The option -mignore-xcoff-visibility has no effect on visibility attribute when compile with -emit-llvm option to generated LLVM IR.
Reviewer: daltenty,Jason Liu
Differential Revision: https://reviews.llvm.org/D87451
|