diff options
Diffstat (limited to 'mlir/lib/Dialect')
-rw-r--r-- | mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp | 14 | ||||
-rw-r--r-- | mlir/lib/Dialect/LLVMIR/IR/NVVMDialect.cpp | 46 | ||||
-rw-r--r-- | mlir/lib/Dialect/Vector/IR/VectorOps.cpp | 105 | ||||
-rw-r--r-- | mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp | 52 | ||||
-rw-r--r-- | mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp | 7 |
5 files changed, 205 insertions, 19 deletions
diff --git a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp index 7ca09d9..3eae67f 100644 --- a/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp +++ b/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp @@ -2826,6 +2826,20 @@ LogicalResult ShuffleVectorOp::verify() { return success(); } +// Folding for shufflevector op when v1 is single element 1D vector +// and the mask is a single zero. OpFoldResult will be v1 in this case. +OpFoldResult ShuffleVectorOp::fold(FoldAdaptor adaptor) { + // Check if operand 0 is a single element vector. + auto vecType = llvm::dyn_cast<VectorType>(getV1().getType()); + if (!vecType || vecType.getRank() != 1 || vecType.getNumElements() != 1) + return {}; + // Check if the mask is a single zero. + // Note: The mask is guaranteed to be non-empty. + if (getMask().size() != 1 || getMask()[0] != 0) + return {}; + return getV1(); +} + //===----------------------------------------------------------------------===// // Implementations for LLVM::LLVMFuncOp. //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Dialect/LLVMIR/IR/NVVMDialect.cpp b/mlir/lib/Dialect/LLVMIR/IR/NVVMDialect.cpp index ab54183..2a8c330 100644 --- a/mlir/lib/Dialect/LLVMIR/IR/NVVMDialect.cpp +++ b/mlir/lib/Dialect/LLVMIR/IR/NVVMDialect.cpp @@ -798,6 +798,26 @@ LogicalResult MmaOp::verify() { " attribute"); } + // Validate layout combinations. According to the operation description, most + // MMA operations require layoutA=row and layoutB=col. Only m8n8k4 with f16 + // can use other layout combinations. + bool isM8N8K4_F16 = + (mmaShape[0] == 8 && mmaShape[1] == 8 && mmaShape[2] == 4 && + getMultiplicandAPtxType() == MMATypes::f16); + + if (!isM8N8K4_F16) { + // For all other shapes/types, layoutA must be row and layoutB must be col + if (getLayoutA() != MMALayout::row || getLayoutB() != MMALayout::col) { + return emitOpError("requires layoutA = #nvvm.mma_layout<row> and " + "layoutB = #nvvm.mma_layout<col> for shape <") + << mmaShape[0] << ", " << mmaShape[1] << ", " << mmaShape[2] + << "> with element types " + << stringifyEnum(*getMultiplicandAPtxType()) << " and " + << stringifyEnum(*getMultiplicandBPtxType()) + << ". Only m8n8k4 with f16 supports other layouts."; + } + } + return success(); } @@ -2334,6 +2354,32 @@ static void nvvmInferResultRanges(Operation *op, Value result, } } +/// Verify the range attribute satisfies LLVM ConstantRange constructor +/// requirements for NVVM SpecialRangeableRegisterOp. +static LogicalResult +verifyConstantRangeAttr(Operation *op, + std::optional<LLVM::ConstantRangeAttr> rangeAttr) { + if (!rangeAttr) + return success(); + + const llvm::APInt &lower = rangeAttr->getLower(); + const llvm::APInt &upper = rangeAttr->getUpper(); + + // Check LLVM ConstantRange constructor condition + if (lower == upper && !lower.isMaxValue() && !lower.isMinValue()) { + unsigned bitWidth = lower.getBitWidth(); + llvm::APInt minVal = llvm::APInt::getMinValue(bitWidth); + llvm::APInt maxVal = llvm::APInt::getMaxValue(bitWidth); + return op->emitOpError( + "invalid range attribute: Lower == Upper, but they aren't min (") + << llvm::toString(minVal, 10, false) << ") or max (" + << llvm::toString(maxVal, 10, false) + << ") value! This is an invalid constant range."; + } + + return success(); +} + static llvm::Value *getAsPackedI32(llvm::Value *arg, llvm::IRBuilderBase &builder) { return builder.CreateBitCast(arg, diff --git a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp index 58256b0..45c54c7 100644 --- a/mlir/lib/Dialect/Vector/IR/VectorOps.cpp +++ b/mlir/lib/Dialect/Vector/IR/VectorOps.cpp @@ -7601,6 +7601,111 @@ void StepOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges, setResultRanges(getResult(), result); } +namespace { + +/// Fold `vector.step -> arith.cmpi` when the step value is compared to a +/// constant large enough such that the result is the same at all indices. +/// +/// For example, rewrite the 'greater than' comparison below, +/// +/// ```mlir +/// %cst = arith.constant dense<7> : vector<3xindex> +/// %stp = vector.step : vector<3xindex> +/// %out = arith.cmpi ugt, %stp, %cst : vector<3xindex> +/// ``` +/// +/// as, +/// +/// ```mlir +/// %out = arith.constant dense<false> : vector<3xi1>. +/// ``` +/// +/// Above `[0, 1, 2] > [7, 7, 7]` => `[false, false, false]`. Because the result +/// is false at ALL indices we fold. If the constant was 1, then +/// `[0, 1, 2] > [1, 1, 1]` => `[false, false, true]` and we do fold, +/// conservatively preferring the 'compact' vector.step representation. +/// +/// Note: this folder only works for the case where the constant (`%cst` above) +/// is the second operand of the comparison. The arith.cmpi canonicalizer will +/// ensure that constants are always second (on the right). +struct StepCompareFolder : public OpRewritePattern<StepOp> { + using Base::Base; + + LogicalResult matchAndRewrite(StepOp stepOp, + PatternRewriter &rewriter) const override { + const int64_t stepSize = stepOp.getResult().getType().getNumElements(); + + for (OpOperand &use : stepOp.getResult().getUses()) { + auto cmpiOp = dyn_cast<arith::CmpIOp>(use.getOwner()); + if (!cmpiOp) + continue; + + // arith.cmpi canonicalizer makes constants final operands. + const unsigned stepOperandNumber = use.getOperandNumber(); + if (stepOperandNumber != 0) + continue; + + // Check that operand 1 is a constant. + unsigned constOperandNumber = 1; + Value otherOperand = cmpiOp.getOperand(constOperandNumber); + std::optional<int64_t> maybeConstValue = + getConstantIntValue(otherOperand); + if (!maybeConstValue.has_value()) + continue; + + int64_t constValue = maybeConstValue.value(); + arith::CmpIPredicate pred = cmpiOp.getPredicate(); + + auto maybeSplat = [&]() -> std::optional<bool> { + // Handle ult (unsigned less than) and uge (unsigned greater equal). + if ((pred == arith::CmpIPredicate::ult || + pred == arith::CmpIPredicate::uge) && + stepSize <= constValue) + return pred == arith::CmpIPredicate::ult; + + // Handle ule and ugt. + if ((pred == arith::CmpIPredicate::ule || + pred == arith::CmpIPredicate::ugt) && + stepSize - 1 <= constValue) { + return pred == arith::CmpIPredicate::ule; + } + + // Handle eq and ne. + if ((pred == arith::CmpIPredicate::eq || + pred == arith::CmpIPredicate::ne) && + stepSize <= constValue) + return pred == arith::CmpIPredicate::ne; + + return std::nullopt; + }(); + + if (!maybeSplat.has_value()) + continue; + + rewriter.setInsertionPointAfter(cmpiOp); + + auto type = dyn_cast<VectorType>(cmpiOp.getResult().getType()); + if (!type) + continue; + + auto boolAttr = DenseElementsAttr::get(type, maybeSplat.value()); + Value splat = mlir::arith::ConstantOp::create(rewriter, cmpiOp.getLoc(), + type, boolAttr); + + rewriter.replaceOp(cmpiOp, splat); + return success(); + } + + return failure(); + } +}; +} // namespace + +void StepOp::getCanonicalizationPatterns(RewritePatternSet &results, + MLIRContext *context) { + results.add<StepCompareFolder>(context); +} + //===----------------------------------------------------------------------===// // Vector Masking Utilities //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp index 14639c5..fbae098 100644 --- a/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp +++ b/mlir/lib/Dialect/Vector/Transforms/VectorUnroll.cpp @@ -465,26 +465,33 @@ struct UnrollElementwisePattern : public RewritePattern { auto targetShape = getTargetShape(options, op); if (!targetShape) return failure(); + int64_t targetShapeRank = targetShape->size(); auto dstVecType = cast<VectorType>(op->getResult(0).getType()); SmallVector<int64_t> originalSize = *cast<VectorUnrollOpInterface>(op).getShapeForUnroll(); - // Bail-out if rank(source) != rank(target). The main limitation here is the - // fact that `ExtractStridedSlice` requires the rank for the input and - // output to match. If needed, we can relax this later. - if (originalSize.size() != targetShape->size()) - return rewriter.notifyMatchFailure( - op, "expected input vector rank to match target shape rank"); + int64_t originalShapeRank = originalSize.size(); + Location loc = op->getLoc(); + + // Handle rank mismatch by adding leading unit dimensions to targetShape + SmallVector<int64_t> adjustedTargetShape(originalShapeRank); + int64_t rankDiff = originalShapeRank - targetShapeRank; + std::fill(adjustedTargetShape.begin(), + adjustedTargetShape.begin() + rankDiff, 1); + std::copy(targetShape->begin(), targetShape->end(), + adjustedTargetShape.begin() + rankDiff); + + int64_t adjustedTargetShapeRank = adjustedTargetShape.size(); // Prepare the result vector. Value result = arith::ConstantOp::create(rewriter, loc, dstVecType, rewriter.getZeroAttr(dstVecType)); - SmallVector<int64_t> strides(targetShape->size(), 1); - VectorType newVecType = + SmallVector<int64_t> strides(adjustedTargetShapeRank, 1); + VectorType unrolledVecType = VectorType::get(*targetShape, dstVecType.getElementType()); // Create the unrolled computation. for (SmallVector<int64_t> offsets : - StaticTileOffsetRange(originalSize, *targetShape)) { + StaticTileOffsetRange(originalSize, adjustedTargetShape)) { SmallVector<Value> extractOperands; for (OpOperand &operand : op->getOpOperands()) { auto vecType = dyn_cast<VectorType>(operand.get().getType()); @@ -492,14 +499,31 @@ struct UnrollElementwisePattern : public RewritePattern { extractOperands.push_back(operand.get()); continue; } - extractOperands.push_back( - rewriter.createOrFold<vector::ExtractStridedSliceOp>( - loc, operand.get(), offsets, *targetShape, strides)); + Value extracted = rewriter.createOrFold<vector::ExtractStridedSliceOp>( + loc, operand.get(), offsets, adjustedTargetShape, strides); + + // Reshape to remove leading unit dims if needed + if (adjustedTargetShapeRank > targetShapeRank) { + extracted = rewriter.createOrFold<vector::ShapeCastOp>( + loc, VectorType::get(*targetShape, vecType.getElementType()), + extracted); + } + extractOperands.push_back(extracted); } + Operation *newOp = cloneOpWithOperandsAndTypes( - rewriter, loc, op, extractOperands, newVecType); + rewriter, loc, op, extractOperands, unrolledVecType); + + Value computeResult = newOp->getResult(0); + + // Use strides sized to targetShape for proper insertion + SmallVector<int64_t> insertStrides = + (adjustedTargetShapeRank > targetShapeRank) + ? SmallVector<int64_t>(targetShapeRank, 1) + : strides; + result = rewriter.createOrFold<vector::InsertStridedSliceOp>( - loc, newOp->getResult(0), result, offsets, strides); + loc, computeResult, result, offsets, insertStrides); } rewriter.replaceOp(op, result); return success(); diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp index 81b5788..e0a8ac4 100644 --- a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp +++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp @@ -20,8 +20,8 @@ #define DEBUG_TYPE "xegpu" -namespace mlir { -namespace xegpu { +using namespace mlir; +using namespace mlir::xegpu; static bool isSharedMemory(const MemRefType &memrefTy) { Attribute attr = memrefTy.getMemorySpace(); @@ -1133,9 +1133,6 @@ LogicalResult MemDescSubviewOp::verify() { return success(); } -} // namespace xegpu -} // namespace mlir - namespace mlir { #include <mlir/Dialect/XeGPU/IR/XeGPUAttrInterface.cpp.inc> } // namespace mlir |