aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/LoopUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/LoopUtils.cpp141
1 files changed, 133 insertions, 8 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUtils.cpp b/llvm/lib/Transforms/Utils/LoopUtils.cpp
index 7df6f91d..c3fa05a 100644
--- a/llvm/lib/Transforms/Utils/LoopUtils.cpp
+++ b/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -678,7 +678,8 @@ Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
- const SCEV *Step, BinaryOperator *BOp)
+ const SCEV *Step, BinaryOperator *BOp,
+ SmallVectorImpl<Instruction *> *Casts)
: StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
assert(IK != IK_NoInduction && "Not an induction");
@@ -705,6 +706,12 @@ InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
(InductionBinOp->getOpcode() == Instruction::FAdd ||
InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction");
+
+ if (Casts) {
+ for (auto &Inst : *Casts) {
+ RedundantCasts.push_back(Inst);
+ }
+ }
}
int InductionDescriptor::getConsecutiveDirection() const {
@@ -808,7 +815,7 @@ bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
StartValue = Phi->getIncomingValue(1);
} else {
assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
- "Unexpected Phi node in the loop");
+ "Unexpected Phi node in the loop");
BEValue = Phi->getIncomingValue(1);
StartValue = Phi->getIncomingValue(0);
}
@@ -841,6 +848,110 @@ bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
return true;
}
+/// This function is called when we suspect that the update-chain of a phi node
+/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
+/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
+/// predicate P under which the SCEV expression for the phi can be the
+/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
+/// cast instructions that are involved in the update-chain of this induction.
+/// A caller that adds the required runtime predicate can be free to drop these
+/// cast instructions, and compute the phi using \p AR (instead of some scev
+/// expression with casts).
+///
+/// For example, without a predicate the scev expression can take the following
+/// form:
+/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
+///
+/// It corresponds to the following IR sequence:
+/// %for.body:
+/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
+/// %casted_phi = "ExtTrunc i64 %x"
+/// %add = add i64 %casted_phi, %step
+///
+/// where %x is given in \p PN,
+/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
+/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
+/// several forms, for example, such as:
+/// ExtTrunc1: %casted_phi = and %x, 2^n-1
+/// or:
+/// ExtTrunc2: %t = shl %x, m
+/// %casted_phi = ashr %t, m
+///
+/// If we are able to find such sequence, we return the instructions
+/// we found, namely %casted_phi and the instructions on its use-def chain up
+/// to the phi (not including the phi).
+bool getCastsForInductionPHI(
+ PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev,
+ const SCEVAddRecExpr *AR, SmallVectorImpl<Instruction *> &CastInsts) {
+
+ assert(CastInsts.empty() && "CastInsts is expected to be empty.");
+ auto *PN = cast<PHINode>(PhiScev->getValue());
+ assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
+ const Loop *L = AR->getLoop();
+
+ // Find any cast instructions that participate in the def-use chain of
+ // PhiScev in the loop.
+ // FORNOW/TODO: We currently expect the def-use chain to include only
+ // two-operand instructions, where one of the operands is an invariant.
+ // createAddRecFromPHIWithCasts() currently does not support anything more
+ // involved than that, so we keep the search simple. This can be
+ // extended/generalized as needed.
+
+ auto getDef = [&](const Value *Val) -> Value * {
+ const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
+ if (!BinOp)
+ return nullptr;
+ Value *Op0 = BinOp->getOperand(0);
+ Value *Op1 = BinOp->getOperand(1);
+ Value *Def = nullptr;
+ if (L->isLoopInvariant(Op0))
+ Def = Op1;
+ else if (L->isLoopInvariant(Op1))
+ Def = Op0;
+ return Def;
+ };
+
+ // Look for the instruction that defines the induction via the
+ // loop backedge.
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return false;
+ Value *Val = PN->getIncomingValueForBlock(Latch);
+ if (!Val)
+ return false;
+
+ // Follow the def-use chain until the induction phi is reached.
+ // If on the way we encounter a Value that has the same SCEV Expr as the
+ // phi node, we can consider the instructions we visit from that point
+ // as part of the cast-sequence that can be ignored.
+ bool InCastSequence = false;
+ auto *Inst = dyn_cast<Instruction>(Val);
+ while (Val != PN) {
+ // If we encountered a phi node other than PN, or if we left the loop,
+ // we bail out.
+ if (!Inst || !L->contains(Inst)) {
+ return false;
+ }
+ auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
+ if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
+ InCastSequence = true;
+ if (InCastSequence) {
+ // Only the last instruction in the cast sequence is expected to have
+ // uses outside the induction def-use chain.
+ if (!CastInsts.empty())
+ if (!Inst->hasOneUse())
+ return false;
+ CastInsts.push_back(Inst);
+ }
+ Val = getDef(Val);
+ if (!Val)
+ return false;
+ Inst = dyn_cast<Instruction>(Val);
+ }
+
+ return InCastSequence;
+}
+
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
PredicatedScalarEvolution &PSE,
InductionDescriptor &D,
@@ -870,13 +981,26 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
return false;
}
+ // Record any Cast instructions that participate in the induction update
+ const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
+ // If we started from an UnknownSCEV, and managed to build an addRecurrence
+ // only after enabling Assume with PSCEV, this means we may have encountered
+ // cast instructions that required adding a runtime check in order to
+ // guarantee the correctness of the AddRecurence respresentation of the
+ // induction.
+ if (PhiScev != AR && SymbolicPhi) {
+ SmallVector<Instruction *, 2> Casts;
+ if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
+ return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
+ }
+
return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
-bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
- ScalarEvolution *SE,
- InductionDescriptor &D,
- const SCEV *Expr) {
+bool InductionDescriptor::isInductionPHI(
+ PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
+ InductionDescriptor &D, const SCEV *Expr,
+ SmallVectorImpl<Instruction *> *CastsToIgnore) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
@@ -895,7 +1019,7 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
// FIXME: We should treat this as a uniform. Unfortunately, we
// don't currently know how to handled uniform PHIs.
DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
- return false;
+ return false;
}
Value *StartValue =
@@ -908,7 +1032,8 @@ bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
return false;
if (PhiTy->isIntegerTy()) {
- D = InductionDescriptor(StartValue, IK_IntInduction, Step);
+ D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
+ CastsToIgnore);
return true;
}