aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRob Suderman <rob.suderman@gmail.com>2021-07-08 15:17:15 -0700
committerRob Suderman <rob.suderman@gmail.com>2021-07-12 15:40:49 -0700
commitf2832c2295c6076b51a35d0d7b304c08e1b41c29 (patch)
treee335f96c2d979b604e81bacbeb5bcba920e120c8
parent6611fbc62af59a1d28a9f310d2e95267911d4385 (diff)
downloadllvm-f2832c2295c6076b51a35d0d7b304c08e1b41c29.zip
llvm-f2832c2295c6076b51a35d0d7b304c08e1b41c29.tar.gz
llvm-f2832c2295c6076b51a35d0d7b304c08e1b41c29.tar.bz2
[mlir][tosa] Added shape propagation for TOSA pool operations.
Pool operations perform the same shape propagation. Included the shape propagation and tests for these avg_pool2d and max_pool2d. Differential Revision: https://reviews.llvm.org/D105665
-rw-r--r--mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td10
-rw-r--r--mlir/lib/Dialect/Tosa/IR/TosaOps.cpp56
-rw-r--r--mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir48
3 files changed, 112 insertions, 2 deletions
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 76cd66a..eafce2c 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -56,7 +56,10 @@ def Tosa_ArgMaxOp : Tosa_Op<"argmax", [
//===----------------------------------------------------------------------===//
// Operator: avg_pool2d
//===----------------------------------------------------------------------===//
-def Tosa_AvgPool2dOp : Tosa_Op<"avg_pool2d", [NoSideEffect]> {
+def Tosa_AvgPool2dOp : Tosa_Op<"avg_pool2d", [
+ DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
+ ["inferReturnTypeComponents"]>,
+ NoSideEffect]> {
let summary = "Performs max pooling on the input.";
let description = [{
@@ -233,7 +236,10 @@ def Tosa_MatMulOp : Tosa_Op<"matmul", [
//===----------------------------------------------------------------------===//
// Operator: max_pool2d
//===----------------------------------------------------------------------===//
-def Tosa_MaxPool2dOp : Tosa_Op<"max_pool2d", [NoSideEffect]> {
+def Tosa_MaxPool2dOp : Tosa_Op<"max_pool2d", [
+ DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
+ ["inferReturnTypeComponents"]>,
+ NoSideEffect]> {
let summary = "Performs max pooling on the input.";
let description = [{
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 9126f17..75f26f6 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -845,6 +845,62 @@ NARY_SHAPE_INFER(tosa::TanhOp)
NARY_SHAPE_INFER(tosa::SigmoidOp)
#undef PRED_SHAPE_INFER
+static LogicalResult poolingInferReturnTypes(
+ ValueRange operands, DictionaryAttr attributes,
+ SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
+ RankedTensorType inputTy = operands[0].getType().dyn_cast<RankedTensorType>();
+ llvm::SmallVector<int64_t> outputShape;
+ outputShape.resize(4, -1);
+
+ // We only know the rank if the input type is unranked.
+ if (!inputTy) {
+ inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
+ return success();
+ }
+
+ // Batch and number of channels are identical for pooling layer.
+ outputShape[0] = inputTy.getDimSize(0);
+ outputShape[3] = inputTy.getDimSize(3);
+
+ int32_t height = inputTy.getDimSize(1);
+ int32_t width = inputTy.getDimSize(2);
+
+ llvm::SmallVector<int64_t> kernel;
+ llvm::SmallVector<int64_t> stride;
+ llvm::SmallVector<int64_t> pad;
+
+ getI64Values(attributes.get("kernel").cast<ArrayAttr>(), kernel);
+ getI64Values(attributes.get("stride").cast<ArrayAttr>(), stride);
+ getI64Values(attributes.get("pad").cast<ArrayAttr>(), pad);
+
+ if (height != -1) {
+ int32_t padded = height + pad[0] + pad[1] - kernel[0];
+ outputShape[1] = padded / stride[0] + 1;
+ }
+
+ if (width != -1) {
+ int32_t padded = width + pad[2] + pad[3] - kernel[1];
+ outputShape[2] = padded / stride[1] + 1;
+ }
+
+ inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
+ return success();
+}
+
+LogicalResult AvgPool2dOp::inferReturnTypeComponents(
+ MLIRContext *context, ::llvm::Optional<Location> location,
+ ValueRange operands, DictionaryAttr attributes, RegionRange regions,
+ SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
+ return poolingInferReturnTypes(operands, attributes, inferredReturnShapes);
+}
+
+LogicalResult MaxPool2dOp::inferReturnTypeComponents(
+ MLIRContext *context, ::llvm::Optional<Location> location,
+ ValueRange operands, DictionaryAttr attributes, RegionRange regions,
+ SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
+ return poolingInferReturnTypes(operands, attributes, inferredReturnShapes);
+}
+
//===----------------------------------------------------------------------===//
// TOSA Operator Definitions.
//===----------------------------------------------------------------------===//
diff --git a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
index bfbbe07..a5134ac 100644
--- a/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
+++ b/mlir/test/Dialect/Tosa/tosa-infer-shapes.mlir
@@ -660,3 +660,51 @@ func @scatter_minimum_static(%arg0 : tensor<?x4x?xi32>, %arg1 : tensor<3x?xi32>,
%0 = "tosa.scatter"(%arg0, %arg1, %arg2) : (tensor<?x4x?xi32>, tensor<3x?xi32>, tensor<?x?x5xi32>) -> (tensor<?x?x?xi32>)
return
}
+
+// -----
+
+// CHECK-LABEL: @test_pool_static
+func @test_pool_static(%arg0: tensor<3x5x6x7xf32>) {
+ // CHECK: -> tensor<3x2x4x7xf32>
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [1, 1]} : (tensor<3x5x6x7xf32>) -> tensor<?x?x?x?xf32>
+
+ // CHECK: -> tensor<3x2x4x7xf32>
+ %1 = "tosa.max_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [1, 1]} : (tensor<3x5x6x7xf32>) -> tensor<?x?x?x?xf32>
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @test_pool_dynamic_input
+func @test_pool_dynamic_input(%arg0: tensor<?x?x?x?xf32>) {
+ // CHECK: -> tensor<?x?x?x?xf32>
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [1, 1]} : (tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+
+ // CHECK: -> tensor<?x?x?x?xf32>
+ %1 = "tosa.max_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [1, 1]} : (tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @test_pool_padded
+func @test_pool_padded(%arg0: tensor<3x5x6x7xf32>) {
+ // CHECK: -> tensor<3x5x11x7xf32>
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 3], pad = [1, 2, 3, 4], stride = [1, 1]} : (tensor<3x5x6x7xf32>) -> tensor<?x?x?x?xf32>
+
+ // CHECK: -> tensor<3x5x11x7xf32>
+ %1 = "tosa.max_pool2d"(%arg0) {kernel = [4, 3], pad = [1, 2, 3, 4], stride = [1, 1]} : (tensor<3x5x6x7xf32>) -> tensor<?x?x?x?xf32>
+ return
+}
+
+// -----
+
+// CHECK-LABEL: @test_pool_stride
+func @test_pool_stride(%arg0: tensor<3x11x12x7xf32>) {
+ // CHECK: -> tensor<3x4x4x7xf32>
+ %0 = "tosa.avg_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [2, 3]} : (tensor<3x11x12x7xf32>) -> tensor<?x?x?x?xf32>
+
+ // CHECK: -> tensor<3x4x4x7xf32>
+ %1 = "tosa.max_pool2d"(%arg0) {kernel = [4, 3], pad = [0, 0, 0, 0], stride = [2, 3]} : (tensor<3x11x12x7xf32>) -> tensor<?x?x?x?xf32>
+ return
+}