aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib')
-rw-r--r--mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp36
-rw-r--r--mlir/lib/Analysis/CMakeLists.txt2
-rw-r--r--mlir/lib/Analysis/DataFlow/StridedMetadataRangeAnalysis.cpp127
-rw-r--r--mlir/lib/Conversion/CMakeLists.txt1
-rw-r--r--mlir/lib/Conversion/MathToXeVM/CMakeLists.txt22
-rw-r--r--mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp167
-rw-r--r--mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp288
-rw-r--r--mlir/lib/Dialect/AMX/IR/AMXDialect.cpp99
-rw-r--r--mlir/lib/Dialect/Bufferization/Transforms/DropEquivalentBufferResults.cpp5
-rw-r--r--mlir/lib/Dialect/LLVMIR/CMakeLists.txt2
-rw-r--r--mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp3
-rw-r--r--mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.cpp154
-rw-r--r--mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.h27
-rw-r--r--mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp11
-rw-r--r--mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp153
-rw-r--r--mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp89
-rw-r--r--mlir/lib/Dialect/MemRef/IR/CMakeLists.txt3
-rw-r--r--mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp59
-rw-r--r--mlir/lib/Dialect/Tensor/IR/TensorOps.cpp1
-rw-r--r--mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp17
-rw-r--r--mlir/lib/IR/AsmPrinter.cpp7
-rw-r--r--mlir/lib/Interfaces/CMakeLists.txt16
-rw-r--r--mlir/lib/Interfaces/InferIntRangeInterface.cpp19
-rw-r--r--mlir/lib/Interfaces/InferStridedMetadataInterface.cpp36
-rw-r--r--mlir/lib/Target/Cpp/TranslateToCpp.cpp34
-rw-r--r--mlir/lib/Target/Wasm/TranslateFromWasm.cpp2
26 files changed, 1204 insertions, 176 deletions
diff --git a/mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp b/mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp
index 8062b474..a84d10d 100644
--- a/mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp
+++ b/mlir/lib/Analysis/AliasAnalysis/LocalAliasAnalysis.cpp
@@ -258,6 +258,39 @@ getAllocEffectFor(Value value,
return success();
}
+static Operation *isDistinctObjectsOp(Operation *op) {
+ if (op && op->hasTrait<OpTrait::DistinctObjectsTrait>())
+ return op;
+
+ return nullptr;
+}
+
+static Value getDistinctObjectsOperand(Operation *op, Value value) {
+ unsigned argNumber = cast<OpResult>(value).getResultNumber();
+ return op->getOperand(argNumber);
+}
+
+static std::optional<AliasResult> checkDistinctObjects(Value lhs, Value rhs) {
+ // We should already checked that lhs and rhs are different.
+ assert(lhs != rhs && "lhs and rhs must be different");
+
+ // Result and corresponding operand must alias.
+ auto lhsOp = isDistinctObjectsOp(lhs.getDefiningOp());
+ if (lhsOp && getDistinctObjectsOperand(lhsOp, lhs) == rhs)
+ return AliasResult::MustAlias;
+
+ auto rhsOp = isDistinctObjectsOp(rhs.getDefiningOp());
+ if (rhsOp && getDistinctObjectsOperand(rhsOp, rhs) == lhs)
+ return AliasResult::MustAlias;
+
+ // If two different values come from the same `DistinctObjects` operation,
+ // they don't alias.
+ if (lhsOp && lhsOp == rhsOp)
+ return AliasResult::NoAlias;
+
+ return std::nullopt;
+}
+
/// Given the two values, return their aliasing behavior.
AliasResult LocalAliasAnalysis::aliasImpl(Value lhs, Value rhs) {
if (lhs == rhs)
@@ -289,6 +322,9 @@ AliasResult LocalAliasAnalysis::aliasImpl(Value lhs, Value rhs) {
: AliasResult::MayAlias;
}
+ if (std::optional<AliasResult> result = checkDistinctObjects(lhs, rhs))
+ return *result;
+
// Otherwise, neither of the values are constant so check to see if either has
// an allocation effect.
bool lhsHasAlloc = succeeded(getAllocEffectFor(lhs, lhsAlloc, lhsAllocScope));
diff --git a/mlir/lib/Analysis/CMakeLists.txt b/mlir/lib/Analysis/CMakeLists.txt
index 609cb34..db10ebc 100644
--- a/mlir/lib/Analysis/CMakeLists.txt
+++ b/mlir/lib/Analysis/CMakeLists.txt
@@ -40,6 +40,7 @@ add_mlir_library(MLIRAnalysis
DataFlow/IntegerRangeAnalysis.cpp
DataFlow/LivenessAnalysis.cpp
DataFlow/SparseAnalysis.cpp
+ DataFlow/StridedMetadataRangeAnalysis.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Analysis
@@ -53,6 +54,7 @@ add_mlir_library(MLIRAnalysis
MLIRDataLayoutInterfaces
MLIRFunctionInterfaces
MLIRInferIntRangeInterface
+ MLIRInferStridedMetadataInterface
MLIRInferTypeOpInterface
MLIRLoopLikeInterface
MLIRPresburger
diff --git a/mlir/lib/Analysis/DataFlow/StridedMetadataRangeAnalysis.cpp b/mlir/lib/Analysis/DataFlow/StridedMetadataRangeAnalysis.cpp
new file mode 100644
index 0000000..01c9daf
--- /dev/null
+++ b/mlir/lib/Analysis/DataFlow/StridedMetadataRangeAnalysis.cpp
@@ -0,0 +1,127 @@
+//===- StridedMetadataRangeAnalysis.cpp - Integer range analysis --------*- C++
+//-*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the dataflow analysis class for integer range inference
+// which is used in transformations over the `arith` dialect such as
+// branch elimination or signed->unsigned rewriting
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/DataFlow/StridedMetadataRangeAnalysis.h"
+#include "mlir/Analysis/DataFlow/IntegerRangeAnalysis.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
+#include "mlir/IR/Operation.h"
+#include "mlir/IR/Value.h"
+#include "mlir/Support/DebugStringHelper.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DebugLog.h"
+
+#define DEBUG_TYPE "strided-metadata-range-analysis"
+
+using namespace mlir;
+using namespace mlir::dataflow;
+
+/// Get the entry state for a value. For any value that is not a ranked memref,
+/// this function sets the metadata to a top state with no offsets, sizes, or
+/// strides. For `memref` types, this function will use the metadata in the type
+/// to try to deduce as much informaiton as possible.
+static StridedMetadataRange getEntryStateImpl(Value v, int32_t indexBitwidth) {
+ // TODO: generalize this method with a type interface.
+ auto mTy = dyn_cast<BaseMemRefType>(v.getType());
+
+ // If not a memref or it's un-ranked, don't infer any metadata.
+ if (!mTy || !mTy.hasRank())
+ return StridedMetadataRange::getMaxRanges(indexBitwidth, 0, 0, 0);
+
+ // Get the top state.
+ auto metadata =
+ StridedMetadataRange::getMaxRanges(indexBitwidth, mTy.getRank());
+
+ // Compute the offset and strides.
+ int64_t offset;
+ SmallVector<int64_t> strides;
+ if (failed(cast<MemRefType>(mTy).getStridesAndOffset(strides, offset)))
+ return metadata;
+
+ // Refine the metadata if we know it from the type.
+ if (!ShapedType::isDynamic(offset)) {
+ metadata.getOffsets()[0] =
+ ConstantIntRanges::constant(APInt(indexBitwidth, offset));
+ }
+ for (auto &&[size, range] :
+ llvm::zip_equal(mTy.getShape(), metadata.getSizes())) {
+ if (ShapedType::isDynamic(size))
+ continue;
+ range = ConstantIntRanges::constant(APInt(indexBitwidth, size));
+ }
+ for (auto &&[stride, range] :
+ llvm::zip_equal(strides, metadata.getStrides())) {
+ if (ShapedType::isDynamic(stride))
+ continue;
+ range = ConstantIntRanges::constant(APInt(indexBitwidth, stride));
+ }
+
+ return metadata;
+}
+
+StridedMetadataRangeAnalysis::StridedMetadataRangeAnalysis(
+ DataFlowSolver &solver, int32_t indexBitwidth)
+ : SparseForwardDataFlowAnalysis(solver), indexBitwidth(indexBitwidth) {
+ assert(indexBitwidth > 0 && "invalid bitwidth");
+}
+
+void StridedMetadataRangeAnalysis::setToEntryState(
+ StridedMetadataRangeLattice *lattice) {
+ propagateIfChanged(lattice, lattice->join(getEntryStateImpl(
+ lattice->getAnchor(), indexBitwidth)));
+}
+
+LogicalResult StridedMetadataRangeAnalysis::visitOperation(
+ Operation *op, ArrayRef<const StridedMetadataRangeLattice *> operands,
+ ArrayRef<StridedMetadataRangeLattice *> results) {
+ auto inferrable = dyn_cast<InferStridedMetadataOpInterface>(op);
+
+ // Bail if we cannot reason about the op.
+ if (!inferrable) {
+ setAllToEntryStates(results);
+ return success();
+ }
+
+ LDBG() << "Inferring metadata for: "
+ << OpWithFlags(op, OpPrintingFlags().skipRegions());
+
+ // Helper function to retrieve int range values.
+ auto getIntRange = [&](Value value) -> IntegerValueRange {
+ auto lattice = getOrCreateFor<IntegerValueRangeLattice>(
+ getProgramPointAfter(op), value);
+ return lattice ? lattice->getValue() : IntegerValueRange();
+ };
+
+ // Convert the arguments lattices to a vector.
+ SmallVector<StridedMetadataRange> argRanges = llvm::map_to_vector(
+ operands, [](const StridedMetadataRangeLattice *lattice) {
+ return lattice->getValue();
+ });
+
+ // Callback to set metadata on a result.
+ auto joinCallback = [&](Value v, const StridedMetadataRange &md) {
+ auto result = cast<OpResult>(v);
+ assert(llvm::is_contained(op->getResults(), result));
+ LDBG() << "- Inferred metadata: " << md;
+ StridedMetadataRangeLattice *lattice = results[result.getResultNumber()];
+ ChangeResult changed = lattice->join(md);
+ LDBG() << "- Joined metadata: " << lattice->getValue();
+ propagateIfChanged(lattice, changed);
+ };
+
+ // Infer the metadata.
+ inferrable.inferStridedMetadataRanges(argRanges, getIntRange, joinCallback,
+ indexBitwidth);
+ return success();
+}
diff --git a/mlir/lib/Conversion/CMakeLists.txt b/mlir/lib/Conversion/CMakeLists.txt
index 71986f8..bebf1b8 100644
--- a/mlir/lib/Conversion/CMakeLists.txt
+++ b/mlir/lib/Conversion/CMakeLists.txt
@@ -40,6 +40,7 @@ add_subdirectory(MathToLibm)
add_subdirectory(MathToLLVM)
add_subdirectory(MathToROCDL)
add_subdirectory(MathToSPIRV)
+add_subdirectory(MathToXeVM)
add_subdirectory(MemRefToEmitC)
add_subdirectory(MemRefToLLVM)
add_subdirectory(MemRefToSPIRV)
diff --git a/mlir/lib/Conversion/MathToXeVM/CMakeLists.txt b/mlir/lib/Conversion/MathToXeVM/CMakeLists.txt
new file mode 100644
index 0000000..050c0ed
--- /dev/null
+++ b/mlir/lib/Conversion/MathToXeVM/CMakeLists.txt
@@ -0,0 +1,22 @@
+add_mlir_conversion_library(MLIRMathToXeVM
+ MathToXeVM.cpp
+
+ ADDITIONAL_HEADER_DIRS
+ ${MLIR_MAIN_INCLUDE_DIR}/mlir/Conversion/MathToXeVM
+
+ DEPENDS
+ MLIRConversionPassIncGen
+
+ LINK_COMPONENTS
+ Core
+
+ LINK_LIBS PUBLIC
+ MLIRArithAttrToLLVMConversion
+ MLIRArithDialect
+ MLIRLLVMCommonConversion
+ MLIRLLVMDialect
+ MLIRMathDialect
+ MLIRXeVMDialect
+ MLIRPass
+ MLIRTransforms
+ )
diff --git a/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp b/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp
new file mode 100644
index 0000000..0fe31d0
--- /dev/null
+++ b/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp
@@ -0,0 +1,167 @@
+//===-- MathToXeVM.cpp - conversion from Math to XeVM ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Conversion/MathToXeVM/MathToXeVM.h"
+#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h"
+#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
+#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
+#include "mlir/Dialect/Math/IR/Math.h"
+#include "mlir/IR/BuiltinDialect.h"
+#include "mlir/Pass/Pass.h"
+#include "llvm/Support/FormatVariadic.h"
+
+namespace mlir {
+#define GEN_PASS_DEF_CONVERTMATHTOXEVM
+#include "mlir/Conversion/Passes.h.inc"
+} // namespace mlir
+
+using namespace mlir;
+
+#define DEBUG_TYPE "math-to-xevm"
+
+/// Convert math ops marked with `fast` (`afn`) to native OpenCL intrinsics.
+template <typename Op>
+struct ConvertNativeFuncPattern final : public OpConversionPattern<Op> {
+
+ ConvertNativeFuncPattern(MLIRContext *context, StringRef nativeFunc,
+ PatternBenefit benefit = 1)
+ : OpConversionPattern<Op>(context, benefit), nativeFunc(nativeFunc) {}
+
+ LogicalResult
+ matchAndRewrite(Op op, typename Op::Adaptor adaptor,
+ ConversionPatternRewriter &rewriter) const override {
+ if (!isSPIRVCompatibleFloatOrVec(op.getType()))
+ return failure();
+
+ arith::FastMathFlags fastFlags = op.getFastmath();
+ if (!arith::bitEnumContainsAll(fastFlags, arith::FastMathFlags::afn))
+ return rewriter.notifyMatchFailure(op, "not a fastmath `afn` operation");
+
+ SmallVector<Type, 1> operandTypes;
+ for (auto operand : adaptor.getOperands()) {
+ Type opTy = operand.getType();
+ // This pass only supports operations on vectors that are already in SPIRV
+ // supported vector sizes: Distributing unsupported vector sizes to SPIRV
+ // supported vector sizes are done in other blocking optimization passes.
+ if (!isSPIRVCompatibleFloatOrVec(opTy))
+ return rewriter.notifyMatchFailure(
+ op, llvm::formatv("incompatible operand type: '{0}'", opTy));
+ operandTypes.push_back(opTy);
+ }
+
+ auto moduleOp = op->template getParentWithTrait<OpTrait::SymbolTable>();
+ auto funcOpRes = LLVM::lookupOrCreateFn(
+ rewriter, moduleOp, getMangledNativeFuncName(operandTypes),
+ operandTypes, op.getType());
+ assert(!failed(funcOpRes));
+ LLVM::LLVMFuncOp funcOp = funcOpRes.value();
+
+ auto callOp = rewriter.replaceOpWithNewOp<LLVM::CallOp>(
+ op, funcOp, adaptor.getOperands());
+ // Preserve fastmath flags in our MLIR op when converting to llvm function
+ // calls, in order to allow further fastmath optimizations: We thus need to
+ // convert arith fastmath attrs into attrs recognized by llvm.
+ arith::AttrConvertFastMathToLLVM<Op, LLVM::CallOp> fastAttrConverter(op);
+ mlir::NamedAttribute fastAttr = fastAttrConverter.getAttrs()[0];
+ callOp->setAttr(fastAttr.getName(), fastAttr.getValue());
+ return success();
+ }
+
+ inline bool isSPIRVCompatibleFloatOrVec(Type type) const {
+ if (type.isFloat())
+ return true;
+ if (auto vecType = dyn_cast<VectorType>(type)) {
+ if (!vecType.getElementType().isFloat())
+ return false;
+ // SPIRV distinguishes between vectors and matrices: OpenCL native math
+ // intrsinics are not compatible with matrices.
+ ArrayRef<int64_t> shape = vecType.getShape();
+ if (shape.size() != 1)
+ return false;
+ // SPIRV only allows vectors of size 2, 3, 4, 8, 16.
+ if (shape[0] == 2 || shape[0] == 3 || shape[0] == 4 || shape[0] == 8 ||
+ shape[0] == 16)
+ return true;
+ }
+ return false;
+ }
+
+ inline std::string
+ getMangledNativeFuncName(const ArrayRef<Type> operandTypes) const {
+ std::string mangledFuncName =
+ "_Z" + std::to_string(nativeFunc.size()) + nativeFunc.str();
+
+ auto appendFloatToMangledFunc = [&mangledFuncName](Type type) {
+ if (type.isF32())
+ mangledFuncName += "f";
+ else if (type.isF16())
+ mangledFuncName += "Dh";
+ else if (type.isF64())
+ mangledFuncName += "d";
+ };
+
+ for (auto type : operandTypes) {
+ if (auto vecType = dyn_cast<VectorType>(type)) {
+ mangledFuncName += "Dv" + std::to_string(vecType.getShape()[0]) + "_";
+ appendFloatToMangledFunc(vecType.getElementType());
+ } else
+ appendFloatToMangledFunc(type);
+ }
+
+ return mangledFuncName;
+ }
+
+ const StringRef nativeFunc;
+};
+
+void mlir::populateMathToXeVMConversionPatterns(RewritePatternSet &patterns,
+ bool convertArith) {
+ patterns.add<ConvertNativeFuncPattern<math::ExpOp>>(patterns.getContext(),
+ "__spirv_ocl_native_exp");
+ patterns.add<ConvertNativeFuncPattern<math::CosOp>>(patterns.getContext(),
+ "__spirv_ocl_native_cos");
+ patterns.add<ConvertNativeFuncPattern<math::Exp2Op>>(
+ patterns.getContext(), "__spirv_ocl_native_exp2");
+ patterns.add<ConvertNativeFuncPattern<math::LogOp>>(patterns.getContext(),
+ "__spirv_ocl_native_log");
+ patterns.add<ConvertNativeFuncPattern<math::Log2Op>>(
+ patterns.getContext(), "__spirv_ocl_native_log2");
+ patterns.add<ConvertNativeFuncPattern<math::Log10Op>>(
+ patterns.getContext(), "__spirv_ocl_native_log10");
+ patterns.add<ConvertNativeFuncPattern<math::PowFOp>>(
+ patterns.getContext(), "__spirv_ocl_native_powr");
+ patterns.add<ConvertNativeFuncPattern<math::RsqrtOp>>(
+ patterns.getContext(), "__spirv_ocl_native_rsqrt");
+ patterns.add<ConvertNativeFuncPattern<math::SinOp>>(patterns.getContext(),
+ "__spirv_ocl_native_sin");
+ patterns.add<ConvertNativeFuncPattern<math::SqrtOp>>(
+ patterns.getContext(), "__spirv_ocl_native_sqrt");
+ patterns.add<ConvertNativeFuncPattern<math::TanOp>>(patterns.getContext(),
+ "__spirv_ocl_native_tan");
+ if (convertArith)
+ patterns.add<ConvertNativeFuncPattern<arith::DivFOp>>(
+ patterns.getContext(), "__spirv_ocl_native_divide");
+}
+
+namespace {
+struct ConvertMathToXeVMPass
+ : public impl::ConvertMathToXeVMBase<ConvertMathToXeVMPass> {
+ using Base::Base;
+ void runOnOperation() override;
+};
+} // namespace
+
+void ConvertMathToXeVMPass::runOnOperation() {
+ RewritePatternSet patterns(&getContext());
+ populateMathToXeVMConversionPatterns(patterns, convertArith);
+ ConversionTarget target(getContext());
+ target.addLegalDialect<BuiltinDialect, LLVM::LLVMDialect>();
+ if (failed(
+ applyPartialConversion(getOperation(), target, std::move(patterns))))
+ signalPassFailure();
+}
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index a5336ed..00df14b1 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -1392,6 +1392,137 @@ public:
}
};
+// Collapse tensor<1xiN> into tensor<iN>
+// E.g. tensor.collapse_shape %arg1 [] : tensor<1xi16> into tensor<i16>
+static Value collapse1xNTensorToN(PatternRewriter &rewriter, Value input,
+ Location loc) {
+ SmallVector<ReassociationExprs, 1> reassociation;
+ // Create the collapsed type
+ auto inputType = cast<RankedTensorType>(input.getType());
+ auto elemType = inputType.getElementType();
+ auto collapsedType = RankedTensorType::get({}, elemType);
+ // Emit the collapse op
+ return rewriter.create<tensor::CollapseShapeOp>(loc, collapsedType, input,
+ reassociation);
+}
+
+static llvm::SmallVector<int8_t>
+convertToI8(const llvm::SmallVector<int32_t> &input) {
+ llvm::SmallVector<int8_t> output;
+ output.reserve(input.size());
+
+ for (auto v : llvm::map_range(
+ input, [](int32_t val) { return static_cast<int8_t>(val); })) {
+ output.push_back(v);
+ }
+ return output;
+}
+
+// The shift or multiplier may be either constant or non-constant, depending on
+// whether dynamic extension is enabled.
+// - If the shift or multiplier is non-constant, add it as an input to
+// linalg::GenericOp by:
+// 1. Pushing it into 'genericInputs'.
+// 2. Appending a corresponding affine map to 'indexingMaps'.
+// - If the shift or multiplier is constant, set 'constant' instead.
+static void setupLinalgGenericOpInputAndIndexingMap(
+ PatternRewriter &rewriter, llvm::SmallVector<int32_t> &values,
+ SmallVector<Value, 4> &genericInputs, SmallVector<AffineMap> &indexingMaps,
+ bool isConstant, tosa::RescaleOp op, Value &constant, int64_t &arg,
+ bool isShift = false) {
+
+ auto loc = op.getLoc();
+ auto inputTy = cast<ShapedType>(op.getInput().getType());
+ unsigned rank = inputTy.getRank();
+ SmallVector<AffineExpr, 2> exprs = {rewriter.getAffineDimExpr(rank - 1)};
+
+ if (isConstant) {
+ // If we are rescaling per-channel then we need to store the
+ // values in a buffer.
+ if (values.size() == 1) {
+ IntegerAttr intAttr = isShift
+ ? rewriter.getI8IntegerAttr(values.front())
+ : rewriter.getI32IntegerAttr(values.front());
+ constant = rewriter.create<arith::ConstantOp>(loc, intAttr);
+ } else {
+ auto elementType =
+ isShift ? rewriter.getIntegerType(8) : rewriter.getI32Type();
+ auto tensorType = RankedTensorType::get(
+ {static_cast<int64_t>(values.size())}, elementType);
+ DenseIntElementsAttr EltAttr;
+ if (isShift)
+ EltAttr = DenseIntElementsAttr::get(tensorType, convertToI8(values));
+ else
+ EltAttr = DenseIntElementsAttr::get(tensorType, values);
+ genericInputs.push_back(
+ arith::ConstantOp::create(rewriter, loc, EltAttr));
+ indexingMaps.push_back(AffineMap::get(/*dimCount=*/rank,
+ /*symbolCount=*/0, exprs,
+ rewriter.getContext()));
+ }
+ } else {
+ // If we are not rescaling per-channel then we need to collapse 1xN to N
+ // and push broadcastMap.
+ auto operand = isShift ? op.getShift() : op.getMultiplier();
+ auto tensorType = dyn_cast<RankedTensorType>(operand.getType());
+ if (tensorType && tensorType.hasStaticShape() &&
+ tensorType.getShape()[0] == 1) {
+ // broadcastMap = affine_map<(d0, d1) -> ()>
+ // It would affect as broadcast for scalar values in linalg::GenericOp.
+ AffineMap broadcastMap =
+ AffineMap::get(rank, 0, {}, rewriter.getContext());
+ genericInputs.push_back(collapse1xNTensorToN(rewriter, operand, loc));
+ indexingMaps.push_back(broadcastMap);
+ } else {
+ genericInputs.push_back(operand);
+ indexingMaps.push_back(AffineMap::get(/*dimCount=*/rank,
+ /*symbolCount=*/0, exprs,
+ rewriter.getContext()));
+ }
+ }
+ arg = indexingMaps.size() - 1;
+}
+
+// Return the extended Zp to be used in subsequent arithmetic operations.
+static Value getExtendZp(OpBuilder &builder, Type valueTy,
+ FailureOr<int64_t> maybeZp, Location loc,
+ ValueRange blockArgs, int64_t zpArg,
+ bool isOutputZp = false) {
+ Value result;
+ const int32_t bitwidth = valueTy.getIntOrFloatBitWidth();
+ const uint32_t attrBitwidth =
+ isOutputZp ? 32 : (bitwidth > 32 ? bitwidth : 32);
+ auto extendType = builder.getIntegerType(attrBitwidth);
+ // The Zp value can be either constant or non-constant, depending on
+ // whether dynamic extension is enabled.
+ // If 'maybeZp' fails, it indicates that Zp is non-constant and will
+ // be passed as an input to linalg::GenericOp.
+ if (failed(maybeZp)) {
+ result = blockArgs[zpArg];
+ auto zpTy = result.getType();
+ if (zpTy.getIntOrFloatBitWidth() < attrBitwidth) {
+ // For ExtUIOp, the input must be signless.
+ // UnrealizedConversionCastOp will cast the input to signless type.
+ if (zpTy.isUnsignedInteger()) {
+ result =
+ UnrealizedConversionCastOp::create(
+ builder, loc,
+ builder.getIntegerType(zpTy.getIntOrFloatBitWidth()), result)
+ .getResult(0);
+ }
+ if (zpTy.isUnsignedInteger()) {
+ return builder.create<arith::ExtUIOp>(loc, extendType, result);
+ } else {
+ return builder.create<arith::ExtSIOp>(loc, extendType, result);
+ }
+ }
+ } else {
+ return builder.create<arith::ConstantOp>(
+ loc, IntegerAttr::get(extendType, *maybeZp));
+ }
+ return result;
+}
+
class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> {
public:
using OpRewritePattern<tosa::RescaleOp>::OpRewritePattern;
@@ -1423,40 +1554,46 @@ public:
}
}
- // The shift and multiplier values.
DenseElementsAttr shiftElems;
- if (!matchPattern(op.getShift(), m_Constant(&shiftElems)))
- return rewriter.notifyMatchFailure(
- op, "tosa.rescale requires constant shift input values");
+ bool isShiftConstant = false;
+ if (matchPattern(op.getShift(), m_Constant(&shiftElems)))
+ isShiftConstant = true;
DenseElementsAttr multiplierElems;
- if (!matchPattern(op.getMultiplier(), m_Constant(&multiplierElems)))
- return rewriter.notifyMatchFailure(
- op, "tosa.rescale requires constant multiplier input values");
-
- llvm::SmallVector<int8_t> shiftValues =
- llvm::to_vector(shiftElems.getValues<int8_t>());
- // explicit cast is required here
- llvm::SmallVector<int32_t> multiplierValues = llvm::to_vector(
- llvm::map_range(multiplierElems.getValues<IntegerAttr>(),
- [](IntegerAttr attr) -> int32_t {
- return static_cast<int32_t>(attr.getInt());
- }));
-
- // If we shift by more than the bitwidth, this just sets to 0.
- for (int i = 0, s = multiplierValues.size(); i < s; i++) {
- if (shiftValues[i] > 63) {
- shiftValues[i] = 0;
- multiplierValues[i] = 0;
+ bool isMultiplierConstant = false;
+ if (matchPattern(op.getMultiplier(), m_Constant(&multiplierElems)))
+ isMultiplierConstant = true;
+
+ llvm::SmallVector<int32_t> shiftValues;
+ llvm::SmallVector<int32_t> multiplierValues;
+ bool doubleRound;
+
+ if (isMultiplierConstant && isShiftConstant) {
+ // explicit cast is required here
+ shiftValues = llvm::to_vector(llvm::map_range(
+ shiftElems.getValues<IntegerAttr>(), [](IntegerAttr attr) -> int32_t {
+ return static_cast<int32_t>(attr.getInt());
+ }));
+ multiplierValues = llvm::to_vector(
+ llvm::map_range(multiplierElems.getValues<IntegerAttr>(),
+ [](IntegerAttr attr) -> int32_t {
+ return static_cast<int32_t>(attr.getInt());
+ }));
+
+ // If we shift by more than the bitwidth, this just sets to 0.
+ for (int i = 0, s = multiplierValues.size(); i < s; i++) {
+ if (shiftValues[i] > 63) {
+ shiftValues[i] = 0;
+ multiplierValues[i] = 0;
+ }
}
- }
+ // Double round only occurs if shift is greater than 31, check that this
+ // is ever true.
+ doubleRound = op.getRoundingMode() == RoundingMode::DOUBLE_ROUND &&
+ llvm::any_of(shiftValues, [](int32_t v) { return v > 31; });
+ } else
+ doubleRound = op.getRoundingMode() == RoundingMode::DOUBLE_ROUND;
- // Double round only occurs if shift is greater than 31, check that this
- // is ever true.
-
- bool doubleRound =
- op.getRoundingMode() == RoundingMode::DOUBLE_ROUND &&
- llvm::any_of(shiftValues, [](int32_t v) { return v > 31; });
RoundingMode roundingMode =
doubleRound ? RoundingMode::DOUBLE_ROUND : RoundingMode::SINGLE_ROUND;
@@ -1468,45 +1605,43 @@ public:
// values in a buffer.
Value multiplierConstant;
int64_t multiplierArg = 0;
- if (multiplierValues.size() == 1) {
- multiplierConstant = arith::ConstantOp::create(
- rewriter, loc, rewriter.getI32IntegerAttr(multiplierValues.front()));
- } else {
- SmallVector<AffineExpr, 2> multiplierExprs{
- rewriter.getAffineDimExpr(rank - 1)};
- auto multiplierType =
- RankedTensorType::get({static_cast<int64_t>(multiplierValues.size())},
- rewriter.getI32Type());
- genericInputs.push_back(arith::ConstantOp::create(
- rewriter, loc,
- DenseIntElementsAttr::get(multiplierType, multiplierValues)));
-
- indexingMaps.push_back(AffineMap::get(/*dimCount=*/rank,
- /*symbolCount=*/0, multiplierExprs,
- rewriter.getContext()));
-
- multiplierArg = indexingMaps.size() - 1;
- }
+ setupLinalgGenericOpInputAndIndexingMap(
+ rewriter, multiplierValues, genericInputs, indexingMaps,
+ isMultiplierConstant, op, multiplierConstant, multiplierArg);
// If we are rescaling per-channel then we need to store the shift
// values in a buffer.
Value shiftConstant;
int64_t shiftArg = 0;
- if (shiftValues.size() == 1) {
- shiftConstant = arith::ConstantOp::create(
- rewriter, loc, rewriter.getI8IntegerAttr(shiftValues.front()));
- } else {
- SmallVector<AffineExpr, 2> shiftExprs = {
- rewriter.getAffineDimExpr(rank - 1)};
- auto shiftType =
- RankedTensorType::get({static_cast<int64_t>(shiftValues.size())},
- rewriter.getIntegerType(8));
- genericInputs.push_back(arith::ConstantOp::create(
- rewriter, loc, DenseIntElementsAttr::get(shiftType, shiftValues)));
- indexingMaps.push_back(AffineMap::get(/*dimCount=*/rank,
- /*symbolCount=*/0, shiftExprs,
- rewriter.getContext()));
- shiftArg = indexingMaps.size() - 1;
+ setupLinalgGenericOpInputAndIndexingMap(
+ rewriter, shiftValues, genericInputs, indexingMaps, isShiftConstant, op,
+ shiftConstant, shiftArg, true);
+
+ // broadcastMap = affine_map<(d0, d1) -> ()>
+ // It would affect as broadcast for scalar values in linalg::GenericOp.
+ AffineMap broadcastMap = AffineMap::get(rank, 0, {}, rewriter.getContext());
+ FailureOr<int64_t> maybeIZp = op.getInputZeroPoint();
+ FailureOr<int64_t> maybeOZp = op.getOutputZeroPoint();
+ // The inputZp and outputZp may be either constant or non-constant,
+ // depending on whether dynamic extension is enabled.
+ // - If the zp's are non-constant, add them as an inputs to
+ // linalg::GenericOp by:
+ // 1. Pushing it into 'genericInputs'.
+ // 2. Appending a corresponding affine map to 'indexingMaps'.
+ // - If the zp's are constant, they would be generated as arith.constant.
+ int64_t iZpArg = 0;
+ if (failed(maybeIZp)) {
+ genericInputs.push_back(
+ collapse1xNTensorToN(rewriter, op->getOperand(3), loc));
+ indexingMaps.push_back(broadcastMap);
+ iZpArg = indexingMaps.size() - 1;
+ }
+ int64_t oZpArg = 0;
+ if (failed(maybeOZp)) {
+ genericInputs.push_back(
+ collapse1xNTensorToN(rewriter, op->getOperand(4), loc));
+ indexingMaps.push_back(broadcastMap);
+ oZpArg = indexingMaps.size() - 1;
}
// Indexing maps for output values.
@@ -1526,36 +1661,17 @@ public:
Type valueTy = value.getType();
FailureOr<int64_t> maybeIZp = op.getInputZeroPoint();
- if (failed(maybeIZp)) {
- (void)rewriter.notifyMatchFailure(
- op, "input zero point cannot be statically determined");
- return;
- }
-
- const int32_t inBitwidth = valueTy.getIntOrFloatBitWidth();
- // Extend zeropoint for sub-32bits widths.
- const int32_t inAttrBitwidth = inBitwidth > 32 ? inBitwidth : 32;
- auto inputZp = arith::ConstantOp::create(
- nestedBuilder, loc,
- IntegerAttr::get(rewriter.getIntegerType(inAttrBitwidth),
- *maybeIZp));
+ auto inputZp = getExtendZp(nestedBuilder, valueTy, maybeIZp,
+ nestedLoc, blockArgs, iZpArg);
FailureOr<int64_t> maybeOZp = op.getOutputZeroPoint();
- if (failed(maybeOZp)) {
- (void)rewriter.notifyMatchFailure(
- op, "output zero point cannot be statically determined");
- return;
- };
+ auto outputZp = getExtendZp(nestedBuilder, valueTy, maybeOZp,
+ nestedLoc, blockArgs, oZpArg, true);
IntegerType outIntType =
cast<IntegerType>(blockArgs.back().getType());
unsigned outBitWidth = outIntType.getWidth();
- const int32_t outAttrBitwidth = 32;
assert(outBitWidth <= 32 && "Unexpected output zeropoint bitwidth");
- auto outputZp = arith::ConstantOp::create(
- nestedBuilder, loc,
- IntegerAttr::get(rewriter.getIntegerType(outAttrBitwidth),
- *maybeOZp));
Value multiplier = multiplierConstant ? multiplierConstant
: blockArgs[multiplierArg];
diff --git a/mlir/lib/Dialect/AMX/IR/AMXDialect.cpp b/mlir/lib/Dialect/AMX/IR/AMXDialect.cpp
index 68990ef..d9c097c 100644
--- a/mlir/lib/Dialect/AMX/IR/AMXDialect.cpp
+++ b/mlir/lib/Dialect/AMX/IR/AMXDialect.cpp
@@ -80,10 +80,22 @@ static SmallVector<Value> getTileSizes(Location loc, amx::TileType tType,
LLVM::ConstantOp::create(rewriter, loc, llvmInt16Type, nattr)};
}
+/// Returns stride expressed in number of bytes for the given `elementStride`
+/// stride encoded in number of elements of the type `mType`.
+static Value computeStrideInBytes(Location loc, MemRefType mType,
+ Value elementStride, RewriterBase &rewriter) {
+ Type llvmInt64Type = rewriter.getIntegerType(64);
+ unsigned bytes = mType.getElementType().getIntOrFloatBitWidth() / 8;
+ auto attr = rewriter.getI64IntegerAttr(bytes);
+ Value scale = LLVM::ConstantOp::create(rewriter, loc, llvmInt64Type, attr);
+ return LLVM::MulOp::create(rewriter, loc, llvmInt64Type, scale, elementStride)
+ .getResult();
+}
+
/// Maps the 2-dim memref shape to the 64-bit stride. Note that the buffer
/// shape may "envelop" the actual tile shape, and may be dynamically sized.
-static Value getStride(Location loc, MemRefType mType, Value base,
- RewriterBase &rewriter) {
+static Value inferStride(Location loc, MemRefType mType, Value base,
+ RewriterBase &rewriter) {
assert(mType.getRank() >= 2 && "Invalid shape for AMX strides");
int64_t preLast = mType.getRank() - 2;
Type llvmInt64Type = rewriter.getIntegerType(64);
@@ -94,11 +106,8 @@ static Value getStride(Location loc, MemRefType mType, Value base,
if (strides[preLast] == ShapedType::kDynamic) {
// Dynamic stride needs code to compute the stride at runtime.
MemRefDescriptor memrefDescriptor(base);
- auto attr = rewriter.getI64IntegerAttr(bytes);
- Value scale = LLVM::ConstantOp::create(rewriter, loc, llvmInt64Type, attr);
- return LLVM::MulOp::create(rewriter, loc, llvmInt64Type, scale,
- memrefDescriptor.stride(rewriter, loc, preLast))
- .getResult();
+ return computeStrideInBytes(
+ loc, mType, memrefDescriptor.stride(rewriter, loc, preLast), rewriter);
}
// Use direct constant for static stride.
auto attr = rewriter.getI64IntegerAttr(strides[preLast] * bytes);
@@ -117,21 +126,39 @@ amx::TileZeroOp::getIntrinsicOperands(ArrayRef<Value> operands,
return getTileSizes(getLoc(), getTileType(), rewriter);
}
-LogicalResult amx::TileLoadOp::verify() {
- MemRefType memrefTy = getMemRefType();
+template <typename OpTy,
+ typename = std::enable_if_t<std::is_same_v<OpTy, amx::TileLoadOp> ||
+ std::is_same_v<OpTy, amx::TileStoreOp>>>
+static LogicalResult tileTransferVerifier(OpTy op) {
+ MemRefType memrefTy = op.getMemRefType();
unsigned rank = memrefTy.getRank();
- if (rank < 2)
- return emitOpError("requires at least 2D memref");
- if (getIndices().size() != rank)
- return emitOpError("requires ") << rank << " indices";
- SmallVector<int64_t> strides;
- int64_t offset;
- if (failed(memrefTy.getStridesAndOffset(strides, offset)) ||
- strides.back() != 1)
- return emitOpError("requires memref with unit innermost stride");
- return verifyTileSize(*this, getTileType());
+ if (op.getIndices().size() != rank)
+ return op.emitOpError("requires ") << rank << " indices";
+
+ if (failed(verifyTileSize(op, op.getTileType())))
+ return failure();
+
+ // Validate basic buffer properties when the stride is implicit.
+ if (!op.getStride()) {
+ if (rank < 2)
+ return op.emitOpError("requires at least 2D memref");
+ SmallVector<int64_t> strides;
+ int64_t offset;
+ if (failed(memrefTy.getStridesAndOffset(strides, offset)) ||
+ strides.back() != 1)
+ return op.emitOpError("requires memref with unit innermost stride");
+ }
+
+ return success();
+}
+
+void amx::TileLoadOp::build(OpBuilder &builder, OperationState &state, Type res,
+ Value base, ValueRange indices) {
+ build(builder, state, res, base, indices, /*stride=*/nullptr);
}
+LogicalResult amx::TileLoadOp::verify() { return tileTransferVerifier(*this); }
+
SmallVector<Value>
amx::TileLoadOp::getIntrinsicOperands(ArrayRef<Value> operands,
const LLVMTypeConverter &typeConverter,
@@ -144,27 +171,23 @@ amx::TileLoadOp::getIntrinsicOperands(ArrayRef<Value> operands,
intrinsicOperands.push_back(
LLVM::getStridedElementPtr(rewriter, loc, typeConverter, getMemRefType(),
adaptor.getBase(), adaptor.getIndices()));
- intrinsicOperands.push_back(
- getStride(loc, getMemRefType(), adaptor.getBase(), rewriter));
+ if (Value stride = adaptor.getStride())
+ intrinsicOperands.push_back(
+ computeStrideInBytes(loc, getMemRefType(), stride, rewriter));
+ else
+ intrinsicOperands.push_back(
+ inferStride(loc, getMemRefType(), adaptor.getBase(), rewriter));
return intrinsicOperands;
}
-LogicalResult amx::TileStoreOp::verify() {
- MemRefType memrefTy = getMemRefType();
- unsigned rank = memrefTy.getRank();
- if (rank < 2)
- return emitOpError("requires at least 2D memref");
- if (getIndices().size() != rank)
- return emitOpError("requires ") << rank << " indices";
- SmallVector<int64_t> strides;
- int64_t offset;
- if (failed(memrefTy.getStridesAndOffset(strides, offset)) ||
- strides.back() != 1)
- return emitOpError("requires memref with unit innermost stride");
- return verifyTileSize(*this, getTileType());
+void amx::TileStoreOp::build(OpBuilder &builder, OperationState &state,
+ Value base, ValueRange indices, Value val) {
+ build(builder, state, base, indices, val, /*stride=*/nullptr);
}
+LogicalResult amx::TileStoreOp::verify() { return tileTransferVerifier(*this); }
+
SmallVector<Value>
amx::TileStoreOp::getIntrinsicOperands(ArrayRef<Value> operands,
const LLVMTypeConverter &typeConverter,
@@ -177,8 +200,12 @@ amx::TileStoreOp::getIntrinsicOperands(ArrayRef<Value> operands,
intrinsicOperands.push_back(
LLVM::getStridedElementPtr(rewriter, loc, typeConverter, getMemRefType(),
adaptor.getBase(), adaptor.getIndices()));
- intrinsicOperands.push_back(
- getStride(loc, getMemRefType(), adaptor.getBase(), rewriter));
+ if (Value stride = adaptor.getStride())
+ intrinsicOperands.push_back(
+ computeStrideInBytes(loc, getMemRefType(), stride, rewriter));
+ else
+ intrinsicOperands.push_back(
+ inferStride(loc, getMemRefType(), adaptor.getBase(), rewriter));
intrinsicOperands.push_back(adaptor.getVal());
return intrinsicOperands;
diff --git a/mlir/lib/Dialect/Bufferization/Transforms/DropEquivalentBufferResults.cpp b/mlir/lib/Dialect/Bufferization/Transforms/DropEquivalentBufferResults.cpp
index 624519f..70faa71 100644
--- a/mlir/lib/Dialect/Bufferization/Transforms/DropEquivalentBufferResults.cpp
+++ b/mlir/lib/Dialect/Bufferization/Transforms/DropEquivalentBufferResults.cpp
@@ -64,12 +64,13 @@ mlir::bufferization::dropEquivalentBufferResults(ModuleOp module) {
module.walk([&](func::CallOp callOp) {
if (func::FuncOp calledFunc =
dyn_cast_or_null<func::FuncOp>(callOp.resolveCallable())) {
- callerMap[calledFunc].insert(callOp);
+ if (!calledFunc.isPublic() && !calledFunc.isExternal())
+ callerMap[calledFunc].insert(callOp);
}
});
for (auto funcOp : module.getOps<func::FuncOp>()) {
- if (funcOp.isExternal())
+ if (funcOp.isExternal() || funcOp.isPublic())
continue;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
// TODO: Support functions with multiple blocks.
diff --git a/mlir/lib/Dialect/LLVMIR/CMakeLists.txt b/mlir/lib/Dialect/LLVMIR/CMakeLists.txt
index ec581ac..cc66fac 100644
--- a/mlir/lib/Dialect/LLVMIR/CMakeLists.txt
+++ b/mlir/lib/Dialect/LLVMIR/CMakeLists.txt
@@ -8,11 +8,13 @@ add_mlir_dialect_library(MLIRLLVMDialect
IR/LLVMMemorySlot.cpp
IR/LLVMTypes.cpp
IR/LLVMTypeSyntax.cpp
+ IR/LLVMDialectBytecode.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/LLVMIR
DEPENDS
+ MLIRLLVMDialectBytecodeIncGen
MLIRLLVMOpsIncGen
MLIRLLVMTypesIncGen
MLIRLLVMIntrinsicOpsIncGen
diff --git a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp
index 5d08ccc..7ca09d9 100644
--- a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp
+++ b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp
@@ -29,6 +29,8 @@
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Error.h"
+#include "LLVMDialectBytecode.h"
+
#include <numeric>
#include <optional>
@@ -4237,6 +4239,7 @@ void LLVMDialect::initialize() {
// Support unknown operations because not all LLVM operations are registered.
allowUnknownOperations();
declarePromisedInterface<DialectInlinerInterface, LLVMDialect>();
+ detail::addBytecodeInterface(this);
}
#define GET_OP_CLASSES
diff --git a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.cpp b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.cpp
new file mode 100644
index 0000000..41d1f80
--- /dev/null
+++ b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.cpp
@@ -0,0 +1,154 @@
+//===- LLVMDialectBytecode.cpp - LLVM Bytecode Implementation -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "LLVMDialectBytecode.h"
+#include "mlir/Bytecode/BytecodeImplementation.h"
+#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
+#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
+#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
+#include "mlir/IR/Diagnostics.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/TypeSwitch.h"
+#include <type_traits>
+
+using namespace mlir;
+using namespace mlir::LLVM;
+
+namespace {
+
+// Provide some forward declarations of the functions that will be generated by
+// the include below.
+static void write(DIExpressionElemAttr attribute,
+ DialectBytecodeWriter &writer);
+static LogicalResult writeAttribute(Attribute attribute,
+ DialectBytecodeWriter &writer);
+
+//===--------------------------------------------------------------------===//
+// Optional ArrayRefs
+//
+// Note that both the writer and reader functions consider attributes to be
+// optional. This is because the attribute may be present or empty.
+//===--------------------------------------------------------------------===//
+
+template <class EntryTy>
+static void writeOptionalArrayRef(DialectBytecodeWriter &writer,
+ ArrayRef<EntryTy> storage) {
+ if (storage.empty()) {
+ writer.writeOwnedBool(false);
+ return;
+ }
+
+ writer.writeOwnedBool(true);
+ writer.writeList(storage, [&](EntryTy val) {
+ if constexpr (std::is_base_of_v<Attribute, EntryTy>) {
+ (void)writer.writeOptionalAttribute(val);
+ } else if constexpr (std::is_integral_v<EntryTy>) {
+ (void)writer.writeVarInt(val);
+ } else {
+ static_assert(true, "EntryTy not supported");
+ }
+ });
+}
+
+template <class EntryTy>
+static LogicalResult readOptionalArrayRef(DialectBytecodeReader &reader,
+ SmallVectorImpl<EntryTy> &storage) {
+ bool isPresent = false;
+ if (failed(reader.readBool(isPresent)))
+ return failure();
+ // Nothing to do here, the array is empty.
+ if (!isPresent)
+ return success();
+
+ auto readEntry = [&]() -> FailureOr<EntryTy> {
+ EntryTy temp;
+ if constexpr (std::is_base_of_v<Attribute, EntryTy>) {
+ if (succeeded(reader.readOptionalAttribute(temp)))
+ return temp;
+ } else if constexpr (std::is_integral_v<EntryTy>) {
+ if (succeeded(reader.readVarInt(temp)))
+ return temp;
+ } else {
+ static_assert(true, "EntryTy not supported");
+ }
+ return failure();
+ };
+
+ return reader.readList(storage, readEntry);
+}
+
+//===--------------------------------------------------------------------===//
+// Optional integral types
+//===--------------------------------------------------------------------===//
+
+template <class EntryTy>
+static void writeOptionalInt(DialectBytecodeWriter &writer,
+ std::optional<EntryTy> storage) {
+ static_assert(std::is_integral_v<EntryTy>,
+ "EntryTy must be an integral type");
+ EntryTy val = storage.value_or(0);
+ writer.writeVarIntWithFlag(val, storage.has_value());
+}
+
+template <class EntryTy>
+static LogicalResult readOptionalInt(DialectBytecodeReader &reader,
+ std::optional<EntryTy> &storage) {
+ static_assert(std::is_integral_v<EntryTy>,
+ "EntryTy must be an integral type");
+ uint64_t result = 0;
+ bool flag = false;
+ if (failed(reader.readVarIntWithFlag(result, flag)))
+ return failure();
+ if (flag)
+ storage = static_cast<EntryTy>(result);
+ else
+ storage = std::nullopt;
+ return success();
+}
+
+//===--------------------------------------------------------------------===//
+// Tablegen generated bytecode functions
+//===--------------------------------------------------------------------===//
+
+#include "mlir/Dialect/LLVMIR/LLVMDialectBytecode.cpp.inc"
+
+//===--------------------------------------------------------------------===//
+// LLVMDialectBytecodeInterface
+//===--------------------------------------------------------------------===//
+
+/// This class implements the bytecode interface for the LLVM dialect.
+struct LLVMDialectBytecodeInterface : public BytecodeDialectInterface {
+ LLVMDialectBytecodeInterface(Dialect *dialect)
+ : BytecodeDialectInterface(dialect) {}
+
+ // Attributes
+ Attribute readAttribute(DialectBytecodeReader &reader) const override {
+ return ::readAttribute(getContext(), reader);
+ }
+
+ LogicalResult writeAttribute(Attribute attr,
+ DialectBytecodeWriter &writer) const override {
+ return ::writeAttribute(attr, writer);
+ }
+
+ // Types
+ Type readType(DialectBytecodeReader &reader) const override {
+ return ::readType(getContext(), reader);
+ }
+
+ LogicalResult writeType(Type type,
+ DialectBytecodeWriter &writer) const override {
+ return ::writeType(type, writer);
+ }
+};
+} // namespace
+
+void LLVM::detail::addBytecodeInterface(LLVMDialect *dialect) {
+ dialect->addInterfaces<LLVMDialectBytecodeInterface>();
+}
diff --git a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.h b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.h
new file mode 100644
index 0000000..1a17cb4
--- /dev/null
+++ b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialectBytecode.h
@@ -0,0 +1,27 @@
+//===- LLVMDialectBytecode.h - LLVM Bytecode Implementation -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines hooks into the LLVM dialect bytecode
+// implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LIB_MLIR_DIALECT_LLVM_IR_LLVMDIALECTBYTECODE_H
+#define LIB_MLIR_DIALECT_LLVM_IR_LLVMDIALECTBYTECODE_H
+
+namespace mlir::LLVM {
+class LLVMDialect;
+
+namespace detail {
+/// Add the interfaces necessary for encoding the LLVM dialect components in
+/// bytecode.
+void addBytecodeInterface(LLVMDialect *dialect);
+} // namespace detail
+} // namespace mlir::LLVM
+
+#endif // LIB_MLIR_DIALECT_LLVM_IR_LLVMDIALECTBYTECODE_H
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 59013a2..cbc565b 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -5272,11 +5272,18 @@ ArrayRef<int64_t> PackOp::getAllOuterDims() {
SmallVector<int64_t> PackOp::getTiledOuterDims() {
auto innerDimsPos = getInnerDimsPos();
- auto packedShape = getDestType().getShape();
+ SmallVector<int64_t> outerDims(getAllOuterDims());
SmallVector<int64_t> res;
+ // Recover the original order of the outer dims.
+ SmallVector<int64_t> outerDimPermInv(getOuterDimsPerm());
+ invertPermutationVector(outerDimPermInv);
+ if (!outerDimPermInv.empty())
+ applyPermutationToVector(outerDims, outerDimPermInv);
+
+ // Collect the outer dims corresponding to the tilled inner dims.
for (auto index : innerDimsPos)
- res.push_back(packedShape[index]);
+ res.push_back(outerDims[index]);
return res;
}
diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index dd9b4c2..d8f983f 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -576,6 +576,86 @@ transform::EliminateLinalgOpAnchoredEmptyTensorsOp::apply(
// FuseOp
//===----------------------------------------------------------------------===//
+void transform::FuseOp::build(OpBuilder &builder, OperationState &result,
+ TypeRange loopTypes, Value target,
+ ArrayRef<int64_t> staticTileSizes,
+ ArrayRef<int64_t> staticTileInterchange,
+ bool applyCleanup, bool useForall) {
+ return build(
+ builder, result, loopTypes,
+ /*target=*/target,
+ /*mixedTileSizes=*/
+ getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
+ /*mixedTileInterchange=*/
+ getAsOpFoldResult(builder.getI64ArrayAttr(staticTileInterchange)),
+ applyCleanup, useForall);
+}
+
+void transform::FuseOp::build(OpBuilder &builder, OperationState &result,
+ Value target, ArrayRef<int64_t> staticTileSizes,
+ ArrayRef<int64_t> staticTileInterchange,
+ bool applyCleanup, bool useForall) {
+ return build(
+ builder, result,
+ /*target=*/target,
+ /*mixedTileSizes=*/
+ getAsOpFoldResult(builder.getI64ArrayAttr(staticTileSizes)),
+ /*mixedTileInterchange=*/
+ getAsOpFoldResult(builder.getI64ArrayAttr(staticTileInterchange)),
+ applyCleanup, useForall);
+}
+
+void transform::FuseOp::build(OpBuilder &builder, OperationState &result,
+ Value target,
+ ArrayRef<OpFoldResult> mixedTileSizes,
+ ArrayRef<OpFoldResult> mixedTileInterchange,
+ bool applyCleanup, bool useForall) {
+ // Loop types are automaticaly splat by the callee, setting up one is
+ // enough.
+ SmallVector<Type> loopTypes(1, builder.getType<transform::AnyOpType>());
+ build(builder, result, loopTypes, target, mixedTileSizes,
+ mixedTileInterchange, applyCleanup, useForall);
+}
+
+void transform::FuseOp::build(OpBuilder &builder, OperationState &result,
+ TypeRange loopTypes, Value target,
+ ArrayRef<OpFoldResult> mixedTileSizes,
+ ArrayRef<OpFoldResult> mixedTileInterchange,
+ bool applyCleanup, bool useForall) {
+ SmallVector<int64_t> staticTileSizes;
+ SmallVector<Value> dynamicTileSizes;
+ dispatchIndexOpFoldResults(mixedTileSizes, dynamicTileSizes, staticTileSizes);
+ SmallVector<int64_t> staticTileInterchange;
+ SmallVector<Value> dynamicTileInterchange;
+ dispatchIndexOpFoldResults(mixedTileInterchange, dynamicTileInterchange,
+ staticTileInterchange);
+ // Call the default builder which sets up the proper operands segment sizes
+ // attributes for multiple variadic operands. In the absence of this,
+ // horrible bugs ensue.
+ auto staticTileSizesAttr = builder.getDenseI64ArrayAttr(staticTileSizes);
+ auto staticTileInterchangeAttr =
+ builder.getDenseI64ArrayAttr(staticTileInterchange);
+ unsigned numExpectedLoops =
+ useForall ? 1 : staticTileSizes.size() - llvm::count(staticTileSizes, 0);
+ SmallVector<Type> resultTypes;
+ resultTypes.reserve(numExpectedLoops);
+ assert((loopTypes.size() == 1 || loopTypes.size() == numExpectedLoops) &&
+ "expected one loop type or as many as loops");
+ if (loopTypes.size() == 1)
+ resultTypes.append(numExpectedLoops, loopTypes[0]);
+ else
+ llvm::append_range(resultTypes, loopTypes);
+ build(builder, result, /*transformed=*/target.getType(),
+ /*loops=*/resultTypes,
+ /*target=*/target,
+ /*tile_sizes=*/dynamicTileSizes,
+ /*tile_interchange=*/dynamicTileInterchange,
+ /*static_tile_sizes=*/staticTileSizesAttr,
+ /*static_tile_interchange=*/staticTileInterchangeAttr,
+ /*apply_cleanup=*/applyCleanup,
+ /*use_forall=*/useForall);
+}
+
/// Apply a tiling transformation to all payload ops and store both the
/// tiled operation as well as the created tile loops.
template <typename Range>
@@ -630,13 +710,25 @@ DiagnosedSilenceableFailure
transform::FuseOp::apply(transform::TransformRewriter &rewriter,
mlir::transform::TransformResults &transformResults,
mlir::transform::TransformState &state) {
- SmallVector<int64_t> tileSizes =
- extractFromIntegerArrayAttr<int64_t>(getTileSizes());
- SmallVector<int64_t> tileInterchange =
- extractFromIntegerArrayAttr<int64_t>(getTileInterchange());
+ auto transformOp = cast<TransformOpInterface>(getOperation());
+
+ SmallVector<int64_t> tileSizes;
+ DiagnosedSilenceableFailure status = reifyMixedParamAndHandleResults(
+ state, transformOp, getMixedTileSizes(), tileSizes);
+ if (!status.succeeded())
+ return status;
+ SmallVector<int64_t> tileInterchange;
+ status = reifyMixedParamAndHandleResults(
+ state, transformOp, getMixedTileInterchange(), tileInterchange);
+ if (!status.succeeded())
+ return status;
scf::SCFTilingOptions tilingOptions;
tilingOptions.interchangeVector = tileInterchange;
+ bool useForall = getUseForall();
+ tilingOptions.setLoopType(useForall
+ ? scf::SCFTilingOptions::LoopType::ForallOp
+ : scf::SCFTilingOptions::LoopType::ForOp);
SmallVector<OpFoldResult> tileSizesOfr =
getAsIndexOpFoldResult(rewriter.getContext(), tileSizes);
tilingOptions = tilingOptions.setTileSizes(tileSizesOfr);
@@ -652,9 +744,11 @@ transform::FuseOp::apply(transform::TransformRewriter &rewriter,
tileAndFuseOptions.cleanupPatterns = std::move(patterns);
}
+ size_t numLoops =
+ useForall ? 1 : tileSizes.size() - llvm::count(tileSizes, 0);
LogicalResult result = applyTilingToAll(
- rewriter, getOperation(), state.getPayloadOps(getTarget()),
- tileSizes.size() - llvm::count(tileSizes, 0), transformResults,
+ rewriter, getOperation(), state.getPayloadOps(getTarget()), numLoops,
+ transformResults,
[&](TilingInterface tilingInterfaceOp)
-> FailureOr<scf::SCFTileAndFuseResult> {
return tileConsumerAndFuseProducersUsingSCF(rewriter, tilingInterfaceOp,
@@ -665,24 +759,51 @@ transform::FuseOp::apply(transform::TransformRewriter &rewriter,
}
LogicalResult transform::FuseOp::verify() {
- SmallVector<int64_t> permutation =
- extractFromIntegerArrayAttr<int64_t>(getTileInterchange());
- auto sequence = llvm::to_vector(llvm::seq<int64_t>(0, permutation.size()));
- if (!std::is_permutation(sequence.begin(), sequence.end(),
- permutation.begin(), permutation.end())) {
- return emitOpError() << "expects interchange to be a permutation, found "
- << getTileInterchange();
+ auto iterspace_rank = getStaticTileSizes().size();
+ ArrayRef<int64_t> permutation = getStaticTileInterchange();
+ if (permutation.size() > iterspace_rank)
+ return emitOpError()
+ << "interchange length exceeds iteration space dimensions ("
+ << iterspace_rank << "), found " << getTileInterchange();
+ SmallVector<bool> seen(iterspace_rank, false);
+ for (int64_t v : permutation) {
+ if (!ShapedType::isDynamic(v)) {
+ if (v < 0 || v >= static_cast<int64_t>(iterspace_rank))
+ return emitOpError() << "expects interchange values to be in range [0, "
+ << iterspace_rank << "), found: " << v;
+ if (seen[v])
+ return emitOpError() << "found duplicate interchange value: " << v;
+ seen[v] = true;
+ }
}
- SmallVector<int64_t> sizes =
- extractFromIntegerArrayAttr<int64_t>(getTileSizes());
- size_t numExpectedLoops = sizes.size() - llvm::count(sizes, 0);
+ ArrayRef<int64_t> sizes = getStaticTileSizes();
+ size_t numExpectedLoops =
+ getUseForall() ? 1 : sizes.size() - llvm::count(sizes, 0);
if (numExpectedLoops != getNumResults() - 1)
return emitOpError() << "expects " << numExpectedLoops << " loop results";
return success();
}
+SmallVector<OpFoldResult> transform::FuseOp::getMixedTileSizes() {
+ return getMixedValues(getStaticTileSizes(), getTileSizes(), getContext());
+}
+
+SmallVector<OpFoldResult> transform::FuseOp::getMixedTileInterchange() {
+ return getMixedValues(getStaticTileInterchange(), getTileInterchange(),
+ getContext());
+}
+
+void transform::FuseOp::getEffects(
+ SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
+ consumesHandle(getTargetMutable(), effects);
+ onlyReadsHandle(getTileSizesMutable(), effects);
+ onlyReadsHandle(getTileInterchangeMutable(), effects);
+ producesHandle(getOperation()->getOpResults(), effects);
+ modifiesPayload(effects);
+}
+
//===----------------------------------------------------------------------===//
// FuseIntoContainingOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
index 0dac688..eb2d825 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp
@@ -1134,22 +1134,45 @@ getPackUnpackRankReducedPerm(ArrayRef<int64_t> shape,
LogicalResult DecomposeOuterUnitDimsPackOpPattern::matchAndRewrite(
linalg::PackOp packOp, PatternRewriter &rewriter) const {
- // TODO: support the case that outer dimensions are not all 1s. A
- // tensor.expand_shape will be generated in this case.
- if (llvm::any_of(packOp.getAllOuterDims(),
+ if (llvm::any_of(packOp.getTiledOuterDims(),
[](int64_t dim) { return dim != 1; })) {
return rewriter.notifyMatchFailure(
packOp, "not all outer dimensions of the result are 1s");
}
+ ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
+ auto outerDimsPerm = packOp.getOuterDimsPerm();
+
+ // Verify that there are no:
+ // * non-unit + un-tiled-outer-dims,
+ // that are permuted. Supporting such cases would require refining the logic
+ // that generates the Transpose Op.
+ if (!llvm::all_of(outerDimsPerm, [&innerDimsPos, &packOp](int64_t dim) {
+ static int prev = 0;
+ // Skip tiled dims - these can be permuted.
+ if (llvm::is_contained(innerDimsPos, dim))
+ return true;
+
+ // Check whether this dim has been permuted. Permuting unit dims is fine
+ // as that's effectively a no-op.
+ if (dim < prev && (packOp.getType().getShape()[prev] != 1 ||
+ packOp.getType().getShape()[dim] != 1))
+ return false;
+
+ prev = dim;
+ return true;
+ })) {
+ return rewriter.notifyMatchFailure(
+ packOp, "At least one non-unit and un-tiled outer dim is permuted, "
+ "this is not supported ATM!");
+ }
+
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
Location loc = packOp.getLoc();
int64_t srcRank = packOp.getSourceRank();
int64_t destRank = packOp.getDestRank();
- ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
- int64_t numberOfTiles = innerDimsPos.size();
// 1. Get the input that is going to be packed. If the input requires padding,
// add a padding operation and return that as the input.
@@ -1160,10 +1183,13 @@ LogicalResult DecomposeOuterUnitDimsPackOpPattern::matchAndRewrite(
// %transposed_tile = linalg.transpose ins(%source_or_padded_source),
// outs(%init)
// Assumptions made:
- // - All outer dims are 1 - the corresponding transposition order doesn't
- // matter, but requires all dim indices to be present.
+ // - All tiled outer dims are 1 - the corresponding transposition order
+ // doesn't matter, but requires all dim indices to be present.
+ // - Un-tiled outer dims remain un-permuted.
- // 2.1 Get the permutation for linalg.transpose
+ // 2.1 Get the permutation for linalg.transpose:
+ // [ untiled-dims, inner-dims-pos ]
+ // Note, this logic assumes that the untiled dims are not permuted.
SmallVector<int64_t> srcPermForTranspose;
for (int64_t i = 0; i < srcRank; i++) {
// We assume the `k` dimensions of the inner dim position, where `k` is the
@@ -1179,9 +1205,21 @@ LogicalResult DecomposeOuterUnitDimsPackOpPattern::matchAndRewrite(
}
srcPermForTranspose.append(innerDimsPos.begin(), innerDimsPos.end());
- // 2.2 Create the init tensor for linalg.transpose with the correct shape
- SmallVector<OpFoldResult> shapeForEmptyOp(srcRank - numberOfTiles,
- oneIdxAttr);
+ // 2.2 Create the init tensor for linalg.transpose with the correct shape:
+ // [ untiled-dims, tiled-dims ]
+ ShapedType inputTy = cast<ShapedType>(input.getType());
+ SmallVector<OpFoldResult> shapeForEmptyOp;
+ for (int64_t i = 0; i < srcRank; i++) {
+ if (llvm::is_contained(innerDimsPos, i)) {
+ // The tiled dims are appended after this loop.
+ continue;
+ }
+ if (inputTy.isStaticDim(i))
+ shapeForEmptyOp.push_back(rewriter.getIndexAttr(inputTy.getShape()[i]));
+ else
+ shapeForEmptyOp.emplace_back(
+ tensor::DimOp::create(rewriter, loc, input, i).getResult());
+ }
shapeForEmptyOp.append(packOp.getMixedTiles());
// getMixedTiles() may contain Values pointing to constant ops, not the
@@ -1204,25 +1242,36 @@ LogicalResult DecomposeOuterUnitDimsPackOpPattern::matchAndRewrite(
auto transposedOp = linalg::TransposeOp::create(rewriter, loc, input, empty,
srcPermForTranspose);
- // 3. Insert the inner tile to the destination:
+ // 3. Insert the inner tile into the destination tensor:
// %inserted_tile = tensor.insert_slice(%transposed_tile)
- SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
- SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
- // Outer dims are all 1s!
- SmallVector<OpFoldResult> writeSizes(destRank - numberOfTiles, oneIdxAttr);
- SmallVector<int64_t> writeShape;
+
+ // Compute the sizes attribute:
+ // [ outer-dims, tile-sizes ]
+ // Note that the output from the transpose Op excludes the tiled outer dims.
+ // However, given the assumption that:
+ // * all tiled outer dims == 1,
+ // we can just use a rank-expanding tensor.insert_slice.
+ SmallVector<OpFoldResult> writeSizes;
+ for (auto size : packOp.getAllOuterDims()) {
+ writeSizes.push_back(rewriter.getIndexAttr(size));
+ }
for (auto tileSize : packOp.getMixedTiles()) {
- auto [tileSizeStatic, tileSizeOfr] =
+ auto [_, tileSizeOfr] =
getSimplifiedOfrAndStaticSizePair(tileSize, rewriter);
writeSizes.push_back(tileSizeOfr);
- writeShape.push_back(tileSizeStatic);
}
- // 4. Replace tensor.packOp with tensor.insert_slice created above
+ // TODO: Add a constructor for tensor.insert_slice that doesn't require
+ // strides nor offsets.
+ SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
+ SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
+
auto insert = tensor::InsertSliceOp::create(
rewriter, loc, transposedOp.getResult()[0], packOp.getDest(),
writeOffsets, writeSizes, writeStrides);
+
+ // 4. Replace tensor.packOp with tensor.insert_slice created above
rewriter.replaceOp(packOp, insert.getResult());
return success();
diff --git a/mlir/lib/Dialect/MemRef/IR/CMakeLists.txt b/mlir/lib/Dialect/MemRef/IR/CMakeLists.txt
index e25a012..1382c7ac 100644
--- a/mlir/lib/Dialect/MemRef/IR/CMakeLists.txt
+++ b/mlir/lib/Dialect/MemRef/IR/CMakeLists.txt
@@ -5,7 +5,7 @@ add_mlir_dialect_library(MLIRMemRefDialect
ValueBoundsOpInterfaceImpl.cpp
ADDITIONAL_HEADER_DIRS
- ${PROJECT_SOURCE_DIR}/inlude/mlir/Dialect/MemRefDialect
+ ${PROJECT_SOURCE_DIR}/inlude/mlir/Dialect/MemRef/IR
DEPENDS
MLIRMemRefOpsIncGen
@@ -18,6 +18,7 @@ add_mlir_dialect_library(MLIRMemRefDialect
MLIRDialectUtils
MLIRInferIntRangeCommon
MLIRInferIntRangeInterface
+ MLIRInferStridedMetadataInterface
MLIRInferTypeOpInterface
MLIRIR
MLIRMemOpInterfaces
diff --git a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
index e9bdcda..507597b 100644
--- a/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
+++ b/mlir/lib/Dialect/MemRef/IR/MemRefOps.cpp
@@ -3437,6 +3437,65 @@ SubViewOp::bubbleDownCasts(OpBuilder &builder) {
return bubbleDownCastsPassthroughOpImpl(*this, builder, getSourceMutable());
}
+void SubViewOp::inferStridedMetadataRanges(
+ ArrayRef<StridedMetadataRange> ranges, GetIntRangeFn getIntRange,
+ SetStridedMetadataRangeFn setMetadata, int32_t indexBitwidth) {
+ auto isUninitialized =
+ +[](IntegerValueRange range) { return range.isUninitialized(); };
+
+ // Bail early if any of the operands metadata is not ready:
+ SmallVector<IntegerValueRange> offsetOperands =
+ getIntValueRanges(getMixedOffsets(), getIntRange, indexBitwidth);
+ if (llvm::any_of(offsetOperands, isUninitialized))
+ return;
+
+ SmallVector<IntegerValueRange> sizeOperands =
+ getIntValueRanges(getMixedSizes(), getIntRange, indexBitwidth);
+ if (llvm::any_of(sizeOperands, isUninitialized))
+ return;
+
+ SmallVector<IntegerValueRange> stridesOperands =
+ getIntValueRanges(getMixedStrides(), getIntRange, indexBitwidth);
+ if (llvm::any_of(stridesOperands, isUninitialized))
+ return;
+
+ StridedMetadataRange sourceRange =
+ ranges[getSourceMutable().getOperandNumber()];
+ if (sourceRange.isUninitialized())
+ return;
+
+ ArrayRef<ConstantIntRanges> srcStrides = sourceRange.getStrides();
+
+ // Get the dropped dims.
+ llvm::SmallBitVector droppedDims = getDroppedDims();
+
+ // Compute the new offset, strides and sizes.
+ ConstantIntRanges offset = sourceRange.getOffsets()[0];
+ SmallVector<ConstantIntRanges> strides, sizes;
+
+ for (size_t i = 0, e = droppedDims.size(); i < e; ++i) {
+ bool dropped = droppedDims.test(i);
+ // Compute the new offset.
+ ConstantIntRanges off =
+ intrange::inferMul({offsetOperands[i].getValue(), srcStrides[i]});
+ offset = intrange::inferAdd({offset, off});
+
+ // Skip dropped dimensions.
+ if (dropped)
+ continue;
+ // Multiply the strides.
+ strides.push_back(
+ intrange::inferMul({stridesOperands[i].getValue(), srcStrides[i]}));
+ // Get the sizes.
+ sizes.push_back(sizeOperands[i].getValue());
+ }
+
+ setMetadata(getResult(),
+ StridedMetadataRange::getRanked(
+ SmallVector<ConstantIntRanges>({std::move(offset)}),
+ std::move(sizes), std::move(strides)));
+}
+
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
index fa97b49..ac72002 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
@@ -2310,6 +2310,7 @@ RankedTensorType ExtractSliceOp::inferResultType(
sourceTensorType.getEncoding());
}
+// TODO: This uses neither offsets nor strides!
RankedTensorType ExtractSliceOp::inferResultType(
RankedTensorType sourceTensorType, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
diff --git a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
index 36c498e..f77784a 100644
--- a/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
+++ b/mlir/lib/Dialect/XeGPU/Transforms/XeGPUBlocking.cpp
@@ -161,11 +161,24 @@ XeGPUBlockingPass::getTileShape(Operation *op) const {
xegpu::UpdateOffsetOp, xegpu::LoadMatrixOp>(op))
return getTileShape(op->getOpResult(0));
if (isa<xegpu::PrefetchNdOp, xegpu::LoadNdOp, xegpu::PrefetchOp,
- xegpu::LoadGatherOp, xegpu::StoreMatrixOp>(op))
+ xegpu::StoreMatrixOp>(op))
return getTileShape(op->getOpOperand(0));
- if (isa<xegpu::StoreNdOp, xegpu::StoreScatterOp>(op))
+ if (isa<xegpu::StoreNdOp>(op))
return getTileShape(op->getOpOperand(1));
+ // Handle LoadGatherOp and StoreScatterOp (with and without offset)
+ if (auto loadGatherOp = dyn_cast<xegpu::LoadGatherOp>(op)) {
+ if (loadGatherOp.getOffsets())
+ return getTileShape(loadGatherOp->getOpResult(0));
+ else
+ return getTileShape(loadGatherOp->getOpOperand(0));
+ }
+
+ if (auto storeScatterOp = dyn_cast<xegpu::StoreScatterOp>(op))
+ return getTileShape(storeScatterOp.getOffsets()
+ ? storeScatterOp->getOpOperand(0)
+ : storeScatterOp->getOpOperand(1));
+
if (isa<xegpu::DpasOp>(op)) {
std::optional<SmallVector<int64_t>> aTile =
getTileShape(op->getOpOperand(0));
diff --git a/mlir/lib/IR/AsmPrinter.cpp b/mlir/lib/IR/AsmPrinter.cpp
index 3d19c5a..9b23dd6 100644
--- a/mlir/lib/IR/AsmPrinter.cpp
+++ b/mlir/lib/IR/AsmPrinter.cpp
@@ -2200,10 +2200,9 @@ void AsmPrinter::Impl::printLocationInternal(LocationAttr loc, bool pretty,
os << '>';
}
os << '[';
- interleave(
- loc.getLocations(),
- [&](Location loc) { printLocationInternal(loc, pretty); },
- [&]() { os << ", "; });
+ interleaveComma(loc.getLocations(), [&](Location loc) {
+ printLocationInternal(loc, pretty);
+ });
os << ']';
})
.Default([&](LocationAttr loc) {
diff --git a/mlir/lib/Interfaces/CMakeLists.txt b/mlir/lib/Interfaces/CMakeLists.txt
index 388de1c..f96af02 100644
--- a/mlir/lib/Interfaces/CMakeLists.txt
+++ b/mlir/lib/Interfaces/CMakeLists.txt
@@ -9,6 +9,7 @@ set(LLVM_OPTIONAL_SOURCES
FunctionInterfaces.cpp
IndexingMapOpInterface.cpp
InferIntRangeInterface.cpp
+ InferStridedMetadataInterface.cpp
InferTypeOpInterface.cpp
LoopLikeInterface.cpp
MemOpInterfaces.cpp
@@ -64,6 +65,21 @@ add_mlir_library(MLIRFunctionInterfaces
add_mlir_interface_library(IndexingMapOpInterface)
add_mlir_interface_library(InferIntRangeInterface)
+
+add_mlir_library(MLIRInferStridedMetadataInterface
+ InferStridedMetadataInterface.cpp
+
+ ADDITIONAL_HEADER_DIRS
+ ${MLIR_MAIN_INCLUDE_DIR}/mlir/Interfaces
+
+ DEPENDS
+ MLIRInferStridedMetadataInterfaceIncGen
+
+ LINK_LIBS PUBLIC
+ MLIRInferIntRangeInterface
+ MLIRIR
+)
+
add_mlir_interface_library(InferTypeOpInterface)
add_mlir_library(MLIRLoopLikeInterface
diff --git a/mlir/lib/Interfaces/InferIntRangeInterface.cpp b/mlir/lib/Interfaces/InferIntRangeInterface.cpp
index 9f3e97d..84fc9b8 100644
--- a/mlir/lib/Interfaces/InferIntRangeInterface.cpp
+++ b/mlir/lib/Interfaces/InferIntRangeInterface.cpp
@@ -146,6 +146,25 @@ raw_ostream &mlir::operator<<(raw_ostream &os, const IntegerValueRange &range) {
return os;
}
+SmallVector<IntegerValueRange>
+mlir::getIntValueRanges(ArrayRef<OpFoldResult> values,
+ GetIntRangeFn getIntRange, int32_t indexBitwidth) {
+ SmallVector<IntegerValueRange> ranges;
+ ranges.reserve(values.size());
+ for (OpFoldResult ofr : values) {
+ if (auto value = dyn_cast<Value>(ofr)) {
+ ranges.push_back(getIntRange(value));
+ continue;
+ }
+
+ // Create a constant range.
+ auto attr = cast<IntegerAttr>(cast<Attribute>(ofr));
+ ranges.emplace_back(ConstantIntRanges::constant(
+ attr.getValue().sextOrTrunc(indexBitwidth)));
+ }
+ return ranges;
+}
+
void mlir::intrange::detail::defaultInferResultRanges(
InferIntRangeInterface interface, ArrayRef<IntegerValueRange> argRanges,
SetIntLatticeFn setResultRanges) {
diff --git a/mlir/lib/Interfaces/InferStridedMetadataInterface.cpp b/mlir/lib/Interfaces/InferStridedMetadataInterface.cpp
new file mode 100644
index 0000000..483e9f1
--- /dev/null
+++ b/mlir/lib/Interfaces/InferStridedMetadataInterface.cpp
@@ -0,0 +1,36 @@
+//===- InferStridedMetadataInterface.cpp - Strided md inference interface -===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Interfaces/InferStridedMetadataInterface.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/TypeUtilities.h"
+#include <optional>
+
+using namespace mlir;
+
+#include "mlir/Interfaces/InferStridedMetadataInterface.cpp.inc"
+
+void StridedMetadataRange::print(raw_ostream &os) const {
+ if (isUninitialized()) {
+ os << "strided_metadata<None>";
+ return;
+ }
+ os << "strided_metadata<offset = [";
+ llvm::interleaveComma(*offsets, os, [&](const ConstantIntRanges &range) {
+ os << "{" << range << "}";
+ });
+ os << "], sizes = [";
+ llvm::interleaveComma(sizes, os, [&](const ConstantIntRanges &range) {
+ os << "{" << range << "}";
+ });
+ os << "], strides = [";
+ llvm::interleaveComma(strides, os, [&](const ConstantIntRanges &range) {
+ os << "{" << range << "}";
+ });
+ os << "]>";
+}
diff --git a/mlir/lib/Target/Cpp/TranslateToCpp.cpp b/mlir/lib/Target/Cpp/TranslateToCpp.cpp
index 5fe5f41..1243511 100644
--- a/mlir/lib/Target/Cpp/TranslateToCpp.cpp
+++ b/mlir/lib/Target/Cpp/TranslateToCpp.cpp
@@ -357,11 +357,6 @@ static bool shouldBeInlined(ExpressionOp expressionOp) {
if (expressionOp.getDoNotInline())
return false;
- // Do not inline expressions with side effects to prevent side-effect
- // reordering.
- if (expressionOp.hasSideEffects())
- return false;
-
// Do not inline expressions with multiple uses.
Value result = expressionOp.getResult();
if (!result.hasOneUse())
@@ -377,7 +372,34 @@ static bool shouldBeInlined(ExpressionOp expressionOp) {
// Do not inline expressions used by other expressions or by ops with the
// CExpressionInterface. If this was intended, the user could have been merged
// into the expression op.
- return !isa<emitc::ExpressionOp, emitc::CExpressionInterface>(*user);
+ if (isa<emitc::ExpressionOp, emitc::CExpressionInterface>(*user))
+ return false;
+
+ // Expressions with no side-effects can safely be inlined.
+ if (!expressionOp.hasSideEffects())
+ return true;
+
+ // Expressions with side-effects can be only inlined if side-effect ordering
+ // in the program is provably retained.
+
+ // Require the user to immediately follow the expression.
+ if (++Block::iterator(expressionOp) != Block::iterator(user))
+ return false;
+
+ // These single-operand ops are safe.
+ if (isa<emitc::IfOp, emitc::SwitchOp, emitc::ReturnOp>(user))
+ return true;
+
+ // For assignment look for specific cases to inline as evaluation order of
+ // its lvalue and rvalue is undefined in C.
+ if (auto assignOp = dyn_cast<emitc::AssignOp>(user)) {
+ // Inline if this assignment is of the form `<var> = <expression>`.
+ if (expressionOp.getResult() == assignOp.getValue() &&
+ isa_and_present<VariableOp>(assignOp.getVar().getDefiningOp()))
+ return true;
+ }
+
+ return false;
}
static LogicalResult printConstantOp(CppEmitter &emitter, Operation *operation,
diff --git a/mlir/lib/Target/Wasm/TranslateFromWasm.cpp b/mlir/lib/Target/Wasm/TranslateFromWasm.cpp
index 132be4e..51c6077 100644
--- a/mlir/lib/Target/Wasm/TranslateFromWasm.cpp
+++ b/mlir/lib/Target/Wasm/TranslateFromWasm.cpp
@@ -956,7 +956,7 @@ inline parsed_inst_t ExpressionParser::buildNumericOp(
<< ", type = " << ty << " ***";
auto tysToPop = SmallVector<Type, numOperands>();
tysToPop.resize(numOperands);
- std::fill(tysToPop.begin(), tysToPop.end(), ty);
+ llvm::fill(tysToPop, ty);
auto operands = popOperands(tysToPop);
if (failed(operands))
return failure();