aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Bitcode/Reader/BitcodeAnalyzer.cpp
diff options
context:
space:
mode:
authorGuray Ozen <guray.ozen@gmail.com>2023-11-16 14:42:17 +0100
committerGitHub <noreply@github.com>2023-11-16 14:42:17 +0100
commitea84897ba3e7727a3aa3fbd6d84b6b4ab573c70d (patch)
tree9ee8724136c0cdbb7b4dc7a6d21d471629f7c2d3 /llvm/lib/Bitcode/Reader/BitcodeAnalyzer.cpp
parent108380da357e2db513f016d33adede0d58636bea (diff)
downloadllvm-ea84897ba3e7727a3aa3fbd6d84b6b4ab573c70d.zip
llvm-ea84897ba3e7727a3aa3fbd6d84b6b4ab573c70d.tar.gz
llvm-ea84897ba3e7727a3aa3fbd6d84b6b4ab573c70d.tar.bz2
[mlir][gpu] Introduce `gpu.dynamic_shared_memory` Op (#71546)
While the `gpu.launch` Op allows setting the size via the `dynamic_shared_memory_size` argument, accessing the dynamic shared memory is very convoluted. This PR implements the proposed Op, `gpu.dynamic_shared_memory` that aims to simplify the utilization of dynamic shared memory. RFC: https://discourse.llvm.org/t/rfc-simplifying-dynamic-shared-memory-access-in-gpu/ **Proposal from RFC** This PR `gpu.dynamic.shared.memory` Op to use dynamic shared memory feature efficiently. It is is a powerful feature that enables the allocation of shared memory at runtime with the kernel launch on the host. Afterwards, the memory can be accessed directly from the device. I believe similar story exists for AMDGPU. **Current way Using Dynamic Shared Memory with MLIR** Let me illustrate the challenges of using dynamic shared memory in MLIR with an example below. The process involves several steps: - memref.global 0-sized array LLVM's NVPTX backend expects - dynamic_shared_memory_size Set the size of dynamic shared memory - memref.get_global Access the global symbol - reinterpret_cast and subview Many OPs for pointer arithmetic ``` // Step 1. Create 0-sized global symbol. Manually set the alignment memref.global "private" @dynamicShmem : memref<0xf16, 3> { alignment = 16 } func.func @main() { // Step 2. Allocate shared memory gpu.launch blocks(...) threads(...) dynamic_shared_memory_size %c10000 { // Step 3. Access the global object %shmem = memref.get_global @dynamicShmem : memref<0xf16, 3> // Step 4. A sequence of `memref.reinterpret_cast` and `memref.subview` operations. %4 = memref.reinterpret_cast %shmem to offset: [0], sizes: [14, 64, 128], strides: [8192,128,1] : memref<0xf16, 3> to memref<14x64x128xf16,3> %5 = memref.subview %4[7, 0, 0][7, 64, 128][1,1,1] : memref<14x64x128xf16,3> to memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3> %6 = memref.subview %5[2, 0, 0][1, 64, 128][1,1,1] : memref<7x64x128xf16, strided<[8192, 128, 1], offset: 57344>, 3> to memref<64x128xf16, strided<[128, 1], offset: 73728>, 3> %7 = memref.subview %6[0, 0][64, 64][1,1] : memref<64x128xf16, strided<[128, 1], offset: 73728>, 3> to memref<64x64xf16, strided<[128, 1], offset: 73728>, 3> %8 = memref.subview %6[32, 0][64, 64][1,1] : memref<64x128xf16, strided<[128, 1], offset: 73728>, 3> to memref<64x64xf16, strided<[128, 1], offset: 77824>, 3> // Step.5 Use "test.use.shared.memory"(%7) : (memref<64x64xf16, strided<[128, 1], offset: 73728>, 3>) -> (index) "test.use.shared.memory"(%8) : (memref<64x64xf16, strided<[128, 1], offset: 77824>, 3>) -> (index) gpu.terminator } ``` Let’s write the program above with that: ``` func.func @main() { gpu.launch blocks(...) threads(...) dynamic_shared_memory_size %c10000 { %i = arith.constant 18 : index // Step 1: Obtain shared memory directly %shmem = gpu.dynamic_shared_memory : memref<?xi8, 3> %c147456 = arith.constant 147456 : index %c155648 = arith.constant 155648 : index %7 = memref.view %shmem[%c147456][] : memref<?xi8, 3> to memref<64x64xf16, 3> %8 = memref.view %shmem[%c155648][] : memref<?xi8, 3> to memref<64x64xf16, 3> // Step 2: Utilize the shared memory "test.use.shared.memory"(%7) : (memref<64x64xf16, 3>) -> (index) "test.use.shared.memory"(%8) : (memref<64x64xf16, 3>) -> (index) } } ``` This PR resolves #72513
Diffstat (limited to 'llvm/lib/Bitcode/Reader/BitcodeAnalyzer.cpp')
0 files changed, 0 insertions, 0 deletions