Age | Commit message (Collapse) | Author | Files | Lines |
|
This patch changes the way frames created from scripted affordances like
Scripted Threads are displayed. Currently, they're marked artificial
which is used usually for compiler generated frames.
This patch changes that behaviour by introducing a new synthetic
StackFrame kind and moves 'artificial' to be a distinct StackFrame
attribut.
On top of making these frames less confusing, this allows us to know
when a frame was created from a scripted affordance.
rdar://155949703
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
|
|
(follow-up to #147460) (#152887)
**Context**
Follow-up to
[#147460](https://github.com/llvm/llvm-project/pull/147460), which added
the ability to surface register-resident variable locations.
This PR moves the annotation logic out of `Instruction::Dump()` and into
`Disassembler::PrintInstructions()`, and adds lightweight state tracking
so we only print changes at range starts and when variables go out of
scope.
---
## What this does
While iterating the instructions for a function, we maintain a “live
variable map” keyed by `lldb::user_id_t` (the `Variable`’s ID) to
remember each variable’s last emitted location string. For each
instruction:
- **New (or newly visible) variable** → print `name = <location>` once
at the start of its DWARF location range, cache it.
- **Location changed** (e.g., DWARF range switched to a different
register/const) → print the updated mapping.
- **Out of scope** (was tracked previously but not found for the current
PC) → print `name = <undef>` and drop it.
This produces **concise, stateful annotations** that highlight variable
lifetime transitions without spamming every line.
---
## Why in `PrintInstructions()`?
- Keeps `Instruction` stateless and avoids changing the
`Instruction::Dump()` virtual API.
- Makes it straightforward to diff state across instructions (`prev →
current`) inside the single driver loop.
---
## How it works (high-level)
1. For the current PC, get in-scope variables via
`StackFrame::GetInScopeVariableList(/*get_parent=*/true)`.
2. For each `Variable`, query
`DWARFExpressionList::GetExpressionEntryAtAddress(func_load_addr,
current_pc)` (added in #144238).
3. If the entry exists, call `DumpLocation(..., eDescriptionLevelBrief,
abi)` to get a short, ABI-aware location string (e.g., `DW_OP_reg3 RBX →
RBX`).
4. Compare against the last emitted location in the live map:
- If not present → emit `name = <location>` and record it.
- If different → emit updated mapping and record it.
5. After processing current in-scope variables, compute the set
difference vs. the previous map and emit `name = <undef>` for any that
disappeared.
Internally:
- We respect file↔load address translation already provided by
`DWARFExpressionList`.
- We reuse the ABI to map LLVM register numbers to arch register names.
---
## Example output (x86_64, simplified)
```
-> 0x55c6f5f6a140 <+0>: cmpl $0x2, %edi ; argc = RDI, argv = RSI
0x55c6f5f6a143 <+3>: jl 0x55c6f5f6a176 ; <+54> at d_original_example.c:6:3
0x55c6f5f6a145 <+5>: pushq %r15
0x55c6f5f6a147 <+7>: pushq %r14
0x55c6f5f6a149 <+9>: pushq %rbx
0x55c6f5f6a14a <+10>: movq %rsi, %rbx
0x55c6f5f6a14d <+13>: movl %edi, %r14d
0x55c6f5f6a150 <+16>: movl $0x1, %r15d ; argc = R14
0x55c6f5f6a156 <+22>: nopw %cs:(%rax,%rax) ; i = R15, argv = RBX
0x55c6f5f6a160 <+32>: movq (%rbx,%r15,8), %rdi
0x55c6f5f6a164 <+36>: callq 0x55c6f5f6a030 ; symbol stub for: puts
0x55c6f5f6a169 <+41>: incq %r15
0x55c6f5f6a16c <+44>: cmpq %r15, %r14
0x55c6f5f6a16f <+47>: jne 0x55c6f5f6a160 ; <+32> at d_original_example.c:5:10
0x55c6f5f6a171 <+49>: popq %rbx ; i = <undef>
0x55c6f5f6a172 <+50>: popq %r14 ; argv = RSI
0x55c6f5f6a174 <+52>: popq %r15 ; argc = RDI
0x55c6f5f6a176 <+54>: xorl %eax, %eax
0x55c6f5f6a178 <+56>: retq
```
Only transitions are shown: the start of a location, changes, and
end-of-lifetime.
---
## Scope & limitations (by design)
- Handles **simple locations** first (registers, const-in-register cases
surfaced by `DumpLocation`).
- **Memory/composite locations** are out of scope for this PR.
- Annotations appear **only at range boundaries** (start/change/end) to
minimize noise.
- Output is **target-independent**; register names come from the target
ABI.
## Implementation notes
- All annotation printing now happens in
`Disassembler::PrintInstructions()`.
- Uses `std::unordered_map<lldb::user_id_t, std::string>` as the live
map.
- No persistent state across calls; the map is rebuilt while walking
instruction by instruction.
- **No changes** to the `Instruction` interface.
---
## Requested feedback
- Placement and wording of the `<undef>` marker.
- Whether we should optionally gate this behind a setting (currently
always on when disassembling with an `ExecutionContext`).
- Preference for immediate inclusion of tests vs. follow-up patch.
---
Thanks for reviewing! Happy to adjust behavior/format based on feedback.
---------
Co-authored-by: Jonas Devlieghere <jonas@devlieghere.com>
Co-authored-by: Adrian Prantl <adrian.prantl@gmail.com>
|
|
In architectures where pointers may contain metadata, such as arm64e, it
is important to ignore those bits when comparing two different StackIDs,
as the metadata may not be the same even if the pointers are.
This patch is a step towards allowing consumers of pointers to decide
whether they want to keep or remove metadata, as opposed to discarding
metadata at the moment pointers are created. See
https://github.com/llvm/llvm-project/pull/150537.
This was tested running the LLDB test suite on arm64e.
|
|
As a preliminary to making DIL the default implementation for
'frame var', ran check-lldb forcing 'frame var' to always use DIL,
and discovered a few failing tests. This fixes most of them. The only
remaining failing test is TestDAP_evaluate.py, which now passes
a test case that the test says should fail (still investigating this).
Changes in this PR:
- Sets correct VariableSP, as well as returning ValueObjectSP (needed
for several watchpoint tests).
- Updates error messages, when looking up members, to match what the
rest of LLDB expects. Also update appropriate DIL tests to expect the
updated error messages.
- Updates DIL parser to look for and accept "(anonymous namespace)::" at
the front of a variable name.
|
|
This fixes a data race between the main thread and the default event
handler thread. The statusline format option value was protected by a
mutex, but it was returned as a pointer, allowing one thread to access
it while another was modifying it.
Avoid the data race by returning format values by value instead of by
pointer.
|
|
Add the arrow and period operators, allowing DIL to find and access
member fields.
|
|
|
|
The function was always trying to dereference both the synthetic and
non-synthetic view of the object. This is wrong as the caller should be
able to determine which view of the object it wants to access, as is
done e.g. for child member access.
This patch removes the nonsynthetic->synthetic fallback, which is the
more surprising path, and fixes the callers to try both versions of the
object (when appropriate). I also snuck in simplification of the member
access code path because it was possible to use the same helper function
for that, and I wanted to be sure I understand the logic correctly.
I've left the synthetic->nonsynthetic fallback in place. I think we may
want to keep that one as we often have synthetic child providers for
pointer types. They usually don't provide an explicit dereference
operation but I think users would expect that a dereference operation on
those objects would work. What we may want to do is to try the
*synthetic* operation first in this case, so that the nonsynthetic case
is really a fallback.
---------
Co-authored-by: Ilia Kuklin <kuklin.iy@mail.ru>
|
|
(#136494)
Show assembly code when the source code for a frame is not available in
the debugger machine
Edit: this functionality will work only when using
`stop-disassembly-display = no-source` in the settings
Fix #136492
After the fix:
[Screencast From 2025-04-20
18-00-30.webm](https://github.com/user-attachments/assets/1ce41715-cf4f-42a1-8f5c-6196b9d685dc)
|
|
Add the Data Inspection Language (DIL) implementation pieces for
handling plain local and global variable names.
See https://discourse.llvm.org/t/rfc-data-inspection-language/69893 for
information about DIL.
This change includes the basic AST, Lexer, Parser and Evaluator pieces,
as well as some tests.
|
|
No test because generating discontinous functions is tedious and there's
nothing particularly interesting happening in here. As long as the
analyzer stays within a single basic block. it doesn't really care
whether the function is discontinous or not. I could create cases where
the algorithm breaks when going across basic blocks, but that's more of
inherent limitation of the algorithm (the inability to follow jumps
"backwards") than something specific to discontinous functions.
At this point, I'm more interested in cleaning up the last few remaining
uses of the deprecated function that I'm about improving "frame
diagnose".
|
|
This patch pushes the error handling boundary for the GetBitSize()
methods from Runtime into the Type and CompilerType APIs. This makes it
easier to diagnose problems thanks to more meaningful error messages
being available. GetBitSize() is often the first thing LLDB asks about a
type, so this method is particularly important for a better user
experience.
rdar://145667239
|
|
The test was failing because it was looking up the immediate value from
the call instruction as a load address, whereas in fact it was a file
address. This worked on darwin because (with ASLR disabled) the two
addresses are generally the same. On linux, this depends on the build
mode, but with the default (PIE) build type, the two are never the same.
The test also fails on a mac with ASLR enabled.
This path fixes the code to look up the value as a file address.
|
|
Many calls to Function::GetAddressRange() were not interested in the
range itself. Instead they wanted to find the address of the function
(its entry point) or the base address for relocation of function-scoped
entities (technically, the two don't need to be the same, but there's
isn't good reason for them not to be). This PR creates a separate
function for retrieving this, and changes the existing
(non-controversial) uses to call that instead.
|
|
|
|
Unbeknownst to me the Swift LLDB branch already had an almost identical
API with this name, so it makes sense to merge the two.
|
|
This is motivated by exposing some Swift language-specific flags through
the API, in the example here it is used to communicate the Objective-C
runtime version. This could also be a meaningful extension point to get
information about "embedded: languages, such as extracting the C++
version in an Objective-C++ frame or something along those lines.
|
|
We got a bug report that this message is confusing. In this particular
case, the line zero was due to compiler tail merging (in optimized
code). The main issue was the "no source code" part: in this case it's
kind of incorrect because -- even though we can't really know that --
the address is arguably associated with *multiple* lines of source code.
I've tried to make the new wording more neutral, and added a wink
towards compiler optimizations. I left out the "compiler generated" part
of the message because I couldn't find a way to squeeze that in nicely.
I'm also not entirely sure what it was referring to -- if this was
(just) function prologue/epilogue, then maybe leaving it out is fine, as
we're not likely to stop there anyway (?)
I also left out the function name, because:
- for template functions it gets rather long
- it's already present in the message, potentially twice (once in the
"frame summary" line and once in the snippet of code we show for the
function declaration)
---------
Co-authored-by: Jonas Devlieghere <jonas@devlieghere.com>
|
|
This patch is a follow-up to 9c7701fa78037af03be10ed168fd3c75a2ed1aef
and adds extra-null checks before dereferencing the inlined_info
pointer.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
|
|
(#116298)
This patch moves some of the logic implemented in the SBFrame APIs to
the lldb_private::StackFrame class so it can be re-used elsewhere.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
|
|
Add the framework code for hooking up and calling the Data Inspection
Language (DIL) implementation, as an alternate implementation for the
'frame variable' command. For now, this is an opt-in option, via a
target setting 'target.experimental.use-DIL'. See
https://discourse.llvm.org/t/rfc-data-inspection-language/69893 for more
information about this project.
This PR does not actually call any of the DIL code; instead the piece
that will eventually call the DIL code
(StackFrame::DILEvaluateVariableExpression) calls back into the original
'frame variable' implementation.
|
|
When retrieving the location of the function declaration, we were
dropping the file component on the floor, which resulted in an amusingly
confusing situation were we displayed the file containing the
implementation of the function, but used the line number of the
declaration. This patch fixes that.
It required a small refactor Function::GetStartLineSourceLineInfo to
return a SupportFile (instead of just the file spec), which in turn
necessitated changes in a couple of other places as well.
|
|
Add the ability to override the disassembly CPU and CPU features through
a target setting (`target.disassembly-cpu` and
`target.disassembly-features`) and a `disassemble` command option
(`--cpu` and `--features`).
This is especially relevant for architectures like RISC-V which relies
heavily on CPU extensions.
The majority of this patch is plumbing the options through. I recommend
looking at DisassemblerLLVMC and the test for the observable change in
behavior.
|
|
ValueObject is part of lldbCore for historical reasons, but conceptually
it deserves to be its own library. This does introduce a (link-time) circular
dependency between lldbCore and lldbValueObject, which is unfortunate
but probably unavoidable because so many things in LLDB rely on
ValueObject. We already have cycles and these libraries are never built
as dylibs so while this doesn't improve the situation, it also doesn't
make things worse.
The header includes were updated with the following command:
```
find . -type f -exec sed -i.bak "s%include \"lldb/Core/ValueObject%include \"lldb/ValueObject/ValueObject%" '{}' \;
```
|
|
This fixes the following assertion: "Cannot create Expected<T> from
Error success value." The problem was that GetFrameBaseValue return
false without updating the Status argument. This patch eliminates the
opportunity for mistakes by returning an llvm:Error.
|
|
|
|
(#107163)
…ror() [NFC]
|
|
To support detecting MD5 checksum mismatches, deal with SupportFiles
rather than a plain FileSpecs in the SourceManager.
|
|
This patch removes all of the Set.* methods from Status.
This cleanup is part of a series of patches that make it harder use the
anti-pattern of keeping a long-lives Status object around and updating
it while dropping any errors it contains on the floor.
This patch is largely NFC, the more interesting next steps this enables
is to:
1. remove Status.Clear()
2. assert that Status::operator=() never overwrites an error
3. remove Status::operator=()
Note that step (2) will bring 90% of the benefits for users, and step
(3) will dramatically clean up the error handling code in various
places. In the end my goal is to convert all APIs that are of the form
` ResultTy DoFoo(Status& error)
`
to
` llvm::Expected<ResultTy> DoFoo()
`
How to read this patch?
The interesting changes are in Status.h and Status.cpp, all other
changes are mostly
` perl -pi -e 's/\.SetErrorString/ = Status::FromErrorString/g' $(git
grep -l SetErrorString lldb/source)
`
plus the occasional manual cleanup.
|
|
backtraces (#104523)""
This reverts commit 547917aebd1e79a8929b53f0ddf3b5185ee4df74.
|
|
(#104523)"
This reverts commit f01f80ce6ca7640bb0e267b84b1ed0e89b57e2d9.
This commit introduces an msan violation. See the discussion on https://github.com/llvm/llvm-project/pull/104523.
|
|
Compilers and language runtimes often use helper functions that are
fundamentally uninteresting when debugging anything but the
compiler/runtime itself. This patch introduces a user-extensible
mechanism that allows for these frames to be hidden from backtraces and
automatically skipped over when navigating the stack with `up` and
`down`.
This does not affect the numbering of frames, so `f <N>` will still
provide access to the hidden frames. The `bt` output will also print a
hint that frames have been hidden.
My primary motivation for this feature is to hide thunks in the Swift
programming language, but I'm including an example recognizer for
`std::function::operator()` that I wished for myself many times while
debugging LLDB.
rdar://126629381
Example output. (Yes, my proof-of-concept recognizer could hide even
more frames if we had a method that returned the function name without
the return type or I used something that isn't based off regex, but it's
really only meant as an example).
before:
```
(lldb) thread backtrace --filtered=false
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #3: 0x0000000100003968 a.out`std::__1::__function::__alloc_func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()[abi:se200000](this=0x000000016fdff280, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:171:12
frame #4: 0x00000001000026bc a.out`std::__1::__function::__func<int (*)(int, int), std::__1::allocator<int (*)(int, int)>, int (int, int)>::operator()(this=0x000000016fdff278, __arg=0x000000016fdff224, __arg=0x000000016fdff220) at function.h:313:10
frame #5: 0x0000000100003c38 a.out`std::__1::__function::__value_func<int (int, int)>::operator()[abi:se200000](this=0x000000016fdff278, __args=0x000000016fdff224, __args=0x000000016fdff220) const at function.h:430:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
(lldb)
```
after
```
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001f04 a.out`foo(x=1, y=1) at main.cpp:4:10
frame #1: 0x0000000100003a00 a.out`decltype(std::declval<int (*&)(int, int)>()(std::declval<int>(), std::declval<int>())) std::__1::__invoke[abi:se200000]<int (*&)(int, int), int, int>(__f=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:149:25
frame #2: 0x000000010000399c a.out`int std::__1::__invoke_void_return_wrapper<int, false>::__call[abi:se200000]<int (*&)(int, int), int, int>(__args=0x000000016fdff280, __args=0x000000016fdff224, __args=0x000000016fdff220) at invoke.h:216:12
frame #6: 0x0000000100002038 a.out`std::__1::function<int (int, int)>::operator()(this= Function = foo(int, int) , __arg=1, __arg=1) const at function.h:989:10
frame #7: 0x0000000100001f64 a.out`main(argc=1, argv=0x000000016fdff4f8) at main.cpp:9:10
frame #8: 0x0000000183cdf154 dyld`start + 2476
Note: Some frames were hidden by frame recognizers
```
|
|
Change the signature of `DWARFExpression::Evaluate` and
`DWARFExpressionList::Evaluate` to return an `llvm::Expected` instead of a
boolean. This eliminates the `Status` output parameter and generally improves
error handling.
|
|
that separates out language and version. To avoid reinventing the wheel
and introducing subtle incompatibilities, this API uses the table of
languages and versiond defined by the upcoming DWARF 6 standard
(https://dwarfstd.org/languages-v6.html). While the DWARF 6 spec is not
finialized, the list of languages is broadly considered stable.
The primary motivation for this is to allow the Swift language plugin to
switch between language dialects between, e.g., Swift 5.9 and 6.0 with
out introducing a ton of new language codes. On the main branch this
change is considered NFC.
Depends on https://github.com/llvm/llvm-project/pull/89980
|
|
This was made unused by d9ec4b24a84addb8bd77b5d9dd990181351cf84c.
|
|
This is another step towards supporting DWARF5 checksums and inline
source code in LLDB. This is a reland of #85468 but without the
functional change of storing the support file from the line table (yet).
|
|
Reverts llvm/llvm-project#85468 because @slackito reports this broke
stepping in one of their tests [1] and this patch was meant to be NFC.
[1]
https://github.com/llvm/llvm-project/commit/d5a277d309e92b1d3e493da6036cffdf815105b1#commitcomment-139991120
|
|
This is another step towards supporting DWARF5 checksums and inline
source code in LLDB.
|
|
(#84219)
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
|
|
llvm::Expected (#84219)"
This reverts commit 99118c809367d518ffe4de60c16da953744b68b9.
|
|
(#84219)
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
|
|
This commits fixes a few subtle bugs where the method:
1. Declares a local `Status error` which eclipses the method's parameter
`Status &error`.
- The method then sets the error state to the local `error` and returns
without ever touching the parameter `&error`.
- This effectively traps the error state and its message from ever
reaching the caller.
- I also threw in a null pointer check in case the callee doesn't set
its `Status` parameter but returns `0`/`nullptr`.
2. Declares a local `Status deref_error` (good), passes it to the
`Dereference` method (also good), but then checks the status of the
method's `Status &error` parameter (not good).
- The fix checks `deref_error` instead and also checks for a `nullptr`
return value.
- There's a good opportunity here for a future PR that changes the
`Dereference` method to fold an error state into the `ValueObject`
return value's `m_error` instead of using a parameter.
3. Declares another local `Status error`, which it doesn't pass to a
method (because there isn't a parameter for it), and then checks for an
error condition that never happens.
- The fix just checks the callee's return value, because that's all it
has to go on.
- This likely comes from a copy/paste from issue 1 above.
rdar://119155810
|
|
When this option gets enabled, descriptions of stack frames will be
generated using the format provided in the launch configuration instead
of simply calling `SBFrame::GetDisplayFunctionName`. This allows
lldb-dap to show an output similar to the one in the CLI.
|
|
Fix incorrect uses of LLDB_LOG_ERROR. The macro doesn't automatically
inject the error in the log message: it merely passes the error as the
first argument to formatv and therefore must be referenced with {0}.
Thanks to Nicholas Allegra for collecting a list of places where the
macro was misused.
rdar://111581655
Differential revision: https://reviews.llvm.org/D154530
|
|
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
|
|
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
|
|
I don't think this needs to be a ConstString.
Differential Revision: https://reviews.llvm.org/D150709
|
|
The `v` (`frame variable`) command can directly access ivars/fields of `this` or `self`.
Such as `v field`, instead of `v this->field`. This change relaxes the criteria for
finding `this`/`self` variables.
There are cases where a `this`/`self` variable does exist, but up to now the `v` command
has not made use of it. The user would have to explicitly run `v this->field` or
`self->_ivar` to access ivars. This change allows such cases to also work (without
explicitly dereferencing `this`/`self`).
A very common example in Objective-C (and Swift) is weakly capturing `self`:
```
__weak Type *weakSelf = self;
void (^block)(void) = ^{
Type *self = weakSelf; // Re-establish strong reference.
// `v _ivar` should work just as well as `v self->_ivar`.
};
```
In this case, `self` exists but `v` would not have used it. With this change, the fact
that a variable named `self` exists is enough for it to be used.
Differential Revision: https://reviews.llvm.org/D145276
|
|
This applies to IsClassMethod as well.
|
|
with `RESOLVED_FRAME_CODE_ADDR`
Differential Revision: https://reviews.llvm.org/D139066
|