diff options
author | Max Kazantsev <max.kazantsev@azul.com> | 2017-06-19 06:24:53 +0000 |
---|---|---|
committer | Max Kazantsev <max.kazantsev@azul.com> | 2017-06-19 06:24:53 +0000 |
commit | 35b2a18eb96d0a38b8a9f6faaed6ecfe9fc70c8e (patch) | |
tree | ef99abe13d37d84515ad3a370c64e437e61ff32c /llvm/lib/Analysis/ScalarEvolutionExpander.cpp | |
parent | f91b030a95febe320e400d499ed4749f69572aab (diff) | |
download | llvm-35b2a18eb96d0a38b8a9f6faaed6ecfe9fc70c8e.zip llvm-35b2a18eb96d0a38b8a9f6faaed6ecfe9fc70c8e.tar.gz llvm-35b2a18eb96d0a38b8a9f6faaed6ecfe9fc70c8e.tar.bz2 |
[SCEV] Teach SCEVExpander to expand BinPow
Current implementation of SCEVExpander demonstrates a very naive behavior when
it deals with power calculation. For example, a SCEV for x^8 looks like
(x * x * x * x * x * x * x * x)
If we try to expand it, it generates a very straightforward sequence of muls, like:
x2 = mul x, x
x3 = mul x2, x
x4 = mul x3, x
...
x8 = mul x7, x
This is a non-efficient way of doing that. A better way is to generate a sequence of
binary power calculation. In this case the expanded calculation will look like:
x2 = mul x, x
x4 = mul x2, x2
x8 = mul x4, x4
In some cases the code size reduction for such SCEVs is dramatic. If we had a loop:
x = a;
for (int i = 0; i < 3; i++)
x = x * x;
And this loop have been fully unrolled, we have something like:
x = a;
x2 = x * x;
x4 = x2 * x2;
x8 = x4 * x4;
The SCEV for x8 is the same as in example above, and if we for some reason
want to expand it, we will generate naively 7 multiplications instead of 3.
The BinPow expansion algorithm here allows to keep code size reasonable.
This patch teaches SCEV Expander to generate a sequence of BinPow multiplications
if we have repeating arguments in SCEVMulExpressions.
Differential Revision: https://reviews.llvm.org/D34025
llvm-svn: 305663
Diffstat (limited to 'llvm/lib/Analysis/ScalarEvolutionExpander.cpp')
-rw-r--r-- | llvm/lib/Analysis/ScalarEvolutionExpander.cpp | 48 |
1 files changed, 43 insertions, 5 deletions
diff --git a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp index f9b9df2..47bdac0 100644 --- a/llvm/lib/Analysis/ScalarEvolutionExpander.cpp +++ b/llvm/lib/Analysis/ScalarEvolutionExpander.cpp @@ -748,18 +748,56 @@ Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { // Emit instructions to mul all the operands. Hoist as much as possible // out of loops. Value *Prod = nullptr; - for (const auto &I : OpsAndLoops) { - const SCEV *Op = I.second; + auto I = OpsAndLoops.begin(); + + // Expand the calculation of X pow N in the following manner: + // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: + // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). + const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { + auto E = I; + // Calculate how many times the same operand from the same loop is included + // into this power. + uint64_t Exponent = 0; + const uint64_t MaxExponent = UINT64_MAX >> 1; + // No one sane will ever try to calculate such huge exponents, but if we + // need this, we stop on UINT64_MAX / 2 because we need to exit the loop + // below when the power of 2 exceeds our Exponent, and we want it to be + // 1u << 31 at most to not deal with unsigned overflow. + while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { + ++Exponent; + ++E; + } + assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); + + // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them + // that are needed into the result. + Value *P = expandCodeFor(I->second, Ty); + Value *Result = nullptr; + if (Exponent & 1) + Result = P; + for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { + P = InsertBinop(Instruction::Mul, P, P); + if (Exponent & BinExp) + Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P; + } + + I = E; + assert(Result && "Nothing was expanded?"); + return Result; + }; + + while (I != OpsAndLoops.end()) { if (!Prod) { // This is the first operand. Just expand it. - Prod = expand(Op); - } else if (Op->isAllOnesValue()) { + Prod = ExpandOpBinPowN(); + } else if (I->second->isAllOnesValue()) { // Instead of doing a multiply by negative one, just do a negate. Prod = InsertNoopCastOfTo(Prod, Ty); Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); + ++I; } else { // A simple mul. - Value *W = expandCodeFor(Op, Ty); + Value *W = ExpandOpBinPowN(); Prod = InsertNoopCastOfTo(Prod, Ty); // Canonicalize a constant to the RHS. if (isa<Constant>(Prod)) std::swap(Prod, W); |