aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/LoopAccessAnalysis.cpp
diff options
context:
space:
mode:
authorFlorian Hahn <flo@fhahn.com>2025-08-01 14:18:07 +0100
committerGitHub <noreply@github.com>2025-08-01 14:18:07 +0100
commit2ae996cbbe92f006d711eeeb8f29e0946fc1c1e8 (patch)
tree9016795ce5fd22d4c66fa7a255238a75b5258231 /llvm/lib/Analysis/LoopAccessAnalysis.cpp
parent6da1a0908a975a55adb5eae293b37ae0a850b21d (diff)
downloadllvm-2ae996cbbe92f006d711eeeb8f29e0946fc1c1e8.zip
llvm-2ae996cbbe92f006d711eeeb8f29e0946fc1c1e8.tar.gz
llvm-2ae996cbbe92f006d711eeeb8f29e0946fc1c1e8.tar.bz2
[LAA] Support assumptions in evaluatePtrAddRecAtMaxBTCWillNotWrap (#147047)
This patch extends the logic added in https://github.com/llvm/llvm-project/pull/128061 to support dereferenceability information from assumptions as well. Unfortunately both assumption cache and the dominator tree need to be threaded through multiple layers to make them available where needed. PR: https://github.com/llvm/llvm-project/pull/147047
Diffstat (limited to 'llvm/lib/Analysis/LoopAccessAnalysis.cpp')
-rw-r--r--llvm/lib/Analysis/LoopAccessAnalysis.cpp76
1 files changed, 49 insertions, 27 deletions
diff --git a/llvm/lib/Analysis/LoopAccessAnalysis.cpp b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
index 14be385..a553533 100644
--- a/llvm/lib/Analysis/LoopAccessAnalysis.cpp
+++ b/llvm/lib/Analysis/LoopAccessAnalysis.cpp
@@ -23,6 +23,8 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
@@ -208,28 +210,46 @@ static const SCEV *mulSCEVOverflow(const SCEV *A, const SCEV *B,
/// Return true, if evaluating \p AR at \p MaxBTC cannot wrap, because \p AR at
/// \p MaxBTC is guaranteed inbounds of the accessed object.
-static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR,
- const SCEV *MaxBTC,
- const SCEV *EltSize,
- ScalarEvolution &SE,
- const DataLayout &DL) {
+static bool
+evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR,
+ const SCEV *MaxBTC, const SCEV *EltSize,
+ ScalarEvolution &SE, const DataLayout &DL,
+ DominatorTree *DT, AssumptionCache *AC) {
auto *PointerBase = SE.getPointerBase(AR->getStart());
auto *StartPtr = dyn_cast<SCEVUnknown>(PointerBase);
if (!StartPtr)
return false;
+ const Loop *L = AR->getLoop();
bool CheckForNonNull, CheckForFreed;
- uint64_t DerefBytes = StartPtr->getValue()->getPointerDereferenceableBytes(
+ Value *StartPtrV = StartPtr->getValue();
+ uint64_t DerefBytes = StartPtrV->getPointerDereferenceableBytes(
DL, CheckForNonNull, CheckForFreed);
- if (CheckForNonNull || CheckForFreed)
+ if (DerefBytes && (CheckForNonNull || CheckForFreed))
return false;
const SCEV *Step = AR->getStepRecurrence(SE);
+ Type *WiderTy = SE.getWiderType(MaxBTC->getType(), Step->getType());
+ const SCEV *DerefBytesSCEV = SE.getConstant(WiderTy, DerefBytes);
+
+ // Check if we have a suitable dereferencable assumption we can use.
+ if (!StartPtrV->canBeFreed()) {
+ RetainedKnowledge DerefRK = getKnowledgeValidInContext(
+ StartPtrV, {Attribute::Dereferenceable}, *AC,
+ L->getLoopPredecessor()->getTerminator(), DT);
+ if (DerefRK) {
+ DerefBytesSCEV = SE.getUMaxExpr(
+ DerefBytesSCEV, SE.getConstant(WiderTy, DerefRK.ArgValue));
+ }
+ }
+
+ if (DerefBytesSCEV->isZero())
+ return false;
+
bool IsKnownNonNegative = SE.isKnownNonNegative(Step);
if (!IsKnownNonNegative && !SE.isKnownNegative(Step))
return false;
- Type *WiderTy = SE.getWiderType(MaxBTC->getType(), Step->getType());
Step = SE.getNoopOrSignExtend(Step, WiderTy);
MaxBTC = SE.getNoopOrZeroExtend(MaxBTC, WiderTy);
@@ -256,8 +276,7 @@ static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR,
const SCEV *EndBytes = addSCEVNoOverflow(StartOffset, OffsetEndBytes, SE);
if (!EndBytes)
return false;
- return SE.isKnownPredicate(CmpInst::ICMP_ULE, EndBytes,
- SE.getConstant(WiderTy, DerefBytes));
+ return SE.isKnownPredicate(CmpInst::ICMP_ULE, EndBytes, DerefBytesSCEV);
}
// For negative steps check if
@@ -265,15 +284,15 @@ static bool evaluatePtrAddRecAtMaxBTCWillNotWrap(const SCEVAddRecExpr *AR,
// * StartOffset <= DerefBytes.
assert(SE.isKnownNegative(Step) && "must be known negative");
return SE.isKnownPredicate(CmpInst::ICMP_SGE, StartOffset, OffsetEndBytes) &&
- SE.isKnownPredicate(CmpInst::ICMP_ULE, StartOffset,
- SE.getConstant(WiderTy, DerefBytes));
+ SE.isKnownPredicate(CmpInst::ICMP_ULE, StartOffset, DerefBytesSCEV);
}
std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *BTC,
const SCEV *MaxBTC, ScalarEvolution *SE,
DenseMap<std::pair<const SCEV *, Type *>,
- std::pair<const SCEV *, const SCEV *>> *PointerBounds) {
+ std::pair<const SCEV *, const SCEV *>> *PointerBounds,
+ DominatorTree *DT, AssumptionCache *AC) {
std::pair<const SCEV *, const SCEV *> *PtrBoundsPair;
if (PointerBounds) {
auto [Iter, Ins] = PointerBounds->insert(
@@ -308,8 +327,8 @@ std::pair<const SCEV *, const SCEV *> llvm::getStartAndEndForAccess(
// sets ScEnd to the maximum unsigned value for the type. Note that LAA
// separately checks that accesses cannot not wrap, so unsigned max
// represents an upper bound.
- if (evaluatePtrAddRecAtMaxBTCWillNotWrap(AR, MaxBTC, EltSizeSCEV, *SE,
- DL)) {
+ if (evaluatePtrAddRecAtMaxBTCWillNotWrap(AR, MaxBTC, EltSizeSCEV, *SE, DL,
+ DT, AC)) {
ScEnd = AR->evaluateAtIteration(MaxBTC, *SE);
} else {
ScEnd = SE->getAddExpr(
@@ -356,9 +375,9 @@ void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
bool NeedsFreeze) {
const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
const SCEV *BTC = PSE.getBackedgeTakenCount();
- const auto &[ScStart, ScEnd] =
- getStartAndEndForAccess(Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC,
- PSE.getSE(), &DC.getPointerBounds());
+ const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
+ Lp, PtrExpr, AccessTy, BTC, SymbolicMaxBTC, PSE.getSE(),
+ &DC.getPointerBounds(), DC.getDT(), DC.getAC());
assert(!isa<SCEVCouldNotCompute>(ScStart) &&
!isa<SCEVCouldNotCompute>(ScEnd) &&
"must be able to compute both start and end expressions");
@@ -1961,13 +1980,15 @@ bool MemoryDepChecker::areAccessesCompletelyBeforeOrAfter(const SCEV *Src,
const SCEV *BTC = PSE.getBackedgeTakenCount();
const SCEV *SymbolicMaxBTC = PSE.getSymbolicMaxBackedgeTakenCount();
ScalarEvolution &SE = *PSE.getSE();
- const auto &[SrcStart_, SrcEnd_] = getStartAndEndForAccess(
- InnermostLoop, Src, SrcTy, BTC, SymbolicMaxBTC, &SE, &PointerBounds);
+ const auto &[SrcStart_, SrcEnd_] =
+ getStartAndEndForAccess(InnermostLoop, Src, SrcTy, BTC, SymbolicMaxBTC,
+ &SE, &PointerBounds, DT, AC);
if (isa<SCEVCouldNotCompute>(SrcStart_) || isa<SCEVCouldNotCompute>(SrcEnd_))
return false;
- const auto &[SinkStart_, SinkEnd_] = getStartAndEndForAccess(
- InnermostLoop, Sink, SinkTy, BTC, SymbolicMaxBTC, &SE, &PointerBounds);
+ const auto &[SinkStart_, SinkEnd_] =
+ getStartAndEndForAccess(InnermostLoop, Sink, SinkTy, BTC, SymbolicMaxBTC,
+ &SE, &PointerBounds, DT, AC);
if (isa<SCEVCouldNotCompute>(SinkStart_) ||
isa<SCEVCouldNotCompute>(SinkEnd_))
return false;
@@ -3002,7 +3023,7 @@ LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
const TargetTransformInfo *TTI,
const TargetLibraryInfo *TLI, AAResults *AA,
DominatorTree *DT, LoopInfo *LI,
- bool AllowPartial)
+ AssumptionCache *AC, bool AllowPartial)
: PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
PtrRtChecking(nullptr), TheLoop(L), AllowPartial(AllowPartial) {
unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
@@ -3012,8 +3033,8 @@ LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
MaxTargetVectorWidthInBits =
TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) * 2;
- DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
- MaxTargetVectorWidthInBits);
+ DepChecker = std::make_unique<MemoryDepChecker>(
+ *PSE, AC, DT, L, SymbolicStrides, MaxTargetVectorWidthInBits);
PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
if (canAnalyzeLoop())
CanVecMem = analyzeLoop(AA, LI, TLI, DT);
@@ -3082,7 +3103,7 @@ const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L,
// or if it was created with a different value of AllowPartial.
if (Inserted || It->second->hasAllowPartial() != AllowPartial)
It->second = std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT,
- &LI, AllowPartial);
+ &LI, AC, AllowPartial);
return *It->second;
}
@@ -3125,7 +3146,8 @@ LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
auto &LI = FAM.getResult<LoopAnalysis>(F);
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
- return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
+ auto &AC = FAM.getResult<AssumptionAnalysis>(F);
+ return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI, &AC);
}
AnalysisKey LoopAccessAnalysis::Key;