diff options
Diffstat (limited to 'llvm/lib/Analysis/BasicAliasAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/BasicAliasAnalysis.cpp | 263 |
1 files changed, 215 insertions, 48 deletions
diff --git a/llvm/lib/Analysis/BasicAliasAnalysis.cpp b/llvm/lib/Analysis/BasicAliasAnalysis.cpp index b73dfa3..a6a25f9 100644 --- a/llvm/lib/Analysis/BasicAliasAnalysis.cpp +++ b/llvm/lib/Analysis/BasicAliasAnalysis.cpp @@ -177,10 +177,10 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, /// /// Note that this looks through extends, so the high bits may not be /// represented in the result. -/*static*/ Value *BasicAliasAnalysis::GetLinearExpression( - Value *V, APInt &Scale, APInt &Offset, ExtensionKind &Extension, - const DataLayout &DL, unsigned Depth, AssumptionCache *AC, - DominatorTree *DT) { +/*static*/ const Value *BasicAliasAnalysis::GetLinearExpression( + const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, + unsigned &SExtBits, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { assert(V->getType()->isIntegerTy() && "Not an integer value"); // Limit our recursion depth. @@ -190,55 +190,125 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, return V; } - if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { + if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { + // if it's a constant, just convert it to an offset and remove the variable. + // If we've been called recursively the Offset bit width will be greater + // than the constant's (the Offset's always as wide as the outermost call), + // so we'll zext here and process any extension in the isa<SExtInst> & + // isa<ZExtInst> cases below. + Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); + assert(Scale == 0 && "Constant values don't have a scale"); + return V; + } + + if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { + + // If we've been called recursively then Offset and Scale will be wider + // that the BOp operands. We'll always zext it here as we'll process sign + // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). + APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); + switch (BOp->getOpcode()) { default: - break; + // We don't understand this instruction, so we can't decompose it any + // further. + Scale = 1; + Offset = 0; + return V; case Instruction::Or: // X|C == X+C if all the bits in C are unset in X. Otherwise we can't // analyze it. if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, - BOp, DT)) - break; + BOp, DT)) { + Scale = 1; + Offset = 0; + return V; + } // FALL THROUGH. case Instruction::Add: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset += RHSC->getValue(); - return V; + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset += RHS; + break; + case Instruction::Sub: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset -= RHS; + break; case Instruction::Mul: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset *= RHSC->getValue(); - Scale *= RHSC->getValue(); - return V; + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset *= RHS; + Scale *= RHS; + break; case Instruction::Shl: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset <<= RHSC->getValue().getLimitedValue(); - Scale <<= RHSC->getValue().getLimitedValue(); + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset <<= RHS.getLimitedValue(); + Scale <<= RHS.getLimitedValue(); + // the semantics of nsw and nuw for left shifts don't match those of + // multiplications, so we won't propagate them. + NSW = NUW = false; return V; } + + if (isa<OverflowingBinaryOperator>(BOp)) { + NUW &= BOp->hasNoUnsignedWrap(); + NSW &= BOp->hasNoSignedWrap(); + } + return V; } } // Since GEP indices are sign extended anyway, we don't care about the high // bits of a sign or zero extended value - just scales and offsets. The // extensions have to be consistent though. - if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || - (isa<ZExtInst>(V) && Extension != EK_SignExt)) { + if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { Value *CastOp = cast<CastInst>(V)->getOperand(0); - unsigned OldWidth = Scale.getBitWidth(); + unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); - Scale = Scale.trunc(SmallWidth); - Offset = Offset.trunc(SmallWidth); - Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; - - Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, - Depth + 1, AC, DT); - Scale = Scale.zext(OldWidth); - Offset = Offset.zext(OldWidth); + unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; + const Value *Result = + GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, + Depth + 1, AC, DT, NSW, NUW); + + // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this + // by just incrementing the number of bits we've extended by. + unsigned ExtendedBy = NewWidth - SmallWidth; + + if (isa<SExtInst>(V) && ZExtBits == 0) { + // sext(sext(%x, a), b) == sext(%x, a + b) + + if (NSW) { + // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) + // into sext(%x) + sext(c). We'll sext the Offset ourselves: + unsigned OldWidth = Offset.getBitWidth(); + Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); + } else { + // We may have signed-wrapped, so don't decompose sext(%x + c) into + // sext(%x) + sext(c) + Scale = 1; + Offset = 0; + Result = CastOp; + ZExtBits = OldZExtBits; + SExtBits = OldSExtBits; + } + SExtBits += ExtendedBy; + } else { + // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) + + if (!NUW) { + // We may have unsigned-wrapped, so don't decompose zext(%x + c) into + // zext(%x) + zext(c) + Scale = 1; + Offset = 0; + Result = CastOp; + ZExtBits = OldZExtBits; + SExtBits = OldSExtBits; + } + ZExtBits += ExtendedBy; + } return Result; } @@ -318,7 +388,7 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, gep_type_iterator GTI = gep_type_begin(GEPOp); for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); I != E; ++I) { - Value *Index = *I; + const Value *Index = *I; // Compute the (potentially symbolic) offset in bytes for this index. if (StructType *STy = dyn_cast<StructType>(*GTI++)) { // For a struct, add the member offset. @@ -331,7 +401,7 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, } // For an array/pointer, add the element offset, explicitly scaled. - if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { + if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { if (CIdx->isZero()) continue; BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); @@ -339,18 +409,20 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, } uint64_t Scale = DL.getTypeAllocSize(*GTI); - ExtensionKind Extension = EK_NotExtended; + unsigned ZExtBits = 0, SExtBits = 0; // If the integer type is smaller than the pointer size, it is implicitly // sign extended to pointer size. unsigned Width = Index->getType()->getIntegerBitWidth(); - if (DL.getPointerSizeInBits(AS) > Width) - Extension = EK_SignExt; + unsigned PointerSize = DL.getPointerSizeInBits(AS); + if (PointerSize > Width) + SExtBits += PointerSize - Width; // Use GetLinearExpression to decompose the index into a C1*V+C2 form. APInt IndexScale(Width, 0), IndexOffset(Width, 0); - Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL, - 0, AC, DT); + bool NSW = true, NUW = true; + Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, + SExtBits, DL, 0, AC, DT, NSW, NUW); // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. @@ -362,7 +434,8 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, // A[x][x] -> x*16 + x*4 -> x*20 // This also ensures that 'x' only appears in the index list once. for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { - if (VarIndices[i].V == Index && VarIndices[i].Extension == Extension) { + if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && + VarIndices[i].SExtBits == SExtBits) { Scale += VarIndices[i].Scale; VarIndices.erase(VarIndices.begin() + i); break; @@ -371,13 +444,13 @@ static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, // Make sure that we have a scale that makes sense for this target's // pointer size. - if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) { + if (unsigned ShiftBits = 64 - PointerSize) { Scale <<= ShiftBits; Scale = (int64_t)Scale >> ShiftBits; } if (Scale) { - VariableGEPIndex Entry = {Index, Extension, + VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, static_cast<int64_t>(Scale)}; VarIndices.push_back(Entry); } @@ -948,12 +1021,42 @@ AliasResult BasicAliasAnalysis::aliasGEP( } } - // Try to distinguish something like &A[i][1] against &A[42][0]. - // Grab the least significant bit set in any of the scales. if (!GEP1VariableIndices.empty()) { uint64_t Modulo = 0; - for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) + bool AllPositive = true; + for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { + + // Try to distinguish something like &A[i][1] against &A[42][0]. + // Grab the least significant bit set in any of the scales. We + // don't need std::abs here (even if the scale's negative) as we'll + // be ^'ing Modulo with itself later. Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; + + if (AllPositive) { + // If the Value could change between cycles, then any reasoning about + // the Value this cycle may not hold in the next cycle. We'll just + // give up if we can't determine conditions that hold for every cycle: + const Value *V = GEP1VariableIndices[i].V; + + bool SignKnownZero, SignKnownOne; + ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL, + 0, AC1, nullptr, DT); + + // Zero-extension widens the variable, and so forces the sign + // bit to zero. + bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); + SignKnownZero |= IsZExt; + SignKnownOne &= !IsZExt; + + // If the variable begins with a zero then we know it's + // positive, regardless of whether the value is signed or + // unsigned. + int64_t Scale = GEP1VariableIndices[i].Scale; + AllPositive = + (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); + } + } + Modulo = Modulo ^ (Modulo & (Modulo - 1)); // We can compute the difference between the two addresses @@ -964,6 +1067,16 @@ AliasResult BasicAliasAnalysis::aliasGEP( V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && V1Size <= Modulo - ModOffset) return NoAlias; + + // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. + // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers + // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. + if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) + return NoAlias; + + if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, + GEP1BaseOffset, DL, AC1, DT)) + return NoAlias; } // Statically, we can see that the base objects are the same, but the @@ -1333,14 +1446,14 @@ void BasicAliasAnalysis::GetIndexDifference( for (unsigned i = 0, e = Src.size(); i != e; ++i) { const Value *V = Src[i].V; - ExtensionKind Extension = Src[i].Extension; + unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; int64_t Scale = Src[i].Scale; // Find V in Dest. This is N^2, but pointer indices almost never have more // than a few variable indexes. for (unsigned j = 0, e = Dest.size(); j != e; ++j) { if (!isValueEqualInPotentialCycles(Dest[j].V, V) || - Dest[j].Extension != Extension) + Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) continue; // If we found it, subtract off Scale V's from the entry in Dest. If it @@ -1355,8 +1468,62 @@ void BasicAliasAnalysis::GetIndexDifference( // If we didn't consume this entry, add it to the end of the Dest list. if (Scale) { - VariableGEPIndex Entry = {V, Extension, -Scale}; + VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; Dest.push_back(Entry); } } } + +bool BasicAliasAnalysis::constantOffsetHeuristic( + const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, + uint64_t V2Size, int64_t BaseOffset, const DataLayout *DL, + AssumptionCache *AC, DominatorTree *DT) { + if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || + V2Size == MemoryLocation::UnknownSize || !DL) + return false; + + const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; + + if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || + Var0.Scale != -Var1.Scale) + return false; + + unsigned Width = Var1.V->getType()->getIntegerBitWidth(); + + // We'll strip off the Extensions of Var0 and Var1 and do another round + // of GetLinearExpression decomposition. In the example above, if Var0 + // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. + + APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), + V1Offset(Width, 0); + bool NSW = true, NUW = true; + unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; + const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, + V0SExtBits, *DL, 0, AC, DT, NSW, NUW); + NSW = true, NUW = true; + const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, + V1SExtBits, *DL, 0, AC, DT, NSW, NUW); + + if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || + V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) + return false; + + // We have a hit - Var0 and Var1 only differ by a constant offset! + + // If we've been sext'ed then zext'd the maximum difference between Var0 and + // Var1 is possible to calculate, but we're just interested in the absolute + // minumum difference between the two. The minimum distance may occur due to + // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so + // the minimum distance between %i and %i + 5 is 3. + APInt MinDiff = V0Offset - V1Offset, + Wrapped = APInt::getMaxValue(Width) - MinDiff + APInt(Width, 1); + MinDiff = APIntOps::umin(MinDiff, Wrapped); + uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); + + // We can't definitely say whether GEP1 is before or after V2 due to wrapping + // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other + // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and + // V2Size can fit in the MinDiffBytes gap. + return V1Size + std::abs(BaseOffset) <= MinDiffBytes && + V2Size + std::abs(BaseOffset) <= MinDiffBytes; +} |