aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
diff options
context:
space:
mode:
authorChandler Carruth <chandlerc@gmail.com>2015-09-09 17:55:00 +0000
committerChandler Carruth <chandlerc@gmail.com>2015-09-09 17:55:00 +0000
commit7b560d40bddfb60f162a7541288aeba3776f79f8 (patch)
tree45e847128a4ac917c5cc9b92ed5b1e4d0792f8ed /llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
parent80595460d85d586c22e67bf3b2828d5dc2ecdbf7 (diff)
downloadllvm-7b560d40bddfb60f162a7541288aeba3776f79f8.zip
llvm-7b560d40bddfb60f162a7541288aeba3776f79f8.tar.gz
llvm-7b560d40bddfb60f162a7541288aeba3776f79f8.tar.bz2
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
Diffstat (limited to 'llvm/lib/Transforms/IPO/ArgumentPromotion.cpp')
-rw-r--r--llvm/lib/Transforms/IPO/ArgumentPromotion.cpp33
1 files changed, 23 insertions, 10 deletions
diff --git a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
index f330f2e..eb55dcf 100644
--- a/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
+++ b/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -34,8 +34,11 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
@@ -63,7 +66,8 @@ namespace {
///
struct ArgPromotion : public CallGraphSCCPass {
void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AliasAnalysis>();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
@@ -81,7 +85,8 @@ namespace {
bool isDenselyPacked(Type *type, const DataLayout &DL);
bool canPaddingBeAccessed(Argument *Arg);
CallGraphNode *PromoteArguments(CallGraphNode *CGN);
- bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
+ bool isSafeToPromoteArgument(Argument *Arg, bool isByVal,
+ AAResults &AAR) const;
CallGraphNode *DoPromotion(Function *F,
SmallPtrSetImpl<Argument*> &ArgsToPromote,
SmallPtrSetImpl<Argument*> &ByValArgsToTransform);
@@ -97,8 +102,9 @@ namespace {
char ArgPromotion::ID = 0;
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false, false)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
"Promote 'by reference' arguments to scalars", false, false)
@@ -237,6 +243,14 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
const DataLayout &DL = F->getParent()->getDataLayout();
+ // We need to manually construct BasicAA directly in order to disable its use
+ // of other function analyses.
+ BasicAAResult BAR(createLegacyPMBasicAAResult(*this, *F));
+
+ // Construct our own AA results for this function. We do this manually to
+ // work around the limitations of the legacy pass manager.
+ AAResults AAR(createLegacyPMAAResults(*this, *F, BAR));
+
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
SmallPtrSet<Argument*, 8> ArgsToPromote;
@@ -315,7 +329,7 @@ CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
}
// Otherwise, see if we can promote the pointer to its value.
- if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr()))
+ if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR))
ArgsToPromote.insert(PtrArg);
}
@@ -416,7 +430,8 @@ static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
/// elements of the aggregate in order to avoid exploding the number of
/// arguments passed in.
bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
- bool isByValOrInAlloca) const {
+ bool isByValOrInAlloca,
+ AAResults &AAR) const {
typedef std::set<IndicesVector> GEPIndicesSet;
// Quick exit for unused arguments
@@ -505,7 +520,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// TODO: This runs the above loop over and over again for dead GEPs
// Couldn't we just do increment the UI iterator earlier and erase the
// use?
- return isSafeToPromoteArgument(Arg, isByValOrInAlloca);
+ return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR);
}
// Ensure that all of the indices are constants.
@@ -562,8 +577,6 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// blocks we know to be transparent to the load.
SmallPtrSet<BasicBlock*, 16> TranspBlocks;
- AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
-
for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
@@ -571,7 +584,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
BasicBlock *BB = Load->getParent();
MemoryLocation Loc = MemoryLocation::get(Load);
- if (AA.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
+ if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, MRI_Mod))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
@@ -579,7 +592,7 @@ bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg,
// loading block.
for (BasicBlock *P : predecessors(BB)) {
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
- if (AA.canBasicBlockModify(*TranspBB, Loc))
+ if (AAR.canBasicBlockModify(*TranspBB, Loc))
return false;
}
}