diff options
author | Chandler Carruth <chandlerc@gmail.com> | 2015-09-09 17:55:00 +0000 |
---|---|---|
committer | Chandler Carruth <chandlerc@gmail.com> | 2015-09-09 17:55:00 +0000 |
commit | 7b560d40bddfb60f162a7541288aeba3776f79f8 (patch) | |
tree | 45e847128a4ac917c5cc9b92ed5b1e4d0792f8ed /llvm/lib/Analysis/AliasAnalysis.cpp | |
parent | 80595460d85d586c22e67bf3b2828d5dc2ecdbf7 (diff) | |
download | llvm-7b560d40bddfb60f162a7541288aeba3776f79f8.zip llvm-7b560d40bddfb60f162a7541288aeba3776f79f8.tar.gz llvm-7b560d40bddfb60f162a7541288aeba3776f79f8.tar.bz2 |
[PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
Diffstat (limited to 'llvm/lib/Analysis/AliasAnalysis.cpp')
-rw-r--r-- | llvm/lib/Analysis/AliasAnalysis.cpp | 441 |
1 files changed, 234 insertions, 207 deletions
diff --git a/llvm/lib/Analysis/AliasAnalysis.cpp b/llvm/lib/Analysis/AliasAnalysis.cpp index 4d4a302..26ab74b 100644 --- a/llvm/lib/Analysis/AliasAnalysis.cpp +++ b/llvm/lib/Analysis/AliasAnalysis.cpp @@ -25,9 +25,16 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CFLAliasAnalysis.h" #include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/ObjCARCAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScopedNoAliasAA.h" #include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TypeBasedAliasAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" @@ -40,34 +47,72 @@ #include "llvm/Pass.h" using namespace llvm; -// Register the AliasAnalysis interface, providing a nice name to refer to. -INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA) -char AliasAnalysis::ID = 0; +/// Allow disabling BasicAA from the AA results. This is particularly useful +/// when testing to isolate a single AA implementation. +static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, + cl::init(false)); + +AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) { + for (auto &AA : AAs) + AA->setAAResults(this); +} + +AAResults &AAResults::operator=(AAResults &&Arg) { + AAs = std::move(Arg.AAs); + for (auto &AA : AAs) + AA->setAAResults(this); + return *this; +} + +AAResults::~AAResults() { +// FIXME; It would be nice to at least clear out the pointers back to this +// aggregation here, but we end up with non-nesting lifetimes in the legacy +// pass manager that prevent this from working. In the legacy pass manager +// we'll end up with dangling references here in some cases. +#if 0 + for (auto &AA : AAs) + AA->setAAResults(nullptr); +#endif +} //===----------------------------------------------------------------------===// // Default chaining methods //===----------------------------------------------------------------------===// -AliasResult AliasAnalysis::alias(const MemoryLocation &LocA, - const MemoryLocation &LocB) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->alias(LocA, LocB); +AliasResult AAResults::alias(const MemoryLocation &LocA, + const MemoryLocation &LocB) { + for (const auto &AA : AAs) { + auto Result = AA->alias(LocA, LocB); + if (Result != MayAlias) + return Result; + } + return MayAlias; } -bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, - bool OrLocal) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->pointsToConstantMemory(Loc, OrLocal); +bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, + bool OrLocal) { + for (const auto &AA : AAs) + if (AA->pointsToConstantMemory(Loc, OrLocal)) + return true; + + return false; } -ModRefInfo AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, - unsigned ArgIdx) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->getArgModRefInfo(CS, ArgIdx); +ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { + ModRefInfo Result = MRI_ModRef; + + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); + + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; + } + + return Result; } -ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I, - ImmutableCallSite Call) { +ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { // We may have two calls if (auto CS = ImmutableCallSite(I)) { // Check if the two calls modify the same memory @@ -84,177 +129,70 @@ ModRefInfo AliasAnalysis::getModRefInfo(Instruction *I, return MRI_NoModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS, - const MemoryLocation &Loc) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, + const MemoryLocation &Loc) { + ModRefInfo Result = MRI_ModRef; - auto MRB = getModRefBehavior(CS); - if (MRB == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); - ModRefInfo Mask = MRI_ModRef; - if (onlyReadsMemory(MRB)) - Mask = MRI_Ref; - - if (onlyAccessesArgPointees(MRB)) { - bool doesAlias = false; - ModRefInfo AllArgsMask = MRI_NoModRef; - if (doesAccessArgPointees(MRB)) { - for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); - AI != AE; ++AI) { - const Value *Arg = *AI; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned ArgIdx = std::distance(CS.arg_begin(), AI); - MemoryLocation ArgLoc = - MemoryLocation::getForArgument(CS, ArgIdx, *TLI); - if (!isNoAlias(ArgLoc, Loc)) { - ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); - doesAlias = true; - AllArgsMask = ModRefInfo(AllArgsMask | ArgMask); - } - } - } - if (!doesAlias) - return MRI_NoModRef; - Mask = ModRefInfo(Mask & AllArgsMask); + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; } - // If Loc is a constant memory location, the call definitely could not - // modify the memory location. - if ((Mask & MRI_Mod) && pointsToConstantMemory(Loc)) - Mask = ModRefInfo(Mask & ~MRI_Mod); - - // If this is the end of the chain, don't forward. - if (!AA) return Mask; - - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any mask we've managed to compute. - return ModRefInfo(AA->getModRefInfo(CS, Loc) & Mask); + return Result; } -ModRefInfo AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, - ImmutableCallSite CS2) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); +ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, + ImmutableCallSite CS2) { + ModRefInfo Result = MRI_ModRef; - // If CS1 or CS2 are readnone, they don't interact. - auto CS1B = getModRefBehavior(CS1); - if (CS1B == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; + for (const auto &AA : AAs) { + Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); - auto CS2B = getModRefBehavior(CS2); - if (CS2B == FMRB_DoesNotAccessMemory) - return MRI_NoModRef; - - // If they both only read from memory, there is no dependence. - if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) - return MRI_NoModRef; - - ModRefInfo Mask = MRI_ModRef; - - // If CS1 only reads memory, the only dependence on CS2 can be - // from CS1 reading memory written by CS2. - if (onlyReadsMemory(CS1B)) - Mask = ModRefInfo(Mask & MRI_Ref); - - // If CS2 only access memory through arguments, accumulate the mod/ref - // information from CS1's references to the memory referenced by - // CS2's arguments. - if (onlyAccessesArgPointees(CS2B)) { - ModRefInfo R = MRI_NoModRef; - if (doesAccessArgPointees(CS2B)) { - for (ImmutableCallSite::arg_iterator - I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { - const Value *Arg = *I; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); - auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, *TLI); - - // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of - // CS1 on that location is the inverse. - ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx); - if (ArgMask == MRI_Mod) - ArgMask = MRI_ModRef; - else if (ArgMask == MRI_Ref) - ArgMask = MRI_Mod; - - R = ModRefInfo((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask); - if (R == Mask) - break; - } - } - return R; + // Early-exit the moment we reach the bottom of the lattice. + if (Result == MRI_NoModRef) + return Result; } - // If CS1 only accesses memory through arguments, check if CS2 references - // any of the memory referenced by CS1's arguments. If not, return NoModRef. - if (onlyAccessesArgPointees(CS1B)) { - ModRefInfo R = MRI_NoModRef; - if (doesAccessArgPointees(CS1B)) { - for (ImmutableCallSite::arg_iterator - I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { - const Value *Arg = *I; - if (!Arg->getType()->isPointerTy()) - continue; - unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); - auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, *TLI); - - // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod - // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1 - // might Ref, then we care only about a Mod by CS2. - ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx); - ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc); - if (((ArgMask & MRI_Mod) != MRI_NoModRef && - (ArgR & MRI_ModRef) != MRI_NoModRef) || - ((ArgMask & MRI_Ref) != MRI_NoModRef && - (ArgR & MRI_Mod) != MRI_NoModRef)) - R = ModRefInfo((R | ArgMask) & Mask); - - if (R == Mask) - break; - } - } - return R; - } + return Result; +} - // If this is the end of the chain, don't forward. - if (!AA) return Mask; +FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any mask we've managed to compute. - return ModRefInfo(AA->getModRefInfo(CS1, CS2) & Mask); -} + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); -FunctionModRefBehavior AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } - auto Min = FMRB_UnknownModRefBehavior; + return Result; +} - // Call back into the alias analysis with the other form of getModRefBehavior - // to see if it can give a better response. - if (const Function *F = CS.getCalledFunction()) - Min = getModRefBehavior(F); +FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { + FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; - // If this is the end of the chain, don't forward. - if (!AA) return Min; + for (const auto &AA : AAs) { + Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); - // Otherwise, fall back to the next AA in the chain. But we can merge - // in any result we've managed to compute. - return FunctionModRefBehavior(AA->getModRefBehavior(CS) & Min); -} + // Early-exit the moment we reach the bottom of the lattice. + if (Result == FMRB_DoesNotAccessMemory) + return Result; + } -FunctionModRefBehavior AliasAnalysis::getModRefBehavior(const Function *F) { - assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); - return AA->getModRefBehavior(F); + return Result; } //===----------------------------------------------------------------------===// -// AliasAnalysis non-virtual helper method implementation +// Helper method implementation //===----------------------------------------------------------------------===// -ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const LoadInst *L, + const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!L->isUnordered()) return MRI_ModRef; @@ -268,8 +206,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const LoadInst *L, return MRI_Ref; } -ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const StoreInst *S, + const MemoryLocation &Loc) { // Be conservative in the face of volatile/atomic. if (!S->isUnordered()) return MRI_ModRef; @@ -290,8 +228,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const StoreInst *S, return MRI_Mod; } -ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, + const MemoryLocation &Loc) { if (Loc.Ptr) { // If the va_arg address cannot alias the pointer in question, then the @@ -309,8 +247,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const VAArgInst *V, return MRI_ModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, + const MemoryLocation &Loc) { // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. if (CX->getSuccessOrdering() > Monotonic) return MRI_ModRef; @@ -322,8 +260,8 @@ ModRefInfo AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, return MRI_ModRef; } -ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, - const MemoryLocation &Loc) { +ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, + const MemoryLocation &Loc) { // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. if (RMW->getOrdering() > Monotonic) return MRI_ModRef; @@ -343,14 +281,15 @@ ModRefInfo AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, /// BasicAA isn't willing to spend linear time determining whether an alloca /// was captured before or after this particular call, while we are. However, /// with a smarter AA in place, this test is just wasting compile time. -ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I, - const MemoryLocation &MemLoc, - DominatorTree *DT, - OrderedBasicBlock *OBB) { +ModRefInfo AAResults::callCapturesBefore(const Instruction *I, + const MemoryLocation &MemLoc, + DominatorTree *DT, + OrderedBasicBlock *OBB) { if (!DT) return MRI_ModRef; - const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL); + const Value *Object = + GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || isa<Constant>(Object)) return MRI_ModRef; @@ -393,34 +332,11 @@ ModRefInfo AliasAnalysis::callCapturesBefore(const Instruction *I, return R; } -// AliasAnalysis destructor: DO NOT move this to the header file for -// AliasAnalysis or else clients of the AliasAnalysis class may not depend on -// the AliasAnalysis.o file in the current .a file, causing alias analysis -// support to not be included in the tool correctly! -// -AliasAnalysis::~AliasAnalysis() {} - -/// InitializeAliasAnalysis - Subclasses must call this method to initialize the -/// AliasAnalysis interface before any other methods are called. -/// -void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) { - DL = NewDL; - auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - TLI = TLIP ? &TLIP->getTLI() : nullptr; - AA = &P->getAnalysis<AliasAnalysis>(); -} - -// getAnalysisUsage - All alias analysis implementations should invoke this -// directly (using AliasAnalysis::getAnalysisUsage(AU)). -void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<AliasAnalysis>(); // All AA's chain -} - /// canBasicBlockModify - Return true if it is possible for execution of the /// specified basic block to modify the location Loc. /// -bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, - const MemoryLocation &Loc) { +bool AAResults::canBasicBlockModify(const BasicBlock &BB, + const MemoryLocation &Loc) { return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); } @@ -429,10 +345,10 @@ bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, /// mode) the location Loc. The instructions to consider are all /// of the instructions in the range of [I1,I2] INCLUSIVE. /// I1 and I2 must be in the same basic block. -bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1, - const Instruction &I2, - const MemoryLocation &Loc, - const ModRefInfo Mode) { +bool AAResults::canInstructionRangeModRef(const Instruction &I1, + const Instruction &I2, + const MemoryLocation &Loc, + const ModRefInfo Mode) { assert(I1.getParent() == I2.getParent() && "Instructions not in same basic block!"); BasicBlock::const_iterator I = &I1; @@ -445,6 +361,117 @@ bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1, return false; } +// Provide a definition for the root virtual destructor. +AAResults::Concept::~Concept() {} + +AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { + initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +char AAResultsWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) +INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) +INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", + "Function Alias Analysis Results", false, true) + +FunctionPass *llvm::createAAResultsWrapperPass() { + return new AAResultsWrapperPass(); +} + +/// Run the wrapper pass to rebuild an aggregation over known AA passes. +/// +/// This is the legacy pass manager's interface to the new-style AA results +/// aggregation object. Because this is somewhat shoe-horned into the legacy +/// pass manager, we hard code all the specific alias analyses available into +/// it. While the particular set enabled is configured via commandline flags, +/// adding a new alias analysis to LLVM will require adding support for it to +/// this list. +bool AAResultsWrapperPass::runOnFunction(Function &F) { + // NB! This *must* be reset before adding new AA results to the new + // AAResults object because in the legacy pass manager, each instance + // of these will refer to the *same* immutable analyses, registering and + // unregistering themselves with them. We need to carefully tear down the + // previous object first, in this case replacing it with an empty one, before + // registering new results. + AAR.reset(new AAResults()); + + // BasicAA is always available for function analyses. Also, we add it first + // so that it can trump TBAA results when it proves MustAlias. + // FIXME: TBAA should have an explicit mode to support this and then we + // should reconsider the ordering here. + if (!DisableBasicAA) + AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); + + // Populate the results with the currently available AAs. + if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR->addAAResult(WrapperPass->getResult()); + + // Analyses don't mutate the IR, so return false. + return false; +} + +void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<BasicAAWrapperPass>(); + + // We also need to mark all the alias analysis passes we will potentially + // probe in runOnFunction as used here to ensure the legacy pass manager + // preserves them. This hard coding of lists of alias analyses is specific to + // the legacy pass manager. + AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); + AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); + AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); + AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); + AU.addUsedIfAvailable<SCEVAAWrapperPass>(); + AU.addUsedIfAvailable<CFLAAWrapperPass>(); +} + +AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, + BasicAAResult &BAR) { + AAResults AAR; + + // Add in our explicitly constructed BasicAA results. + if (!DisableBasicAA) + AAR.addAAResult(BAR); + + // Populate the results with the other currently available AAs. + if (auto *WrapperPass = + P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = + P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>()) + AAR.addAAResult(WrapperPass->getResult()); + + return AAR; +} + /// isNoAliasCall - Return true if this pointer is returned by a noalias /// function. bool llvm::isNoAliasCall(const Value *V) { |