aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--llvm/lib/Analysis/ValueTracking.cpp37
1 files changed, 33 insertions, 4 deletions
diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp
index 7109ff84..97b3692 100644
--- a/llvm/lib/Analysis/ValueTracking.cpp
+++ b/llvm/lib/Analysis/ValueTracking.cpp
@@ -1918,16 +1918,39 @@ bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
return (KnownZero & Mask) == Mask;
}
+/// For vector constants, loop over the elements and find the constant with the
+/// minimum number of sign bits. Return 0 if the value is not a vector constant
+/// or if any element was not analyzed; otherwise, return the count for the
+/// element with the minimum number of sign bits.
+static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
+ auto *CV = dyn_cast<Constant>(V);
+ if (!CV || !CV->getType()->isVectorTy())
+ return 0;
+
+ unsigned MinSignBits = TyBits;
+ unsigned NumElts = CV->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If we find a non-ConstantInt, bail out.
+ auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
+ if (!Elt)
+ return 0;
+
+ // If the sign bit is 1, flip the bits, so we always count leading zeros.
+ APInt EltVal = Elt->getValue();
+ if (EltVal.isNegative())
+ EltVal = ~EltVal;
+ MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
+ }
+ return MinSignBits;
+}
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
-/// other, so we return 3.
-///
-/// 'Op' must have a scalar integer type.
-///
+/// other, so we return 3. For vectors, return the number of sign bits for the
+/// vector element with the mininum number of known sign bits.
unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
unsigned Tmp, Tmp2;
@@ -2123,6 +2146,12 @@ unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
+
+ // If we can examine all elements of a vector constant successfully, we're
+ // done (we can't do any better than that). If not, keep trying.
+ if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
+ return VecSignBits;
+
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
APInt Mask;
computeKnownBits(V, KnownZero, KnownOne, Depth, Q);