aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorHanhan Wang <hanchung@google.com>2022-11-23 10:46:46 -0800
committerHanhan Wang <hanchung@google.com>2022-11-23 10:47:10 -0800
commit6eee66d12ab33f35a37a1514342b51ae93d175e8 (patch)
treefbdf6106b74c440afb8a09c3faf1f6623e0270b8
parent2cea4c239570c37f46ad0003b3d41d9473aca60f (diff)
downloadllvm-6eee66d12ab33f35a37a1514342b51ae93d175e8.zip
llvm-6eee66d12ab33f35a37a1514342b51ae93d175e8.tar.gz
llvm-6eee66d12ab33f35a37a1514342b51ae93d175e8.tar.bz2
[mlir][linalg] Add a new pattern to handle folding unit reduction dims.
The output operands will be added to input operands if the generic op (on tensors) becomes an elementwise operation. The outputs of the generic op is still the same. They will be cleaned up by ReplaceWithEmptyTensorIfUnused pattern. Reviewed By: mravishankar Differential Revision: https://reviews.llvm.org/D138251
-rw-r--r--mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp129
-rw-r--r--mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir7
-rw-r--r--utils/bazel/llvm-project-overlay/mlir/BUILD.bazel1
3 files changed, 132 insertions, 5 deletions
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 7b9b735..5933ff9 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -19,12 +19,15 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
+#include "mlir/Dialect/MemRef/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
@@ -225,6 +228,125 @@ struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
}
};
+/// Pattern to add init operands to ins when all the loops are parallel and
+/// blockArgument corresponding to init is used in the region. This is a fix-up
+/// when unit reduction dimensions are all folded away. In this context, it
+/// becomes a elementwise generic op. E.g., it converts
+///
+/// %0 = tensor.empty() : tensor<1x1xf32>
+/// %1 = linalg.fill
+/// ins(%cst : f32)
+/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
+/// %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
+/// affine_map<(d0) -> (0, d0)>],
+/// iterator_types = ["parallel"]}
+/// ins(%arg0 : tensor<1x?x1x1xf32>)
+/// outs(%1 : tensor<1x1xf32>) {
+/// ^bb0(%in: f32, %out: f32):
+/// %3 = arith.addf %in, %out : f32
+/// linalg.yield %3 : f32
+/// } -> tensor<1x1xf32>
+///
+/// into
+///
+/// %0 = tensor.empty() : tensor<1x1xf32>
+/// %1 = linalg.fill
+/// ins(%cst : f32)
+/// outs(%0 : tensor<1x1xf32>) -> tensor<1x1xf32>
+/// %2 = tensor.empty() : tensor<1x1xf32>
+/// %3 = linalg.generic {indexing_maps = [affine_map<(d0) -> (0, d0, 0, 0)>,
+/// affine_map<(d0) -> (0, d0)>,
+/// affine_map<(d0) -> (0, d0)>],
+/// iterator_types = ["parallel"]}
+/// ins(%arg0, %1 : tensor<1x?x1x1xf32>, tensor<1x1xf32>)
+/// outs(%2 : tensor<1x1xf32>) {
+/// ^bb0(%in: f32, %in_0: f32, %out: f32):
+/// %4 = arith.addf %in, %in_0 : f32
+/// linalg.yield %4 : f32
+/// } -> tensor<1x1xf32>
+struct AddInitOperandsToInput : public OpRewritePattern<GenericOp> {
+ using OpRewritePattern<GenericOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(GenericOp genericOp,
+ PatternRewriter &rewriter) const override {
+ if (!genericOp.hasTensorSemantics())
+ return failure();
+ if (genericOp.getNumParallelLoops() != genericOp.getNumLoops())
+ return failure();
+
+ auto outputOperands = genericOp.getDpsInitOperands();
+ SetVector<OpOperand *> candidates;
+ for (OpOperand *op : outputOperands) {
+ if (genericOp.getMatchingBlockArgument(op).use_empty())
+ continue;
+ candidates.insert(op);
+ }
+
+ if (candidates.empty())
+ return failure();
+
+ // Compute the modified indexing maps.
+ int64_t origNumInput = genericOp.getNumDpsInputs();
+ SmallVector<Value> newInputOperands = genericOp.getDpsInputOperands();
+ SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
+ SmallVector<AffineMap> newIndexingMaps;
+ newIndexingMaps.append(indexingMaps.begin(),
+ std::next(indexingMaps.begin(), origNumInput));
+ for (OpOperand *op : candidates) {
+ newInputOperands.push_back(op->get());
+ newIndexingMaps.push_back(genericOp.getMatchingIndexingMap(op));
+ }
+ newIndexingMaps.append(std::next(indexingMaps.begin(), origNumInput),
+ indexingMaps.end());
+
+ Location loc = genericOp.getLoc();
+ SmallVector<Value> newOutputOperands = outputOperands;
+ for (OpOperand *op : candidates) {
+ OpBuilder::InsertionGuard guard(rewriter);
+ rewriter.setInsertionPointAfterValue(op->get());
+ auto elemType = op->get().getType().cast<ShapedType>().getElementType();
+ auto empty = rewriter.create<tensor::EmptyOp>(
+ loc, tensor::createDimValues(rewriter, loc, op->get()), elemType);
+
+ auto [start, end] = genericOp.getDpsInitsPositionRange();
+ newOutputOperands[op->getOperandNumber() - start] = empty.getResult();
+ }
+
+ auto newOp = rewriter.create<GenericOp>(
+ loc, genericOp.getResultTypes(), newInputOperands, newOutputOperands,
+ newIndexingMaps, genericOp.getIteratorTypesArray(),
+ /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
+
+ Region &region = newOp.getRegion();
+ Block *block = new Block();
+ region.push_back(block);
+ BlockAndValueMapping mapper;
+ OpBuilder::InsertionGuard guard(rewriter);
+ rewriter.setInsertionPointToStart(block);
+ for (auto bbarg : genericOp.getRegionInputArgs())
+ mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
+
+ for (OpOperand *op : candidates) {
+ BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
+ mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
+ }
+
+ for (OpOperand *op : outputOperands) {
+ BlockArgument bbarg = genericOp.getMatchingBlockArgument(op);
+ if (candidates.count(op))
+ block->addArgument(bbarg.getType(), loc);
+ else
+ mapper.map(bbarg, block->addArgument(bbarg.getType(), loc));
+ }
+
+ for (auto &op : genericOp.getBody()->getOperations()) {
+ rewriter.clone(op, mapper);
+ }
+ rewriter.replaceOp(genericOp, newOp.getResults());
+
+ return success();
+ }
+};
+
struct UnitExtentReplacementInfo {
Type type;
AffineMap indexMap;
@@ -536,7 +658,8 @@ struct RankReducedInsertSliceOp : public OpRewritePattern<InsertOpTy> {
void mlir::linalg::populateFoldUnitExtentDimsPatterns(
RewritePatternSet &patterns) {
auto *context = patterns.getContext();
- patterns.add<FoldUnitDimLoops, ReplaceUnitExtents, RankReducedExtractSliceOp,
+ patterns.add<FoldUnitDimLoops, AddInitOperandsToInput, ReplaceUnitExtents,
+ RankReducedExtractSliceOp,
RankReducedInsertSliceOp<tensor::InsertSliceOp>,
RankReducedInsertSliceOp<tensor::ParallelInsertSliceOp>>(
context);
@@ -544,6 +667,8 @@ void mlir::linalg::populateFoldUnitExtentDimsPatterns(
tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
tensor::EmptyOp::getCanonicalizationPatterns(patterns, context);
tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
+ memref::populateResolveRankedShapeTypeResultDimsPatterns(patterns);
+ memref::populateResolveShapedTypeResultDimsPatterns(patterns);
}
namespace {
@@ -555,7 +680,7 @@ struct LinalgFoldUnitExtentDimsPass
MLIRContext *context = op->getContext();
RewritePatternSet patterns(context);
if (foldOneTripLoopsOnly)
- patterns.add<FoldUnitDimLoops>(context);
+ patterns.add<FoldUnitDimLoops, AddInitOperandsToInput>(context);
else
populateFoldUnitExtentDimsPatterns(patterns);
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index 4ff1f19..ffa9563 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -384,11 +384,12 @@ func.func @unit_dim_for_both_reduction(%arg0: tensor<1x?x1x1xf32>) -> tensor<1x1
// CHECK-DAG: %[[RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]] {{\[}}[0, 1, 2, 3]
// CHECK: %[[INIT:.+]] = tensor.empty() : tensor<1xf32>
// CHECK: %[[FILL:.+]] = linalg.fill ins(%{{.+}}{{.*}}outs(%[[INIT]]
+// CHECK: %[[INIT2:.+]] = tensor.empty() : tensor<1xf32>
// CHECK: %[[RESULT:.+]] = linalg.generic
-// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]]]
+// CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP2]]]
// CHECK-SAME: iterator_types = ["parallel"]
-// CHECK-SAME: ins(%[[RESHAPE]] : tensor<?xf32>)
-// CHECK-SAME: outs(%[[FILL]] : tensor<1xf32>)
+// CHECK-SAME: ins(%[[RESHAPE]], %[[FILL]] : tensor<?xf32>, tensor<1xf32>)
+// CHECK-SAME: outs(%[[INIT2]] : tensor<1xf32>)
// CHECK: %[[RESULT_RESHAPE:.+]] = tensor.expand_shape %[[RESULT]] {{\[}}[0, 1]]
// CHECK: return %[[RESULT_RESHAPE]]
diff --git a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
index 72fa3c0..256b055 100644
--- a/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
+++ b/utils/bazel/llvm-project-overlay/mlir/BUILD.bazel
@@ -8301,6 +8301,7 @@ cc_library(
":LinalgUtils",
":MathDialect",
":MemRefDialect",
+ ":MemRefTransforms",
":Pass",
":SCFDialect",
":SCFTransforms",