aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LoopCacheAnalysis.cpp
diff options
context:
space:
mode:
authorRachel Craik <rcraik@ca.ibm.com>2020-02-10 13:14:59 -0500
committerRachel Craik <rcraik@ca.ibm.com>2020-02-10 13:22:35 -0500
commit1f5542006502784e21e1a832221ff8cb56c7dbd2 (patch)
treebd1867117b8d6afb360b46bcd4378ee6bdc84165 /llvm/lib/Analysis/LoopCacheAnalysis.cpp
parent92e267a94dc4272511be674062f8a3e8897b7083 (diff)
downloadllvm-1f5542006502784e21e1a832221ff8cb56c7dbd2.zip
llvm-1f5542006502784e21e1a832221ff8cb56c7dbd2.tar.gz
llvm-1f5542006502784e21e1a832221ff8cb56c7dbd2.tar.bz2
[LoopCacheAnalysis]: Add support for negative stride
LoopCacheAnalysis currently assumes the loop will be iterated over in a forward direction. This patch addresses the issue by using the absolute value of the stride when iterating backwards. Note: this patch will treat negative and positive array access the same, resulting in the same cost being calculated for single and bi-directional access patterns. This should be improved in a subsequent patch. Reviewed By: jdoerfert Differential Revision: https://reviews.llvm.org/D73064
Diffstat (limited to 'llvm/lib/Analysis/LoopCacheAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/LoopCacheAnalysis.cpp37
1 files changed, 35 insertions, 2 deletions
diff --git a/llvm/lib/Analysis/LoopCacheAnalysis.cpp b/llvm/lib/Analysis/LoopCacheAnalysis.cpp
index 25325ec..c08a84e 100644
--- a/llvm/lib/Analysis/LoopCacheAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopCacheAnalysis.cpp
@@ -90,7 +90,11 @@ static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
return false;
- return AR->getStepRecurrence(SE) == &ElemSize;
+ const SCEV *StepRec = AR->getStepRecurrence(SE);
+ if (StepRec && SE.isKnownNegative(StepRec))
+ StepRec = SE.getNegativeSCEV(StepRec);
+
+ return StepRec == &ElemSize;
}
/// Compute the trip count for the given loop \p L. Return the SCEV expression
@@ -285,10 +289,13 @@ CacheCostTy IndexedReference::computeRefCost(const Loop &L,
const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
- Stride = SE.getNoopOrSignExtend(Stride, WiderType);
+ if (SE.isKnownNegative(Stride))
+ Stride = SE.getNegativeSCEV(Stride);
+ Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
+
LLVM_DEBUG(dbgs().indent(4)
<< "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
<< *RefCost << "\n");
@@ -349,6 +356,19 @@ bool IndexedReference::delinearize(const LoopInfo &LI) {
return false;
}
+ // The array may be accessed in reverse, for example:
+ // for (i = N; i > 0; i--)
+ // A[i] = 0;
+ // In this case, reconstruct the access function using the absolute value
+ // of the step recurrence.
+ const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
+ const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
+
+ if (StepRec && SE.isKnownNegative(StepRec))
+ AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
+ SE.getNegativeSCEV(StepRec),
+ AccessFnAR->getLoop(),
+ AccessFnAR->getNoWrapFlags());
const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
Subscripts.push_back(Div);
Sizes.push_back(ElemSize);
@@ -396,6 +416,7 @@ bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
+ Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
}
@@ -537,6 +558,18 @@ bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
dbgs().indent(2) << Representative << "\n";
});
+
+ // FIXME: Both positive and negative access functions will be placed
+ // into the same reference group, resulting in a bi-directional array
+ // access such as:
+ // for (i = N; i > 0; i--)
+ // A[i] = A[N - i];
+ // having the same cost calculation as a single dimention access pattern
+ // for (i = 0; i < N; i++)
+ // A[i] = A[i];
+ // when in actuality, depending on the array size, the first example
+ // should have a cost closer to 2x the second due to the two cache
+ // access per iteration from opposite ends of the array
Optional<bool> HasTemporalReuse =
R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
Optional<bool> HasSpacialReuse =