diff options
Diffstat (limited to 'libc/src/math/generic/exp2.cpp')
-rw-r--r-- | libc/src/math/generic/exp2.cpp | 398 |
1 files changed, 2 insertions, 396 deletions
diff --git a/libc/src/math/generic/exp2.cpp b/libc/src/math/generic/exp2.cpp index 154154f..20e1ff5 100644 --- a/libc/src/math/generic/exp2.cpp +++ b/libc/src/math/generic/exp2.cpp @@ -7,404 +7,10 @@ //===----------------------------------------------------------------------===// #include "src/math/exp2.h" -#include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. -#include "src/__support/CPP/bit.h" -#include "src/__support/CPP/optional.h" -#include "src/__support/FPUtil/FEnvImpl.h" -#include "src/__support/FPUtil/FPBits.h" -#include "src/__support/FPUtil/PolyEval.h" -#include "src/__support/FPUtil/double_double.h" -#include "src/__support/FPUtil/dyadic_float.h" -#include "src/__support/FPUtil/multiply_add.h" -#include "src/__support/FPUtil/nearest_integer.h" -#include "src/__support/FPUtil/rounding_mode.h" -#include "src/__support/FPUtil/triple_double.h" -#include "src/__support/common.h" -#include "src/__support/integer_literals.h" -#include "src/__support/macros/config.h" -#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY -#include "src/__support/math/exp_utils.h" // ziv_test_denorm. +#include "src/__support/math/exp2.h" namespace LIBC_NAMESPACE_DECL { -using fputil::DoubleDouble; -using fputil::TripleDouble; -using Float128 = typename fputil::DyadicFloat<128>; - -using LIBC_NAMESPACE::operator""_u128; - -// Error bounds: -// Errors when using double precision. -#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE -constexpr double ERR_D = 0x1.0p-63; -#else -constexpr double ERR_D = 0x1.8p-63; -#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE - -#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS -// Errors when using double-double precision. -constexpr double ERR_DD = 0x1.0p-100; -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS - -namespace { - -// Polynomial approximations with double precision. Generated by Sollya with: -// > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); -// > P; -// Error bounds: -// | output - (2^dx - 1) / dx | < 1.5 * 2^-52. -LIBC_INLINE double poly_approx_d(double dx) { - // dx^2 - double dx2 = dx * dx; - double c0 = - fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1); - double c1 = - fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5); - double p = fputil::multiply_add(dx2, c1, c0); - return p; -} - -#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS -// Polynomial approximation with double-double precision. Generated by Solya -// with: -// > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); -// Error bounds: -// | output - 2^(dx) | < 2^-101 -DoubleDouble poly_approx_dd(const DoubleDouble &dx) { - // Taylor polynomial. - constexpr DoubleDouble COEFFS[] = { - {0, 0x1p0}, - {0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1}, - {-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3}, - {-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5}, - {0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7}, - {-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10}, - {0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13}, - }; - - DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], - COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); - return p; -} - -// Polynomial approximation with 128-bit precision: -// Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 -// For |dx| < 2^-13 + 2^-30: -// | output - exp(dx) | < 2^-126. -Float128 poly_approx_f128(const Float128 &dx) { - constexpr Float128 COEFFS_128[]{ - {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 - {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128}, - {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128}, - {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128}, - {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128}, - {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128}, - {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128}, - {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128}, - }; - - Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], - COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], - COEFFS_128[6], COEFFS_128[7]); - return p; -} - -// Compute 2^(x) using 128-bit precision. -// TODO(lntue): investigate triple-double precision implementation for this -// step. -Float128 exp2_f128(double x, int hi, int idx1, int idx2) { - Float128 dx = Float128(x); - - // TODO: Skip recalculating exp_mid1 and exp_mid2. - Float128 exp_mid1 = - fputil::quick_add(Float128(EXP2_MID1[idx1].hi), - fputil::quick_add(Float128(EXP2_MID1[idx1].mid), - Float128(EXP2_MID1[idx1].lo))); - - Float128 exp_mid2 = - fputil::quick_add(Float128(EXP2_MID2[idx2].hi), - fputil::quick_add(Float128(EXP2_MID2[idx2].mid), - Float128(EXP2_MID2[idx2].lo))); - - Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); - - Float128 p = poly_approx_f128(dx); - - Float128 r = fputil::quick_mul(exp_mid, p); - - r.exponent += hi; - - return r; -} - -// Compute 2^x with double-double precision. -DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) { - DoubleDouble dx({0, x}); - - // Degree-6 polynomial approximation in double-double precision. - // | p - 2^x | < 2^-103. - DoubleDouble p = poly_approx_dd(dx); - - // Error bounds: 2^-102. - DoubleDouble r = fputil::quick_mult(exp_mid, p); - - return r; -} -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS - -// When output is denormal. -double exp2_denorm(double x) { - // Range reduction. - int k = - static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19); - double kd = static_cast<double>(k); - - uint32_t idx1 = (k >> 6) & 0x3f; - uint32_t idx2 = k & 0x3f; - - int hi = k >> 12; - - DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; - DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; - DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); - - // |dx| < 2^-13 + 2^-30. - double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact - - double mid_lo = dx * exp_mid.hi; - - // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. - double p = poly_approx_d(dx); - - double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); - -#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS - return ziv_test_denorm</*SKIP_ZIV_TEST=*/true>(hi, exp_mid.hi, lo, ERR_D) - .value(); -#else - if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); - LIBC_LIKELY(r.has_value())) - return r.value(); - - // Use double-double - DoubleDouble r_dd = exp2_double_double(dx, exp_mid); - - if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); - LIBC_LIKELY(r.has_value())) - return r.value(); - - // Use 128-bit precision - Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); - - return static_cast<double>(r_f128); -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS -} - -// Check for exceptional cases when: -// * log2(1 - 2^-54) < x < log2(1 + 2^-53) -// * x >= 1024 -// * x <= -1022 -// * x is inf or nan -double set_exceptional(double x) { - using FPBits = typename fputil::FPBits<double>; - FPBits xbits(x); - - uint64_t x_u = xbits.uintval(); - uint64_t x_abs = xbits.abs().uintval(); - - // |x| < log2(1 + 2^-53) - if (x_abs <= 0x3ca71547652b82fd) { - // 2^(x) ~ 1 + x/2 - return fputil::multiply_add(x, 0.5, 1.0); - } - - // x <= -1022 || x >= 1024 or inf/nan. - if (x_u > 0xc08ff00000000000) { - // x <= -1075 or -inf/nan - if (x_u >= 0xc090cc0000000000) { - // exp(-Inf) = 0 - if (xbits.is_inf()) - return 0.0; - - // exp(nan) = nan - if (xbits.is_nan()) - return x; - - if (fputil::quick_get_round() == FE_UPWARD) - return FPBits::min_subnormal().get_val(); - fputil::set_errno_if_required(ERANGE); - fputil::raise_except_if_required(FE_UNDERFLOW); - return 0.0; - } - - return exp2_denorm(x); - } - - // x >= 1024 or +inf/nan - // x is finite - if (x_u < 0x7ff0'0000'0000'0000ULL) { - int rounding = fputil::quick_get_round(); - if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) - return FPBits::max_normal().get_val(); - - fputil::set_errno_if_required(ERANGE); - fputil::raise_except_if_required(FE_OVERFLOW); - } - // x is +inf or nan - return x + FPBits::inf().get_val(); -} - -} // namespace - -LLVM_LIBC_FUNCTION(double, exp2, (double x)) { - using FPBits = typename fputil::FPBits<double>; - FPBits xbits(x); - - uint64_t x_u = xbits.uintval(); - - // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53). - if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 || - (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) || - x_u <= 0x3ca71547652b82fd)) { - return set_exceptional(x); - } - - // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024 - - // Range reduction: - // Let x = (hi + mid1 + mid2) + lo - // in which: - // hi is an integer - // mid1 * 2^6 is an integer - // mid2 * 2^12 is an integer - // then: - // 2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo). - // With this formula: - // - multiplying by 2^hi is exact and cheap, simply by adding the exponent - // field. - // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. - // - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... - // - // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12. - // Since |x| < |-1075)| < 2^11, - // |x * 2^12| < 2^11 * 2^12 < 2^23, - // So we can fit the rounded result round(x * 2^12) in int32_t. - // Thus, the goal is to be able to use an additional addition and fixed width - // shift to get an int32_t representing round(x * 2^12). - // - // Assuming int32_t using 2-complement representation, since the mantissa part - // of a double precision is unsigned with the leading bit hidden, if we add an - // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the - // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be - // considered as a proper 2-complement representations of x*2^12. - // - // One small problem with this approach is that the sum (x*2^12 + C) in - // double precision is rounded to the least significant bit of the dorminant - // factor C. In order to minimize the rounding errors from this addition, we - // want to minimize e1. Another constraint that we want is that after - // shifting the mantissa so that the least significant bit of int32_t - // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without - // any adjustment. So combining these 2 requirements, we can choose - // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence - // after right shifting the mantissa, the resulting int32_t has correct sign. - // With this choice of C, the number of mantissa bits we need to shift to the - // right is: 52 - 33 = 19. - // - // Moreover, since the integer right shifts are equivalent to rounding down, - // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- - // +infinity. So in particular, we can compute: - // hmm = x * 2^12 + C, - // where C = 2^33 + 2^32 + 2^-1, then if - // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), - // the reduced argument: - // lo = x - 2^-12 * k is bounded by: - // |lo| <= 2^-13 + 2^-12*2^-19 - // = 2^-13 + 2^-31. - // - // Finally, notice that k only uses the mantissa of x * 2^12, so the - // exponent 2^12 is not needed. So we can simply define - // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and - // k = int32_t(lower 51 bits of double(x + C) >> 19). - - // Rounding errors <= 2^-31. - int k = - static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19); - double kd = static_cast<double>(k); - - uint32_t idx1 = (k >> 6) & 0x3f; - uint32_t idx2 = k & 0x3f; - - int hi = k >> 12; - - DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; - DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; - DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); - - // |dx| < 2^-13 + 2^-30. - double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact - - // We use the degree-4 polynomial to approximate 2^(lo): - // 2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo) - // So that the errors are bounded by: - // |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 - // Let P_ be an evaluation of P where all intermediate computations are in - // double precision. Using either Horner's or Estrin's schemes, the evaluated - // errors can be bounded by: - // |P_(lo) - P(lo)| < 2^-51 - // => |lo * P_(lo) - (2^lo - 1) | < 2^-64 - // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63. - // Since we approximate - // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, - // We use the expression: - // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ - // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) - // with errors bounded by 2^-63. - - double mid_lo = dx * exp_mid.hi; - - // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. - double p = poly_approx_d(dx); - - double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); - -#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS - // To multiply by 2^hi, a fast way is to simply add hi to the exponent - // field. - int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; - double r = - cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(exp_mid.hi + lo)); - return r; -#else - double upper = exp_mid.hi + (lo + ERR_D); - double lower = exp_mid.hi + (lo - ERR_D); - - if (LIBC_LIKELY(upper == lower)) { - // To multiply by 2^hi, a fast way is to simply add hi to the exponent - // field. - int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; - double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); - return r; - } - - // Use double-double - DoubleDouble r_dd = exp2_double_double(dx, exp_mid); - - double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); - double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); - - if (LIBC_LIKELY(upper_dd == lower_dd)) { - // To multiply by 2^hi, a fast way is to simply add hi to the exponent - // field. - int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; - double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); - return r; - } - - // Use 128-bit precision - Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); - - return static_cast<double>(r_f128); -#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS -} +LLVM_LIBC_FUNCTION(double, exp2, (double x)) { return math::exp2(x); } } // namespace LIBC_NAMESPACE_DECL |