Age | Commit message (Collapse) | Author | Files | Lines |
|
This reintroduces `Type.h`, having earlier been renamed to `TypeBase.h`,
as a redirection to `TypeBase.h`, and redirects most users to include
the former instead.
This is a preparatory patch for being able to provide inline definitions
for `Type` methods which would otherwise cause a circular dependency
with `Decl{,CXX}.h`.
Doing these operations into their own NFC patch helps the git rename
detection logic work, preserving the history.
This patch makes clang just a little slower to build (~0.17%), just
because it makes more code indirectly include `DeclCXX.h`.
|
|
This is a preparatory patch, to be able to provide inline definitions
for `Type` functions which depend on `Decl{,CXX}.h`. As the latter also
depends on `Type.h`, this would not be possible without some
reorganizing.
Splitting this rename into its own patch allows git to track this as a
rename, and preserve all git history, and not force any code
reformatting.
A later NFC patch will reintroduce `Type.h` as redirection to
`TypeBase.h`, rewriting most places back to directly including `Type.h`
instead of `TypeBase.h`, leaving only a handful of places where this is
necessary.
Then yet a later patch will exploit this by making more stuff inline.
|
|
This is a major change on how we represent nested name qualifications in
the AST.
* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.
This patch offers a great performance benefit.
It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.
This has great results on compile-time-tracker as well:

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.
It has some other miscelaneous drive-by fixes.
About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.
There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.
How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.
The rest and bulk of the changes are mostly consequences of the changes
in API.
PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.
Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
|
|
This commit handles the following types:
- clang::ExternalASTSource
- clang::TargetInfo
- clang::ASTContext
- clang::SourceManager
- clang::FileManager
Part of cleanup #151026
|
|
Handles clang::DiagnosticsEngine and clang::DiagnosticIDs.
For DiagnosticIDs, this mostly migrates from `new DiagnosticIDs` to
convenience method `DiagnosticIDs::create()`.
Part of cleanup https://github.com/llvm/llvm-project/issues/151026
|
|
(#139584)"
This reverts commit e2a885537f11f8d9ced1c80c2c90069ab5adeb1d. Build failures were fixed right away and reverting the original commit without the fixes breaks the build again.
|
|
(#139584)"
This reverts commit 9e306ad4600c4d3392c194a8be88919ee758425c.
Multiple builtbot failures have been reported:
https://github.com/llvm/llvm-project/pull/139584
|
|
The `DiagnosticOptions` class is currently intrusively
reference-counted, which makes reasoning about its lifetime very
difficult in some cases. For example, `CompilerInvocation` owns the
`DiagnosticOptions` instance (wrapped in `llvm::IntrusiveRefCntPtr`) and
only exposes an accessor returning `DiagnosticOptions &`. One would
think this gives `CompilerInvocation` exclusive ownership of the object,
but that's not the case:
```c++
void shareOwnership(CompilerInvocation &CI) {
llvm::IntrusiveRefCntPtr<DiagnosticOptions> CoOwner = &CI.getDiagnosticOptions();
// ...
}
```
This is a perfectly valid pattern that is being actually used in the
codebase.
I would like to ensure the ownership of `DiagnosticOptions` by
`CompilerInvocation` is guaranteed to be exclusive. This can be
leveraged for a copy-on-write optimization later on. This PR changes
usages of `DiagnosticOptions` across `clang`, `clang-tools-extra` and
`lldb` to not be intrusively reference-counted.
|
|
The IdentifierInfo isn't typically modified. Use 'const' wherever
possible.
|
|
This removes a default argument that is currently broken in C++23 mode
due to `std::default_delete` now being `constexpr`. This is a known
problem (see #74963, #59966, #69996, and a couple more), fixing which
will probably take some time, so this at least makes it possible to
compile `ASTUnit.h` in C++23 mode.
Note that we can’t simply include the header that provides the
definition of the class causing the problem either, as that would create
a circular dependency.
|
|
Original commit message:
"
This patch enabled code completion for ClangREPL. The feature was built upon
three existing Clang components: a list completer for LineEditor, a
CompletionConsumer from SemaCodeCompletion, and the ASTUnit::codeComplete method.
The first component serves as the main entry point of handling interactive inputs.
Because a completion point for a compiler instance has to be unchanged once it
is set, an incremental compiler instance is created for each code
completion. Such a compiler instance carries over AST context source from the
main interpreter compiler in order to obtain declarations or bindings from
previous input in the same REPL session.
The most important API codeComplete in Interpreter/CodeCompletion is a thin
wrapper that calls with ASTUnit::codeComplete with necessary arguments, such as
a code completion point and a ReplCompletionConsumer, which communicates
completion results from SemaCodeCompletion back to the list completer for the
REPL.
In addition, PCC_TopLevelOrExpression and CCC_TopLevelOrExpression` top levels
were added so that SemaCodeCompletion can treat top level statements like
expression statements at the REPL. For example,
clang-repl> int foo = 42;
clang-repl> f<tab>
From a parser's persective, the cursor is at a top level. If we used code
completion without any changes, PCC_Namespace would be supplied to
Sema::CodeCompleteOrdinaryName, and thus the completion results would not
include foo.
Currently, the way we use PCC_TopLevelOrExpression and
CCC_TopLevelOrExpression is no different from the way we use PCC_Statement
and CCC_Statement respectively.
Differential revision: https://reviews.llvm.org/D154382
"
The new patch also fixes clangd and several memory issues that the bots reported
and upload the missing files.
|
|
This reverts commit 5ab25a42ba70c4b50214b0e78eaaccd30696fa09 due to forgotten
files.
|
|
Original commit message:
"
This patch enabled code completion for ClangREPL. The feature was built upon
three existing Clang components: a list completer for LineEditor, a
CompletionConsumer from SemaCodeCompletion, and the ASTUnit::codeComplete method.
The first component serves as the main entry point of handling interactive inputs.
Because a completion point for a compiler instance has to be unchanged once it
is set, an incremental compiler instance is created for each code
completion. Such a compiler instance carries over AST context source from the
main interpreter compiler in order to obtain declarations or bindings from
previous input in the same REPL session.
The most important API codeComplete in Interpreter/CodeCompletion is a thin
wrapper that calls with ASTUnit::codeComplete with necessary arguments, such as
a code completion point and a ReplCompletionConsumer, which communicates
completion results from SemaCodeCompletion back to the list completer for the
REPL.
In addition, PCC_TopLevelOrExpression and CCC_TopLevelOrExpression` top levels
were added so that SemaCodeCompletion can treat top level statements like
expression statements at the REPL. For example,
clang-repl> int foo = 42;
clang-repl> f<tab>
From a parser's persective, the cursor is at a top level. If we used code
completion without any changes, PCC_Namespace would be supplied to
Sema::CodeCompleteOrdinaryName, and thus the completion results would not
include foo.
Currently, the way we use PCC_TopLevelOrExpression and
CCC_TopLevelOrExpression is no different from the way we use PCC_Statement
and CCC_Statement respectively.
Differential revision: https://reviews.llvm.org/D154382
"
The new patch also fixes clangd and several memory issues that the bots reported.
|
|
This reverts commit eb0e6c3134ef6deafe0a4958e9e1a1214b3c2f14 due to failures in
clangd such as https://lab.llvm.org/buildbot/#/builders/57/builds/29377
|
|
This patch enabled code completion for ClangREPL. The feature was built upon
three existing Clang components: a list completer for LineEditor, a
CompletionConsumer from SemaCodeCompletion, and the ASTUnit::codeComplete method.
The first component serves as the main entry point of handling interactive inputs.
Because a completion point for a compiler instance has to be unchanged once it
is set, an incremental compiler instance is created for each code
completion. Such a compiler instance carries over AST context source from the
main interpreter compiler in order to obtain declarations or bindings from
previous input in the same REPL session.
The most important API codeComplete in Interpreter/CodeCompletion is a thin
wrapper that calls with ASTUnit::codeComplete with necessary arguments, such as
a code completion point and a ReplCompletionConsumer, which communicates
completion results from SemaCodeCompletion back to the list completer for the
REPL.
In addition, PCC_TopLevelOrExpression and CCC_TopLevelOrExpression` top levels
were added so that SemaCodeCompletion can treat top level statements like
expression statements at the REPL. For example,
clang-repl> int foo = 42;
clang-repl> f<tab>
From a parser's persective, the cursor is at a top level. If we used code
completion without any changes, PCC_Namespace would be supplied to
Sema::CodeCompleteOrdinaryName, and thus the completion results would not
include foo.
Currently, the way we use PCC_TopLevelOrExpression and
CCC_TopLevelOrExpression is no different from the way we use PCC_Statement
and CCC_Statement respectively.
Differential revision: https://reviews.llvm.org/D154382
|
|
- Use this new context in Sema to limit completions to seen ObjC class
names
- Use this new context in clangd to disable include insertions when
completing ObjC forward decls
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D150978
|
|
This is a follow-up to https://reviews.llvm.org/D140896, split into
several parts as it touches a lot of files.
Differential Revision: https://reviews.llvm.org/D141139
|
|
This reverts commit 97105e5bf70fae5d9902081e917fd178b57f1717.
It breaks clang-armv8-quick buildbot:
https://lab.llvm.org/buildbot/#/builders/245/builds/761
|
|
This allows clients of libclang to check whether a completion result is a keyword. Previously, keywords had `CursorKind == CXCursor_NotImplemented` and it wasn't trivial to distinguish a keyword from a pattern.
This change moves `CodeCompletionResult::ResultKind` to `clang-c` under a new name `CXCompletionResultKind`. It also tweaks `c-index-test` to print the result kind instead of `NotImplemented`, and adjusts the tests for the new output.
rdar://91852088
Differential Revision: https://reviews.llvm.org/D136844
|
|
Implementation is based on the "expected type" as used for
designated-initializers in braced init lists. This means it can deduce the type
in some cases where it's not written:
void foo(Widget);
foo({ /*help here*/ });
Only basic constructor calls are in scope of this patch, excluded are:
- aggregate initialization (no help is offered for aggregates)
- initializer_list initialization (no help is offered for these constructors)
Fixes https://github.com/clangd/clangd/issues/306
Differential Revision: https://reviews.llvm.org/D116317
|
|
Only the bare name is completed, with no args.
For args to be useful we need arg names. These *are* in the tablegen but
not currently emitted in usable form, so left this as future work.
C++11, C2x, GNU, declspec, MS syntax is supported, with the appropriate
spellings of attributes suggested.
`#pragma clang attribute` is supported but not terribly useful as we
only reach completion if parens are balanced (i.e. the line is not truncated)
There's no filtering of which attributes might make sense in this
grammatical context (e.g. attached to a function). In code-completion context
this is hard to do, and will only work in few cases :-(
There's also no filtering by langopts: this is because currently the
only way of checking is to try to produce diagnostics, which requires a
valid ParsedAttr which is hard to get.
This should be fairly simple to fix but requires some tablegen changes
to expose the logic without the side-effect.
Differential Revision: https://reviews.llvm.org/D107696
|
|
This is mostly a mechanical change, but a testcase that contains
parts of the StringRef class (clang/test/Analysis/llvm-conventions.cpp)
isn't touched.
|
|
simplify memory management
|
|
Reviewers: bruno, sammccall
Reviewed By: sammccall
Subscribers: jkorous, dexonsmith, arphaman, ributzka, cfe-commits
Differential Revision: https://reviews.llvm.org/D69011
llvm-svn: 375031
|
|
Summary:
It's never set to true. Its only effect would be to set stdout to binary mode.
Hopefully we have better ways of doing this by now :-)
Reviewers: hokein
Subscribers: jkorous, arphaman, kadircet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60871
llvm-svn: 358696
|
|
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
Remove unneeded includes
Add needed include
Remove dependency on Serialization
llvm-svn: 349237
|
|
Summary: New name suggestions were being used in places where existing names should have been used, this patch tries to fix some of those situations.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: arphaman, cfe-commits
Differential Revision: https://reviews.llvm.org/D53191
llvm-svn: 345152
|
|
Summary:
The dir component ("somedir" in #include <somedir/fo...>) is considered fixed.
We append "foo" to each directory on the include path, and then list its files.
Completions are of the forms:
#include <somedir/fo^
foo.h>
fox/
The filter is set to the filename part ("fo"), so fuzzy matching can be
applied to the filename only.
No fancy scoring/priorities are set, and no information is added to
CodeCompleteResult to make smart scoring possible. Could be in future.
Reviewers: ilya-biryukov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D52076
llvm-svn: 342449
|
|
Summary: Used in clangd.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: ioeric, kadircet, cfe-commits
Differential Revision: https://reviews.llvm.org/D51436
llvm-svn: 341063
|
|
Follow up for D41537 - libclang part.
Differential Revision: https://reviews.llvm.org/D46862
llvm-svn: 334593
|
|
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
|
|
Summary:
Enumerating the contents of a namespace or global scope will omit any
decls that aren't already loaded, instead of deserializing them from the
PCH.
This allows a fast hybrid code completion where symbols from headers are
provided by an external index. (Sema already exposes the information
needed to do a reasonabl job of filtering them).
Clangd plans to implement this hybrid.
This option is just a hint - callers still need to postfilter results if
they want to *avoid* completing decls outside the main file.
Reviewers: bkramer, ilya-biryukov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D41989
llvm-svn: 322371
|
|
requested by client
This is a follow up to r319702 which records parsing invocations.
These files are not emitted by default, and the client has to specify the
invocation emission path first.
rdar://35322543
llvm-svn: 320085
|
|
Enabled crash recovery for some libclang operations on a calling thread even
when LIBCLANG_NOTHREAD is specified.
Previously it would only run under crash recovery if LIBCLANG_NOTHREAD is not
set. Moved handling of LIBCLANG_NOTHREAD env variable into RunSafely from its
call sites.
llvm-svn: 318142
|
|
Summary:
AllocatedCXCodeCompleteResults::TemporaryFiles have turned into zombies.
Seven years ago they used to do their job during [[ https://github.com/llvm-mirror/clang/commit/313e26c4e81f0e467490a530548450f4c824a6c4/tools/CIndex/CIndexCodeCompletion.cpp#diff-02d3e692ad507b10af9458b775c5750bL261 | file remapping]], but now they are created just to be torn down in the destructor.
Reviewers: bkramer
Reviewed By: bkramer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D31288
llvm-svn: 298697
|
|
No functionality change intended.
llvm-svn: 298443
|
|
and CodeCompleteConsumer"
Aleksey Shlypanikov pointed out my mistake in migrating an explicit
unique_ptr to auto - I was expecting the function returned a unique_ptr,
but instead it returned a raw pointer - introducing a leak.
Thanks Aleksey!
This reapplies r291184, reverted in r291249.
llvm-svn: 291270
|
|
CodeCompleteConsumer"
Caused a memory leak reported by asan. Reverting while I investigate.
This reverts commit r291184.
llvm-svn: 291249
|
|
CodeCompleteConsumer
llvm-svn: 291184
|
|
These are unnecessary, the declarations already carry the 'extern C' property, and if there is mismatch
between declaration and definition then we will get linker errors via libclang.exports.
llvm-svn: 290025
|
|
This boilerplate code was necessary to move arguments between threads in
C++98, lambdas make this much easier. No functionality change intended.
llvm-svn: 243227
|
|
rdar://19369529
llvm-svn: 241557
|
|
llvm-svn: 240353
|
|
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
|
|
A PCHContainerOperations abstract interface provides operations for
creating and unwrapping containers for serialized ASTs (precompiled
headers and clang modules). The default implementation is
RawPCHContainerOperations, which uses a flat file for the output.
The main application for this interface will be an
ObjectFilePCHContainerOperations implementation that uses LLVM to
wrap the module in an ELF/Mach-O/COFF container to store debug info
alongside the AST.
rdar://problem/20091852
llvm-svn: 240225
|
|
Summary:
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' -j=32 -fix
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D8926
llvm-svn: 234678
|
|
llvm-svn: 231811
|
|
The code building the code completion string for overloads was providing
less detail compared to the one building completion strings for function
declarations. There was no information about optionals and no information
about what's a parameter and what's a function identifier, everything
besides ResultType, CurrentParameter and special characters was classified
as Text.
This makes code completion strings for overload candidates to follow a
pattern very similar, but not identical, to the one in use for function
declarations:
- return type chunk: ResultType
- function identifier chunk: Text
- parameter chunks: Placeholder
- optional parameter chunks: Optional
- current parameter chunk: CurrentParameter
llvm-svn: 227309
|
|
The improved completion in call context now works with:
- Functions.
- Member functions.
- Constructors.
- New expressions.
- Function call expressions.
- Template variants of the previous.
There are still rough edges to be fixed:
- Provide support for optional parameters. (fix known)
- Provide support for member initializers. (fix known)
- Provide support for variadic template functions. (fix unknown)
- Others?
llvm-svn: 226670
|