aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib/Conversion')
-rw-r--r--mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp7
-rw-r--r--mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp32
2 files changed, 31 insertions, 8 deletions
diff --git a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
index 5355909..41d8d53 100644
--- a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
+++ b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
@@ -1723,17 +1723,18 @@ struct VectorBroadcastScalarToLowRankLowering
return success();
}
- // For 1-d vector, we additionally do a `vectorshuffle`.
auto v =
LLVM::InsertElementOp::create(rewriter, broadcast.getLoc(), vectorType,
poison, adaptor.getSource(), zero);
+ // For 1-d vector, we additionally do a `shufflevector`.
int64_t width = cast<VectorType>(broadcast.getType()).getDimSize(0);
SmallVector<int32_t> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
- rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(broadcast, v, poison,
- zeroValues);
+ auto shuffle = rewriter.createOrFold<LLVM::ShuffleVectorOp>(
+ broadcast.getLoc(), v, poison, zeroValues);
+ rewriter.replaceOp(broadcast, shuffle);
return success();
}
};
diff --git a/mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp b/mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp
index 71687b1..ddcbc44 100644
--- a/mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp
+++ b/mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp
@@ -20,6 +20,7 @@
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
+#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
@@ -390,7 +391,8 @@ class LoadStoreToXeVMPattern : public OpConversionPattern<OpType> {
// Load result or Store valye Type can be vector or scalar.
Type valOrResTy;
if constexpr (std::is_same_v<OpType, xegpu::LoadGatherOp>)
- valOrResTy = op.getResult().getType();
+ valOrResTy =
+ this->getTypeConverter()->convertType(op.getResult().getType());
else
valOrResTy = adaptor.getValue().getType();
VectorType valOrResVecTy = dyn_cast<VectorType>(valOrResTy);
@@ -878,10 +880,30 @@ struct ConvertXeGPUToXeVMPass
}
return {};
};
- typeConverter.addSourceMaterialization(memrefMaterializationCast);
- typeConverter.addSourceMaterialization(ui64MaterializationCast);
- typeConverter.addSourceMaterialization(ui32MaterializationCast);
- typeConverter.addSourceMaterialization(vectorMaterializationCast);
+
+ // If result type of original op is single element vector and lowered type
+ // is scalar. This materialization cast creates a single element vector by
+ // broadcasting the scalar value.
+ auto singleElementVectorMaterializationCast =
+ [](OpBuilder &builder, Type type, ValueRange inputs,
+ Location loc) -> Value {
+ if (inputs.size() != 1)
+ return {};
+ auto input = inputs.front();
+ if (input.getType().isIntOrIndexOrFloat()) {
+ // If the input is a scalar, and the target type is a vector of single
+ // element, create a single element vector by broadcasting.
+ if (auto vecTy = dyn_cast<VectorType>(type)) {
+ if (vecTy.getNumElements() == 1) {
+ return vector::BroadcastOp::create(builder, loc, vecTy, input)
+ .getResult();
+ }
+ }
+ }
+ return {};
+ };
+ typeConverter.addSourceMaterialization(
+ singleElementVectorMaterializationCast);
typeConverter.addTargetMaterialization(memrefMaterializationCast);
typeConverter.addTargetMaterialization(ui32MaterializationCast);
typeConverter.addTargetMaterialization(ui64MaterializationCast);