aboutsummaryrefslogtreecommitdiff
path: root/llvm/unittests/ADT/APFloatTest.cpp
diff options
context:
space:
mode:
authorUlrich Weigand <ulrich.weigand@de.ibm.com>2012-10-29 18:09:01 +0000
committerUlrich Weigand <ulrich.weigand@de.ibm.com>2012-10-29 18:09:01 +0000
commitd9f7e259aa289bfc813dd7322d88ed84b417d0e6 (patch)
tree4e58ffabab343fde87c9b0e35908ef5ef5f14335 /llvm/unittests/ADT/APFloatTest.cpp
parent6a3efacc0f36aa5f4273709b8f0129f0379cefb2 (diff)
downloadllvm-d9f7e259aa289bfc813dd7322d88ed84b417d0e6.zip
llvm-d9f7e259aa289bfc813dd7322d88ed84b417d0e6.tar.gz
llvm-d9f7e259aa289bfc813dd7322d88ed84b417d0e6.tar.bz2
Implement arithmetic on APFloat with PPCDoubleDouble semantics by
treating it as if it were an IEEE floating-point type with 106-bit mantissa. This makes compile-time arithmetic on "long double" for PowerPC in clang (in particular parsing of floating point constants) work, and fixes all "long double" related failures in the test suite. llvm-svn: 166951
Diffstat (limited to 'llvm/unittests/ADT/APFloatTest.cpp')
-rw-r--r--llvm/unittests/ADT/APFloatTest.cpp36
1 files changed, 36 insertions, 0 deletions
diff --git a/llvm/unittests/ADT/APFloatTest.cpp b/llvm/unittests/ADT/APFloatTest.cpp
index c8d7177..48d5d83 100644
--- a/llvm/unittests/ADT/APFloatTest.cpp
+++ b/llvm/unittests/ADT/APFloatTest.cpp
@@ -737,4 +737,40 @@ TEST(APFloatTest, convert) {
EXPECT_EQ(4294967295.0, test.convertToDouble());
EXPECT_FALSE(losesInfo);
}
+
+TEST(APFloatTest, PPCDoubleDouble) {
+ APFloat test(APFloat::PPCDoubleDouble, "1.0");
+ EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
+ EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
+
+ test.divide(APFloat(APFloat::PPCDoubleDouble, "3.0"), APFloat::rmNearestTiesToEven);
+ EXPECT_EQ(0x3fd5555555555555ull, test.bitcastToAPInt().getRawData()[0]);
+ EXPECT_EQ(0x3c75555555555556ull, test.bitcastToAPInt().getRawData()[1]);
+
+ // LDBL_MAX
+ test = APFloat(APFloat::PPCDoubleDouble, "1.79769313486231580793728971405301e+308");
+ EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]);
+ EXPECT_EQ(0x7c8ffffffffffffeull, test.bitcastToAPInt().getRawData()[1]);
+
+ // LDBL_MIN
+ test = APFloat(APFloat::PPCDoubleDouble, "2.00416836000897277799610805135016e-292");
+ EXPECT_EQ(0x0360000000000000ull, test.bitcastToAPInt().getRawData()[0]);
+ EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
+
+ test = APFloat(APFloat::PPCDoubleDouble, "1.0");
+ test.add(APFloat(APFloat::PPCDoubleDouble, "0x1p-105"), APFloat::rmNearestTiesToEven);
+ EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
+ EXPECT_EQ(0x3960000000000000ull, test.bitcastToAPInt().getRawData()[1]);
+
+ test = APFloat(APFloat::PPCDoubleDouble, "1.0");
+ test.add(APFloat(APFloat::PPCDoubleDouble, "0x1p-106"), APFloat::rmNearestTiesToEven);
+ EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]);
+#if 0 // XFAIL
+ // This is what we would expect with a true double-double implementation
+ EXPECT_EQ(0x3950000000000000ull, test.bitcastToAPInt().getRawData()[1]);
+#else
+ // This is what we get with our 106-bit mantissa approximation
+ EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]);
+#endif
+}
}