aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/aarch64/fpu/atan2_advsimd.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/aarch64/fpu/atan2_advsimd.c')
-rw-r--r--sysdeps/aarch64/fpu/atan2_advsimd.c121
1 files changed, 121 insertions, 0 deletions
diff --git a/sysdeps/aarch64/fpu/atan2_advsimd.c b/sysdeps/aarch64/fpu/atan2_advsimd.c
new file mode 100644
index 0000000..fcc6be0
--- /dev/null
+++ b/sysdeps/aarch64/fpu/atan2_advsimd.c
@@ -0,0 +1,121 @@
+/* Double-precision AdvSIMD atan2
+
+ Copyright (C) 2023 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+#include "poly_advsimd_f64.h"
+
+static const struct data
+{
+ float64x2_t pi_over_2;
+ float64x2_t poly[20];
+} data = {
+ /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
+ the interval [2**-1022, 1.0]. */
+ .poly = { V2 (-0x1.5555555555555p-2), V2 (0x1.99999999996c1p-3),
+ V2 (-0x1.2492492478f88p-3), V2 (0x1.c71c71bc3951cp-4),
+ V2 (-0x1.745d160a7e368p-4), V2 (0x1.3b139b6a88ba1p-4),
+ V2 (-0x1.11100ee084227p-4), V2 (0x1.e1d0f9696f63bp-5),
+ V2 (-0x1.aebfe7b418581p-5), V2 (0x1.842dbe9b0d916p-5),
+ V2 (-0x1.5d30140ae5e99p-5), V2 (0x1.338e31eb2fbbcp-5),
+ V2 (-0x1.00e6eece7de8p-5), V2 (0x1.860897b29e5efp-6),
+ V2 (-0x1.0051381722a59p-6), V2 (0x1.14e9dc19a4a4ep-7),
+ V2 (-0x1.d0062b42fe3bfp-9), V2 (0x1.17739e210171ap-10),
+ V2 (-0x1.ab24da7be7402p-13), V2 (0x1.358851160a528p-16), },
+ .pi_over_2 = V2 (0x1.921fb54442d18p+0),
+};
+
+#define SignMask v_u64 (0x8000000000000000)
+
+/* Special cases i.e. 0, infinity, NaN (fall back to scalar calls). */
+static float64x2_t VPCS_ATTR NOINLINE
+special_case (float64x2_t y, float64x2_t x, float64x2_t ret, uint64x2_t cmp)
+{
+ return v_call2_f64 (atan2, y, x, ret, cmp);
+}
+
+/* Returns 1 if input is the bit representation of 0, infinity or nan. */
+static inline uint64x2_t
+zeroinfnan (uint64x2_t i)
+{
+ /* (2 * i - 1) >= (2 * asuint64 (INFINITY) - 1). */
+ return vcgeq_u64 (vsubq_u64 (vaddq_u64 (i, i), v_u64 (1)),
+ v_u64 (2 * asuint64 (INFINITY) - 1));
+}
+
+/* Fast implementation of vector atan2.
+ Maximum observed error is 2.8 ulps:
+ _ZGVnN2vv_atan2 (0x1.9651a429a859ap+5, 0x1.953075f4ee26p+5)
+ got 0x1.92d628ab678ccp-1
+ want 0x1.92d628ab678cfp-1. */
+float64x2_t VPCS_ATTR V_NAME_D2 (atan2) (float64x2_t y, float64x2_t x)
+{
+ const struct data *data_ptr = ptr_barrier (&data);
+
+ uint64x2_t ix = vreinterpretq_u64_f64 (x);
+ uint64x2_t iy = vreinterpretq_u64_f64 (y);
+
+ uint64x2_t special_cases = vorrq_u64 (zeroinfnan (ix), zeroinfnan (iy));
+
+ uint64x2_t sign_x = vandq_u64 (ix, SignMask);
+ uint64x2_t sign_y = vandq_u64 (iy, SignMask);
+ uint64x2_t sign_xy = veorq_u64 (sign_x, sign_y);
+
+ float64x2_t ax = vabsq_f64 (x);
+ float64x2_t ay = vabsq_f64 (y);
+
+ uint64x2_t pred_xlt0 = vcltzq_f64 (x);
+ uint64x2_t pred_aygtax = vcgtq_f64 (ay, ax);
+
+ /* Set up z for call to atan. */
+ float64x2_t n = vbslq_f64 (pred_aygtax, vnegq_f64 (ax), ay);
+ float64x2_t d = vbslq_f64 (pred_aygtax, ay, ax);
+ float64x2_t z = vdivq_f64 (n, d);
+
+ /* Work out the correct shift. */
+ float64x2_t shift = vreinterpretq_f64_u64 (
+ vandq_u64 (pred_xlt0, vreinterpretq_u64_f64 (v_f64 (-2.0))));
+ shift = vbslq_f64 (pred_aygtax, vaddq_f64 (shift, v_f64 (1.0)), shift);
+ shift = vmulq_f64 (shift, data_ptr->pi_over_2);
+
+ /* Calculate the polynomial approximation.
+ Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
+ full scheme to avoid underflow in x^16.
+ The order 19 polynomial P approximates
+ (atan(sqrt(x))-sqrt(x))/x^(3/2). */
+ float64x2_t z2 = vmulq_f64 (z, z);
+ float64x2_t x2 = vmulq_f64 (z2, z2);
+ float64x2_t x4 = vmulq_f64 (x2, x2);
+ float64x2_t x8 = vmulq_f64 (x4, x4);
+ float64x2_t ret
+ = vfmaq_f64 (v_estrin_7_f64 (z2, x2, x4, data_ptr->poly),
+ v_estrin_11_f64 (z2, x2, x4, x8, data_ptr->poly + 8), x8);
+
+ /* Finalize. y = shift + z + z^3 * P(z^2). */
+ ret = vfmaq_f64 (z, ret, vmulq_f64 (z2, z));
+ ret = vaddq_f64 (ret, shift);
+
+ /* Account for the sign of x and y. */
+ ret = vreinterpretq_f64_u64 (
+ veorq_u64 (vreinterpretq_u64_f64 (ret), sign_xy));
+
+ if (__glibc_unlikely (v_any_u64 (special_cases)))
+ return special_case (y, x, ret, special_cases);
+
+ return ret;
+}