diff options
Diffstat (limited to 'mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp')
-rw-r--r-- | mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp b/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp new file mode 100644 index 0000000..0fe31d0 --- /dev/null +++ b/mlir/lib/Conversion/MathToXeVM/MathToXeVM.cpp @@ -0,0 +1,167 @@ +//===-- MathToXeVM.cpp - conversion from Math to XeVM ---------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "mlir/Conversion/MathToXeVM/MathToXeVM.h" +#include "mlir/Conversion/ArithCommon/AttrToLLVMConverter.h" +#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" +#include "mlir/Dialect/LLVMIR/LLVMDialect.h" +#include "mlir/Dialect/Math/IR/Math.h" +#include "mlir/IR/BuiltinDialect.h" +#include "mlir/Pass/Pass.h" +#include "llvm/Support/FormatVariadic.h" + +namespace mlir { +#define GEN_PASS_DEF_CONVERTMATHTOXEVM +#include "mlir/Conversion/Passes.h.inc" +} // namespace mlir + +using namespace mlir; + +#define DEBUG_TYPE "math-to-xevm" + +/// Convert math ops marked with `fast` (`afn`) to native OpenCL intrinsics. +template <typename Op> +struct ConvertNativeFuncPattern final : public OpConversionPattern<Op> { + + ConvertNativeFuncPattern(MLIRContext *context, StringRef nativeFunc, + PatternBenefit benefit = 1) + : OpConversionPattern<Op>(context, benefit), nativeFunc(nativeFunc) {} + + LogicalResult + matchAndRewrite(Op op, typename Op::Adaptor adaptor, + ConversionPatternRewriter &rewriter) const override { + if (!isSPIRVCompatibleFloatOrVec(op.getType())) + return failure(); + + arith::FastMathFlags fastFlags = op.getFastmath(); + if (!arith::bitEnumContainsAll(fastFlags, arith::FastMathFlags::afn)) + return rewriter.notifyMatchFailure(op, "not a fastmath `afn` operation"); + + SmallVector<Type, 1> operandTypes; + for (auto operand : adaptor.getOperands()) { + Type opTy = operand.getType(); + // This pass only supports operations on vectors that are already in SPIRV + // supported vector sizes: Distributing unsupported vector sizes to SPIRV + // supported vector sizes are done in other blocking optimization passes. + if (!isSPIRVCompatibleFloatOrVec(opTy)) + return rewriter.notifyMatchFailure( + op, llvm::formatv("incompatible operand type: '{0}'", opTy)); + operandTypes.push_back(opTy); + } + + auto moduleOp = op->template getParentWithTrait<OpTrait::SymbolTable>(); + auto funcOpRes = LLVM::lookupOrCreateFn( + rewriter, moduleOp, getMangledNativeFuncName(operandTypes), + operandTypes, op.getType()); + assert(!failed(funcOpRes)); + LLVM::LLVMFuncOp funcOp = funcOpRes.value(); + + auto callOp = rewriter.replaceOpWithNewOp<LLVM::CallOp>( + op, funcOp, adaptor.getOperands()); + // Preserve fastmath flags in our MLIR op when converting to llvm function + // calls, in order to allow further fastmath optimizations: We thus need to + // convert arith fastmath attrs into attrs recognized by llvm. + arith::AttrConvertFastMathToLLVM<Op, LLVM::CallOp> fastAttrConverter(op); + mlir::NamedAttribute fastAttr = fastAttrConverter.getAttrs()[0]; + callOp->setAttr(fastAttr.getName(), fastAttr.getValue()); + return success(); + } + + inline bool isSPIRVCompatibleFloatOrVec(Type type) const { + if (type.isFloat()) + return true; + if (auto vecType = dyn_cast<VectorType>(type)) { + if (!vecType.getElementType().isFloat()) + return false; + // SPIRV distinguishes between vectors and matrices: OpenCL native math + // intrsinics are not compatible with matrices. + ArrayRef<int64_t> shape = vecType.getShape(); + if (shape.size() != 1) + return false; + // SPIRV only allows vectors of size 2, 3, 4, 8, 16. + if (shape[0] == 2 || shape[0] == 3 || shape[0] == 4 || shape[0] == 8 || + shape[0] == 16) + return true; + } + return false; + } + + inline std::string + getMangledNativeFuncName(const ArrayRef<Type> operandTypes) const { + std::string mangledFuncName = + "_Z" + std::to_string(nativeFunc.size()) + nativeFunc.str(); + + auto appendFloatToMangledFunc = [&mangledFuncName](Type type) { + if (type.isF32()) + mangledFuncName += "f"; + else if (type.isF16()) + mangledFuncName += "Dh"; + else if (type.isF64()) + mangledFuncName += "d"; + }; + + for (auto type : operandTypes) { + if (auto vecType = dyn_cast<VectorType>(type)) { + mangledFuncName += "Dv" + std::to_string(vecType.getShape()[0]) + "_"; + appendFloatToMangledFunc(vecType.getElementType()); + } else + appendFloatToMangledFunc(type); + } + + return mangledFuncName; + } + + const StringRef nativeFunc; +}; + +void mlir::populateMathToXeVMConversionPatterns(RewritePatternSet &patterns, + bool convertArith) { + patterns.add<ConvertNativeFuncPattern<math::ExpOp>>(patterns.getContext(), + "__spirv_ocl_native_exp"); + patterns.add<ConvertNativeFuncPattern<math::CosOp>>(patterns.getContext(), + "__spirv_ocl_native_cos"); + patterns.add<ConvertNativeFuncPattern<math::Exp2Op>>( + patterns.getContext(), "__spirv_ocl_native_exp2"); + patterns.add<ConvertNativeFuncPattern<math::LogOp>>(patterns.getContext(), + "__spirv_ocl_native_log"); + patterns.add<ConvertNativeFuncPattern<math::Log2Op>>( + patterns.getContext(), "__spirv_ocl_native_log2"); + patterns.add<ConvertNativeFuncPattern<math::Log10Op>>( + patterns.getContext(), "__spirv_ocl_native_log10"); + patterns.add<ConvertNativeFuncPattern<math::PowFOp>>( + patterns.getContext(), "__spirv_ocl_native_powr"); + patterns.add<ConvertNativeFuncPattern<math::RsqrtOp>>( + patterns.getContext(), "__spirv_ocl_native_rsqrt"); + patterns.add<ConvertNativeFuncPattern<math::SinOp>>(patterns.getContext(), + "__spirv_ocl_native_sin"); + patterns.add<ConvertNativeFuncPattern<math::SqrtOp>>( + patterns.getContext(), "__spirv_ocl_native_sqrt"); + patterns.add<ConvertNativeFuncPattern<math::TanOp>>(patterns.getContext(), + "__spirv_ocl_native_tan"); + if (convertArith) + patterns.add<ConvertNativeFuncPattern<arith::DivFOp>>( + patterns.getContext(), "__spirv_ocl_native_divide"); +} + +namespace { +struct ConvertMathToXeVMPass + : public impl::ConvertMathToXeVMBase<ConvertMathToXeVMPass> { + using Base::Base; + void runOnOperation() override; +}; +} // namespace + +void ConvertMathToXeVMPass::runOnOperation() { + RewritePatternSet patterns(&getContext()); + populateMathToXeVMConversionPatterns(patterns, convertArith); + ConversionTarget target(getContext()); + target.addLegalDialect<BuiltinDialect, LLVM::LLVMDialect>(); + if (failed( + applyPartialConversion(getOperation(), target, std::move(patterns)))) + signalPassFailure(); +} |