aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/SimplifyIndVar.cpp107
1 files changed, 56 insertions, 51 deletions
diff --git a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
index f325698..0b40d44 100644
--- a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -1805,65 +1805,70 @@ Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewri
return nullptr;
}
- // Does this user itself evaluate to a recurrence after widening?
- WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
- if (!WideAddRec.first)
- WideAddRec = getWideRecurrence(DU);
-
- assert((WideAddRec.first == nullptr) ==
- (WideAddRec.second == ExtendKind::Unknown));
- if (!WideAddRec.first) {
- // If use is a loop condition, try to promote the condition instead of
- // truncating the IV first.
- if (widenLoopCompare(DU))
+ auto tryAddRecExpansion = [&]() -> Instruction* {
+ // Does this user itself evaluate to a recurrence after widening?
+ WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
+ if (!WideAddRec.first)
+ WideAddRec = getWideRecurrence(DU);
+ assert((WideAddRec.first == nullptr) ==
+ (WideAddRec.second == ExtendKind::Unknown));
+ if (!WideAddRec.first)
return nullptr;
- // We are here about to generate a truncate instruction that may hurt
- // performance because the scalar evolution expression computed earlier
- // in WideAddRec.first does not indicate a polynomial induction expression.
- // In that case, look at the operands of the use instruction to determine
- // if we can still widen the use instead of truncating its operand.
- if (widenWithVariantUse(DU))
+ // Reuse the IV increment that SCEVExpander created as long as it dominates
+ // NarrowUse.
+ Instruction *WideUse = nullptr;
+ if (WideAddRec.first == WideIncExpr &&
+ Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
+ WideUse = WideInc;
+ else {
+ WideUse = cloneIVUser(DU, WideAddRec.first);
+ if (!WideUse)
+ return nullptr;
+ }
+ // Evaluation of WideAddRec ensured that the narrow expression could be
+ // extended outside the loop without overflow. This suggests that the wide use
+ // evaluates to the same expression as the extended narrow use, but doesn't
+ // absolutely guarantee it. Hence the following failsafe check. In rare cases
+ // where it fails, we simply throw away the newly created wide use.
+ if (WideAddRec.first != SE->getSCEV(WideUse)) {
+ LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
+ << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
+ << "\n");
+ DeadInsts.emplace_back(WideUse);
return nullptr;
+ };
- // This user does not evaluate to a recurrence after widening, so don't
- // follow it. Instead insert a Trunc to kill off the original use,
- // eventually isolating the original narrow IV so it can be removed.
- truncateIVUse(DU, DT, LI);
- return nullptr;
- }
+ // if we reached this point then we are going to replace
+ // DU.NarrowUse with WideUse. Reattach DbgValue then.
+ replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
- // Reuse the IV increment that SCEVExpander created as long as it dominates
- // NarrowUse.
- Instruction *WideUse = nullptr;
- if (WideAddRec.first == WideIncExpr &&
- Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
- WideUse = WideInc;
- else {
- WideUse = cloneIVUser(DU, WideAddRec.first);
- if (!WideUse)
- return nullptr;
- }
- // Evaluation of WideAddRec ensured that the narrow expression could be
- // extended outside the loop without overflow. This suggests that the wide use
- // evaluates to the same expression as the extended narrow use, but doesn't
- // absolutely guarantee it. Hence the following failsafe check. In rare cases
- // where it fails, we simply throw away the newly created wide use.
- if (WideAddRec.first != SE->getSCEV(WideUse)) {
- LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
- << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
- << "\n");
- DeadInsts.emplace_back(WideUse);
+ ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
+ // Returning WideUse pushes it on the worklist.
+ return WideUse;
+ };
+
+ if (auto *I = tryAddRecExpansion())
+ return I;
+
+ // If use is a loop condition, try to promote the condition instead of
+ // truncating the IV first.
+ if (widenLoopCompare(DU))
return nullptr;
- }
- // if we reached this point then we are going to replace
- // DU.NarrowUse with WideUse. Reattach DbgValue then.
- replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
+ // We are here about to generate a truncate instruction that may hurt
+ // performance because the scalar evolution expression computed earlier
+ // in WideAddRec.first does not indicate a polynomial induction expression.
+ // In that case, look at the operands of the use instruction to determine
+ // if we can still widen the use instead of truncating its operand.
+ if (widenWithVariantUse(DU))
+ return nullptr;
- ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
- // Returning WideUse pushes it on the worklist.
- return WideUse;
+ // This user does not evaluate to a recurrence after widening, so don't
+ // follow it. Instead insert a Trunc to kill off the original use,
+ // eventually isolating the original narrow IV so it can be removed.
+ truncateIVUse(DU, DT, LI);
+ return nullptr;
}
/// Add eligible users of NarrowDef to NarrowIVUsers.