diff options
Diffstat (limited to 'llvm/lib/Analysis/ModuleSummaryAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/ModuleSummaryAnalysis.cpp | 890 |
1 files changed, 0 insertions, 890 deletions
diff --git a/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp b/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp deleted file mode 100644 index 1ff47e1..0000000 --- a/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp +++ /dev/null @@ -1,890 +0,0 @@ -//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass builds a ModuleSummaryIndex object for the module, to be written -// to bitcode or LLVM assembly. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/ModuleSummaryAnalysis.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/IndirectCallPromotionAnalysis.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/TypeMetadataUtils.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/ModuleSummaryIndex.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/InitializePasses.h" -#include "llvm/Object/ModuleSymbolTable.h" -#include "llvm/Object/SymbolicFile.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "module-summary-analysis" - -// Option to force edges cold which will block importing when the -// -import-cold-multiplier is set to 0. Useful for debugging. -FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = - FunctionSummary::FSHT_None; -cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( - "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), - cl::desc("Force all edges in the function summary to cold"), - cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), - clEnumValN(FunctionSummary::FSHT_AllNonCritical, - "all-non-critical", "All non-critical edges."), - clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); - -cl::opt<std::string> ModuleSummaryDotFile( - "module-summary-dot-file", cl::init(""), cl::Hidden, - cl::value_desc("filename"), - cl::desc("File to emit dot graph of new summary into.")); - -// Walk through the operands of a given User via worklist iteration and populate -// the set of GlobalValue references encountered. Invoked either on an -// Instruction or a GlobalVariable (which walks its initializer). -// Return true if any of the operands contains blockaddress. This is important -// to know when computing summary for global var, because if global variable -// references basic block address we can't import it separately from function -// containing that basic block. For simplicity we currently don't import such -// global vars at all. When importing function we aren't interested if any -// instruction in it takes an address of any basic block, because instruction -// can only take an address of basic block located in the same function. -static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, - SetVector<ValueInfo> &RefEdges, - SmallPtrSet<const User *, 8> &Visited) { - bool HasBlockAddress = false; - SmallVector<const User *, 32> Worklist; - Worklist.push_back(CurUser); - - while (!Worklist.empty()) { - const User *U = Worklist.pop_back_val(); - - if (!Visited.insert(U).second) - continue; - - ImmutableCallSite CS(U); - - for (const auto &OI : U->operands()) { - const User *Operand = dyn_cast<User>(OI); - if (!Operand) - continue; - if (isa<BlockAddress>(Operand)) { - HasBlockAddress = true; - continue; - } - if (auto *GV = dyn_cast<GlobalValue>(Operand)) { - // We have a reference to a global value. This should be added to - // the reference set unless it is a callee. Callees are handled - // specially by WriteFunction and are added to a separate list. - if (!(CS && CS.isCallee(&OI))) - RefEdges.insert(Index.getOrInsertValueInfo(GV)); - continue; - } - Worklist.push_back(Operand); - } - } - return HasBlockAddress; -} - -static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, - ProfileSummaryInfo *PSI) { - if (!PSI) - return CalleeInfo::HotnessType::Unknown; - if (PSI->isHotCount(ProfileCount)) - return CalleeInfo::HotnessType::Hot; - if (PSI->isColdCount(ProfileCount)) - return CalleeInfo::HotnessType::Cold; - return CalleeInfo::HotnessType::None; -} - -static bool isNonRenamableLocal(const GlobalValue &GV) { - return GV.hasSection() && GV.hasLocalLinkage(); -} - -/// Determine whether this call has all constant integer arguments (excluding -/// "this") and summarize it to VCalls or ConstVCalls as appropriate. -static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, - SetVector<FunctionSummary::VFuncId> &VCalls, - SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { - std::vector<uint64_t> Args; - // Start from the second argument to skip the "this" pointer. - for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) { - auto *CI = dyn_cast<ConstantInt>(Arg); - if (!CI || CI->getBitWidth() > 64) { - VCalls.insert({Guid, Call.Offset}); - return; - } - Args.push_back(CI->getZExtValue()); - } - ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); -} - -/// If this intrinsic call requires that we add information to the function -/// summary, do so via the non-constant reference arguments. -static void addIntrinsicToSummary( - const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, - SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, - SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, - SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, - SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, - DominatorTree &DT) { - switch (CI->getCalledFunction()->getIntrinsicID()) { - case Intrinsic::type_test: { - auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); - auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); - if (!TypeId) - break; - GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); - - // Produce a summary from type.test intrinsics. We only summarize type.test - // intrinsics that are used other than by an llvm.assume intrinsic. - // Intrinsics that are assumed are relevant only to the devirtualization - // pass, not the type test lowering pass. - bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { - auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser()); - if (!AssumeCI) - return true; - Function *F = AssumeCI->getCalledFunction(); - return !F || F->getIntrinsicID() != Intrinsic::assume; - }); - if (HasNonAssumeUses) - TypeTests.insert(Guid); - - SmallVector<DevirtCallSite, 4> DevirtCalls; - SmallVector<CallInst *, 4> Assumes; - findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); - for (auto &Call : DevirtCalls) - addVCallToSet(Call, Guid, TypeTestAssumeVCalls, - TypeTestAssumeConstVCalls); - - break; - } - - case Intrinsic::type_checked_load: { - auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); - auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); - if (!TypeId) - break; - GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); - - SmallVector<DevirtCallSite, 4> DevirtCalls; - SmallVector<Instruction *, 4> LoadedPtrs; - SmallVector<Instruction *, 4> Preds; - bool HasNonCallUses = false; - findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, - HasNonCallUses, CI, DT); - // Any non-call uses of the result of llvm.type.checked.load will - // prevent us from optimizing away the llvm.type.test. - if (HasNonCallUses) - TypeTests.insert(Guid); - for (auto &Call : DevirtCalls) - addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, - TypeCheckedLoadConstVCalls); - - break; - } - default: - break; - } -} - -static bool isNonVolatileLoad(const Instruction *I) { - if (const auto *LI = dyn_cast<LoadInst>(I)) - return !LI->isVolatile(); - - return false; -} - -static bool isNonVolatileStore(const Instruction *I) { - if (const auto *SI = dyn_cast<StoreInst>(I)) - return !SI->isVolatile(); - - return false; -} - -static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M, - const Function &F, BlockFrequencyInfo *BFI, - ProfileSummaryInfo *PSI, DominatorTree &DT, - bool HasLocalsInUsedOrAsm, - DenseSet<GlobalValue::GUID> &CantBePromoted, - bool IsThinLTO) { - // Summary not currently supported for anonymous functions, they should - // have been named. - assert(F.hasName()); - - unsigned NumInsts = 0; - // Map from callee ValueId to profile count. Used to accumulate profile - // counts for all static calls to a given callee. - MapVector<ValueInfo, CalleeInfo> CallGraphEdges; - SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; - SetVector<GlobalValue::GUID> TypeTests; - SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, - TypeCheckedLoadVCalls; - SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, - TypeCheckedLoadConstVCalls; - ICallPromotionAnalysis ICallAnalysis; - SmallPtrSet<const User *, 8> Visited; - - // Add personality function, prefix data and prologue data to function's ref - // list. - findRefEdges(Index, &F, RefEdges, Visited); - std::vector<const Instruction *> NonVolatileLoads; - std::vector<const Instruction *> NonVolatileStores; - - bool HasInlineAsmMaybeReferencingInternal = false; - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) { - if (isa<DbgInfoIntrinsic>(I)) - continue; - ++NumInsts; - // Regular LTO module doesn't participate in ThinLTO import, - // so no reference from it can be read/writeonly, since this - // would require importing variable as local copy - if (IsThinLTO) { - if (isNonVolatileLoad(&I)) { - // Postpone processing of non-volatile load instructions - // See comments below - Visited.insert(&I); - NonVolatileLoads.push_back(&I); - continue; - } else if (isNonVolatileStore(&I)) { - Visited.insert(&I); - NonVolatileStores.push_back(&I); - // All references from second operand of store (destination address) - // can be considered write-only if they're not referenced by any - // non-store instruction. References from first operand of store - // (stored value) can't be treated either as read- or as write-only - // so we add them to RefEdges as we do with all other instructions - // except non-volatile load. - Value *Stored = I.getOperand(0); - if (auto *GV = dyn_cast<GlobalValue>(Stored)) - // findRefEdges will try to examine GV operands, so instead - // of calling it we should add GV to RefEdges directly. - RefEdges.insert(Index.getOrInsertValueInfo(GV)); - else if (auto *U = dyn_cast<User>(Stored)) - findRefEdges(Index, U, RefEdges, Visited); - continue; - } - } - findRefEdges(Index, &I, RefEdges, Visited); - auto CS = ImmutableCallSite(&I); - if (!CS) - continue; - - const auto *CI = dyn_cast<CallInst>(&I); - // Since we don't know exactly which local values are referenced in inline - // assembly, conservatively mark the function as possibly referencing - // a local value from inline assembly to ensure we don't export a - // reference (which would require renaming and promotion of the - // referenced value). - if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) - HasInlineAsmMaybeReferencingInternal = true; - - auto *CalledValue = CS.getCalledValue(); - auto *CalledFunction = CS.getCalledFunction(); - if (CalledValue && !CalledFunction) { - CalledValue = CalledValue->stripPointerCasts(); - // Stripping pointer casts can reveal a called function. - CalledFunction = dyn_cast<Function>(CalledValue); - } - // Check if this is an alias to a function. If so, get the - // called aliasee for the checks below. - if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { - assert(!CalledFunction && "Expected null called function in callsite for alias"); - CalledFunction = dyn_cast<Function>(GA->getBaseObject()); - } - // Check if this is a direct call to a known function or a known - // intrinsic, or an indirect call with profile data. - if (CalledFunction) { - if (CI && CalledFunction->isIntrinsic()) { - addIntrinsicToSummary( - CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, - TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); - continue; - } - // We should have named any anonymous globals - assert(CalledFunction->hasName()); - auto ScaledCount = PSI->getProfileCount(&I, BFI); - auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) - : CalleeInfo::HotnessType::Unknown; - if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) - Hotness = CalleeInfo::HotnessType::Cold; - - // Use the original CalledValue, in case it was an alias. We want - // to record the call edge to the alias in that case. Eventually - // an alias summary will be created to associate the alias and - // aliasee. - auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( - cast<GlobalValue>(CalledValue))]; - ValueInfo.updateHotness(Hotness); - // Add the relative block frequency to CalleeInfo if there is no profile - // information. - if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { - uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); - uint64_t EntryFreq = BFI->getEntryFreq(); - ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); - } - } else { - // Skip inline assembly calls. - if (CI && CI->isInlineAsm()) - continue; - // Skip direct calls. - if (!CalledValue || isa<Constant>(CalledValue)) - continue; - - // Check if the instruction has a callees metadata. If so, add callees - // to CallGraphEdges to reflect the references from the metadata, and - // to enable importing for subsequent indirect call promotion and - // inlining. - if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { - for (auto &Op : MD->operands()) { - Function *Callee = mdconst::extract_or_null<Function>(Op); - if (Callee) - CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; - } - } - - uint32_t NumVals, NumCandidates; - uint64_t TotalCount; - auto CandidateProfileData = - ICallAnalysis.getPromotionCandidatesForInstruction( - &I, NumVals, TotalCount, NumCandidates); - for (auto &Candidate : CandidateProfileData) - CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] - .updateHotness(getHotness(Candidate.Count, PSI)); - } - } - - std::vector<ValueInfo> Refs; - if (IsThinLTO) { - auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, - SetVector<ValueInfo> &Edges, - SmallPtrSet<const User *, 8> &Cache) { - for (const auto *I : Instrs) { - Cache.erase(I); - findRefEdges(Index, I, Edges, Cache); - } - }; - - // By now we processed all instructions in a function, except - // non-volatile loads and non-volatile value stores. Let's find - // ref edges for both of instruction sets - AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); - // We can add some values to the Visited set when processing load - // instructions which are also used by stores in NonVolatileStores. - // For example this can happen if we have following code: - // - // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) - // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) - // - // After processing loads we'll add bitcast to the Visited set, and if - // we use the same set while processing stores, we'll never see store - // to @bar and @bar will be mistakenly treated as readonly. - SmallPtrSet<const llvm::User *, 8> StoreCache; - AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); - - // If both load and store instruction reference the same variable - // we won't be able to optimize it. Add all such reference edges - // to RefEdges set. - for (auto &VI : StoreRefEdges) - if (LoadRefEdges.remove(VI)) - RefEdges.insert(VI); - - unsigned RefCnt = RefEdges.size(); - // All new reference edges inserted in two loops below are either - // read or write only. They will be grouped in the end of RefEdges - // vector, so we can use a single integer value to identify them. - for (auto &VI : LoadRefEdges) - RefEdges.insert(VI); - - unsigned FirstWORef = RefEdges.size(); - for (auto &VI : StoreRefEdges) - RefEdges.insert(VI); - - Refs = RefEdges.takeVector(); - for (; RefCnt < FirstWORef; ++RefCnt) - Refs[RefCnt].setReadOnly(); - - for (; RefCnt < Refs.size(); ++RefCnt) - Refs[RefCnt].setWriteOnly(); - } else { - Refs = RefEdges.takeVector(); - } - // Explicit add hot edges to enforce importing for designated GUIDs for - // sample PGO, to enable the same inlines as the profiled optimized binary. - for (auto &I : F.getImportGUIDs()) - CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( - ForceSummaryEdgesCold == FunctionSummary::FSHT_All - ? CalleeInfo::HotnessType::Cold - : CalleeInfo::HotnessType::Critical); - - bool NonRenamableLocal = isNonRenamableLocal(F); - bool NotEligibleForImport = - NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; - GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport, - /* Live = */ false, F.isDSOLocal(), - F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); - FunctionSummary::FFlags FunFlags{ - F.hasFnAttribute(Attribute::ReadNone), - F.hasFnAttribute(Attribute::ReadOnly), - F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), - // FIXME: refactor this to use the same code that inliner is using. - // Don't try to import functions with noinline attribute. - F.getAttributes().hasFnAttribute(Attribute::NoInline), - F.hasFnAttribute(Attribute::AlwaysInline)}; - auto FuncSummary = std::make_unique<FunctionSummary>( - Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), - CallGraphEdges.takeVector(), TypeTests.takeVector(), - TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), - TypeTestAssumeConstVCalls.takeVector(), - TypeCheckedLoadConstVCalls.takeVector()); - if (NonRenamableLocal) - CantBePromoted.insert(F.getGUID()); - Index.addGlobalValueSummary(F, std::move(FuncSummary)); -} - -/// Find function pointers referenced within the given vtable initializer -/// (or subset of an initializer) \p I. The starting offset of \p I within -/// the vtable initializer is \p StartingOffset. Any discovered function -/// pointers are added to \p VTableFuncs along with their cumulative offset -/// within the initializer. -static void findFuncPointers(const Constant *I, uint64_t StartingOffset, - const Module &M, ModuleSummaryIndex &Index, - VTableFuncList &VTableFuncs) { - // First check if this is a function pointer. - if (I->getType()->isPointerTy()) { - auto Fn = dyn_cast<Function>(I->stripPointerCasts()); - // We can disregard __cxa_pure_virtual as a possible call target, as - // calls to pure virtuals are UB. - if (Fn && Fn->getName() != "__cxa_pure_virtual") - VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); - return; - } - - // Walk through the elements in the constant struct or array and recursively - // look for virtual function pointers. - const DataLayout &DL = M.getDataLayout(); - if (auto *C = dyn_cast<ConstantStruct>(I)) { - StructType *STy = dyn_cast<StructType>(C->getType()); - assert(STy); - const StructLayout *SL = DL.getStructLayout(C->getType()); - - for (StructType::element_iterator EB = STy->element_begin(), EI = EB, - EE = STy->element_end(); - EI != EE; ++EI) { - auto Offset = SL->getElementOffset(EI - EB); - unsigned Op = SL->getElementContainingOffset(Offset); - findFuncPointers(cast<Constant>(I->getOperand(Op)), - StartingOffset + Offset, M, Index, VTableFuncs); - } - } else if (auto *C = dyn_cast<ConstantArray>(I)) { - ArrayType *ATy = C->getType(); - Type *EltTy = ATy->getElementType(); - uint64_t EltSize = DL.getTypeAllocSize(EltTy); - for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { - findFuncPointers(cast<Constant>(I->getOperand(i)), - StartingOffset + i * EltSize, M, Index, VTableFuncs); - } - } -} - -// Identify the function pointers referenced by vtable definition \p V. -static void computeVTableFuncs(ModuleSummaryIndex &Index, - const GlobalVariable &V, const Module &M, - VTableFuncList &VTableFuncs) { - if (!V.isConstant()) - return; - - findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, - VTableFuncs); - -#ifndef NDEBUG - // Validate that the VTableFuncs list is ordered by offset. - uint64_t PrevOffset = 0; - for (auto &P : VTableFuncs) { - // The findVFuncPointers traversal should have encountered the - // functions in offset order. We need to use ">=" since PrevOffset - // starts at 0. - assert(P.VTableOffset >= PrevOffset); - PrevOffset = P.VTableOffset; - } -#endif -} - -/// Record vtable definition \p V for each type metadata it references. -static void -recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, - const GlobalVariable &V, - SmallVectorImpl<MDNode *> &Types) { - for (MDNode *Type : Types) { - auto TypeID = Type->getOperand(1).get(); - - uint64_t Offset = - cast<ConstantInt>( - cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) - ->getZExtValue(); - - if (auto *TypeId = dyn_cast<MDString>(TypeID)) - Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) - .push_back({Offset, Index.getOrInsertValueInfo(&V)}); - } -} - -static void computeVariableSummary(ModuleSummaryIndex &Index, - const GlobalVariable &V, - DenseSet<GlobalValue::GUID> &CantBePromoted, - const Module &M, - SmallVectorImpl<MDNode *> &Types) { - SetVector<ValueInfo> RefEdges; - SmallPtrSet<const User *, 8> Visited; - bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); - bool NonRenamableLocal = isNonRenamableLocal(V); - GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal, - /* Live = */ false, V.isDSOLocal(), - V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); - - VTableFuncList VTableFuncs; - // If splitting is not enabled, then we compute the summary information - // necessary for index-based whole program devirtualization. - if (!Index.enableSplitLTOUnit()) { - Types.clear(); - V.getMetadata(LLVMContext::MD_type, Types); - if (!Types.empty()) { - // Identify the function pointers referenced by this vtable definition. - computeVTableFuncs(Index, V, M, VTableFuncs); - - // Record this vtable definition for each type metadata it references. - recordTypeIdCompatibleVtableReferences(Index, V, Types); - } - } - - // Don't mark variables we won't be able to internalize as read/write-only. - bool CanBeInternalized = - !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && - !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); - bool Constant = V.isConstant(); - GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, - Constant ? false : CanBeInternalized, - Constant, V.getVCallVisibility()); - auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, - RefEdges.takeVector()); - if (NonRenamableLocal) - CantBePromoted.insert(V.getGUID()); - if (HasBlockAddress) - GVarSummary->setNotEligibleToImport(); - if (!VTableFuncs.empty()) - GVarSummary->setVTableFuncs(VTableFuncs); - Index.addGlobalValueSummary(V, std::move(GVarSummary)); -} - -static void -computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, - DenseSet<GlobalValue::GUID> &CantBePromoted) { - bool NonRenamableLocal = isNonRenamableLocal(A); - GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, - /* Live = */ false, A.isDSOLocal(), - A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); - auto AS = std::make_unique<AliasSummary>(Flags); - auto *Aliasee = A.getBaseObject(); - auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); - assert(AliaseeVI && "Alias expects aliasee summary to be available"); - assert(AliaseeVI.getSummaryList().size() == 1 && - "Expected a single entry per aliasee in per-module index"); - AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); - if (NonRenamableLocal) - CantBePromoted.insert(A.getGUID()); - Index.addGlobalValueSummary(A, std::move(AS)); -} - -// Set LiveRoot flag on entries matching the given value name. -static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { - if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) - for (auto &Summary : VI.getSummaryList()) - Summary->setLive(true); -} - -ModuleSummaryIndex llvm::buildModuleSummaryIndex( - const Module &M, - std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, - ProfileSummaryInfo *PSI) { - assert(PSI); - bool EnableSplitLTOUnit = false; - if (auto *MD = mdconst::extract_or_null<ConstantInt>( - M.getModuleFlag("EnableSplitLTOUnit"))) - EnableSplitLTOUnit = MD->getZExtValue(); - ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); - - // Identify the local values in the llvm.used and llvm.compiler.used sets, - // which should not be exported as they would then require renaming and - // promotion, but we may have opaque uses e.g. in inline asm. We collect them - // here because we use this information to mark functions containing inline - // assembly calls as not importable. - SmallPtrSet<GlobalValue *, 8> LocalsUsed; - SmallPtrSet<GlobalValue *, 8> Used; - // First collect those in the llvm.used set. - collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); - // Next collect those in the llvm.compiler.used set. - collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true); - DenseSet<GlobalValue::GUID> CantBePromoted; - for (auto *V : Used) { - if (V->hasLocalLinkage()) { - LocalsUsed.insert(V); - CantBePromoted.insert(V->getGUID()); - } - } - - bool HasLocalInlineAsmSymbol = false; - if (!M.getModuleInlineAsm().empty()) { - // Collect the local values defined by module level asm, and set up - // summaries for these symbols so that they can be marked as NoRename, - // to prevent export of any use of them in regular IR that would require - // renaming within the module level asm. Note we don't need to create a - // summary for weak or global defs, as they don't need to be flagged as - // NoRename, and defs in module level asm can't be imported anyway. - // Also, any values used but not defined within module level asm should - // be listed on the llvm.used or llvm.compiler.used global and marked as - // referenced from there. - ModuleSymbolTable::CollectAsmSymbols( - M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { - // Symbols not marked as Weak or Global are local definitions. - if (Flags & (object::BasicSymbolRef::SF_Weak | - object::BasicSymbolRef::SF_Global)) - return; - HasLocalInlineAsmSymbol = true; - GlobalValue *GV = M.getNamedValue(Name); - if (!GV) - return; - assert(GV->isDeclaration() && "Def in module asm already has definition"); - GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage, - /* NotEligibleToImport = */ true, - /* Live = */ true, - /* Local */ GV->isDSOLocal(), - GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); - CantBePromoted.insert(GV->getGUID()); - // Create the appropriate summary type. - if (Function *F = dyn_cast<Function>(GV)) { - std::unique_ptr<FunctionSummary> Summary = - std::make_unique<FunctionSummary>( - GVFlags, /*InstCount=*/0, - FunctionSummary::FFlags{ - F->hasFnAttribute(Attribute::ReadNone), - F->hasFnAttribute(Attribute::ReadOnly), - F->hasFnAttribute(Attribute::NoRecurse), - F->returnDoesNotAlias(), - /* NoInline = */ false, - F->hasFnAttribute(Attribute::AlwaysInline)}, - /*EntryCount=*/0, ArrayRef<ValueInfo>{}, - ArrayRef<FunctionSummary::EdgeTy>{}, - ArrayRef<GlobalValue::GUID>{}, - ArrayRef<FunctionSummary::VFuncId>{}, - ArrayRef<FunctionSummary::VFuncId>{}, - ArrayRef<FunctionSummary::ConstVCall>{}, - ArrayRef<FunctionSummary::ConstVCall>{}); - Index.addGlobalValueSummary(*GV, std::move(Summary)); - } else { - std::unique_ptr<GlobalVarSummary> Summary = - std::make_unique<GlobalVarSummary>( - GVFlags, - GlobalVarSummary::GVarFlags( - false, false, cast<GlobalVariable>(GV)->isConstant(), - GlobalObject::VCallVisibilityPublic), - ArrayRef<ValueInfo>{}); - Index.addGlobalValueSummary(*GV, std::move(Summary)); - } - }); - } - - bool IsThinLTO = true; - if (auto *MD = - mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) - IsThinLTO = MD->getZExtValue(); - - // Compute summaries for all functions defined in module, and save in the - // index. - for (auto &F : M) { - if (F.isDeclaration()) - continue; - - DominatorTree DT(const_cast<Function &>(F)); - BlockFrequencyInfo *BFI = nullptr; - std::unique_ptr<BlockFrequencyInfo> BFIPtr; - if (GetBFICallback) - BFI = GetBFICallback(F); - else if (F.hasProfileData()) { - LoopInfo LI{DT}; - BranchProbabilityInfo BPI{F, LI}; - BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); - BFI = BFIPtr.get(); - } - - computeFunctionSummary(Index, M, F, BFI, PSI, DT, - !LocalsUsed.empty() || HasLocalInlineAsmSymbol, - CantBePromoted, IsThinLTO); - } - - // Compute summaries for all variables defined in module, and save in the - // index. - SmallVector<MDNode *, 2> Types; - for (const GlobalVariable &G : M.globals()) { - if (G.isDeclaration()) - continue; - computeVariableSummary(Index, G, CantBePromoted, M, Types); - } - - // Compute summaries for all aliases defined in module, and save in the - // index. - for (const GlobalAlias &A : M.aliases()) - computeAliasSummary(Index, A, CantBePromoted); - - for (auto *V : LocalsUsed) { - auto *Summary = Index.getGlobalValueSummary(*V); - assert(Summary && "Missing summary for global value"); - Summary->setNotEligibleToImport(); - } - - // The linker doesn't know about these LLVM produced values, so we need - // to flag them as live in the index to ensure index-based dead value - // analysis treats them as live roots of the analysis. - setLiveRoot(Index, "llvm.used"); - setLiveRoot(Index, "llvm.compiler.used"); - setLiveRoot(Index, "llvm.global_ctors"); - setLiveRoot(Index, "llvm.global_dtors"); - setLiveRoot(Index, "llvm.global.annotations"); - - for (auto &GlobalList : Index) { - // Ignore entries for references that are undefined in the current module. - if (GlobalList.second.SummaryList.empty()) - continue; - - assert(GlobalList.second.SummaryList.size() == 1 && - "Expected module's index to have one summary per GUID"); - auto &Summary = GlobalList.second.SummaryList[0]; - if (!IsThinLTO) { - Summary->setNotEligibleToImport(); - continue; - } - - bool AllRefsCanBeExternallyReferenced = - llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { - return !CantBePromoted.count(VI.getGUID()); - }); - if (!AllRefsCanBeExternallyReferenced) { - Summary->setNotEligibleToImport(); - continue; - } - - if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { - bool AllCallsCanBeExternallyReferenced = llvm::all_of( - FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { - return !CantBePromoted.count(Edge.first.getGUID()); - }); - if (!AllCallsCanBeExternallyReferenced) - Summary->setNotEligibleToImport(); - } - } - - if (!ModuleSummaryDotFile.empty()) { - std::error_code EC; - raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); - if (EC) - report_fatal_error(Twine("Failed to open dot file ") + - ModuleSummaryDotFile + ": " + EC.message() + "\n"); - Index.exportToDot(OSDot, {}); - } - - return Index; -} - -AnalysisKey ModuleSummaryIndexAnalysis::Key; - -ModuleSummaryIndex -ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { - ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); - auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - return buildModuleSummaryIndex( - M, - [&FAM](const Function &F) { - return &FAM.getResult<BlockFrequencyAnalysis>( - *const_cast<Function *>(&F)); - }, - &PSI); -} - -char ModuleSummaryIndexWrapperPass::ID = 0; - -INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", - "Module Summary Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", - "Module Summary Analysis", false, true) - -ModulePass *llvm::createModuleSummaryIndexWrapperPass() { - return new ModuleSummaryIndexWrapperPass(); -} - -ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() - : ModulePass(ID) { - initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { - auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - Index.emplace(buildModuleSummaryIndex( - M, - [this](const Function &F) { - return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( - *const_cast<Function *>(&F)) - .getBFI()); - }, - PSI)); - return false; -} - -bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { - Index.reset(); - return false; -} - -void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<ProfileSummaryInfoWrapperPass>(); -} |