diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp | 21 |
1 files changed, 21 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp index 1e8f6cc..6c9467b 100644 --- a/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp +++ b/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp @@ -202,6 +202,27 @@ static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, /// probability of executing at least one more iteration? static BranchProbability probOfNextInRemainder(BranchProbability OriginalLoopProb, unsigned N) { + // OriginalLoopProb == 1 would produce a division by zero in the calculation + // below. The problem is that case indicates an always infinite loop, but a + // remainder loop cannot be calculated at run time if the original loop is + // infinite as infinity % UnrollCount is undefined. We then choose + // probabilities indicating that all remainder loop iterations will always + // execute. + // + // Currently, the remainder loop here is an epilogue, which cannot be reached + // if the original loop is infinite, so the aforementioned choice is + // arbitrary. + // + // FIXME: Branch weights still need to be fixed in the case of prologues + // (issue #135812). In that case, the aforementioned choice seems reasonable + // for the goal of maintaining the original loop's block frequencies. That + // is, an infinite loop's initial iterations are not skipped, and the prologue + // loop body might have unique blocks that execute a finite number of times + // if, for example, the original loop body contains conditionals like i < + // UnrollCount. + if (OriginalLoopProb == BranchProbability::getOne()) + return BranchProbability::getOne(); + // Each of these variables holds the original loop's probability that the // number of iterations it will execute is some m in the specified range. BranchProbability ProbOne = OriginalLoopProb; // 1 <= m |
