aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
authorEli Friedman <efriedma@codeaurora.org>2017-01-18 23:26:37 +0000
committerEli Friedman <efriedma@codeaurora.org>2017-01-18 23:26:37 +0000
commit0a2174533e1743446a59625ca318c424bfaf0bf2 (patch)
treebdb38c8ecb6a30a0a769b5ed5e4bc90de6b001db /llvm/lib/Transforms/Utils/LoopUnroll.cpp
parentde44c9d8579c8c874b7c54204119da69186623ae (diff)
downloadllvm-0a2174533e1743446a59625ca318c424bfaf0bf2.zip
llvm-0a2174533e1743446a59625ca318c424bfaf0bf2.tar.gz
llvm-0a2174533e1743446a59625ca318c424bfaf0bf2.tar.bz2
Preserve domtree and loop-simplify for runtime unrolling.
Mostly straightforward changes; we just didn't do the computation before. One sort of interesting change in LoopUnroll.cpp: we weren't handling dominance for children of the loop latch correctly, but foldBlockIntoPredecessor hid the problem for complete unrolling. Currently punting on loop peeling; made some minor changes to isolate that problem to LoopUnrollPeel.cpp. Adds a flag -unroll-verify-domtree; it verifies the domtree immediately after we finish updating it. This is on by default for +Asserts builds. Differential Revision: https://reviews.llvm.org/D28073 llvm-svn: 292447
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/LoopUnroll.cpp56
1 files changed, 40 insertions, 16 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
index f9a602b..9ea4a4b 100644
--- a/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -51,6 +51,16 @@ UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
cl::desc("Allow runtime unrolled loops to be unrolled "
"with epilog instead of prolog."));
+static cl::opt<bool>
+UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
+ cl::desc("Verify domtree after unrolling"),
+#ifdef NDEBUG
+ cl::init(false)
+#else
+ cl::init(true)
+#endif
+ );
+
/// Convert the instruction operands from referencing the current values into
/// those specified by VMap.
static inline void remapInstruction(Instruction *I,
@@ -327,7 +337,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
"and peeling for the same loop");
if (PeelCount)
- peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA);
+ peelLoop(L, PeelCount, LI, SE, DT, AC, PreserveLCSSA);
// Loops containing convergent instructions must have a count that divides
// their TripMultiple.
@@ -612,14 +622,11 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
Term->eraseFromParent();
}
}
+
// Update dominators of blocks we might reach through exits.
// Immediate dominator of such block might change, because we add more
// routes which can lead to the exit: we can now reach it from the copied
- // iterations too. Thus, the new idom of the block will be the nearest
- // common dominator of the previous idom and common dominator of all copies of
- // the previous idom. This is equivalent to the nearest common dominator of
- // the previous idom and the first latch, which dominates all copies of the
- // previous idom.
+ // iterations too.
if (DT && Count > 1) {
for (auto *BB : OriginalLoopBlocks) {
auto *BBDomNode = DT->getNode(BB);
@@ -629,12 +636,38 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
if (!L->contains(ChildBB))
ChildrenToUpdate.push_back(ChildBB);
}
- BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
+ BasicBlock *NewIDom;
+ if (BB == LatchBlock) {
+ // The latch is special because we emit unconditional branches in
+ // some cases where the original loop contained a conditional branch.
+ // Since the latch is always at the bottom of the loop, if the latch
+ // dominated an exit before unrolling, the new dominator of that exit
+ // must also be a latch. Specifically, the dominator is the first
+ // latch which ends in a conditional branch, or the last latch if
+ // there is no such latch.
+ NewIDom = Latches.back();
+ for (BasicBlock *IterLatch : Latches) {
+ TerminatorInst *Term = IterLatch->getTerminator();
+ if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
+ NewIDom = IterLatch;
+ break;
+ }
+ }
+ } else {
+ // The new idom of the block will be the nearest common dominator
+ // of all copies of the previous idom. This is equivalent to the
+ // nearest common dominator of the previous idom and the first latch,
+ // which dominates all copies of the previous idom.
+ NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
+ }
for (auto *ChildBB : ChildrenToUpdate)
DT->changeImmediateDominator(ChildBB, NewIDom);
}
}
+ if (DT && UnrollVerifyDomtree)
+ DT->verifyDomTree();
+
// Merge adjacent basic blocks, if possible.
SmallPtrSet<Loop *, 4> ForgottenLoops;
for (BasicBlock *Latch : Latches) {
@@ -652,13 +685,6 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
}
}
- // FIXME: We only preserve DT info for complete unrolling now. Incrementally
- // updating domtree after partial loop unrolling should also be easy.
- if (DT && !CompletelyUnroll)
- DT->recalculate(*L->getHeader()->getParent());
- else if (DT)
- DEBUG(DT->verifyDomTree());
-
// Simplify any new induction variables in the partially unrolled loop.
if (SE && !CompletelyUnroll && Count > 1) {
SmallVector<WeakVH, 16> DeadInsts;
@@ -718,8 +744,6 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
// at least one layer outside of the loop that was unrolled so that any
// changes to the parent loop exposed by the unrolling are considered.
if (DT) {
- if (!OuterL && !CompletelyUnroll)
- OuterL = L;
if (OuterL) {
// OuterL includes all loops for which we can break loop-simplify, so
// it's sufficient to simplify only it (it'll recursively simplify inner