1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/* Correctly-rounded logarithm of the absolute value of the gamma function
for binary32 value.
Copyright (c) 2023, 2024 Alexei Sibidanov.
This file is part of the CORE-MATH project
project (file src/binary32/lgamma/lgammaf.c, revision bc385c2).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/* Changes with respect to the original CORE-MATH code:
- removed the dealing with errno
(this is done in the wrapper math/w_lgammaf_compat2.c).
- usage of math_narrow_eval to deal with underflow/overflow.
- deal with signamp. */
#include <array_length.h>
#include <stdint.h>
#include <math.h>
#include <libm-alias-finite.h>
#include <limits.h>
#include <math-narrow-eval.h>
#include "math_config.h"
static double
as_r7 (double x, const double *c)
{
return (((x - c[0]) * (x - c[1])) * ((x - c[2]) * (x - c[3])))
* (((x - c[4]) * (x - c[5])) * ((x - c[6])));
}
static double
as_r8 (double x, const double *c)
{
return (((x - c[0]) * (x - c[1])) * ((x - c[2]) * (x - c[3])))
* (((x - c[4]) * (x - c[5])) * ((x - c[6]) * (x - c[7])));
}
static double
as_sinpi (double x)
{
static const double c[] =
{
0x1p+2, -0x1.de9e64df22ea4p+1, 0x1.472be122401f8p+0,
-0x1.d4fcd82df91bp-3, 0x1.9f05c97e0aab2p-6, -0x1.f3091c427b611p-10,
0x1.b22c9bfdca547p-14, -0x1.15484325ef569p-18
};
x -= 0.5;
double x2 = x * x, x4 = x2 * x2, x8 = x4 * x4;
return (0.25 - x2)
* ((c[0] + x2 * c[1]) + x4 * (c[2] + x2 * c[3])
+ x8 * ((c[4] + x2 * c[5]) + x4 * (c[6] + x2 * c[7])));
}
static double
as_ln (double x)
{
uint64_t t = asuint64 (x);
int e = (t >> 52) - 0x3ff;
static const double c[] =
{
0x1.fffffffffff24p-1, -0x1.ffffffffd1d67p-2, 0x1.55555537802dep-2,
-0x1.ffffeca81b866p-3, 0x1.999611761d772p-3, -0x1.54f3e581b61bfp-3,
0x1.1e642b4cb5143p-3, -0x1.9115a5af1e1edp-4
};
static const double il[] =
{
0x1.59caeec280116p-57, 0x1.f0a30c01162aap-5, 0x1.e27076e2af2ebp-4,
0x1.5ff3070a793d6p-3, 0x1.c8ff7c79a9a2p-3, 0x1.1675cababa60fp-2,
0x1.4618bc21c5ec2p-2, 0x1.739d7f6bbd007p-2, 0x1.9f323ecbf984dp-2,
0x1.c8ff7c79a9a21p-2, 0x1.f128f5faf06ecp-2, 0x1.0be72e4252a83p-1,
0x1.1e85f5e7040d1p-1, 0x1.307d7334f10bep-1, 0x1.41d8fe84672afp-1,
0x1.52a2d265bc5abp-1
};
static const double ix[] =
{
0x1p+0, 0x1.e1e1e1e1e1e1ep-1, 0x1.c71c71c71c71cp-1,
0x1.af286bca1af28p-1, 0x1.999999999999ap-1, 0x1.8618618618618p-1,
0x1.745d1745d1746p-1, 0x1.642c8590b2164p-1, 0x1.5555555555555p-1,
0x1.47ae147ae147bp-1, 0x1.3b13b13b13b14p-1, 0x1.2f684bda12f68p-1,
0x1.2492492492492p-1, 0x1.1a7b9611a7b96p-1, 0x1.1111111111111p-1,
0x1.0842108421084p-1
};
int i = (t >> 48) & 0xf;
t = (t & (~UINT64_C(0) >> 12)) | (INT64_C(0x3ff) << 52);
double z = ix[i] * asdouble (t) - 1;
double z2 = z * z, z4 = z2 * z2;
return e * 0x1.62e42fefa39efp-1 + il[i]
+ z * ((c[0] + z * c[1]) + z2 * (c[2] + z * c[3])
+ z4 * ((c[4] + z * c[5]) + z2 * (c[6] + z * c[7])));
}
float
__ieee754_lgammaf_r (float x, int *signgamp)
{
static const struct
{
float x;
float f;
float df;
} tb[] = {
{ -0x1.efc2a2p+14, -0x1.222dbcp+18, -0x1p-7 },
{ -0x1.627346p+7, -0x1.73235ep+9, -0x1p-16 },
{ -0x1.08b14p+4, -0x1.f0cbe6p+4, -0x1p-21 },
{ -0x1.69d628p+3, -0x1.0eac2ap+4, -0x1p-21 },
{ -0x1.904902p+2, -0x1.65532cp+2, 0x1p-23 },
{ -0x1.9272d2p+1, -0x1.170b98p-8, 0x1p-33 },
{ -0x1.625edap+1, 0x1.6a6c4ap-5, -0x1p-30 },
{ -0x1.5fc2aep+1, 0x1.c0a484p-11, -0x1p-36 },
{ -0x1.5fb43ep+1, 0x1.5b697p-17, 0x1p-42 },
{ -0x1.5fa20cp+1, -0x1.132f7ap-10, 0x1p-35 },
{ -0x1.580c1ep+1, -0x1.5787c6p-4, 0x1p-29 },
{ -0x1.3a7fcap+1, -0x1.e4cf24p-24, -0x1p-49 },
{ -0x1.c2f04p-30, 0x1.43a6f6p+4, 0x1p-21 },
{ -0x1.ade594p-30, 0x1.446ab2p+4, -0x1p-21 },
{ -0x1.437e74p-40, 0x1.b7dec2p+4, -0x1p-21 },
{ -0x1.d85bfep-43, 0x1.d31592p+4, -0x1p-21 },
{ -0x1.f51c8ep-49, 0x1.0a572ap+5, -0x1p-20 },
{ -0x1.108a5ap-66, 0x1.6d7b18p+5, -0x1p-20 },
{ -0x1.ecf3fep-73, 0x1.8f8e5ap+5, -0x1p-20 },
{ -0x1.25cb66p-123, 0x1.547a44p+6, -0x1p-19 },
{ 0x1.ecf3fep-73, 0x1.8f8e5ap+5, -0x1p-20 },
{ 0x1.108a5ap-66, 0x1.6d7b18p+5, -0x1p-20 },
{ 0x1.a68bbcp-42, 0x1.c9c6e8p+4, 0x1p-21 },
{ 0x1.ddfd06p-12, 0x1.ec5ba8p+2, -0x1p-23 },
{ 0x1.f8a754p-9, 0x1.63acc2p+2, 0x1p-23 },
{ 0x1.8d16b2p+5, 0x1.1e4b4ep+7, 0x1p-18 },
{ 0x1.359e0ep+10, 0x1.d9ad02p+12, -0x1p-13 },
{ 0x1.a82a2cp+13, 0x1.c38036p+16, 0x1p-9 },
{ 0x1.62c646p+14, 0x1.9075bep+17, -0x1p-8 },
{ 0x1.7f298p+31, 0x1.f44946p+35, -0x1p+10 },
{ 0x1.a45ea4p+33, 0x1.25dcbcp+38, -0x1p+13 },
{ 0x1.f9413ep+76, 0x1.9d5ab4p+82, -0x1p+57 },
{ 0x1.dcbbaap+99, 0x1.fc5772p+105, 0x1p+80 },
{ 0x1.58ace8p+112, 0x1.9e4f66p+118, -0x1p+93 },
{ 0x1.87bdfp+115, 0x1.e465aep+121, 0x1p+96 },
};
float fx = floor (x);
float ax = fabsf (x);
uint32_t t = asuint (ax);
if (__glibc_unlikely (t >= (0xffu << 23)))
{
*signgamp = 1;
if (t == (0xffu << 23))
return INFINITY;
return x + x; /* nan */
}
if (__glibc_unlikely (fx == x))
{
if (x <= 0.0f)
{
*signgamp = asuint (x) >> 31 ? -1 : 1;
return 1.0f / 0.0f;
}
if (x == 1.0f || x == 2.0f)
{
*signgamp = 1;
return 0.0f;
}
}
/* Check the value of fx to avoid a spurious invalid exception.
Note that for a binary32 |x| >= 2^23, x is necessarily an integer,
and we already dealed with negative integers, thus now:
-2^23 < x < +Inf and x is not a negative integer nor 0, 1, 2. */
if (__glibc_likely (fx >= 0))
*signgamp = 1;
else
/* gamma(x) is negative in (-2n-1,-2n), thus when fx is odd. */
*signgamp = 1 - ((((int) fx) & 1) << 1);
double z = ax, f;
if (__glibc_unlikely (ax < 0x1.52p-1f))
{
static const double rn[] =
{
-0x1.505bdf4b65acp+4, -0x1.51c80eb47e068p+2,
0x1.0000000007cb8p+0, -0x1.4ac529250a1fcp+1,
-0x1.a8c99dbe1621ap+0, -0x1.4abdcc74115eap+0,
-0x1.1b87fe5a5b923p+0, -0x1.05b8a4d47ff64p+0
};
const double c0 = 0x1.0fc0fad268c4dp+2;
static const double rd[] =
{
-0x1.4db2cfe9a5265p+5, -0x1.062e99d1c4f27p+3,
-0x1.c81bc2ecf25f6p+1, -0x1.108e55c10091bp+1,
-0x1.7dd25af0b83d4p+0, -0x1.36bf1880125fcp+0,
-0x1.1379fc8023d9cp+0, -0x1.03712e41525d2p+0
};
double s = x;
f = (c0 * s) * as_r8 (s, rn) / as_r8 (s, rd) - as_ln (z);
}
else
{
if (ax > 0x1.afc1ap+1f)
{
if (__glibc_unlikely (x > 0x1.895f1cp+121f))
return math_narrow_eval (0x1p127f * 0x1p127f);
/* |x|>=2**23, must be -integer */
if (__glibc_unlikely (x < 0.0f && ax > 0x1p+23))
return ax / 0.0f;
double lz = as_ln (z);
f = (z - 0.5) * (lz - 1) + 0x1.acfe390c97d69p-2;
if (ax < 0x1.0p+20f)
{
double iz = 1.0 / z, iz2 = iz * iz;
if (ax > 1198.0f)
f += iz * (1. / 12.);
else if (ax > 0x1.279a7p+6f)
{
static const double c[] =
{
0x1.555555547fbadp-4, -0x1.6c0fd270c465p-9
};
f += iz * (c[0] + iz2 * c[1]);
}
else if (ax > 0x1.555556p+3f)
{
static const double c[] =
{
0x1.555555554de0bp-4, -0x1.6c16bdc45944fp-9,
0x1.a0077f300ecb3p-11, -0x1.2e9cfff3b29c2p-11
};
double iz4 = iz2 * iz2;
f += iz * ((c[0] + iz2 * c[1]) + iz4 * (c[2] + iz2 * c[3]));
}
else
{
static const double c[] =
{
0x1.5555555551286p-4, -0x1.6c16c0e7c4cf4p-9,
0x1.a0193267fe6f2p-11, -0x1.37e87ec19cb45p-11,
0x1.b40011dfff081p-11, -0x1.c16c8946b19b6p-10,
0x1.e9f47ace150d8p-9, -0x1.4f5843a71a338p-8
};
double iz4 = iz2 * iz2, iz8 = iz4 * iz4;
double p = ((c[0] + iz2 * c[1]) + iz4 * (c[2] + iz2 * c[3]))
+ iz8 * ((c[4] + iz2 * c[5])
+ iz4 * (c[6] + iz2 * c[7]));
f += iz * p;
}
}
if (x < 0.0f)
{
f = 0x1.250d048e7a1bdp+0 - f - lz;
double lp = as_ln (as_sinpi (x - fx));
f -= lp;
}
}
else
{
static const double rn[] =
{
-0x1.667923ff14df7p+5, -0x1.2d35f25ad8f64p+3,
-0x1.b8c9eab9d5bd3p+1, -0x1.7a4a97f494127p+0,
-0x1.3a6c8295b4445p-1, -0x1.da44e8b810024p-3,
-0x1.9061e81c77e4ap-5
};
if (x < 0.0f)
{
int ni = floorf (-2 * x);
if ((ni & 1) == 0 && ni == -2 * x)
return 1.0f / 0.0f;
}
const double c0 = 0x1.3cc0e6a0106b3p+2;
static const double rd[] =
{
-0x1.491a899e84c52p+6, -0x1.d202961b9e098p+3,
-0x1.4ced68c631ed6p+2, -0x1.2589eedf40738p+1,
-0x1.1302e3337271p+0, -0x1.c36b802f26dffp-2,
-0x1.3ded448acc39dp-3, -0x1.bffc491078eafp-6
};
f = (z - 1) * (z - 2) * c0 * as_r7 (z, rn) / as_r8 (z, rd);
if (x < 0.0f)
{
if (__glibc_unlikely (t < 0x40301b93u && t > 0x402f95c2u))
{
double h = (x + 0x1.5fb410a1bd901p+1)
- 0x1.a19a96d2e6f85p-54;
double h2 = h * h;
double h4 = h2 * h2;
static const double c[] =
{
-0x1.ea12da904b18cp+0, 0x1.3267f3c265a54p+3,
-0x1.4185ac30cadb3p+4, 0x1.f504accc3f2e4p+5,
-0x1.8588444c679b4p+7, 0x1.43740491dc22p+9,
-0x1.12400ea23f9e6p+11, 0x1.dac829f365795p+12
};
f = h * ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3])
+ h4 * ((c[4] + h * c[5]) + h2 * (c[6] + h * c[7])));
}
else if (__glibc_unlikely (t > 0x401ceccbu && t < 0x401d95cau))
{
double h = (x + 0x1.3a7fc9600f86cp+1)
+ 0x1.55f64f98af8dp-55;
double h2 = h * h;
double h4 = h2 * h2;
static const double c[] =
{
0x1.83fe966af535fp+0, 0x1.36eebb002f61ap+2,
0x1.694a60589a0b3p+0, 0x1.1718d7aedb0b5p+3,
0x1.733a045eca0d3p+2, 0x1.8d4297421205bp+4,
0x1.7feea5fb29965p+4
};
f = h
* ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3])
+ h4 * ((c[4] + h * c[5]) + h2 * (c[6])));
}
else if (__glibc_unlikely (t > 0x40492009u && t < 0x404940efu))
{
double h = (x + 0x1.9260dbc9e59afp+1)
+ 0x1.f717cd335a7b3p-53;
double h2 = h * h;
double h4 = h2 * h2;
static const double c[] =
{
0x1.f20a65f2fac55p+2, 0x1.9d4d297715105p+4,
0x1.c1137124d5b21p+6, 0x1.267203d24de38p+9,
0x1.99a63399a0b44p+11, 0x1.2941214faaf0cp+14,
0x1.bb912c0c9cdd1p+16
};
f = h * ((c[0] + h * c[1]) + h2 * (c[2] + h * c[3])
+ h4 * ((c[4] + h * c[5]) + h2 * (c[6])));
}
else
{
f = 0x1.250d048e7a1bdp+0 - f;
double lp = as_ln (as_sinpi (x - fx) * z);
f -= lp;
}
}
}
}
uint64_t tl = (asuint64 (f) + 5) & 0xfffffff;
float r = f;
if (__glibc_unlikely (tl <= 31u))
{
t = asuint (x);
for (unsigned i = 0; i < array_length (tb); i++)
{
if (t == asuint (tb[i].x))
return tb[i].f + tb[i].df;
}
}
return r;
}
libm_alias_finite (__ieee754_lgammaf_r, __lgammaf_r)
|