aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--llvm/lib/Analysis/ScalarEvolution.cpp372
1 files changed, 210 insertions, 162 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index 3982f5b..a79a6e1 100644
--- a/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -13000,179 +13000,227 @@ ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
return RHS;
}
- // When the RHS is not invariant, we do not know the end bound of the loop and
- // cannot calculate the ExactBECount needed by ExitLimit. However, we can
- // calculate the MaxBECount, given the start, stride and max value for the end
- // bound of the loop (RHS), and the fact that IV does not overflow (which is
- // checked above).
+ const SCEV *End = nullptr, *BECount = nullptr,
+ *BECountIfBackedgeTaken = nullptr;
if (!isLoopInvariant(RHS, L)) {
- const SCEV *MaxBECount = computeMaxBECountForLT(
- Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
- return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
- MaxBECount, false /*MaxOrZero*/, Predicates);
- }
-
- // We use the expression (max(End,Start)-Start)/Stride to describe the
- // backedge count, as if the backedge is taken at least once max(End,Start)
- // is End and so the result is as above, and if not max(End,Start) is Start
- // so we get a backedge count of zero.
- const SCEV *BECount = nullptr;
- auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
- assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
- assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
- assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
- // Can we prove (max(RHS,Start) > Start - Stride?
- if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
- isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
- // In this case, we can use a refined formula for computing backedge taken
- // count. The general formula remains:
- // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
- // We want to use the alternate formula:
- // "((End - 1) - (Start - Stride)) /u Stride"
- // Let's do a quick case analysis to show these are equivalent under
- // our precondition that max(RHS,Start) > Start - Stride.
- // * For RHS <= Start, the backedge-taken count must be zero.
- // "((End - 1) - (Start - Stride)) /u Stride" reduces to
- // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
- // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
- // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
- // this to the stride of 1 case.
- // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
- // "((End - 1) - (Start - Stride)) /u Stride" reduces to
- // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
- // "((RHS - (Start - Stride) - 1) /u Stride".
- // Our preconditions trivially imply no overflow in that form.
- const SCEV *MinusOne = getMinusOne(Stride->getType());
- const SCEV *Numerator =
- getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
- BECount = getUDivExpr(Numerator, Stride);
- }
-
- const SCEV *BECountIfBackedgeTaken = nullptr;
- if (!BECount) {
- auto canProveRHSGreaterThanEqualStart = [&]() {
- auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
- const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
- const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
-
- if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
- isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
- return true;
-
- // (RHS > Start - 1) implies RHS >= Start.
- // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
- // "Start - 1" doesn't overflow.
- // * For signed comparison, if Start - 1 does overflow, it's equal
- // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
- // * For unsigned comparison, if Start - 1 does overflow, it's equal
- // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
- //
- // FIXME: Should isLoopEntryGuardedByCond do this for us?
- auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- auto *StartMinusOne = getAddExpr(OrigStart,
- getMinusOne(OrigStart->getType()));
- return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
- };
-
- // If we know that RHS >= Start in the context of loop, then we know that
- // max(RHS, Start) = RHS at this point.
- const SCEV *End;
- if (canProveRHSGreaterThanEqualStart()) {
- End = RHS;
- } else {
- // If RHS < Start, the backedge will be taken zero times. So in
- // general, we can write the backedge-taken count as:
+ const auto *RHSAddRec = dyn_cast<SCEVAddRecExpr>(RHS);
+ if (PositiveStride && RHSAddRec != nullptr && RHSAddRec->getLoop() == L &&
+ RHSAddRec->getNoWrapFlags()) {
+ // The structure of loop we are trying to calculate backedge count of:
//
- // RHS >= Start ? ceil(RHS - Start) / Stride : 0
+ // left = left_start
+ // right = right_start
//
- // We convert it to the following to make it more convenient for SCEV:
+ // while(left < right){
+ // ... do something here ...
+ // left += s1; // stride of left is s1 (s1 > 0)
+ // right += s2; // stride of right is s2 (s2 < 0)
+ // }
//
- // ceil(max(RHS, Start) - Start) / Stride
- End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
- // See what would happen if we assume the backedge is taken. This is
- // used to compute MaxBECount.
- BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
- }
+ const SCEV *RHSStart = RHSAddRec->getStart();
+ const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*this);
- // At this point, we know:
- //
- // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
- // 2. The index variable doesn't overflow.
- //
- // Therefore, we know N exists such that
- // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
- // doesn't overflow.
- //
- // Using this information, try to prove whether the addition in
- // "(Start - End) + (Stride - 1)" has unsigned overflow.
- const SCEV *One = getOne(Stride->getType());
- bool MayAddOverflow = [&] {
- if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
- if (StrideC->getAPInt().isPowerOf2()) {
- // Suppose Stride is a power of two, and Start/End are unsigned
- // integers. Let UMAX be the largest representable unsigned
- // integer.
- //
- // By the preconditions of this function, we know
- // "(Start + Stride * N) >= End", and this doesn't overflow.
- // As a formula:
- //
- // End <= (Start + Stride * N) <= UMAX
- //
- // Subtracting Start from all the terms:
- //
- // End - Start <= Stride * N <= UMAX - Start
- //
- // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
- //
- // End - Start <= Stride * N <= UMAX
- //
- // Stride * N is a multiple of Stride. Therefore,
- //
- // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
- //
- // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
- // Therefore, UMAX mod Stride == Stride - 1. So we can write:
- //
- // End - Start <= Stride * N <= UMAX - Stride - 1
- //
- // Dropping the middle term:
- //
- // End - Start <= UMAX - Stride - 1
- //
- // Adding Stride - 1 to both sides:
- //
- // (End - Start) + (Stride - 1) <= UMAX
- //
- // In other words, the addition doesn't have unsigned overflow.
- //
- // A similar proof works if we treat Start/End as signed values.
- // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
- // use signed max instead of unsigned max. Note that we're trying
- // to prove a lack of unsigned overflow in either case.
- return false;
+ // If Stride - RHSStride is positive and does not overflow, we can write
+ // backedge count as ->
+ // ceil((End - Start) /u (Stride - RHSStride))
+ // Where, End = max(RHSStart, Start)
+
+ // Check if RHSStride < 0 and Stride - RHSStride will not overflow.
+ if (isKnownNegative(RHSStride) &&
+ willNotOverflow(Instruction::Sub, /*Signed=*/true, Stride,
+ RHSStride)) {
+
+ const SCEV *Denominator = getMinusSCEV(Stride, RHSStride);
+ if (isKnownPositive(Denominator)) {
+ End = IsSigned ? getSMaxExpr(RHSStart, Start)
+ : getUMaxExpr(RHSStart, Start);
+
+ // We can do this because End >= Start, as End = max(RHSStart, Start)
+ const SCEV *Delta = getMinusSCEV(End, Start);
+
+ BECount = getUDivCeilSCEV(Delta, Denominator);
+ BECountIfBackedgeTaken =
+ getUDivCeilSCEV(getMinusSCEV(RHSStart, Start), Denominator);
}
}
- if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
- // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
- // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
- // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
+ }
+ if (BECount == nullptr) {
+ // If we cannot calculate ExactBECount, we can calculate the MaxBECount,
+ // given the start, stride and max value for the end bound of the
+ // loop (RHS), and the fact that IV does not overflow (which is
+ // checked above).
+ const SCEV *MaxBECount = computeMaxBECountForLT(
+ Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
+ return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
+ MaxBECount, false /*MaxOrZero*/, Predicates);
+ }
+ } else {
+ // We use the expression (max(End,Start)-Start)/Stride to describe the
+ // backedge count, as if the backedge is taken at least once
+ // max(End,Start) is End and so the result is as above, and if not
+ // max(End,Start) is Start so we get a backedge count of zero.
+ auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
+ assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
+ assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
+ assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
+ // Can we prove (max(RHS,Start) > Start - Stride?
+ if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
+ isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
+ // In this case, we can use a refined formula for computing backedge
+ // taken count. The general formula remains:
+ // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
+ // We want to use the alternate formula:
+ // "((End - 1) - (Start - Stride)) /u Stride"
+ // Let's do a quick case analysis to show these are equivalent under
+ // our precondition that max(RHS,Start) > Start - Stride.
+ // * For RHS <= Start, the backedge-taken count must be zero.
+ // "((End - 1) - (Start - Stride)) /u Stride" reduces to
+ // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
+ // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
+ // of Stride. For 0 stride, we've use umin(1,Stride) above,
+ // reducing this to the stride of 1 case.
+ // * For RHS >= Start, the backedge count must be "RHS-Start /uceil
+ // Stride".
+ // "((End - 1) - (Start - Stride)) /u Stride" reduces to
+ // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
+ // "((RHS - (Start - Stride) - 1) /u Stride".
+ // Our preconditions trivially imply no overflow in that form.
+ const SCEV *MinusOne = getMinusOne(Stride->getType());
+ const SCEV *Numerator =
+ getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
+ BECount = getUDivExpr(Numerator, Stride);
+ }
+
+ if (!BECount) {
+ auto canProveRHSGreaterThanEqualStart = [&]() {
+ auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
+ const SCEV *GuardedRHS = applyLoopGuards(OrigRHS, L);
+ const SCEV *GuardedStart = applyLoopGuards(OrigStart, L);
+
+ if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart) ||
+ isKnownPredicate(CondGE, GuardedRHS, GuardedStart))
+ return true;
+
+ // (RHS > Start - 1) implies RHS >= Start.
+ // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
+ // "Start - 1" doesn't overflow.
+ // * For signed comparison, if Start - 1 does overflow, it's equal
+ // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
+ // * For unsigned comparison, if Start - 1 does overflow, it's equal
+ // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
//
- // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
- return false;
+ // FIXME: Should isLoopEntryGuardedByCond do this for us?
+ auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ auto *StartMinusOne =
+ getAddExpr(OrigStart, getMinusOne(OrigStart->getType()));
+ return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
+ };
+
+ // If we know that RHS >= Start in the context of loop, then we know
+ // that max(RHS, Start) = RHS at this point.
+ if (canProveRHSGreaterThanEqualStart()) {
+ End = RHS;
+ } else {
+ // If RHS < Start, the backedge will be taken zero times. So in
+ // general, we can write the backedge-taken count as:
+ //
+ // RHS >= Start ? ceil(RHS - Start) / Stride : 0
+ //
+ // We convert it to the following to make it more convenient for SCEV:
+ //
+ // ceil(max(RHS, Start) - Start) / Stride
+ End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
+
+ // See what would happen if we assume the backedge is taken. This is
+ // used to compute MaxBECount.
+ BECountIfBackedgeTaken =
+ getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
}
- return true;
- }();
- const SCEV *Delta = getMinusSCEV(End, Start);
- if (!MayAddOverflow) {
- // floor((D + (S - 1)) / S)
- // We prefer this formulation if it's legal because it's fewer operations.
- BECount =
- getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
- } else {
- BECount = getUDivCeilSCEV(Delta, Stride);
+ // At this point, we know:
+ //
+ // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
+ // 2. The index variable doesn't overflow.
+ //
+ // Therefore, we know N exists such that
+ // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
+ // doesn't overflow.
+ //
+ // Using this information, try to prove whether the addition in
+ // "(Start - End) + (Stride - 1)" has unsigned overflow.
+ const SCEV *One = getOne(Stride->getType());
+ bool MayAddOverflow = [&] {
+ if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
+ if (StrideC->getAPInt().isPowerOf2()) {
+ // Suppose Stride is a power of two, and Start/End are unsigned
+ // integers. Let UMAX be the largest representable unsigned
+ // integer.
+ //
+ // By the preconditions of this function, we know
+ // "(Start + Stride * N) >= End", and this doesn't overflow.
+ // As a formula:
+ //
+ // End <= (Start + Stride * N) <= UMAX
+ //
+ // Subtracting Start from all the terms:
+ //
+ // End - Start <= Stride * N <= UMAX - Start
+ //
+ // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
+ //
+ // End - Start <= Stride * N <= UMAX
+ //
+ // Stride * N is a multiple of Stride. Therefore,
+ //
+ // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
+ //
+ // Since Stride is a power of two, UMAX + 1 is divisible by
+ // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can
+ // write:
+ //
+ // End - Start <= Stride * N <= UMAX - Stride - 1
+ //
+ // Dropping the middle term:
+ //
+ // End - Start <= UMAX - Stride - 1
+ //
+ // Adding Stride - 1 to both sides:
+ //
+ // (End - Start) + (Stride - 1) <= UMAX
+ //
+ // In other words, the addition doesn't have unsigned overflow.
+ //
+ // A similar proof works if we treat Start/End as signed values.
+ // Just rewrite steps before "End - Start <= Stride * N <= UMAX"
+ // to use signed max instead of unsigned max. Note that we're
+ // trying to prove a lack of unsigned overflow in either case.
+ return false;
+ }
+ }
+ if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
+ // If Start is equal to Stride, (End - Start) + (Stride - 1) == End
+ // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1
+ // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End -
+ // 1 <s End.
+ //
+ // If Start is equal to Stride - 1, (End - Start) + Stride - 1 ==
+ // End.
+ return false;
+ }
+ return true;
+ }();
+
+ const SCEV *Delta = getMinusSCEV(End, Start);
+ if (!MayAddOverflow) {
+ // floor((D + (S - 1)) / S)
+ // We prefer this formulation if it's legal because it's fewer
+ // operations.
+ BECount =
+ getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
+ } else {
+ BECount = getUDivCeilSCEV(Delta, Stride);
+ }
}
}