aboutsummaryrefslogtreecommitdiff
path: root/llvm/unittests/Analysis/LazyCallGraphTest.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/unittests/Analysis/LazyCallGraphTest.cpp')
-rw-r--r--llvm/unittests/Analysis/LazyCallGraphTest.cpp985
1 files changed, 781 insertions, 204 deletions
diff --git a/llvm/unittests/Analysis/LazyCallGraphTest.cpp b/llvm/unittests/Analysis/LazyCallGraphTest.cpp
index fb3eeb7..457c07d 100644
--- a/llvm/unittests/Analysis/LazyCallGraphTest.cpp
+++ b/llvm/unittests/Analysis/LazyCallGraphTest.cpp
@@ -202,12 +202,13 @@ TEST(LazyCallGraphTest, BasicGraphFormation) {
EXPECT_EQ(D3.end(), std::next(D3.begin()));
EXPECT_EQ("d1", D3.begin()->getFunction().getName());
- // Now lets look at the SCCs.
- auto SCCI = CG.postorder_scc_begin();
+ // Now lets look at the RefSCCs and SCCs.
+ auto J = CG.postorder_ref_scc_begin();
- LazyCallGraph::SCC &D = *SCCI++;
- for (LazyCallGraph::Node *N : D)
- Nodes.push_back(N->getFunction().getName());
+ LazyCallGraph::RefSCC &D = *J++;
+ ASSERT_EQ(1, D.size());
+ for (LazyCallGraph::Node &N : *D.begin())
+ Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("d1", Nodes[0]);
@@ -219,9 +220,10 @@ TEST(LazyCallGraphTest, BasicGraphFormation) {
EXPECT_FALSE(D.isAncestorOf(D));
EXPECT_FALSE(D.isDescendantOf(D));
- LazyCallGraph::SCC &C = *SCCI++;
- for (LazyCallGraph::Node *N : C)
- Nodes.push_back(N->getFunction().getName());
+ LazyCallGraph::RefSCC &C = *J++;
+ ASSERT_EQ(1, C.size());
+ for (LazyCallGraph::Node &N : *C.begin())
+ Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("c1", Nodes[0]);
@@ -233,9 +235,10 @@ TEST(LazyCallGraphTest, BasicGraphFormation) {
EXPECT_TRUE(C.isAncestorOf(D));
EXPECT_FALSE(C.isDescendantOf(D));
- LazyCallGraph::SCC &B = *SCCI++;
- for (LazyCallGraph::Node *N : B)
- Nodes.push_back(N->getFunction().getName());
+ LazyCallGraph::RefSCC &B = *J++;
+ ASSERT_EQ(1, B.size());
+ for (LazyCallGraph::Node &N : *B.begin())
+ Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("b1", Nodes[0]);
@@ -249,9 +252,10 @@ TEST(LazyCallGraphTest, BasicGraphFormation) {
EXPECT_FALSE(B.isAncestorOf(C));
EXPECT_FALSE(C.isAncestorOf(B));
- LazyCallGraph::SCC &A = *SCCI++;
- for (LazyCallGraph::Node *N : A)
- Nodes.push_back(N->getFunction().getName());
+ LazyCallGraph::RefSCC &A = *J++;
+ ASSERT_EQ(1, A.size());
+ for (LazyCallGraph::Node &N : *A.begin())
+ Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("a1", Nodes[0]);
@@ -265,7 +269,7 @@ TEST(LazyCallGraphTest, BasicGraphFormation) {
EXPECT_TRUE(A.isAncestorOf(C));
EXPECT_TRUE(A.isAncestorOf(D));
- EXPECT_EQ(CG.postorder_scc_end(), SCCI);
+ EXPECT_EQ(CG.postorder_ref_scc_end(), J);
}
static Function &lookupFunction(Module &M, StringRef Name) {
@@ -323,57 +327,130 @@ TEST(LazyCallGraphTest, BasicGraphMutation) {
EXPECT_EQ(0, std::distance(B.begin(), B.end()));
}
+TEST(LazyCallGraphTest, InnerSCCFormation) {
+ std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles);
+ LazyCallGraph CG(*M);
+
+ // Now mutate the graph to connect every node into a single RefSCC to ensure
+ // that our inner SCC formation handles the rest.
+ CG.insertEdge(lookupFunction(*M, "d1"), lookupFunction(*M, "a1"),
+ LazyCallGraph::Edge::Ref);
+
+ // Build vectors and sort them for the rest of the assertions to make them
+ // independent of order.
+ std::vector<std::string> Nodes;
+
+ // We should build a single RefSCC for the entire graph.
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
+
+ // Now walk the four SCCs which should be in post-order.
+ auto J = RC.begin();
+ LazyCallGraph::SCC &D = *J++;
+ for (LazyCallGraph::Node &N : D)
+ Nodes.push_back(N.getFunction().getName());
+ std::sort(Nodes.begin(), Nodes.end());
+ EXPECT_EQ(3u, Nodes.size());
+ EXPECT_EQ("d1", Nodes[0]);
+ EXPECT_EQ("d2", Nodes[1]);
+ EXPECT_EQ("d3", Nodes[2]);
+ Nodes.clear();
+
+ LazyCallGraph::SCC &B = *J++;
+ for (LazyCallGraph::Node &N : B)
+ Nodes.push_back(N.getFunction().getName());
+ std::sort(Nodes.begin(), Nodes.end());
+ EXPECT_EQ(3u, Nodes.size());
+ EXPECT_EQ("b1", Nodes[0]);
+ EXPECT_EQ("b2", Nodes[1]);
+ EXPECT_EQ("b3", Nodes[2]);
+ Nodes.clear();
+
+ LazyCallGraph::SCC &C = *J++;
+ for (LazyCallGraph::Node &N : C)
+ Nodes.push_back(N.getFunction().getName());
+ std::sort(Nodes.begin(), Nodes.end());
+ EXPECT_EQ(3u, Nodes.size());
+ EXPECT_EQ("c1", Nodes[0]);
+ EXPECT_EQ("c2", Nodes[1]);
+ EXPECT_EQ("c3", Nodes[2]);
+ Nodes.clear();
+
+ LazyCallGraph::SCC &A = *J++;
+ for (LazyCallGraph::Node &N : A)
+ Nodes.push_back(N.getFunction().getName());
+ std::sort(Nodes.begin(), Nodes.end());
+ EXPECT_EQ(3u, Nodes.size());
+ EXPECT_EQ("a1", Nodes[0]);
+ EXPECT_EQ("a2", Nodes[1]);
+ EXPECT_EQ("a3", Nodes[2]);
+ Nodes.clear();
+
+ EXPECT_EQ(RC.end(), J);
+}
+
TEST(LazyCallGraphTest, MultiArmSCC) {
// Two interlocking cycles. The really useful thing about this SCC is that it
// will require Tarjan's DFS to backtrack and finish processing all of the
- // children of each node in the SCC.
+ // children of each node in the SCC. Since this involves call edges, both
+ // Tarjan implementations will have to successfully navigate the structure.
std::unique_ptr<Module> M = parseAssembly(
- "define void @a() {\n"
+ "define void @f1() {\n"
"entry:\n"
- " call void @b()\n"
- " call void @d()\n"
+ " call void @f2()\n"
+ " call void @f4()\n"
" ret void\n"
"}\n"
- "define void @b() {\n"
+ "define void @f2() {\n"
"entry:\n"
- " call void @c()\n"
+ " call void @f3()\n"
" ret void\n"
"}\n"
- "define void @c() {\n"
+ "define void @f3() {\n"
"entry:\n"
- " call void @a()\n"
+ " call void @f1()\n"
" ret void\n"
"}\n"
- "define void @d() {\n"
+ "define void @f4() {\n"
"entry:\n"
- " call void @e()\n"
+ " call void @f5()\n"
" ret void\n"
"}\n"
- "define void @e() {\n"
+ "define void @f5() {\n"
"entry:\n"
- " call void @a()\n"
+ " call void @f1()\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- auto SCCI = CG.postorder_scc_begin();
- LazyCallGraph::SCC &SCC = *SCCI++;
- EXPECT_EQ(CG.postorder_scc_end(), SCCI);
-
- LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
- LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
- LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
- LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
- LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
- EXPECT_EQ(&SCC, CG.lookupSCC(A));
- EXPECT_EQ(&SCC, CG.lookupSCC(B));
- EXPECT_EQ(&SCC, CG.lookupSCC(C));
- EXPECT_EQ(&SCC, CG.lookupSCC(D));
- EXPECT_EQ(&SCC, CG.lookupSCC(E));
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
+
+ LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1"));
+ LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2"));
+ LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3"));
+ LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4"));
+ LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4"));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(N1));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(N2));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(N3));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(N4));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(N5));
+
+ ASSERT_EQ(1, RC.size());
+
+ LazyCallGraph::SCC &C = *RC.begin();
+ EXPECT_EQ(&C, CG.lookupSCC(N1));
+ EXPECT_EQ(&C, CG.lookupSCC(N2));
+ EXPECT_EQ(&C, CG.lookupSCC(N3));
+ EXPECT_EQ(&C, CG.lookupSCC(N4));
+ EXPECT_EQ(&C, CG.lookupSCC(N5));
}
-TEST(LazyCallGraphTest, OutgoingSCCEdgeInsertion) {
+TEST(LazyCallGraphTest, OutgoingEdgeMutation) {
std::unique_ptr<Module> M = parseAssembly(
"define void @a() {\n"
"entry:\n"
@@ -398,8 +475,8 @@ TEST(LazyCallGraphTest, OutgoingSCCEdgeInsertion) {
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- for (LazyCallGraph::SCC &C : CG.postorder_sccs())
- (void)C;
+ for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
+ (void)RC;
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
@@ -409,24 +486,95 @@ TEST(LazyCallGraphTest, OutgoingSCCEdgeInsertion) {
LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
- EXPECT_TRUE(AC.isAncestorOf(BC));
- EXPECT_TRUE(AC.isAncestorOf(CC));
- EXPECT_TRUE(AC.isAncestorOf(DC));
- EXPECT_TRUE(DC.isDescendantOf(AC));
- EXPECT_TRUE(DC.isDescendantOf(BC));
- EXPECT_TRUE(DC.isDescendantOf(CC));
+ LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
+ LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
+ LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
+ LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
+ EXPECT_TRUE(ARC.isParentOf(BRC));
+ EXPECT_TRUE(ARC.isParentOf(CRC));
+ EXPECT_FALSE(ARC.isParentOf(DRC));
+ EXPECT_TRUE(ARC.isAncestorOf(DRC));
+ EXPECT_FALSE(DRC.isChildOf(ARC));
+ EXPECT_TRUE(DRC.isDescendantOf(ARC));
+ EXPECT_TRUE(DRC.isChildOf(BRC));
+ EXPECT_TRUE(DRC.isChildOf(CRC));
EXPECT_EQ(2, std::distance(A.begin(), A.end()));
- AC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call);
+ ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call);
EXPECT_EQ(3, std::distance(A.begin(), A.end()));
- EXPECT_TRUE(AC.isParentOf(DC));
+ const LazyCallGraph::Edge &NewE = A[D];
+ EXPECT_TRUE(NewE);
+ EXPECT_TRUE(NewE.isCall());
+ EXPECT_EQ(&D, NewE.getNode());
+
+ // Only the parent and child tests sholud have changed. The rest of the graph
+ // remains the same.
+ EXPECT_TRUE(ARC.isParentOf(DRC));
+ EXPECT_TRUE(ARC.isAncestorOf(DRC));
+ EXPECT_TRUE(DRC.isChildOf(ARC));
+ EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_EQ(&AC, CG.lookupSCC(A));
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&CC, CG.lookupSCC(C));
EXPECT_EQ(&DC, CG.lookupSCC(D));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
+ EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
+
+ ARC.switchOutgoingEdgeToRef(A, D);
+ EXPECT_FALSE(NewE.isCall());
+
+ // Verify the graph remains the same.
+ EXPECT_TRUE(ARC.isParentOf(DRC));
+ EXPECT_TRUE(ARC.isAncestorOf(DRC));
+ EXPECT_TRUE(DRC.isChildOf(ARC));
+ EXPECT_TRUE(DRC.isDescendantOf(ARC));
+ EXPECT_EQ(&AC, CG.lookupSCC(A));
+ EXPECT_EQ(&BC, CG.lookupSCC(B));
+ EXPECT_EQ(&CC, CG.lookupSCC(C));
+ EXPECT_EQ(&DC, CG.lookupSCC(D));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
+ EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
+
+ ARC.switchOutgoingEdgeToCall(A, D);
+ EXPECT_TRUE(NewE.isCall());
+
+ // Verify the graph remains the same.
+ EXPECT_TRUE(ARC.isParentOf(DRC));
+ EXPECT_TRUE(ARC.isAncestorOf(DRC));
+ EXPECT_TRUE(DRC.isChildOf(ARC));
+ EXPECT_TRUE(DRC.isDescendantOf(ARC));
+ EXPECT_EQ(&AC, CG.lookupSCC(A));
+ EXPECT_EQ(&BC, CG.lookupSCC(B));
+ EXPECT_EQ(&CC, CG.lookupSCC(C));
+ EXPECT_EQ(&DC, CG.lookupSCC(D));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
+ EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
+
+ ARC.removeOutgoingEdge(A, D);
+ EXPECT_EQ(2, std::distance(A.begin(), A.end()));
+
+ // Now the parent and child tests fail again but the rest remains the same.
+ EXPECT_FALSE(ARC.isParentOf(DRC));
+ EXPECT_TRUE(ARC.isAncestorOf(DRC));
+ EXPECT_FALSE(DRC.isChildOf(ARC));
+ EXPECT_TRUE(DRC.isDescendantOf(ARC));
+ EXPECT_EQ(&AC, CG.lookupSCC(A));
+ EXPECT_EQ(&BC, CG.lookupSCC(B));
+ EXPECT_EQ(&CC, CG.lookupSCC(C));
+ EXPECT_EQ(&DC, CG.lookupSCC(D));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
+ EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
}
-TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) {
+TEST(LazyCallGraphTest, IncomingEdgeInsertion) {
// We want to ensure we can add edges even across complex diamond graphs, so
// we use the diamond of triangles graph defined above. The ascii diagram is
// repeated here for easy reference.
@@ -447,8 +595,8 @@ TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) {
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- for (LazyCallGraph::SCC &C : CG.postorder_sccs())
- (void)C;
+ for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
+ (void)RC;
LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
@@ -462,18 +610,18 @@ TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) {
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
- LazyCallGraph::SCC &AC = *CG.lookupSCC(A1);
- LazyCallGraph::SCC &BC = *CG.lookupSCC(B1);
- LazyCallGraph::SCC &CC = *CG.lookupSCC(C1);
- LazyCallGraph::SCC &DC = *CG.lookupSCC(D1);
- ASSERT_EQ(&AC, CG.lookupSCC(A2));
- ASSERT_EQ(&AC, CG.lookupSCC(A3));
- ASSERT_EQ(&BC, CG.lookupSCC(B2));
- ASSERT_EQ(&BC, CG.lookupSCC(B3));
- ASSERT_EQ(&CC, CG.lookupSCC(C2));
- ASSERT_EQ(&CC, CG.lookupSCC(C3));
- ASSERT_EQ(&DC, CG.lookupSCC(D2));
- ASSERT_EQ(&DC, CG.lookupSCC(D3));
+ LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
+ LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
+ LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
+ LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
+ ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
+ ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
+ ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
+ ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
+ ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
+ ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
+ ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
+ ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
// Add an edge to make the graph:
@@ -489,47 +637,51 @@ TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) {
// a1 |
// / \ |
// a3--a2 |
- CC.insertIncomingEdge(D2, C2, LazyCallGraph::Edge::Call);
+ auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
// Make sure we connected the nodes.
- EXPECT_EQ(2, std::distance(D2.begin(), D2.end()));
+ for (LazyCallGraph::Edge E : D2) {
+ if (E.getNode() == &D3)
+ continue;
+ EXPECT_EQ(&C2, E.getNode());
+ }
+ // And marked the D ref-SCC as no longer valid.
+ EXPECT_EQ(1u, MergedRCs.size());
+ EXPECT_EQ(&DRC, MergedRCs[0]);
// Make sure we have the correct nodes in the SCC sets.
- EXPECT_EQ(&AC, CG.lookupSCC(A1));
- EXPECT_EQ(&AC, CG.lookupSCC(A2));
- EXPECT_EQ(&AC, CG.lookupSCC(A3));
- EXPECT_EQ(&BC, CG.lookupSCC(B1));
- EXPECT_EQ(&BC, CG.lookupSCC(B2));
- EXPECT_EQ(&BC, CG.lookupSCC(B3));
- EXPECT_EQ(&CC, CG.lookupSCC(C1));
- EXPECT_EQ(&CC, CG.lookupSCC(C2));
- EXPECT_EQ(&CC, CG.lookupSCC(C3));
- EXPECT_EQ(&CC, CG.lookupSCC(D1));
- EXPECT_EQ(&CC, CG.lookupSCC(D2));
- EXPECT_EQ(&CC, CG.lookupSCC(D3));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
// And that ancestry tests have been updated.
- EXPECT_TRUE(AC.isParentOf(BC));
- EXPECT_TRUE(AC.isParentOf(CC));
- EXPECT_FALSE(AC.isAncestorOf(DC));
- EXPECT_FALSE(BC.isAncestorOf(DC));
- EXPECT_FALSE(CC.isAncestorOf(DC));
+ EXPECT_TRUE(ARC.isParentOf(CRC));
+ EXPECT_TRUE(BRC.isParentOf(CRC));
}
-TEST(LazyCallGraphTest, IncomingSCCEdgeInsertionMidTraversal) {
+TEST(LazyCallGraphTest, IncomingEdgeInsertionMidTraversal) {
// This is the same fundamental test as the previous, but we perform it
- // having only partially walked the SCCs of the graph.
+ // having only partially walked the RefSCCs of the graph.
std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles);
LazyCallGraph CG(*M);
- // Walk the SCCs until we find the one containing 'c1'.
- auto SCCI = CG.postorder_scc_begin(), SCCE = CG.postorder_scc_end();
- ASSERT_NE(SCCI, SCCE);
- LazyCallGraph::SCC &DC = *SCCI;
- ASSERT_NE(&DC, nullptr);
- ++SCCI;
- ASSERT_NE(SCCI, SCCE);
- LazyCallGraph::SCC &CC = *SCCI;
- ASSERT_NE(&CC, nullptr);
+ // Walk the RefSCCs until we find the one containing 'c1'.
+ auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
+ ASSERT_NE(I, E);
+ LazyCallGraph::RefSCC &DRC = *I;
+ ASSERT_NE(&DRC, nullptr);
+ ++I;
+ ASSERT_NE(I, E);
+ LazyCallGraph::RefSCC &CRC = *I;
+ ASSERT_NE(&CRC, nullptr);
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2")));
@@ -543,45 +695,55 @@ TEST(LazyCallGraphTest, IncomingSCCEdgeInsertionMidTraversal) {
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
- ASSERT_EQ(&CC, CG.lookupSCC(C1));
- ASSERT_EQ(&CC, CG.lookupSCC(C2));
- ASSERT_EQ(&CC, CG.lookupSCC(C3));
- ASSERT_EQ(&DC, CG.lookupSCC(D1));
- ASSERT_EQ(&DC, CG.lookupSCC(D2));
- ASSERT_EQ(&DC, CG.lookupSCC(D3));
+ ASSERT_EQ(&CRC, CG.lookupRefSCC(C1));
+ ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
+ ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
+ ASSERT_EQ(&DRC, CG.lookupRefSCC(D1));
+ ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
+ ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
- CC.insertIncomingEdge(D2, C2, LazyCallGraph::Edge::Call);
- EXPECT_EQ(2, std::distance(D2.begin(), D2.end()));
-
- // Make sure we have the correct nodes in the SCC sets.
- EXPECT_EQ(&CC, CG.lookupSCC(C1));
- EXPECT_EQ(&CC, CG.lookupSCC(C2));
- EXPECT_EQ(&CC, CG.lookupSCC(C3));
- EXPECT_EQ(&CC, CG.lookupSCC(D1));
- EXPECT_EQ(&CC, CG.lookupSCC(D2));
- EXPECT_EQ(&CC, CG.lookupSCC(D3));
-
- // Check that we can form the last two SCCs now in a coherent way.
- ++SCCI;
- EXPECT_NE(SCCI, SCCE);
- LazyCallGraph::SCC &BC = *SCCI;
- EXPECT_NE(&BC, nullptr);
- EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b1"))));
- EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b2"))));
- EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b3"))));
- ++SCCI;
- EXPECT_NE(SCCI, SCCE);
- LazyCallGraph::SCC &AC = *SCCI;
- EXPECT_NE(&AC, nullptr);
- EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a1"))));
- EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a2"))));
- EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a3"))));
- ++SCCI;
- EXPECT_EQ(SCCI, SCCE);
+ auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
+ // Make sure we connected the nodes.
+ for (LazyCallGraph::Edge E : D2) {
+ if (E.getNode() == &D3)
+ continue;
+ EXPECT_EQ(&C2, E.getNode());
+ }
+ // And marked the D ref-SCC as no longer valid.
+ EXPECT_EQ(1u, MergedRCs.size());
+ EXPECT_EQ(&DRC, MergedRCs[0]);
+
+ // Make sure we have the correct nodes in the RefSCCs.
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
+ EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
+
+ // Check that we can form the last two RefSCCs now in a coherent way.
+ ++I;
+ EXPECT_NE(I, E);
+ LazyCallGraph::RefSCC &BRC = *I;
+ EXPECT_NE(&BRC, nullptr);
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b1"))));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b2"))));
+ EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b3"))));
+ EXPECT_TRUE(BRC.isParentOf(CRC));
+ ++I;
+ EXPECT_NE(I, E);
+ LazyCallGraph::RefSCC &ARC = *I;
+ EXPECT_NE(&ARC, nullptr);
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a1"))));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a2"))));
+ EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a3"))));
+ EXPECT_TRUE(ARC.isParentOf(CRC));
+ ++I;
+ EXPECT_EQ(E, I);
}
-TEST(LazyCallGraphTest, InterSCCEdgeRemoval) {
+TEST(LazyCallGraphTest, InternalEdgeMutation) {
std::unique_ptr<Module> M = parseAssembly(
"define void @a() {\n"
"entry:\n"
@@ -590,79 +752,138 @@ TEST(LazyCallGraphTest, InterSCCEdgeRemoval) {
"}\n"
"define void @b() {\n"
"entry:\n"
+ " call void @c()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c() {\n"
+ "entry:\n"
+ " call void @a()\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- for (LazyCallGraph::SCC &C : CG.postorder_sccs())
- (void)C;
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
+ LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(C));
+ EXPECT_EQ(1, RC.size());
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
+
+ // Insert an edge from 'a' to 'c'. Nothing changes about the graph.
+ RC.insertInternalRefEdge(A, C);
+ EXPECT_EQ(2, std::distance(A.begin(), A.end()));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(C));
+ EXPECT_EQ(1, RC.size());
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
+ EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
+
+ // Switch the call edge from 'b' to 'c' to a ref edge. This will break the
+ // call cycle and cause us to form more SCCs. The RefSCC will remain the same
+ // though.
+ RC.switchInternalEdgeToRef(B, C);
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(C));
+ auto J = RC.begin();
+ // The SCCs must be in *post-order* which means successors before
+ // predecessors. At this point we have call edges from C to A and from A to
+ // B. The only valid postorder is B, A, C.
+ EXPECT_EQ(&*J++, CG.lookupSCC(B));
+ EXPECT_EQ(&*J++, CG.lookupSCC(A));
+ EXPECT_EQ(&*J++, CG.lookupSCC(C));
+ EXPECT_EQ(RC.end(), J);
+
+ // Test turning the ref edge from A to C into a call edge. This will form an
+ // SCC out of A and C. Since we previously had a call edge from C to A, the
+ // C SCC should be preserved and have A merged into it while the A SCC should
+ // be invalidated.
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
- LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
-
- EXPECT_EQ("b", A.begin()->getFunction().getName());
- EXPECT_EQ(B.end(), B.begin());
- EXPECT_EQ(&AC, &*BC.parent_begin());
-
- AC.removeInterSCCEdge(A, B);
-
- EXPECT_EQ(A.end(), A.begin());
- EXPECT_EQ(B.end(), B.begin());
- EXPECT_EQ(BC.parent_end(), BC.parent_begin());
+ LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
+ auto InvalidatedSCCs = RC.switchInternalEdgeToCall(A, C);
+ ASSERT_EQ(1u, InvalidatedSCCs.size());
+ EXPECT_EQ(&AC, InvalidatedSCCs[0]);
+ EXPECT_EQ(2, CC.size());
+ EXPECT_EQ(&CC, CG.lookupSCC(A));
+ EXPECT_EQ(&CC, CG.lookupSCC(C));
+ J = RC.begin();
+ EXPECT_EQ(&*J++, CG.lookupSCC(B));
+ EXPECT_EQ(&*J++, CG.lookupSCC(C));
+ EXPECT_EQ(RC.end(), J);
}
-TEST(LazyCallGraphTest, IntraSCCEdgeInsertion) {
- std::unique_ptr<Module> M1 = parseAssembly(
- "define void @a() {\n"
+TEST(LazyCallGraphTest, InternalEdgeRemoval) {
+ // A nice fully connected (including self-edges) RefSCC.
+ std::unique_ptr<Module> M = parseAssembly(
+ "define void @a(i8** %ptr) {\n"
"entry:\n"
- " call void @b()\n"
+ " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n"
- "define void @b() {\n"
+ "define void @b(i8** %ptr) {\n"
"entry:\n"
- " call void @c()\n"
+ " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n"
- "define void @c() {\n"
+ "define void @c(i8** %ptr) {\n"
"entry:\n"
- " call void @a()\n"
+ " store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
+ " store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n");
- LazyCallGraph CG1(*M1);
+ LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- auto SCCI = CG1.postorder_scc_begin();
- LazyCallGraph::SCC &SCC = *SCCI++;
- EXPECT_EQ(CG1.postorder_scc_end(), SCCI);
-
- LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a"));
- LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b"));
- LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c"));
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(&SCC, CG1.lookupSCC(B));
- EXPECT_EQ(&SCC, CG1.lookupSCC(C));
-
- // Insert an edge from 'a' to 'c'. Nothing changes about the SCCs.
- SCC.insertIntraSCCEdge(A, C, LazyCallGraph::Edge::Call);
- EXPECT_EQ(2, std::distance(A.begin(), A.end()));
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(&SCC, CG1.lookupSCC(B));
- EXPECT_EQ(&SCC, CG1.lookupSCC(C));
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
- // Insert a self edge from 'a' back to 'a'.
- SCC.insertIntraSCCEdge(A, A, LazyCallGraph::Edge::Call);
- EXPECT_EQ(3, std::distance(A.begin(), A.end()));
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(&SCC, CG1.lookupSCC(B));
- EXPECT_EQ(&SCC, CG1.lookupSCC(C));
+ LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
+ LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
+ LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(C));
+
+ // Remove the edge from b -> a, which should leave the 3 functions still in
+ // a single connected component because of a -> b -> c -> a.
+ SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
+ RC.removeInternalRefEdge(B, A);
+ EXPECT_EQ(0u, NewRCs.size());
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(B));
+ EXPECT_EQ(&RC, CG.lookupRefSCC(C));
+
+ // Remove the edge from c -> a, which should leave 'a' in the original RefSCC
+ // and form a new RefSCC for 'b' and 'c'.
+ NewRCs = RC.removeInternalRefEdge(C, A);
+ EXPECT_EQ(1u, NewRCs.size());
+ EXPECT_EQ(&RC, CG.lookupRefSCC(A));
+ EXPECT_EQ(1, std::distance(RC.begin(), RC.end()));
+ LazyCallGraph::RefSCC *RC2 = CG.lookupRefSCC(B);
+ EXPECT_EQ(RC2, CG.lookupRefSCC(C));
+ EXPECT_EQ(RC2, NewRCs[0]);
}
-TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) {
- // A nice fully connected (including self-edges) SCC.
- std::unique_ptr<Module> M1 = parseAssembly(
+TEST(LazyCallGraphTest, InternalCallEdgeToRef) {
+ // A nice fully connected (including self-edges) SCC (and RefSCC)
+ std::unique_ptr<Module> M = parseAssembly(
"define void @a() {\n"
"entry:\n"
" call void @a()\n"
@@ -684,37 +905,393 @@ TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) {
" call void @c()\n"
" ret void\n"
"}\n");
- LazyCallGraph CG1(*M1);
+ LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
- auto SCCI = CG1.postorder_scc_begin();
- LazyCallGraph::SCC &SCC = *SCCI++;
- EXPECT_EQ(CG1.postorder_scc_end(), SCCI);
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
- LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a"));
- LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b"));
- LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c"));
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(&SCC, CG1.lookupSCC(B));
- EXPECT_EQ(&SCC, CG1.lookupSCC(C));
+ EXPECT_EQ(1, RC.size());
+ LazyCallGraph::SCC &CallC = *RC.begin();
- // Remove the edge from b -> a, which should leave the 3 functions still in
- // a single connected component because of a -> b -> c -> a.
- SmallVector<LazyCallGraph::SCC *, 1> NewSCCs = SCC.removeIntraSCCEdge(B, A);
- EXPECT_EQ(0u, NewSCCs.size());
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(&SCC, CG1.lookupSCC(B));
- EXPECT_EQ(&SCC, CG1.lookupSCC(C));
+ LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
+ LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
+ LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
+ EXPECT_EQ(&CallC, CG.lookupSCC(A));
+ EXPECT_EQ(&CallC, CG.lookupSCC(B));
+ EXPECT_EQ(&CallC, CG.lookupSCC(C));
+
+ // Remove the call edge from b -> a to a ref edge, which should leave the
+ // 3 functions still in a single connected component because of a -> b ->
+ // c -> a.
+ RC.switchInternalEdgeToRef(B, A);
+ EXPECT_EQ(1, RC.size());
+ EXPECT_EQ(&CallC, CG.lookupSCC(A));
+ EXPECT_EQ(&CallC, CG.lookupSCC(B));
+ EXPECT_EQ(&CallC, CG.lookupSCC(C));
// Remove the edge from c -> a, which should leave 'a' in the original SCC
// and form a new SCC for 'b' and 'c'.
- NewSCCs = SCC.removeIntraSCCEdge(C, A);
- EXPECT_EQ(1u, NewSCCs.size());
- EXPECT_EQ(&SCC, CG1.lookupSCC(A));
- EXPECT_EQ(1, std::distance(SCC.begin(), SCC.end()));
- LazyCallGraph::SCC *SCC2 = CG1.lookupSCC(B);
- EXPECT_EQ(SCC2, CG1.lookupSCC(C));
- EXPECT_EQ(SCC2, NewSCCs[0]);
+ RC.switchInternalEdgeToRef(C, A);
+ EXPECT_EQ(2, RC.size());
+ EXPECT_EQ(&CallC, CG.lookupSCC(A));
+ LazyCallGraph::SCC &BCallC = *CG.lookupSCC(B);
+ EXPECT_NE(&BCallC, &CallC);
+ EXPECT_EQ(&BCallC, CG.lookupSCC(C));
+ auto J = RC.find(CallC);
+ EXPECT_EQ(&CallC, &*J);
+ --J;
+ EXPECT_EQ(&BCallC, &*J);
+ EXPECT_EQ(RC.begin(), J);
+
+ // Remove the edge from c -> b, which should leave 'b' in the original SCC
+ // and form a new SCC for 'c'. It shouldn't change 'a's SCC.
+ RC.switchInternalEdgeToRef(C, B);
+ EXPECT_EQ(3, RC.size());
+ EXPECT_EQ(&CallC, CG.lookupSCC(A));
+ EXPECT_EQ(&BCallC, CG.lookupSCC(B));
+ LazyCallGraph::SCC &CCallC = *CG.lookupSCC(C);
+ EXPECT_NE(&CCallC, &CallC);
+ EXPECT_NE(&CCallC, &BCallC);
+ J = RC.find(CallC);
+ EXPECT_EQ(&CallC, &*J);
+ --J;
+ EXPECT_EQ(&BCallC, &*J);
+ --J;
+ EXPECT_EQ(&CCallC, &*J);
+ EXPECT_EQ(RC.begin(), J);
+}
+
+TEST(LazyCallGraphTest, InternalRefEdgeToCall) {
+ // Basic tests for making a ref edge a call. This hits the basics of the
+ // process only.
+ std::unique_ptr<Module> M = parseAssembly(
+ "define void @a() {\n"
+ "entry:\n"
+ " call void @b()\n"
+ " call void @c()\n"
+ " store void()* @d, void()** undef\n"
+ " ret void\n"
+ "}\n"
+ "define void @b() {\n"
+ "entry:\n"
+ " store void()* @c, void()** undef\n"
+ " call void @d()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c() {\n"
+ "entry:\n"
+ " store void()* @b, void()** undef\n"
+ " call void @d()\n"
+ " ret void\n"
+ "}\n"
+ "define void @d() {\n"
+ "entry:\n"
+ " store void()* @a, void()** undef\n"
+ " ret void\n"
+ "}\n");
+ LazyCallGraph CG(*M);
+
+ // Force the graph to be fully expanded.
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
+
+ LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
+ LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
+ LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
+ LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
+ LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
+ LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
+ LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
+ LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
+
+ // Check the initial post-order. Note that B and C could be flipped here (and
+ // in our mutation) without changing the nature of this test.
+ ASSERT_EQ(4, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&BC, &RC[1]);
+ EXPECT_EQ(&CC, &RC[2]);
+ EXPECT_EQ(&AC, &RC[3]);
+
+ // Switch the ref edge from A -> D to a call edge. This should have no
+ // effect as it is already in postorder and no new cycles are formed.
+ auto MergedCs = RC.switchInternalEdgeToCall(A, D);
+ EXPECT_EQ(0u, MergedCs.size());
+ ASSERT_EQ(4, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&BC, &RC[1]);
+ EXPECT_EQ(&CC, &RC[2]);
+ EXPECT_EQ(&AC, &RC[3]);
+
+ // Switch B -> C to a call edge. This doesn't form any new cycles but does
+ // require reordering the SCCs.
+ MergedCs = RC.switchInternalEdgeToCall(B, C);
+ EXPECT_EQ(0u, MergedCs.size());
+ ASSERT_EQ(4, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&CC, &RC[1]);
+ EXPECT_EQ(&BC, &RC[2]);
+ EXPECT_EQ(&AC, &RC[3]);
+
+ // Switch C -> B to a call edge. This forms a cycle and forces merging SCCs.
+ MergedCs = RC.switchInternalEdgeToCall(C, B);
+ ASSERT_EQ(1u, MergedCs.size());
+ EXPECT_EQ(&CC, MergedCs[0]);
+ ASSERT_EQ(3, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&BC, &RC[1]);
+ EXPECT_EQ(&AC, &RC[2]);
+ EXPECT_EQ(2, BC.size());
+ EXPECT_EQ(&BC, CG.lookupSCC(B));
+ EXPECT_EQ(&BC, CG.lookupSCC(C));
+}
+
+TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) {
+ // Test for having a post-order prior to changing a ref edge to a call edge
+ // with SCCs connecting to the source and connecting to the target, but not
+ // connecting to both, interleaved between the source and target. This
+ // ensures we correctly partition the range rather than simply moving one or
+ // the other.
+ std::unique_ptr<Module> M = parseAssembly(
+ "define void @a() {\n"
+ "entry:\n"
+ " call void @b1()\n"
+ " call void @c1()\n"
+ " ret void\n"
+ "}\n"
+ "define void @b1() {\n"
+ "entry:\n"
+ " call void @c1()\n"
+ " call void @b2()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c1() {\n"
+ "entry:\n"
+ " call void @b2()\n"
+ " call void @c2()\n"
+ " ret void\n"
+ "}\n"
+ "define void @b2() {\n"
+ "entry:\n"
+ " call void @c2()\n"
+ " call void @b3()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c2() {\n"
+ "entry:\n"
+ " call void @b3()\n"
+ " call void @c3()\n"
+ " ret void\n"
+ "}\n"
+ "define void @b3() {\n"
+ "entry:\n"
+ " call void @c3()\n"
+ " call void @d()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c3() {\n"
+ "entry:\n"
+ " store void()* @b1, void()** undef\n"
+ " call void @d()\n"
+ " ret void\n"
+ "}\n"
+ "define void @d() {\n"
+ "entry:\n"
+ " store void()* @a, void()** undef\n"
+ " ret void\n"
+ "}\n");
+ LazyCallGraph CG(*M);
+
+ // Force the graph to be fully expanded.
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
+
+ LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
+ LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
+ LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
+ LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
+ LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
+ LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
+ LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
+ LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
+ LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
+ LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1);
+ LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2);
+ LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3);
+ LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1);
+ LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2);
+ LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3);
+ LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
+
+ // Several call edges are initially present to force a particual post-order.
+ // Remove them now, leaving an interleaved post-order pattern.
+ RC.switchInternalEdgeToRef(B3, C3);
+ RC.switchInternalEdgeToRef(C2, B3);
+ RC.switchInternalEdgeToRef(B2, C2);
+ RC.switchInternalEdgeToRef(C1, B2);
+ RC.switchInternalEdgeToRef(B1, C1);
+
+ // Check the initial post-order. We ensure this order with the extra edges
+ // that are nuked above.
+ ASSERT_EQ(8, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&C3C, &RC[1]);
+ EXPECT_EQ(&B3C, &RC[2]);
+ EXPECT_EQ(&C2C, &RC[3]);
+ EXPECT_EQ(&B2C, &RC[4]);
+ EXPECT_EQ(&C1C, &RC[5]);
+ EXPECT_EQ(&B1C, &RC[6]);
+ EXPECT_EQ(&AC, &RC[7]);
+
+ // Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does
+ // require reordering the SCCs in the face of tricky internal node
+ // structures.
+ auto MergedCs = RC.switchInternalEdgeToCall(C3, B1);
+ EXPECT_EQ(0u, MergedCs.size());
+ ASSERT_EQ(8, RC.size());
+ EXPECT_EQ(&DC, &RC[0]);
+ EXPECT_EQ(&B3C, &RC[1]);
+ EXPECT_EQ(&B2C, &RC[2]);
+ EXPECT_EQ(&B1C, &RC[3]);
+ EXPECT_EQ(&C3C, &RC[4]);
+ EXPECT_EQ(&C2C, &RC[5]);
+ EXPECT_EQ(&C1C, &RC[6]);
+ EXPECT_EQ(&AC, &RC[7]);
+}
+
+TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) {
+ // Test for having a postorder where between the source and target are all
+ // three kinds of other SCCs:
+ // 1) One connected to the target only that have to be shifted below the
+ // source.
+ // 2) One connected to the source only that have to be shifted below the
+ // target.
+ // 3) One connected to both source and target that has to remain and get
+ // merged away.
+ //
+ // To achieve this we construct a heavily connected graph to force
+ // a particular post-order. Then we remove the forcing edges and connect
+ // a cycle.
+ //
+ // Diagram for the graph we want on the left and the graph we use to force
+ // the ordering on the right. Edges ponit down or right.
+ //
+ // A | A |
+ // / \ | / \ |
+ // B E | B \ |
+ // |\ | | |\ | |
+ // | D | | C-D-E |
+ // | \| | | \| |
+ // C F | \ F |
+ // \ / | \ / |
+ // G | G |
+ //
+ // And we form a cycle by connecting F to B.
+ std::unique_ptr<Module> M = parseAssembly(
+ "define void @a() {\n"
+ "entry:\n"
+ " call void @b()\n"
+ " call void @e()\n"
+ " ret void\n"
+ "}\n"
+ "define void @b() {\n"
+ "entry:\n"
+ " call void @c()\n"
+ " call void @d()\n"
+ " ret void\n"
+ "}\n"
+ "define void @c() {\n"
+ "entry:\n"
+ " call void @d()\n"
+ " call void @g()\n"
+ " ret void\n"
+ "}\n"
+ "define void @d() {\n"
+ "entry:\n"
+ " call void @e()\n"
+ " call void @f()\n"
+ " ret void\n"
+ "}\n"
+ "define void @e() {\n"
+ "entry:\n"
+ " call void @f()\n"
+ " ret void\n"
+ "}\n"
+ "define void @f() {\n"
+ "entry:\n"
+ " store void()* @b, void()** undef\n"
+ " call void @g()\n"
+ " ret void\n"
+ "}\n"
+ "define void @g() {\n"
+ "entry:\n"
+ " store void()* @a, void()** undef\n"
+ " ret void\n"
+ "}\n");
+ LazyCallGraph CG(*M);
+
+ // Force the graph to be fully expanded.
+ auto I = CG.postorder_ref_scc_begin();
+ LazyCallGraph::RefSCC &RC = *I++;
+ EXPECT_EQ(CG.postorder_ref_scc_end(), I);
+
+ LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
+ LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
+ LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
+ LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
+ LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
+ LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
+ LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
+ LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
+ LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
+ LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
+ LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
+ LazyCallGraph::SCC &EC = *CG.lookupSCC(E);
+ LazyCallGraph::SCC &FC = *CG.lookupSCC(F);
+ LazyCallGraph::SCC &GC = *CG.lookupSCC(G);
+
+ // Remove the extra edges that were used to force a particular post-order.
+ RC.switchInternalEdgeToRef(C, D);
+ RC.switchInternalEdgeToRef(D, E);
+
+ // Check the initial post-order. We ensure this order with the extra edges
+ // that are nuked above.
+ ASSERT_EQ(7, RC.size());
+ EXPECT_EQ(&GC, &RC[0]);
+ EXPECT_EQ(&FC, &RC[1]);
+ EXPECT_EQ(&EC, &RC[2]);
+ EXPECT_EQ(&DC, &RC[3]);
+ EXPECT_EQ(&CC, &RC[4]);
+ EXPECT_EQ(&BC, &RC[5]);
+ EXPECT_EQ(&AC, &RC[6]);
+
+ // Switch F -> B to a call edge. This merges B, D, and F into a single SCC,
+ // and has to place the C and E SCCs on either side of it:
+ // A A |
+ // / \ / \ |
+ // B E | E |
+ // |\ | \ / |
+ // | D | -> B |
+ // | \| / \ |
+ // C F C | |
+ // \ / \ / |
+ // G G |
+ auto MergedCs = RC.switchInternalEdgeToCall(F, B);
+ ASSERT_EQ(2u, MergedCs.size());
+ EXPECT_EQ(&FC, MergedCs[0]);
+ EXPECT_EQ(&DC, MergedCs[1]);
+ EXPECT_EQ(3, BC.size());
+
+ // And make sure the postorder was updated.
+ ASSERT_EQ(5, RC.size());
+ EXPECT_EQ(&GC, &RC[0]);
+ EXPECT_EQ(&CC, &RC[1]);
+ EXPECT_EQ(&BC, &RC[2]);
+ EXPECT_EQ(&EC, &RC[3]);
+ EXPECT_EQ(&AC, &RC[4]);
}
}