diff options
author | David Majnemer <david.majnemer@gmail.com> | 2014-12-26 09:10:14 +0000 |
---|---|---|
committer | David Majnemer <david.majnemer@gmail.com> | 2014-12-26 09:10:14 +0000 |
commit | 54c2ca25392d242fcf1e5cdc3d97737c8b002384 (patch) | |
tree | 5c6c018a438ea98ddc5274fd43f9d0f358ddba94 /llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | |
parent | ee9eef2fd865632d7ae8f8f8f05b37b2cc518afe (diff) | |
download | llvm-54c2ca25392d242fcf1e5cdc3d97737c8b002384.zip llvm-54c2ca25392d242fcf1e5cdc3d97737c8b002384.tar.gz llvm-54c2ca25392d242fcf1e5cdc3d97737c8b002384.tar.bz2 |
InstCombe: Infer nsw for multiplies
We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.
llvm-svn: 224847
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index 3956869..5beaf00 100644 --- a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -123,6 +123,48 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) { return ConstantVector::get(Elts); } +/// \brief Return true if we can prove that: +/// (mul LHS, RHS) === (mul nsw LHS, RHS) +bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, + Instruction *CxtI) { + // Multiplying n * m significant bits yields a result of n + m significant + // bits. If the total number of significant bits does not exceed the + // result bit width (minus 1), there is no overflow. + // This means if we have enough leading sign bits in the operands + // we can guarantee that the result does not overflow. + // Ref: "Hacker's Delight" by Henry Warren + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + + // Note that underestimating the number of sign bits gives a more + // conservative answer. + unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) + + ComputeNumSignBits(RHS, 0, CxtI); + + // First handle the easy case: if we have enough sign bits there's + // definitely no overflow. + if (SignBits > BitWidth + 1) + return true; + + // There are two ambiguous cases where there can be no overflow: + // SignBits == BitWidth + 1 and + // SignBits == BitWidth + // The second case is difficult to check, therefore we only handle the + // first case. + if (SignBits == BitWidth + 1) { + // It overflows only when both arguments are negative and the true + // product is exactly the minimum negative number. + // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 + // For simplicity we just check if at least one side is not negative. + bool LHSNonNegative, LHSNegative; + bool RHSNonNegative, RHSNegative; + ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, CxtI); + ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, CxtI); + if (LHSNonNegative || RHSNonNegative) + return true; + } + return false; +} + Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); @@ -333,6 +375,11 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } } + if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, &I)) { + Changed = true; + I.setHasNoSignedWrap(true); + } + return Changed ? &I : nullptr; } |