diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r-- | llvm/lib/Transforms/Utils/SimplifyIndVar.cpp | 107 |
1 files changed, 56 insertions, 51 deletions
diff --git a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp index f325698..0b40d44 100644 --- a/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp +++ b/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp @@ -1805,65 +1805,70 @@ Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewri return nullptr; } - // Does this user itself evaluate to a recurrence after widening? - WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); - if (!WideAddRec.first) - WideAddRec = getWideRecurrence(DU); - - assert((WideAddRec.first == nullptr) == - (WideAddRec.second == ExtendKind::Unknown)); - if (!WideAddRec.first) { - // If use is a loop condition, try to promote the condition instead of - // truncating the IV first. - if (widenLoopCompare(DU)) + auto tryAddRecExpansion = [&]() -> Instruction* { + // Does this user itself evaluate to a recurrence after widening? + WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); + if (!WideAddRec.first) + WideAddRec = getWideRecurrence(DU); + assert((WideAddRec.first == nullptr) == + (WideAddRec.second == ExtendKind::Unknown)); + if (!WideAddRec.first) return nullptr; - // We are here about to generate a truncate instruction that may hurt - // performance because the scalar evolution expression computed earlier - // in WideAddRec.first does not indicate a polynomial induction expression. - // In that case, look at the operands of the use instruction to determine - // if we can still widen the use instead of truncating its operand. - if (widenWithVariantUse(DU)) + // Reuse the IV increment that SCEVExpander created as long as it dominates + // NarrowUse. + Instruction *WideUse = nullptr; + if (WideAddRec.first == WideIncExpr && + Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) + WideUse = WideInc; + else { + WideUse = cloneIVUser(DU, WideAddRec.first); + if (!WideUse) + return nullptr; + } + // Evaluation of WideAddRec ensured that the narrow expression could be + // extended outside the loop without overflow. This suggests that the wide use + // evaluates to the same expression as the extended narrow use, but doesn't + // absolutely guarantee it. Hence the following failsafe check. In rare cases + // where it fails, we simply throw away the newly created wide use. + if (WideAddRec.first != SE->getSCEV(WideUse)) { + LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " + << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first + << "\n"); + DeadInsts.emplace_back(WideUse); return nullptr; + }; - // This user does not evaluate to a recurrence after widening, so don't - // follow it. Instead insert a Trunc to kill off the original use, - // eventually isolating the original narrow IV so it can be removed. - truncateIVUse(DU, DT, LI); - return nullptr; - } + // if we reached this point then we are going to replace + // DU.NarrowUse with WideUse. Reattach DbgValue then. + replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); - // Reuse the IV increment that SCEVExpander created as long as it dominates - // NarrowUse. - Instruction *WideUse = nullptr; - if (WideAddRec.first == WideIncExpr && - Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) - WideUse = WideInc; - else { - WideUse = cloneIVUser(DU, WideAddRec.first); - if (!WideUse) - return nullptr; - } - // Evaluation of WideAddRec ensured that the narrow expression could be - // extended outside the loop without overflow. This suggests that the wide use - // evaluates to the same expression as the extended narrow use, but doesn't - // absolutely guarantee it. Hence the following failsafe check. In rare cases - // where it fails, we simply throw away the newly created wide use. - if (WideAddRec.first != SE->getSCEV(WideUse)) { - LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " - << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first - << "\n"); - DeadInsts.emplace_back(WideUse); + ExtendKindMap[DU.NarrowUse] = WideAddRec.second; + // Returning WideUse pushes it on the worklist. + return WideUse; + }; + + if (auto *I = tryAddRecExpansion()) + return I; + + // If use is a loop condition, try to promote the condition instead of + // truncating the IV first. + if (widenLoopCompare(DU)) return nullptr; - } - // if we reached this point then we are going to replace - // DU.NarrowUse with WideUse. Reattach DbgValue then. - replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT); + // We are here about to generate a truncate instruction that may hurt + // performance because the scalar evolution expression computed earlier + // in WideAddRec.first does not indicate a polynomial induction expression. + // In that case, look at the operands of the use instruction to determine + // if we can still widen the use instead of truncating its operand. + if (widenWithVariantUse(DU)) + return nullptr; - ExtendKindMap[DU.NarrowUse] = WideAddRec.second; - // Returning WideUse pushes it on the worklist. - return WideUse; + // This user does not evaluate to a recurrence after widening, so don't + // follow it. Instead insert a Trunc to kill off the original use, + // eventually isolating the original narrow IV so it can be removed. + truncateIVUse(DU, DT, LI); + return nullptr; } /// Add eligible users of NarrowDef to NarrowIVUsers. |