aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/unix/sysv/linux/alpha
diff options
context:
space:
mode:
authorFlorian Weimer <fweimer@redhat.com>2021-07-09 20:09:14 +0200
committerFlorian Weimer <fweimer@redhat.com>2021-07-09 20:09:14 +0200
commit7c241325d67af9e24ff03d4c6f6280c17ea181f8 (patch)
tree5667f94ae80c6e75dc1bac29ab4c51d48cfad084 /sysdeps/unix/sysv/linux/alpha
parentdc76a059fded7a203c82dbb91d4fc1f43d3250db (diff)
downloadglibc-7c241325d67af9e24ff03d4c6f6280c17ea181f8.zip
glibc-7c241325d67af9e24ff03d4c6f6280c17ea181f8.tar.gz
glibc-7c241325d67af9e24ff03d4c6f6280c17ea181f8.tar.bz2
Force building with -fno-common
As a result, is not necessary to specify __attribute__ ((nocommon)) on individual definitions. GCC 10 defaults to -fno-common on all architectures except ARC, but this change is compatible with older GCC versions and ARC, too. Reviewed-by: Carlos O'Donell <carlos@redhat.com>
Diffstat (limited to 'sysdeps/unix/sysv/linux/alpha')
0 files changed, 0 insertions, 0 deletions
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ U T I L                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Treepr; -- ???For debugging code below

with Aspects;  use Aspects;
with Casing;   use Casing;
with Checks;   use Checks;
with Debug;    use Debug;
with Elists;   use Elists;
with Errout;   use Errout;
with Erroutc;  use Erroutc;
with Exp_Ch11; use Exp_Ch11;
with Exp_Util; use Exp_Util;
with Fname;    use Fname;
with Freeze;   use Freeze;
with Itypes;   use Itypes;
with Lib;      use Lib;
with Lib.Xref; use Lib.Xref;
with Namet.Sp; use Namet.Sp;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Output;   use Output;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Attr; use Sem_Attr;
with Sem_Ch6;  use Sem_Ch6;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res;  use Sem_Res;
with Sem_Warn; use Sem_Warn;
with Sem_Type; use Sem_Type;
with Sinfo;    use Sinfo;
with Sinput;   use Sinput;
with Stand;    use Stand;
with Style;
with Stringt;  use Stringt;
with Targparm; use Targparm;
with Tbuild;   use Tbuild;
with Ttypes;   use Ttypes;
with Uname;    use Uname;

with GNAT.Heap_Sort_G;
with GNAT.HTable; use GNAT.HTable;

package body Sem_Util is

   ---------------------------
   -- Local Data Structures --
   ---------------------------

   Invalid_Binder_Values : array (Scalar_Id) of Entity_Id := (others => Empty);
   --  A collection to hold the entities of the variables declared in package
   --  System.Scalar_Values which describe the invalid values of scalar types.

   Invalid_Binder_Values_Set : Boolean := False;
   --  This flag prevents multiple attempts to initialize Invalid_Binder_Values

   Invalid_Floats : array (Float_Scalar_Id) of Ureal := (others => No_Ureal);
   --  A collection to hold the invalid values of float types as specified by
   --  pragma Initialize_Scalars.

   Invalid_Integers : array (Integer_Scalar_Id) of Uint := (others => No_Uint);
   --  A collection to hold the invalid values of integer types as specified
   --  by pragma Initialize_Scalars.

   -----------------------
   -- Local Subprograms --
   -----------------------

   function Build_Component_Subtype
     (C   : List_Id;
      Loc : Source_Ptr;
      T   : Entity_Id) return Node_Id;
   --  This function builds the subtype for Build_Actual_Subtype_Of_Component
   --  and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
   --  Loc is the source location, T is the original subtype.

   procedure Examine_Array_Bounds
     (Typ        : Entity_Id;
      All_Static : out Boolean;
      Has_Empty  : out Boolean);
   --  Inspect the index constraints of array type Typ. Flag All_Static is set
   --  when all ranges are static. Flag Has_Empty is set only when All_Static
   --  is set and indicates that at least one range is empty.

   function Has_Enabled_Property
     (Item_Id  : Entity_Id;
      Property : Name_Id) return Boolean;
   --  Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
   --  Determine whether the state abstraction, object, or type denoted by
   --  entity Item_Id has enabled property Property.

   function Has_Null_Extension (T : Entity_Id) return Boolean;
   --  T is a derived tagged type. Check whether the type extension is null.
   --  If the parent type is fully initialized, T can be treated as such.

   function Is_Atomic_Object_Entity (Id : Entity_Id) return Boolean;
   --  Determine whether arbitrary entity Id denotes an atomic object as per
   --  RM C.6(7).

   generic
      with function Is_Effectively_Volatile_Entity
        (Id : Entity_Id) return Boolean;
      --  Function to use on object and type entities
   function Is_Effectively_Volatile_Object_Shared
     (N : Node_Id) return Boolean;
   --  Shared function used to detect effectively volatile objects and
   --  effectively volatile objects for reading.

   function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
   --  Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
   --  with discriminants whose default values are static, examine only the
   --  components in the selected variant to determine whether all of them
   --  have a default.

   function Is_Preelaborable_Function (Id : Entity_Id) return Boolean;
   --  Ada 2020: Determine whether the specified function is suitable as the
   --  name of a call in a preelaborable construct (RM 10.2.1(7/5)).

   type Null_Status_Kind is
     (Is_Null,
      --  This value indicates that a subexpression is known to have a null
      --  value at compile time.

      Is_Non_Null,
      --  This value indicates that a subexpression is known to have a non-null
      --  value at compile time.

      Unknown);
      --  This value indicates that it cannot be determined at compile time
      --  whether a subexpression yields a null or non-null value.

   function Null_Status (N : Node_Id) return Null_Status_Kind;
   --  Determine whether subexpression N of an access type yields a null value,
   --  a non-null value, or the value cannot be determined at compile time. The
   --  routine does not take simple flow diagnostics into account, it relies on
   --  static facts such as the presence of null exclusions.

   function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
   function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
   --  ???We retain the old and new algorithms for Requires_Transient_Scope for
   --  the time being. New_Requires_Transient_Scope is used by default; the
   --  debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
   --  instead. The intent is to use this temporarily to measure before/after
   --  efficiency. Note: when this temporary code is removed, the documentation
   --  of dQ in debug.adb should be removed.

   procedure Results_Differ
     (Id      : Entity_Id;
      Old_Val : Boolean;
      New_Val : Boolean);
   --  ???Debugging code. Called when the Old_Val and New_Val differ. This
   --  routine will be removed eventially when New_Requires_Transient_Scope
   --  becomes Requires_Transient_Scope and Old_Requires_Transient_Scope is
   --  eliminated.

   function Subprogram_Name (N : Node_Id) return String;
   --  Return the fully qualified name of the enclosing subprogram for the
   --  given node N, with file:line:col information appended, e.g.
   --  "subp:file:line:col", corresponding to the source location of the
   --  body of the subprogram.

   ------------------------------
   --  Abstract_Interface_List --
   ------------------------------

   function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
      Nod : Node_Id;

   begin
      if Is_Concurrent_Type (Typ) then

         --  If we are dealing with a synchronized subtype, go to the base
         --  type, whose declaration has the interface list.

         Nod := Declaration_Node (Base_Type (Typ));

         if Nkind (Nod) in N_Full_Type_Declaration | N_Private_Type_Declaration
         then
            return Empty_List;
         end if;

      elsif Ekind (Typ) = E_Record_Type_With_Private then
         if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
            Nod := Type_Definition (Parent (Typ));

         elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
            if Present (Full_View (Typ))
              and then
                Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
            then
               Nod := Type_Definition (Parent (Full_View (Typ)));

            --  If the full-view is not available we cannot do anything else
            --  here (the source has errors).

            else
               return Empty_List;
            end if;

         --  Support for generic formals with interfaces is still missing ???

         elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
            return Empty_List;

         else
            pragma Assert
              (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
            Nod := Parent (Typ);
         end if;

      elsif Ekind (Typ) = E_Record_Subtype then
         Nod := Type_Definition (Parent (Etype (Typ)));

      elsif Ekind (Typ) = E_Record_Subtype_With_Private then

         --  Recurse, because parent may still be a private extension. Also
         --  note that the full view of the subtype or the full view of its
         --  base type may (both) be unavailable.

         return Abstract_Interface_List (Etype (Typ));

      elsif Ekind (Typ) = E_Record_Type then
         if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
            Nod := Formal_Type_Definition (Parent (Typ));
         else
            Nod := Type_Definition (Parent (Typ));
         end if;

      --  Otherwise the type is of a kind which does not implement interfaces

      else
         return Empty_List;
      end if;

      return Interface_List (Nod);
   end Abstract_Interface_List;

   ----------------------------------
   -- Acquire_Warning_Match_String --
   ----------------------------------

   function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String is
      S : constant String := To_String (Strval (Str_Lit));
   begin
      if S = "" then
         return "";
      else
         --  Put "*" before or after or both, if it's not already there

         declare
            F : constant Boolean := S (S'First) = '*';
            L : constant Boolean := S (S'Last) = '*';
         begin
            if F then
               if L then
                  return S;
               else
                  return S & "*";
               end if;
            else
               if L then
                  return "*" & S;
               else
                  return "*" & S & "*";
               end if;
            end if;
         end;
      end if;
   end Acquire_Warning_Match_String;

   --------------------------------
   -- Add_Access_Type_To_Process --
   --------------------------------

   procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
      L : Elist_Id;

   begin
      Ensure_Freeze_Node (E);
      L := Access_Types_To_Process (Freeze_Node (E));

      if No (L) then
         L := New_Elmt_List;
         Set_Access_Types_To_Process (Freeze_Node (E), L);
      end if;

      Append_Elmt (A, L);
   end Add_Access_Type_To_Process;

   --------------------------
   -- Add_Block_Identifier --
   --------------------------

   procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
      Loc : constant Source_Ptr := Sloc (N);

   begin
      pragma Assert (Nkind (N) = N_Block_Statement);

      --  The block already has a label, return its entity

      if Present (Identifier (N)) then
         Id := Entity (Identifier (N));

      --  Create a new block label and set its attributes

      else
         Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
         Set_Etype  (Id, Standard_Void_Type);
         Set_Parent (Id, N);

         Set_Identifier (N, New_Occurrence_Of (Id, Loc));
         Set_Block_Node (Id, Identifier (N));
      end if;
   end Add_Block_Identifier;

   ----------------------------
   -- Add_Global_Declaration --
   ----------------------------

   procedure Add_Global_Declaration (N : Node_Id) is
      Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));

   begin
      if No (Declarations (Aux_Node)) then
         Set_Declarations (Aux_Node, New_List);
      end if;

      Append_To (Declarations (Aux_Node), N);
      Analyze (N);
   end Add_Global_Declaration;

   --------------------------------
   -- Address_Integer_Convert_OK --
   --------------------------------

   function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
   begin
      if Allow_Integer_Address
        and then ((Is_Descendant_Of_Address  (T1)
                    and then Is_Private_Type (T1)
                    and then Is_Integer_Type (T2))
                            or else
                  (Is_Descendant_Of_Address  (T2)
                    and then Is_Private_Type (T2)
                    and then Is_Integer_Type (T1)))
      then
         return True;
      else
         return False;
      end if;
   end Address_Integer_Convert_OK;

   -------------------
   -- Address_Value --
   -------------------

   function Address_Value (N : Node_Id) return Node_Id is
      Expr : Node_Id := N;

   begin
      loop
         --  For constant, get constant expression

         if Is_Entity_Name (Expr)
           and then Ekind (Entity (Expr)) = E_Constant
         then
            Expr := Constant_Value (Entity (Expr));

         --  For unchecked conversion, get result to convert

         elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
            Expr := Expression (Expr);

         --  For (common case) of To_Address call, get argument

         elsif Nkind (Expr) = N_Function_Call
           and then Is_Entity_Name (Name (Expr))
           and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
         then
            Expr := First (Parameter_Associations (Expr));

            if Nkind (Expr) = N_Parameter_Association then
               Expr := Explicit_Actual_Parameter (Expr);
            end if;

         --  We finally have the real expression

         else
            exit;
         end if;
      end loop;

      return Expr;
   end Address_Value;

   -----------------
   -- Addressable --
   -----------------

   function Addressable (V : Uint) return Boolean is
   begin
      return V = Uint_8  or else
             V = Uint_16 or else
             V = Uint_32 or else
             V = Uint_64 or else
             (V = Uint_128 and then System_Max_Integer_Size = 128);
   end Addressable;

   function Addressable (V : Int) return Boolean is
   begin
      return V = 8  or else
             V = 16 or else
             V = 32 or else
             V = 64 or else
             V = System_Max_Integer_Size;
   end Addressable;

   ---------------------------------
   -- Aggregate_Constraint_Checks --
   ---------------------------------

   procedure Aggregate_Constraint_Checks
     (Exp       : Node_Id;
      Check_Typ : Entity_Id)
   is
      Exp_Typ : constant Entity_Id  := Etype (Exp);

   begin
      if Raises_Constraint_Error (Exp) then
         return;
      end if;

      --  Ada 2005 (AI-230): Generate a conversion to an anonymous access
      --  component's type to force the appropriate accessibility checks.

      --  Ada 2005 (AI-231): Generate conversion to the null-excluding type to
      --  force the corresponding run-time check

      if Is_Access_Type (Check_Typ)
        and then Is_Local_Anonymous_Access (Check_Typ)
      then
         Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
         Analyze_And_Resolve (Exp, Check_Typ);
         Check_Unset_Reference (Exp);
      end if;

      --  What follows is really expansion activity, so check that expansion
      --  is on and is allowed. In GNATprove mode, we also want check flags to
      --  be added in the tree, so that the formal verification can rely on
      --  those to be present. In GNATprove mode for formal verification, some
      --  treatment typically only done during expansion needs to be performed
      --  on the tree, but it should not be applied inside generics. Otherwise,
      --  this breaks the name resolution mechanism for generic instances.

      if not Expander_Active
        and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
      then
         return;
      end if;

      if Is_Access_Type (Check_Typ)
        and then Can_Never_Be_Null (Check_Typ)
        and then not Can_Never_Be_Null (Exp_Typ)
      then
         Install_Null_Excluding_Check (Exp);
      end if;

      --  First check if we have to insert discriminant checks

      if Has_Discriminants (Exp_Typ) then
         Apply_Discriminant_Check (Exp, Check_Typ);

      --  Next emit length checks for array aggregates

      elsif Is_Array_Type (Exp_Typ) then
         Apply_Length_Check (Exp, Check_Typ);

      --  Finally emit scalar and string checks. If we are dealing with a
      --  scalar literal we need to check by hand because the Etype of
      --  literals is not necessarily correct.

      elsif Is_Scalar_Type (Exp_Typ)
        and then Compile_Time_Known_Value (Exp)
      then
         if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
            Apply_Compile_Time_Constraint_Error
              (Exp, "value not in range of}??", CE_Range_Check_Failed,
               Ent => Base_Type (Check_Typ),
               Typ => Base_Type (Check_Typ));

         elsif Is_Out_Of_Range (Exp, Check_Typ) then
            Apply_Compile_Time_Constraint_Error
              (Exp, "value not in range of}??", CE_Range_Check_Failed,
               Ent => Check_Typ,
               Typ => Check_Typ);

         elsif not Range_Checks_Suppressed (Check_Typ) then
            Apply_Scalar_Range_Check (Exp, Check_Typ);
         end if;

      --  Verify that target type is also scalar, to prevent view anomalies
      --  in instantiations.

      elsif (Is_Scalar_Type (Exp_Typ)
              or else Nkind (Exp) = N_String_Literal)
        and then Is_Scalar_Type (Check_Typ)
        and then Exp_Typ /= Check_Typ
      then
         if Is_Entity_Name (Exp)
           and then Ekind (Entity (Exp)) = E_Constant
         then
            --  If expression is a constant, it is worthwhile checking whether
            --  it is a bound of the type.

            if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
                 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
              or else
               (Is_Entity_Name (Type_High_Bound (Check_Typ))
                 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
            then
               return;

            else
               Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
               Analyze_And_Resolve (Exp, Check_Typ);
               Check_Unset_Reference (Exp);
            end if;

         --  Could use a comment on this case ???

         else
            Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
            Analyze_And_Resolve (Exp, Check_Typ);
            Check_Unset_Reference (Exp);
         end if;

      end if;
   end Aggregate_Constraint_Checks;

   -----------------------
   -- Alignment_In_Bits --
   -----------------------

   function Alignment_In_Bits (E : Entity_Id) return Uint is
   begin
      return Alignment (E) * System_Storage_Unit;
   end Alignment_In_Bits;

   --------------------------------------
   -- All_Composite_Constraints_Static --
   --------------------------------------

   function All_Composite_Constraints_Static
     (Constr : Node_Id) return Boolean
   is
   begin
      if No (Constr) or else Error_Posted (Constr) then
         return True;
      end if;

      case Nkind (Constr) is
         when N_Subexpr =>
            if Nkind (Constr) in N_Has_Entity
              and then Present (Entity (Constr))
            then
               if Is_Type (Entity (Constr)) then
                  return
                    not Is_Discrete_Type (Entity (Constr))
                      or else Is_OK_Static_Subtype (Entity (Constr));
               end if;

            elsif Nkind (Constr) = N_Range then
               return
                 Is_OK_Static_Expression (Low_Bound (Constr))
                   and then
                 Is_OK_Static_Expression (High_Bound (Constr));

            elsif Nkind (Constr) = N_Attribute_Reference
              and then Attribute_Name (Constr) = Name_Range
            then
               return
                 Is_OK_Static_Expression
                   (Type_Low_Bound (Etype (Prefix (Constr))))
                     and then
                 Is_OK_Static_Expression
                   (Type_High_Bound (Etype (Prefix (Constr))));
            end if;

            return
              not Present (Etype (Constr)) -- previous error
                or else not Is_Discrete_Type (Etype (Constr))
                or else Is_OK_Static_Expression (Constr);

         when N_Discriminant_Association =>
            return All_Composite_Constraints_Static (Expression (Constr));

         when N_Range_Constraint =>
            return
              All_Composite_Constraints_Static (Range_Expression (Constr));

         when N_Index_Or_Discriminant_Constraint =>
            declare
               One_Cstr : Entity_Id;
            begin
               One_Cstr := First (Constraints (Constr));
               while Present (One_Cstr) loop
                  if not All_Composite_Constraints_Static (One_Cstr) then
                     return False;
                  end if;

                  Next (One_Cstr);
               end loop;
            end;

            return True;

         when N_Subtype_Indication =>
            return
              All_Composite_Constraints_Static (Subtype_Mark (Constr))
                and then
              All_Composite_Constraints_Static (Constraint (Constr));

         when others =>
            raise Program_Error;
      end case;
   end All_Composite_Constraints_Static;

   ------------------------
   -- Append_Entity_Name --
   ------------------------

   procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id) is
      Temp : Bounded_String;

      procedure Inner (E : Entity_Id);
      --  Inner recursive routine, keep outer routine nonrecursive to ease
      --  debugging when we get strange results from this routine.

      -----------
      -- Inner --
      -----------

      procedure Inner (E : Entity_Id) is
         Scop : Node_Id;

      begin
         --  If entity has an internal name, skip by it, and print its scope.
         --  Note that we strip a final R from the name before the test; this
         --  is needed for some cases of instantiations.

         declare
            E_Name : Bounded_String;

         begin
            Append (E_Name, Chars (E));

            if E_Name.Chars (E_Name.Length) = 'R' then
               E_Name.Length := E_Name.Length - 1;
            end if;

            if Is_Internal_Name (E_Name) then
               Inner (Scope (E));
               return;
            end if;
         end;

         Scop := Scope (E);

         --  Just print entity name if its scope is at the outer level

         if Scop = Standard_Standard then
            null;

         --  If scope comes from source, write scope and entity

         elsif Comes_From_Source (Scop) then
            Append_Entity_Name (Temp, Scop);
            Append (Temp, '.');

         --  If in wrapper package skip past it

         elsif Present (Scop) and then Is_Wrapper_Package (Scop) then
            Append_Entity_Name (Temp, Scope (Scop));
            Append (Temp, '.');

         --  Otherwise nothing to output (happens in unnamed block statements)

         else
            null;
         end if;

         --  Output the name

         declare
            E_Name : Bounded_String;

         begin
            Append_Unqualified_Decoded (E_Name, Chars (E));

            --  Remove trailing upper-case letters from the name (useful for
            --  dealing with some cases of internal names generated in the case
            --  of references from within a generic).

            while E_Name.Length > 1
              and then E_Name.Chars (E_Name.Length) in 'A' .. 'Z'
            loop
               E_Name.Length := E_Name.Length - 1;
            end loop;

            --  Adjust casing appropriately (gets name from source if possible)

            Adjust_Name_Case (E_Name, Sloc (E));
            Append (Temp, E_Name);
         end;
      end Inner;

   --  Start of processing for Append_Entity_Name

   begin
      Inner (E);
      Append (Buf, Temp);
   end Append_Entity_Name;

   ---------------------------------
   -- Append_Inherited_Subprogram --
   ---------------------------------

   procedure Append_Inherited_Subprogram (S : Entity_Id) is
      Par : constant Entity_Id := Alias (S);
      --  The parent subprogram

      Scop : constant Entity_Id := Scope (Par);
      --  The scope of definition of the parent subprogram

      Typ : constant Entity_Id := Defining_Entity (Parent (S));
      --  The derived type of which S is a primitive operation

      Decl   : Node_Id;
      Next_E : Entity_Id;

   begin
      if Ekind (Current_Scope) = E_Package
        and then In_Private_Part (Current_Scope)
        and then Has_Private_Declaration (Typ)
        and then Is_Tagged_Type (Typ)
        and then Scop = Current_Scope
      then
         --  The inherited operation is available at the earliest place after
         --  the derived type declaration (RM 7.3.1 (6/1)). This is only
         --  relevant for type extensions. If the parent operation appears
         --  after the type extension, the operation is not visible.

         Decl := First
                   (Visible_Declarations
                     (Package_Specification (Current_Scope)));
         while Present (Decl) loop
            if Nkind (Decl) = N_Private_Extension_Declaration
              and then Defining_Entity (Decl) = Typ
            then
               if Sloc (Decl) > Sloc (Par) then
                  Next_E := Next_Entity (Par);
                  Link_Entities (Par, S);
                  Link_Entities (S, Next_E);
                  return;

               else
                  exit;
               end if;
            end if;

            Next (Decl);
         end loop;
      end if;

      --  If partial view is not a type extension, or it appears before the
      --  subprogram declaration, insert normally at end of entity list.

      Append_Entity (S, Current_Scope);
   end Append_Inherited_Subprogram;

   -----------------------------------------
   -- Apply_Compile_Time_Constraint_Error --
   -----------------------------------------

   procedure Apply_Compile_Time_Constraint_Error
     (N      : Node_Id;
      Msg    : String;
      Reason : RT_Exception_Code;
      Ent    : Entity_Id  := Empty;
      Typ    : Entity_Id  := Empty;
      Loc    : Source_Ptr := No_Location;
      Rep    : Boolean    := True;
      Warn   : Boolean    := False)
   is
      Stat   : constant Boolean := Is_Static_Expression (N);
      R_Stat : constant Node_Id :=
                 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
      Rtyp   : Entity_Id;

   begin
      if No (Typ) then
         Rtyp := Etype (N);
      else
         Rtyp := Typ;
      end if;

      Discard_Node
        (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));

      --  In GNATprove mode, do not replace the node with an exception raised.
      --  In such a case, either the call to Compile_Time_Constraint_Error
      --  issues an error which stops analysis, or it issues a warning in
      --  a few cases where a suitable check flag is set for GNATprove to
      --  generate a check message.

      if not Rep or GNATprove_Mode then
         return;
      end if;

      --  Now we replace the node by an N_Raise_Constraint_Error node
      --  This does not need reanalyzing, so set it as analyzed now.

      Rewrite (N, R_Stat);
      Set_Analyzed (N, True);

      Set_Etype (N, Rtyp);
      Set_Raises_Constraint_Error (N);

      --  Now deal with possible local raise handling

      Possible_Local_Raise (N, Standard_Constraint_Error);

      --  If the original expression was marked as static, the result is
      --  still marked as static, but the Raises_Constraint_Error flag is
      --  always set so that further static evaluation is not attempted.

      if Stat then
         Set_Is_Static_Expression (N);
      end if;
   end Apply_Compile_Time_Constraint_Error;

   ---------------------------
   -- Async_Readers_Enabled --
   ---------------------------

   function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
   begin
      return Has_Enabled_Property (Id, Name_Async_Readers);
   end Async_Readers_Enabled;

   ---------------------------
   -- Async_Writers_Enabled --
   ---------------------------

   function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
   begin
      return Has_Enabled_Property (Id, Name_Async_Writers);
   end Async_Writers_Enabled;

   --------------------------------------
   -- Available_Full_View_Of_Component --
   --------------------------------------

   function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
      ST  : constant Entity_Id := Scope (T);
      SCT : constant Entity_Id := Scope (Component_Type (T));
   begin
      return In_Open_Scopes (ST)
        and then In_Open_Scopes (SCT)
        and then Scope_Depth (ST) >= Scope_Depth (SCT);
   end Available_Full_View_Of_Component;

   -------------------
   -- Bad_Attribute --
   -------------------

   procedure Bad_Attribute
     (N    : Node_Id;
      Nam  : Name_Id;
      Warn : Boolean := False)
   is
   begin
      Error_Msg_Warn := Warn;
      Error_Msg_N ("unrecognized attribute&<<", N);

      --  Check for possible misspelling

      Error_Msg_Name_1 := First_Attribute_Name;
      while Error_Msg_Name_1 <= Last_Attribute_Name loop
         if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
            Error_Msg_N -- CODEFIX
              ("\possible misspelling of %<<", N);
            exit;
         end if;

         Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
      end loop;
   end Bad_Attribute;

   --------------------------------
   -- Bad_Predicated_Subtype_Use --
   --------------------------------

   procedure Bad_Predicated_Subtype_Use
     (Msg            : String;
      N              : Node_Id;
      Typ            : Entity_Id;
      Suggest_Static : Boolean := False)
   is
      Gen            : Entity_Id;

   begin
      --  Avoid cascaded errors

      if Error_Posted (N) then
         return;
      end if;

      if Inside_A_Generic then
         Gen := Current_Scope;
         while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
            Gen := Scope (Gen);
         end loop;

         if No (Gen) then
            return;
         end if;

         if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
            Set_No_Predicate_On_Actual (Typ);
         end if;

      elsif Has_Predicates (Typ) then
         if Is_Generic_Actual_Type (Typ) then

            --  The restriction on loop parameters is only that the type
            --  should have no dynamic predicates.

            if Nkind (Parent (N)) = N_Loop_Parameter_Specification
              and then not Has_Dynamic_Predicate_Aspect (Typ)
              and then Is_OK_Static_Subtype (Typ)
            then
               return;
            end if;

            Gen := Current_Scope;
            while not Is_Generic_Instance (Gen) loop
               Gen := Scope (Gen);
            end loop;

            pragma Assert (Present (Gen));

            if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
               Error_Msg_Warn := SPARK_Mode /= On;
               Error_Msg_FE (Msg & "<<", N, Typ);
               Error_Msg_F ("\Program_Error [<<", N);

               Insert_Action (N,
                 Make_Raise_Program_Error (Sloc (N),
                   Reason => PE_Bad_Predicated_Generic_Type));

            else
               Error_Msg_FE (Msg, N, Typ);
            end if;

         else
            Error_Msg_FE (Msg, N, Typ);
         end if;

         --  Emit an optional suggestion on how to remedy the error if the
         --  context warrants it.

         if Suggest_Static and then Has_Static_Predicate (Typ) then
            Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
         end if;
      end if;
   end Bad_Predicated_Subtype_Use;

   -----------------------------------------
   -- Bad_Unordered_Enumeration_Reference --
   -----------------------------------------

   function Bad_Unordered_Enumeration_Reference
     (N : Node_Id;
      T : Entity_Id) return Boolean
   is
   begin
      return Is_Enumeration_Type (T)
        and then Warn_On_Unordered_Enumeration_Type
        and then not Is_Generic_Type (T)
        and then Comes_From_Source (N)
        and then not Has_Pragma_Ordered (T)
        and then not In_Same_Extended_Unit (N, T);
   end Bad_Unordered_Enumeration_Reference;

   ----------------------------
   -- Begin_Keyword_Location --
   ----------------------------

   function Begin_Keyword_Location (N : Node_Id) return Source_Ptr is
      HSS : Node_Id;

   begin
      pragma Assert
        (Nkind (N) in
           N_Block_Statement |
           N_Entry_Body      |
           N_Package_Body    |
           N_Subprogram_Body |
           N_Task_Body);

      HSS := Handled_Statement_Sequence (N);

      --  When the handled sequence of statements comes from source, the
      --  location of the "begin" keyword is that of the sequence itself.
      --  Note that an internal construct may inherit a source sequence.

      if Comes_From_Source (HSS) then
         return Sloc (HSS);

      --  The parser generates an internal handled sequence of statements to
      --  capture the location of the "begin" keyword if present in the source.
      --  Since there are no source statements, the location of the "begin"
      --  keyword is effectively that of the "end" keyword.

      elsif Comes_From_Source (N) then
         return Sloc (HSS);

      --  Otherwise the construct is internal and should carry the location of
      --  the original construct which prompted its creation.

      else
         return Sloc (N);
      end if;
   end Begin_Keyword_Location;

   --------------------------
   -- Build_Actual_Subtype --
   --------------------------

   function Build_Actual_Subtype
     (T : Entity_Id;
      N : Node_Or_Entity_Id) return Node_Id
   is
      Loc : Source_Ptr;
      --  Normally Sloc (N), but may point to corresponding body in some cases

      Constraints : List_Id;
      Decl        : Node_Id;
      Discr       : Entity_Id;
      Hi          : Node_Id;
      Lo          : Node_Id;
      Subt        : Entity_Id;
      Disc_Type   : Entity_Id;
      Obj         : Node_Id;

   begin
      Loc := Sloc (N);

      if Nkind (N) = N_Defining_Identifier then
         Obj := New_Occurrence_Of (N, Loc);

         --  If this is a formal parameter of a subprogram declaration, and
         --  we are compiling the body, we want the declaration for the
         --  actual subtype to carry the source position of the body, to
         --  prevent anomalies in gdb when stepping through the code.

         if Is_Formal (N) then
            declare
               Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
            begin
               if Nkind (Decl) = N_Subprogram_Declaration
                 and then Present (Corresponding_Body (Decl))
               then
                  Loc := Sloc (Corresponding_Body (Decl));
               end if;
            end;
         end if;

      else
         Obj := N;
      end if;

      if Is_Array_Type (T) then
         Constraints := New_List;
         for J in 1 .. Number_Dimensions (T) loop

            --  Build an array subtype declaration with the nominal subtype and
            --  the bounds of the actual. Add the declaration in front of the
            --  local declarations for the subprogram, for analysis before any
            --  reference to the formal in the body.

            Lo :=
              Make_Attribute_Reference (Loc,
                Prefix         =>
                  Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
                Attribute_Name => Name_First,
                Expressions    => New_List (
                  Make_Integer_Literal (Loc, J)));

            Hi :=
              Make_Attribute_Reference (Loc,
                Prefix         =>
                  Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
                Attribute_Name => Name_Last,
                Expressions    => New_List (
                  Make_Integer_Literal (Loc, J)));

            Append (Make_Range (Loc, Lo, Hi), Constraints);
         end loop;

      --  If the type has unknown discriminants there is no constrained
      --  subtype to build. This is never called for a formal or for a
      --  lhs, so returning the type is ok ???

      elsif Has_Unknown_Discriminants (T) then
         return T;

      else
         Constraints := New_List;

         --  Type T is a generic derived type, inherit the discriminants from
         --  the parent type.

         if Is_Private_Type (T)
           and then No (Full_View (T))

            --  T was flagged as an error if it was declared as a formal
            --  derived type with known discriminants. In this case there
            --  is no need to look at the parent type since T already carries
            --  its own discriminants.

           and then not Error_Posted (T)
         then
            Disc_Type := Etype (Base_Type (T));
         else
            Disc_Type := T;
         end if;

         Discr := First_Discriminant (Disc_Type);
         while Present (Discr) loop
            Append_To (Constraints,
              Make_Selected_Component (Loc,
                Prefix =>
                  Duplicate_Subexpr_No_Checks (Obj),
                Selector_Name => New_Occurrence_Of (Discr, Loc)));
            Next_Discriminant (Discr);
         end loop;
      end if;

      Subt := Make_Temporary (Loc, 'S', Related_Node => N);
      Set_Is_Internal (Subt);

      Decl :=
        Make_Subtype_Declaration (Loc,
          Defining_Identifier => Subt,
          Subtype_Indication =>
            Make_Subtype_Indication (Loc,
              Subtype_Mark => New_Occurrence_Of (T,  Loc),
              Constraint  =>
                Make_Index_Or_Discriminant_Constraint (Loc,
                  Constraints => Constraints)));

      Mark_Rewrite_Insertion (Decl);
      return Decl;
   end Build_Actual_Subtype;

   ---------------------------------------
   -- Build_Actual_Subtype_Of_Component --
   ---------------------------------------

   function Build_Actual_Subtype_Of_Component
     (T : Entity_Id;
      N : Node_Id) return Node_Id
   is
      Loc       : constant Source_Ptr := Sloc (N);
      P         : constant Node_Id    := Prefix (N);

      D         : Elmt_Id;
      Id        : Node_Id;
      Index_Typ : Entity_Id;
      Sel       : Entity_Id  := Empty;

      Desig_Typ : Entity_Id;
      --  This is either a copy of T, or if T is an access type, then it is
      --  the directly designated type of this access type.

      function Build_Access_Record_Constraint (C : List_Id) return List_Id;
      --  If the record component is a constrained access to the current
      --  record, the subtype has not been constructed during analysis of
      --  the enclosing record type (see Analyze_Access). In that case, build
      --  a constrained access subtype after replacing references to the
      --  enclosing discriminants with the corresponding discriminant values
      --  of the prefix.

      function Build_Actual_Array_Constraint return List_Id;
      --  If one or more of the bounds of the component depends on
      --  discriminants, build  actual constraint using the discriminants
      --  of the prefix, as above.

      function Build_Actual_Record_Constraint return List_Id;
      --  Similar to previous one, for discriminated components constrained
      --  by the discriminant of the enclosing object.

      function Copy_And_Maybe_Dereference (N : Node_Id) return Node_Id;
      --  Copy the subtree rooted at N and insert an explicit dereference if it
      --  is of an access type.

      -----------------------------------
      -- Build_Actual_Array_Constraint --
      -----------------------------------

      function Build_Actual_Array_Constraint return List_Id is
         Constraints : constant List_Id := New_List;
         Indx        : Node_Id;
         Hi          : Node_Id;
         Lo          : Node_Id;
         Old_Hi      : Node_Id;
         Old_Lo      : Node_Id;

      begin
         Indx := First_Index (Desig_Typ);
         while Present (Indx) loop
            Old_Lo := Type_Low_Bound  (Etype (Indx));
            Old_Hi := Type_High_Bound (Etype (Indx));

            if Denotes_Discriminant (Old_Lo) then
               Lo :=
                 Make_Selected_Component (Loc,
                   Prefix => Copy_And_Maybe_Dereference (P),
                   Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));

            else
               Lo := New_Copy_Tree (Old_Lo);

               --  The new bound will be reanalyzed in the enclosing
               --  declaration. For literal bounds that come from a type
               --  declaration, the type of the context must be imposed, so
               --  insure that analysis will take place. For non-universal
               --  types this is not strictly necessary.

               Set_Analyzed (Lo, False);
            end if;

            if Denotes_Discriminant (Old_Hi) then
               Hi :=
                 Make_Selected_Component (Loc,
                   Prefix => Copy_And_Maybe_Dereference (P),
                   Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));

            else
               Hi := New_Copy_Tree (Old_Hi);
               Set_Analyzed (Hi, False);
            end if;

            Append (Make_Range (Loc, Lo, Hi), Constraints);
            Next_Index (Indx);
         end loop;

         return Constraints;
      end Build_Actual_Array_Constraint;

      ------------------------------------
      -- Build_Actual_Record_Constraint --
      ------------------------------------

      function Build_Actual_Record_Constraint return List_Id is
         Constraints : constant List_Id := New_List;
         D           : Elmt_Id;
         D_Val       : Node_Id;

      begin
         D := First_Elmt (Discriminant_Constraint (Desig_Typ));
         while Present (D) loop
            if Denotes_Discriminant (Node (D)) then
               D_Val := Make_Selected_Component (Loc,
                 Prefix => Copy_And_Maybe_Dereference (P),
                Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));

            else
               D_Val := New_Copy_Tree (Node (D));
            end if;

            Append (D_Val, Constraints);
            Next_Elmt (D);
         end loop;

         return Constraints;
      end Build_Actual_Record_Constraint;

      ------------------------------------
      -- Build_Access_Record_Constraint --
      ------------------------------------

      function Build_Access_Record_Constraint (C : List_Id) return List_Id is
         Constraints : constant List_Id := New_List;
         D           : Node_Id;
         D_Val       : Node_Id;

      begin
         --  Retrieve the constraint from the component declaration, because
         --  the component subtype has not been constructed and the component
         --  type is an unconstrained access.

         D := First (C);
         while Present (D) loop
            if Nkind (D) = N_Discriminant_Association
              and then Denotes_Discriminant (Expression (D))
            then
               D_Val := New_Copy_Tree (D);
               Set_Expression (D_Val,
                 Make_Selected_Component (Loc,
                   Prefix => Copy_And_Maybe_Dereference (P),
                   Selector_Name =>
                     New_Occurrence_Of (Entity (Expression (D)), Loc)));

            elsif Denotes_Discriminant (D) then
               D_Val := Make_Selected_Component (Loc,
                 Prefix => Copy_And_Maybe_Dereference (P),
                 Selector_Name => New_Occurrence_Of (Entity (D), Loc));

            else
               D_Val := New_Copy_Tree (D);
            end if;

            Append (D_Val, Constraints);
            Next (D);
         end loop;

         return Constraints;
      end Build_Access_Record_Constraint;

      --------------------------------
      -- Copy_And_Maybe_Dereference --
      --------------------------------

      function Copy_And_Maybe_Dereference (N : Node_Id) return Node_Id is
         New_N : constant Node_Id := New_Copy_Tree (N);

      begin
         if Is_Access_Type (Etype (N)) then
            return Make_Explicit_Dereference (Sloc (Parent (N)), New_N);

         else
            return New_N;
         end if;
      end Copy_And_Maybe_Dereference;

   --  Start of processing for Build_Actual_Subtype_Of_Component

   begin
      --  The subtype does not need to be created for a selected component
      --  in a Spec_Expression.

      if In_Spec_Expression then
         return Empty;

      --  More comments for the rest of this body would be good ???

      elsif Nkind (N) = N_Explicit_Dereference then
         if Is_Composite_Type (T)
           and then not Is_Constrained (T)
           and then not (Is_Class_Wide_Type (T)
                          and then Is_Constrained (Root_Type (T)))
           and then not Has_Unknown_Discriminants (T)
         then
            --  If the type of the dereference is already constrained, it is an
            --  actual subtype.

            if Is_Array_Type (Etype (N))
              and then Is_Constrained (Etype (N))
            then
               return Empty;
            else
               Remove_Side_Effects (P);
               return Build_Actual_Subtype (T, N);
            end if;

         else
            return Empty;
         end if;

      elsif Nkind (N) = N_Selected_Component then
         --  The entity of the selected component allows us to retrieve
         --  the original constraint from its component declaration.

         Sel := Entity (Selector_Name (N));
         if Nkind (Parent (Sel)) /= N_Component_Declaration then
            return Empty;
         end if;
      end if;

      if Is_Access_Type (T) then
         Desig_Typ := Designated_Type (T);

      else
         Desig_Typ := T;
      end if;

      if Ekind (Desig_Typ) = E_Array_Subtype then
         Id := First_Index (Desig_Typ);

         --  Check whether an index bound is constrained by a discriminant

         while Present (Id) loop
            Index_Typ := Underlying_Type (Etype (Id));

            if Denotes_Discriminant (Type_Low_Bound  (Index_Typ))
                 or else
               Denotes_Discriminant (Type_High_Bound (Index_Typ))
            then
               Remove_Side_Effects (P);
               return
                 Build_Component_Subtype
                   (Build_Actual_Array_Constraint, Loc, Base_Type (T));
            end if;

            Next_Index (Id);
         end loop;

      elsif Is_Composite_Type (Desig_Typ)
        and then Has_Discriminants (Desig_Typ)
        and then not Is_Empty_Elmt_List (Discriminant_Constraint (Desig_Typ))
        and then not Has_Unknown_Discriminants (Desig_Typ)
      then
         if Is_Private_Type (Desig_Typ)
           and then No (Discriminant_Constraint (Desig_Typ))
         then
            Desig_Typ := Full_View (Desig_Typ);
         end if;

         D := First_Elmt (Discriminant_Constraint (Desig_Typ));
         while Present (D) loop
            if Denotes_Discriminant (Node (D)) then
               Remove_Side_Effects (P);
               return
                 Build_Component_Subtype (
                   Build_Actual_Record_Constraint, Loc, Base_Type (T));
            end if;

            Next_Elmt (D);
         end loop;

      --  Special processing for an access record component that is
      --  the target of an assignment. If the designated type is an
      --  unconstrained discriminated record we create its actual
      --  subtype now.

      elsif Ekind (T) = E_Access_Type
        and then Present (Sel)
        and then Has_Per_Object_Constraint (Sel)
        and then Nkind (Parent (N)) = N_Assignment_Statement
        and then N = Name (Parent (N))
        --  and then not Inside_Init_Proc
        --  and then Has_Discriminants (Desig_Typ)
        --  and then not Is_Constrained (Desig_Typ)
      then
         declare
            S_Indic : constant Node_Id :=
              (Subtype_Indication
                    (Component_Definition (Parent (Sel))));
            Discs : List_Id;
         begin
            if Nkind (S_Indic) = N_Subtype_Indication then
               Discs := Constraints (Constraint (S_Indic));

               Remove_Side_Effects (P);
               return Build_Component_Subtype
                  (Build_Access_Record_Constraint (Discs), Loc, T);
            else
               return Empty;
            end if;
         end;
      end if;

      --  If none of the above, the actual and nominal subtypes are the same

      return Empty;
   end Build_Actual_Subtype_Of_Component;

   ---------------------------------
   -- Build_Class_Wide_Clone_Body --
   ---------------------------------

   procedure Build_Class_Wide_Clone_Body
     (Spec_Id : Entity_Id;
      Bod     : Node_Id)
   is
      Loc        : constant Source_Ptr := Sloc (Bod);
      Clone_Id   : constant Entity_Id  := Class_Wide_Clone (Spec_Id);
      Clone_Body : Node_Id;
      Assoc_List : constant Elist_Id := New_Elmt_List;

   begin
      --  The declaration of the class-wide clone was created when the
      --  corresponding class-wide condition was analyzed.

      --  The body of the original condition may contain references to
      --  the formals of Spec_Id. In the body of the class-wide clone,
      --  these must be replaced with the corresponding formals of
      --  the clone.

      declare
         Spec_Formal_Id  : Entity_Id := First_Formal (Spec_Id);
         Clone_Formal_Id : Entity_Id := First_Formal (Clone_Id);
      begin
         while Present (Spec_Formal_Id) loop
            Append_Elmt (Spec_Formal_Id,  Assoc_List);
            Append_Elmt (Clone_Formal_Id, Assoc_List);

            Next_Formal (Spec_Formal_Id);
            Next_Formal (Clone_Formal_Id);
         end loop;
      end;

      Clone_Body :=
        Make_Subprogram_Body (Loc,
          Specification              =>
            Copy_Subprogram_Spec (Parent (Clone_Id)),
          Declarations               => Declarations (Bod),
          Handled_Statement_Sequence =>
            New_Copy_Tree (Handled_Statement_Sequence (Bod),
              Map => Assoc_List));

      --  The new operation is internal and overriding indicators do not apply
      --  (the original primitive may have carried one).

      Set_Must_Override (Specification (Clone_Body), False);

      --  If the subprogram body is the proper body of a stub, insert the
      --  subprogram after the stub, i.e. the same declarative region as
      --  the original sugprogram.

      if Nkind (Parent (Bod)) = N_Subunit then
         Insert_After (Corresponding_Stub (Parent (Bod)), Clone_Body);

      else
         Insert_Before (Bod, Clone_Body);
      end if;

      Analyze (Clone_Body);
   end Build_Class_Wide_Clone_Body;

   ---------------------------------
   -- Build_Class_Wide_Clone_Call --
   ---------------------------------

   function Build_Class_Wide_Clone_Call
     (Loc     : Source_Ptr;
      Decls   : List_Id;
      Spec_Id : Entity_Id;
      Spec    : Node_Id) return Node_Id
   is
      Clone_Id : constant Entity_Id := Class_Wide_Clone (Spec_Id);
      Par_Type : constant Entity_Id := Find_Dispatching_Type (Spec_Id);

      Actuals    : List_Id;
      Call       : Node_Id;
      Formal     : Entity_Id;
      New_Body   : Node_Id;
      New_F_Spec : Entity_Id;
      New_Formal : Entity_Id;

   begin
      Actuals    := Empty_List;
      Formal     := First_Formal (Spec_Id);
      New_F_Spec := First (Parameter_Specifications (Spec));

      --  Build parameter association for call to class-wide clone.

      while Present (Formal) loop
         New_Formal := Defining_Identifier (New_F_Spec);

         --  If controlling argument and operation is inherited, add conversion
         --  to parent type for the call.

         if Etype (Formal) = Par_Type
           and then not Is_Empty_List (Decls)
         then
            Append_To (Actuals,
              Make_Type_Conversion (Loc,
                New_Occurrence_Of (Par_Type, Loc),
                New_Occurrence_Of (New_Formal, Loc)));

         else
            Append_To (Actuals, New_Occurrence_Of (New_Formal, Loc));
         end if;

         Next_Formal (Formal);
         Next (New_F_Spec);
      end loop;

      if Ekind (Spec_Id) = E_Procedure then
         Call :=
           Make_Procedure_Call_Statement (Loc,
             Name                   => New_Occurrence_Of (Clone_Id, Loc),
             Parameter_Associations => Actuals);
      else
         Call :=
           Make_Simple_Return_Statement (Loc,
            Expression =>
              Make_Function_Call (Loc,
                Name                   => New_Occurrence_Of (Clone_Id, Loc),
                Parameter_Associations => Actuals));
      end if;

      New_Body :=
        Make_Subprogram_Body (Loc,
          Specification              =>
            Copy_Subprogram_Spec (Spec),
          Declarations               => Decls,
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => New_List (Call),
              End_Label  => Make_Identifier (Loc, Chars (Spec_Id))));

      return New_Body;
   end Build_Class_Wide_Clone_Call;

   ---------------------------------
   -- Build_Class_Wide_Clone_Decl --
   ---------------------------------

   procedure Build_Class_Wide_Clone_Decl (Spec_Id : Entity_Id) is
      Loc      : constant Source_Ptr := Sloc (Spec_Id);
      Clone_Id : constant Entity_Id  :=
                   Make_Defining_Identifier (Loc,
                     New_External_Name (Chars (Spec_Id), Suffix => "CL"));

      Decl : Node_Id;
      Spec : Node_Id;

   begin
      Spec := Copy_Subprogram_Spec (Parent (Spec_Id));
      Set_Must_Override      (Spec, False);
      Set_Must_Not_Override  (Spec, False);
      Set_Defining_Unit_Name (Spec, Clone_Id);

      Decl := Make_Subprogram_Declaration (Loc, Spec);
      Append (Decl, List_Containing (Unit_Declaration_Node (Spec_Id)));

      --  Link clone to original subprogram, for use when building body and
      --  wrapper call to inherited operation.

      Set_Class_Wide_Clone (Spec_Id, Clone_Id);

      --  Inherit debug info flag from Spec_Id to Clone_Id to allow debugging
      --  of the class-wide clone subprogram.

      if Needs_Debug_Info (Spec_Id) then
         Set_Debug_Info_Needed (Clone_Id);
      end if;
   end Build_Class_Wide_Clone_Decl;

   -----------------------------
   -- Build_Component_Subtype --
   -----------------------------

   function Build_Component_Subtype
     (C   : List_Id;
      Loc : Source_Ptr;
      T   : Entity_Id) return Node_Id
   is
      Subt : Entity_Id;
      Decl : Node_Id;

   begin
      --  Unchecked_Union components do not require component subtypes

      if Is_Unchecked_Union (T) then
         return Empty;
      end if;

      Subt := Make_Temporary (Loc, 'S');
      Set_Is_Internal (Subt);

      Decl :=
        Make_Subtype_Declaration (Loc,
          Defining_Identifier => Subt,
          Subtype_Indication =>
            Make_Subtype_Indication (Loc,
              Subtype_Mark => New_Occurrence_Of (Base_Type (T),  Loc),
              Constraint  =>
                Make_Index_Or_Discriminant_Constraint (Loc,
                  Constraints => C)));

      Mark_Rewrite_Insertion (Decl);
      return Decl;
   end Build_Component_Subtype;

   -----------------------------
   -- Build_Constrained_Itype --
   -----------------------------

   procedure Build_Constrained_Itype
     (N              : Node_Id;
      Typ            : Entity_Id;
      New_Assoc_List : List_Id)
   is
      Constrs     : constant List_Id    := New_List;
      Loc         : constant Source_Ptr := Sloc (N);
      Def_Id      : Entity_Id;
      Indic       : Node_Id;
      New_Assoc   : Node_Id;
      Subtyp_Decl : Node_Id;

   begin
      New_Assoc := First (New_Assoc_List);
      while Present (New_Assoc) loop

         --  There is exactly one choice in the component association (and
         --  it is either a discriminant, a component or the others clause).
         pragma Assert (List_Length (Choices (New_Assoc)) = 1);

         --  Duplicate expression for the discriminant and put it on the
         --  list of constraints for the itype declaration.

         if Is_Entity_Name (First (Choices (New_Assoc)))
           and then
             Ekind (Entity (First (Choices (New_Assoc)))) = E_Discriminant
         then
            Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
         end if;

         Next (New_Assoc);
      end loop;

      if Has_Unknown_Discriminants (Typ)
        and then Present (Underlying_Record_View (Typ))
      then
         Indic :=
           Make_Subtype_Indication (Loc,
             Subtype_Mark =>
               New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
             Constraint   =>
               Make_Index_Or_Discriminant_Constraint (Loc,
                 Constraints => Constrs));
      else
         Indic :=
           Make_Subtype_Indication (Loc,
             Subtype_Mark =>
               New_Occurrence_Of (Base_Type (Typ), Loc),
             Constraint   =>
               Make_Index_Or_Discriminant_Constraint (Loc,
                 Constraints => Constrs));
      end if;

      Def_Id := Create_Itype (Ekind (Typ), N);

      Subtyp_Decl :=
        Make_Subtype_Declaration (Loc,
          Defining_Identifier => Def_Id,
          Subtype_Indication  => Indic);
      Set_Parent (Subtyp_Decl, Parent (N));

      --  Itypes must be analyzed with checks off (see itypes.ads)

      Analyze (Subtyp_Decl, Suppress => All_Checks);

      Set_Etype (N, Def_Id);
   end Build_Constrained_Itype;

   ---------------------------
   -- Build_Default_Subtype --
   ---------------------------

   function Build_Default_Subtype
     (T : Entity_Id;
      N : Node_Id) return Entity_Id
   is
      Loc  : constant Source_Ptr := Sloc (N);
      Disc : Entity_Id;

      Bas : Entity_Id;
      --  The base type that is to be constrained by the defaults

   begin
      if not Has_Discriminants (T) or else Is_Constrained (T) then
         return T;
      end if;

      Bas := Base_Type (T);

      --  If T is non-private but its base type is private, this is the
      --  completion of a subtype declaration whose parent type is private
      --  (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
      --  are to be found in the full view of the base. Check that the private
      --  status of T and its base differ.

      if Is_Private_Type (Bas)
        and then not Is_Private_Type (T)
        and then Present (Full_View (Bas))
      then
         Bas := Full_View (Bas);
      end if;

      Disc := First_Discriminant (T);

      if No (Discriminant_Default_Value (Disc)) then
         return T;
      end if;

      declare
         Act         : constant Entity_Id := Make_Temporary (Loc, 'S');
         Constraints : constant List_Id := New_List;
         Decl        : Node_Id;

      begin
         while Present (Disc) loop
            Append_To (Constraints,
              New_Copy_Tree (Discriminant_Default_Value (Disc)));
            Next_Discriminant (Disc);
         end loop;

         Decl :=
           Make_Subtype_Declaration (Loc,
             Defining_Identifier => Act,
             Subtype_Indication  =>
               Make_Subtype_Indication (Loc,
                 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
                 Constraint   =>
                   Make_Index_Or_Discriminant_Constraint (Loc,
                     Constraints => Constraints)));

         Insert_Action (N, Decl);

         --  If the context is a component declaration the subtype declaration
         --  will be analyzed when the enclosing type is frozen, otherwise do
         --  it now.

         if Ekind (Current_Scope) /= E_Record_Type then
            Analyze (Decl);
         end if;

         return Act;
      end;
   end Build_Default_Subtype;

   --------------------------------------------
   -- Build_Discriminal_Subtype_Of_Component --
   --------------------------------------------

   function Build_Discriminal_Subtype_Of_Component
     (T : Entity_Id) return Node_Id
   is
      Loc : constant Source_Ptr := Sloc (T);
      D   : Elmt_Id;
      Id  : Node_Id;

      function Build_Discriminal_Array_Constraint return List_Id;
      --  If one or more of the bounds of the component depends on
      --  discriminants, build  actual constraint using the discriminants
      --  of the prefix.

      function Build_Discriminal_Record_Constraint return List_Id;
      --  Similar to previous one, for discriminated components constrained by
      --  the discriminant of the enclosing object.

      ----------------------------------------
      -- Build_Discriminal_Array_Constraint --
      ----------------------------------------

      function Build_Discriminal_Array_Constraint return List_Id is
         Constraints : constant List_Id := New_List;
         Indx        : Node_Id;
         Hi          : Node_Id;
         Lo          : Node_Id;
         Old_Hi      : Node_Id;
         Old_Lo      : Node_Id;

      begin
         Indx := First_Index (T);
         while Present (Indx) loop
            Old_Lo := Type_Low_Bound  (Etype (Indx));
            Old_Hi := Type_High_Bound (Etype (Indx));

            if Denotes_Discriminant (Old_Lo) then
               Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);

            else
               Lo := New_Copy_Tree (Old_Lo);
            end if;

            if Denotes_Discriminant (Old_Hi) then
               Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);

            else
               Hi := New_Copy_Tree (Old_Hi);
            end if;

            Append (Make_Range (Loc, Lo, Hi), Constraints);
            Next_Index (Indx);
         end loop;

         return Constraints;
      end Build_Discriminal_Array_Constraint;

      -----------------------------------------
      -- Build_Discriminal_Record_Constraint --
      -----------------------------------------

      function Build_Discriminal_Record_Constraint return List_Id is
         Constraints : constant List_Id := New_List;
         D           : Elmt_Id;
         D_Val       : Node_Id;

      begin
         D := First_Elmt (Discriminant_Constraint (T));
         while Present (D) loop
            if Denotes_Discriminant (Node (D)) then
               D_Val :=
                 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
            else
               D_Val := New_Copy_Tree (Node (D));
            end if;

            Append (D_Val, Constraints);
            Next_Elmt (D);
         end loop;

         return Constraints;
      end Build_Discriminal_Record_Constraint;

   --  Start of processing for Build_Discriminal_Subtype_Of_Component

   begin
      if Ekind (T) = E_Array_Subtype then
         Id := First_Index (T);
         while Present (Id) loop
            if Denotes_Discriminant (Type_Low_Bound  (Etype (Id)))
                 or else
               Denotes_Discriminant (Type_High_Bound (Etype (Id)))
            then
               return Build_Component_Subtype
                 (Build_Discriminal_Array_Constraint, Loc, T);
            end if;

            Next_Index (Id);
         end loop;

      elsif Ekind (T) = E_Record_Subtype
        and then Has_Discriminants (T)
        and then not Has_Unknown_Discriminants (T)
      then
         D := First_Elmt (Discriminant_Constraint (T));
         while Present (D) loop
            if Denotes_Discriminant (Node (D)) then
               return Build_Component_Subtype
                 (Build_Discriminal_Record_Constraint, Loc, T);
            end if;

            Next_Elmt (D);
         end loop;
      end if;

      --  If none of the above, the actual and nominal subtypes are the same

      return Empty;
   end Build_Discriminal_Subtype_Of_Component;

   ------------------------------
   -- Build_Elaboration_Entity --
   ------------------------------

   procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
      Loc      : constant Source_Ptr := Sloc (N);
      Decl     : Node_Id;
      Elab_Ent : Entity_Id;

      procedure Set_Package_Name (Ent : Entity_Id);
      --  Given an entity, sets the fully qualified name of the entity in
      --  Name_Buffer, with components separated by double underscores. This
      --  is a recursive routine that climbs the scope chain to Standard.

      ----------------------
      -- Set_Package_Name --
      ----------------------

      procedure Set_Package_Name (Ent : Entity_Id) is
      begin
         if Scope (Ent) /= Standard_Standard then
            Set_Package_Name (Scope (Ent));

            declare
               Nam : constant String := Get_Name_String (Chars (Ent));
            begin
               Name_Buffer (Name_Len + 1) := '_';
               Name_Buffer (Name_Len + 2) := '_';
               Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
               Name_Len := Name_Len + Nam'Length + 2;
            end;

         else
            Get_Name_String (Chars (Ent));
         end if;
      end Set_Package_Name;

   --  Start of processing for Build_Elaboration_Entity

   begin
      --  Ignore call if already constructed

      if Present (Elaboration_Entity (Spec_Id)) then
         return;

      --  Do not generate an elaboration entity in GNATprove move because the
      --  elaboration counter is a form of expansion.

      elsif GNATprove_Mode then
         return;

      --  See if we need elaboration entity

      --  We always need an elaboration entity when preserving control flow, as
      --  we want to remain explicit about the unit's elaboration order.

      elsif Opt.Suppress_Control_Flow_Optimizations then
         null;

      --  We always need an elaboration entity for the dynamic elaboration
      --  model, since it is needed to properly generate the PE exception for
      --  access before elaboration.

      elsif Dynamic_Elaboration_Checks then
         null;

      --  For the static model, we don't need the elaboration counter if this
      --  unit is sure to have no elaboration code, since that means there
      --  is no elaboration unit to be called. Note that we can't just decide
      --  after the fact by looking to see whether there was elaboration code,
      --  because that's too late to make this decision.

      elsif Restriction_Active (No_Elaboration_Code) then
         return;

      --  Similarly, for the static model, we can skip the elaboration counter
      --  if we have the No_Multiple_Elaboration restriction, since for the
      --  static model, that's the only purpose of the counter (to avoid
      --  multiple elaboration).

      elsif Restriction_Active (No_Multiple_Elaboration) then
         return;
      end if;

      --  Here we need the elaboration entity

      --  Construct name of elaboration entity as xxx_E, where xxx is the unit
      --  name with dots replaced by double underscore. We have to manually
      --  construct this name, since it will be elaborated in the outer scope,
      --  and thus will not have the unit name automatically prepended.

      Set_Package_Name (Spec_Id);
      Add_Str_To_Name_Buffer ("_E");

      --  Create elaboration counter

      Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
      Set_Elaboration_Entity (Spec_Id, Elab_Ent);

      Decl :=
        Make_Object_Declaration (Loc,
          Defining_Identifier => Elab_Ent,
          Object_Definition   =>
            New_Occurrence_Of (Standard_Short_Integer, Loc),
          Expression          => Make_Integer_Literal (Loc, Uint_0));

      Push_Scope (Standard_Standard);
      Add_Global_Declaration (Decl);
      Pop_Scope;

      --  Reset True_Constant indication, since we will indeed assign a value
      --  to the variable in the binder main. We also kill the Current_Value
      --  and Last_Assignment fields for the same reason.

      Set_Is_True_Constant (Elab_Ent, False);
      Set_Current_Value    (Elab_Ent, Empty);
      Set_Last_Assignment  (Elab_Ent, Empty);

      --  We do not want any further qualification of the name (if we did not
      --  do this, we would pick up the name of the generic package in the case
      --  of a library level generic instantiation).

      Set_Has_Qualified_Name       (Elab_Ent);
      Set_Has_Fully_Qualified_Name (Elab_Ent);
   end Build_Elaboration_Entity;

   --------------------------------
   -- Build_Explicit_Dereference --
   --------------------------------

   procedure Build_Explicit_Dereference
     (Expr : Node_Id;
      Disc : Entity_Id)
   is
      Loc : constant Source_Ptr := Sloc (Expr);
      I   : Interp_Index;
      It  : Interp;

   begin
      --  An entity of a type with a reference aspect is overloaded with
      --  both interpretations: with and without the dereference. Now that
      --  the dereference is made explicit, set the type of the node properly,
      --  to prevent anomalies in the backend. Same if the expression is an
      --  overloaded function call whose return type has a reference aspect.

      if Is_Entity_Name (Expr) then
         Set_Etype (Expr, Etype (Entity (Expr)));

         --  The designated entity will not be examined again when resolving
         --  the dereference, so generate a reference to it now.

         Generate_Reference (Entity (Expr), Expr);

      elsif Nkind (Expr) = N_Function_Call then

         --  If the name of the indexing function is overloaded, locate the one
         --  whose return type has an implicit dereference on the desired
         --  discriminant, and set entity and type of function call.

         if Is_Overloaded (Name (Expr)) then
            Get_First_Interp (Name (Expr), I, It);

            while Present (It.Nam) loop
               if Ekind ((It.Typ)) = E_Record_Type
                 and then First_Entity ((It.Typ)) = Disc
               then
                  Set_Entity (Name (Expr), It.Nam);
                  Set_Etype (Name (Expr), Etype (It.Nam));
                  exit;
               end if;

               Get_Next_Interp (I, It);
            end loop;
         end if;

         --  Set type of call from resolved function name.

         Set_Etype (Expr, Etype (Name (Expr)));
      end if;

      Set_Is_Overloaded (Expr, False);

      --  The expression will often be a generalized indexing that yields a
      --  container element that is then dereferenced, in which case the
      --  generalized indexing call is also non-overloaded.

      if Nkind (Expr) = N_Indexed_Component
        and then Present (Generalized_Indexing (Expr))
      then
         Set_Is_Overloaded (Generalized_Indexing (Expr), False);
      end if;

      Rewrite (Expr,
        Make_Explicit_Dereference (Loc,
          Prefix =>
            Make_Selected_Component (Loc,
              Prefix        => Relocate_Node (Expr),
              Selector_Name => New_Occurrence_Of (Disc, Loc))));
      Set_Etype (Prefix (Expr), Etype (Disc));
      Set_Etype (Expr, Designated_Type (Etype (Disc)));
   end Build_Explicit_Dereference;

   ---------------------------
   -- Build_Overriding_Spec --
   ---------------------------

   function Build_Overriding_Spec
     (Op  : Entity_Id;
      Typ : Entity_Id) return Node_Id
   is
      Loc     : constant Source_Ptr := Sloc (Typ);
      Par_Typ : constant Entity_Id := Find_Dispatching_Type (Op);
      Spec    : constant Node_Id := Specification (Unit_Declaration_Node (Op));

      Formal_Spec : Node_Id;
      Formal_Type : Node_Id;
      New_Spec    : Node_Id;

   begin
      New_Spec := Copy_Subprogram_Spec (Spec);

      Formal_Spec := First (Parameter_Specifications (New_Spec));
      while Present (Formal_Spec) loop
         Formal_Type := Parameter_Type (Formal_Spec);

         if Is_Entity_Name (Formal_Type)
           and then Entity (Formal_Type) = Par_Typ
         then
            Rewrite (Formal_Type, New_Occurrence_Of (Typ, Loc));
         end if;

         --  Nothing needs to be done for access parameters

         Next (Formal_Spec);
      end loop;

      return New_Spec;
   end Build_Overriding_Spec;

   -------------------
   -- Build_Subtype --
   -------------------

   function Build_Subtype
     (Related_Node : Node_Id;
      Loc          : Source_Ptr;
      Typ          : Entity_Id;
      Constraints  : List_Id)
      return Entity_Id
   is
      Indic       : Node_Id;
      Subtyp_Decl : Node_Id;
      Def_Id      : Entity_Id;
      Btyp        : Entity_Id := Base_Type (Typ);

   begin
      --  The Related_Node better be here or else we won't be able to
      --  attach new itypes to a node in the tree.

      pragma Assert (Present (Related_Node));

      --  If the view of the component's type is incomplete or private
      --  with unknown discriminants, then the constraint must be applied
      --  to the full type.

      if Has_Unknown_Discriminants (Btyp)
        and then Present (Underlying_Type (Btyp))
      then
         Btyp := Underlying_Type (Btyp);
      end if;

      Indic :=
        Make_Subtype_Indication (Loc,
          Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
          Constraint   =>
            Make_Index_Or_Discriminant_Constraint (Loc, Constraints));

      Def_Id := Create_Itype (Ekind (Typ), Related_Node);

      Subtyp_Decl :=
        Make_Subtype_Declaration (Loc,
          Defining_Identifier => Def_Id,
          Subtype_Indication  => Indic);

      Set_Parent (Subtyp_Decl, Parent (Related_Node));

      --  Itypes must be analyzed with checks off (see package Itypes)

      Analyze (Subtyp_Decl, Suppress => All_Checks);

      if Is_Itype (Def_Id) and then Has_Predicates (Typ) then
         Inherit_Predicate_Flags (Def_Id, Typ);

         --  Indicate where the predicate function may be found

         if Is_Itype (Typ) then
            if Present (Predicate_Function (Def_Id)) then
               null;

            elsif Present (Predicate_Function (Typ)) then
               Set_Predicate_Function (Def_Id, Predicate_Function (Typ));

            else
               Set_Predicated_Parent (Def_Id, Predicated_Parent (Typ));
            end if;

         elsif No (Predicate_Function (Def_Id)) then
            Set_Predicated_Parent (Def_Id, Typ);
         end if;
      end if;

      return Def_Id;
   end Build_Subtype;

   -----------------------------------
   -- Cannot_Raise_Constraint_Error --
   -----------------------------------

   function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
   begin
      if Compile_Time_Known_Value (Expr) then
         return True;

      elsif Do_Range_Check (Expr) then
         return False;

      elsif Raises_Constraint_Error (Expr) then
         return False;

      else
         case Nkind (Expr) is
            when N_Identifier =>
               return True;

            when N_Expanded_Name =>
               return True;

            when N_Selected_Component =>
               return not Do_Discriminant_Check (Expr);

            when N_Attribute_Reference =>
               if Do_Overflow_Check (Expr) then
                  return False;

               elsif No (Expressions (Expr)) then
                  return True;

               else
                  declare
                     N : Node_Id;

                  begin
                     N := First (Expressions (Expr));
                     while Present (N) loop
                        if Cannot_Raise_Constraint_Error (N) then
                           Next (N);
                        else
                           return False;
                        end if;
                     end loop;

                     return True;
                  end;
               end if;

            when N_Type_Conversion =>
               if Do_Overflow_Check (Expr)
                 or else Do_Length_Check (Expr)
                 or else Do_Tag_Check (Expr)
               then
                  return False;
               else
                  return Cannot_Raise_Constraint_Error (Expression (Expr));
               end if;

            when N_Unchecked_Type_Conversion =>
               return Cannot_Raise_Constraint_Error (Expression (Expr));

            when N_Unary_Op =>
               if Do_Overflow_Check (Expr) then
                  return False;
               else
                  return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
               end if;

            when N_Op_Divide
               | N_Op_Mod
               | N_Op_Rem
            =>
               if Do_Division_Check (Expr)
                    or else
                  Do_Overflow_Check (Expr)
               then
                  return False;
               else
                  return
                    Cannot_Raise_Constraint_Error (Left_Opnd  (Expr))
                      and then
                    Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
               end if;

            when N_Op_Add
               | N_Op_And
               | N_Op_Concat
               | N_Op_Eq
               | N_Op_Expon
               | N_Op_Ge
               | N_Op_Gt
               | N_Op_Le
               | N_Op_Lt
               | N_Op_Multiply
               | N_Op_Ne
               | N_Op_Or
               | N_Op_Rotate_Left
               | N_Op_Rotate_Right
               | N_Op_Shift_Left
               | N_Op_Shift_Right
               | N_Op_Shift_Right_Arithmetic
               | N_Op_Subtract
               | N_Op_Xor
            =>
               if Do_Overflow_Check (Expr) then
                  return False;
               else
                  return
                    Cannot_Raise_Constraint_Error (Left_Opnd  (Expr))
                      and then
                    Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
               end if;

            when others =>
               return False;
         end case;
      end if;
   end Cannot_Raise_Constraint_Error;

   -------------------------------
   -- Check_Ambiguous_Aggregate --
   -------------------------------

   procedure Check_Ambiguous_Aggregate (Call : Node_Id) is
      Actual : Node_Id;

   begin
      if Extensions_Allowed then
         Actual := First_Actual (Call);
         while Present (Actual) loop
            if Nkind (Actual) = N_Aggregate then
               Error_Msg_N
                 ("\add type qualification to aggregate actual", Actual);
               exit;
            end if;
            Next_Actual (Actual);
         end loop;
      end if;
   end Check_Ambiguous_Aggregate;

   -----------------------------------------
   -- Check_Dynamically_Tagged_Expression --
   -----------------------------------------

   procedure Check_Dynamically_Tagged_Expression
     (Expr        : Node_Id;
      Typ         : Entity_Id;
      Related_Nod : Node_Id)
   is
   begin
      pragma Assert (Is_Tagged_Type (Typ));

      --  In order to avoid spurious errors when analyzing the expanded code,
      --  this check is done only for nodes that come from source and for
      --  actuals of generic instantiations.

      if (Comes_From_Source (Related_Nod)
           or else In_Generic_Actual (Expr))
        and then (Is_Class_Wide_Type (Etype (Expr))
                   or else Is_Dynamically_Tagged (Expr))
        and then not Is_Class_Wide_Type (Typ)
      then
         Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
      end if;
   end Check_Dynamically_Tagged_Expression;

   --------------------------
   -- Check_Fully_Declared --
   --------------------------

   procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
   begin
      if Ekind (T) = E_Incomplete_Type then

         --  Ada 2005 (AI-50217): If the type is available through a limited
         --  with_clause, verify that its full view has been analyzed.

         if From_Limited_With (T)
           and then Present (Non_Limited_View (T))
           and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
         then
            --  The non-limited view is fully declared

            null;

         else
            Error_Msg_NE
              ("premature usage of incomplete}", N, First_Subtype (T));
         end if;

      --  Need comments for these tests ???

      elsif Has_Private_Component (T)
        and then not Is_Generic_Type (Root_Type (T))
        and then not In_Spec_Expression
      then
         --  Special case: if T is the anonymous type created for a single
         --  task or protected object, use the name of the source object.

         if Is_Concurrent_Type (T)
           and then not Comes_From_Source (T)
           and then Nkind (N) = N_Object_Declaration
         then
            Error_Msg_NE
              ("type of& has incomplete component",
               N, Defining_Identifier (N));
         else
            Error_Msg_NE
              ("premature usage of incomplete}",
               N, First_Subtype (T));
         end if;
      end if;
   end Check_Fully_Declared;

   -------------------------------------------
   -- Check_Function_With_Address_Parameter --
   -------------------------------------------

   procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
      F : Entity_Id;
      T : Entity_Id;

   begin
      F := First_Formal (Subp_Id);
      while Present (F) loop
         T := Etype (F);

         if Is_Private_Type (T) and then Present (Full_View (T)) then
            T := Full_View (T);
         end if;

         if Is_Descendant_Of_Address (T) or else Is_Limited_Type (T) then
            Set_Is_Pure (Subp_Id, False);
            exit;
         end if;

         Next_Formal (F);
      end loop;
   end Check_Function_With_Address_Parameter;

   -------------------------------------
   -- Check_Function_Writable_Actuals --
   -------------------------------------

   procedure Check_Function_Writable_Actuals (N : Node_Id) is
      Writable_Actuals_List : Elist_Id := No_Elist;
      Identifiers_List      : Elist_Id := No_Elist;
      Aggr_Error_Node       : Node_Id  := Empty;
      Error_Node            : Node_Id  := Empty;

      procedure Collect_Identifiers (N : Node_Id);
      --  In a single traversal of subtree N collect in Writable_Actuals_List
      --  all the actuals of functions with writable actuals, and in the list
      --  Identifiers_List collect all the identifiers that are not actuals of
      --  functions with writable actuals. If a writable actual is referenced
      --  twice as writable actual then Error_Node is set to reference its
      --  second occurrence, the error is reported, and the tree traversal
      --  is abandoned.

      -------------------------
      -- Collect_Identifiers --
      -------------------------

      procedure Collect_Identifiers (N : Node_Id) is

         function Check_Node (N : Node_Id) return Traverse_Result;
         --  Process a single node during the tree traversal to collect the
         --  writable actuals of functions and all the identifiers which are
         --  not writable actuals of functions.

         function Contains (List : Elist_Id; N : Node_Id) return Boolean;
         --  Returns True if List has a node whose Entity is Entity (N)

         ----------------
         -- Check_Node --
         ----------------

         function Check_Node (N : Node_Id) return Traverse_Result is
            Is_Writable_Actual : Boolean := False;
            Id                 : Entity_Id;

         begin
            if Nkind (N) = N_Identifier then

               --  No analysis possible if the entity is not decorated

               if No (Entity (N)) then
                  return Skip;

               --  Don't collect identifiers of packages, called functions, etc

               elsif Ekind (Entity (N)) in
                       E_Package | E_Function | E_Procedure | E_Entry
               then
                  return Skip;

               --  For rewritten nodes, continue the traversal in the original
               --  subtree. Needed to handle aggregates in original expressions
               --  extracted from the tree by Remove_Side_Effects.

               elsif Is_Rewrite_Substitution (N) then
                  Collect_Identifiers (Original_Node (N));
                  return Skip;

               --  For now we skip aggregate discriminants, since they require
               --  performing the analysis in two phases to identify conflicts:
               --  first one analyzing discriminants and second one analyzing
               --  the rest of components (since at run time, discriminants are
               --  evaluated prior to components): too much computation cost
               --  to identify a corner case???

               elsif Nkind (Parent (N)) = N_Component_Association
                  and then Nkind (Parent (Parent (N))) in
                             N_Aggregate | N_Extension_Aggregate
               then
                  declare
                     Choice : constant Node_Id := First (Choices (Parent (N)));

                  begin
                     if Ekind (Entity (N)) = E_Discriminant then
                        return Skip;

                     elsif Expression (Parent (N)) = N
                       and then Nkind (Choice) = N_Identifier
                       and then Ekind (Entity (Choice)) = E_Discriminant
                     then
                        return Skip;
                     end if;
                  end;

               --  Analyze if N is a writable actual of a function

               elsif Nkind (Parent (N)) = N_Function_Call then
                  declare
                     Call   : constant Node_Id := Parent (N);
                     Actual : Node_Id;
                     Formal : Node_Id;

                  begin
                     Id := Get_Called_Entity (Call);

                     --  In case of previous error, no check is possible

                     if No (Id) then
                        return Abandon;
                     end if;

                     if Ekind (Id) in E_Function | E_Generic_Function
                       and then Has_Out_Or_In_Out_Parameter (Id)
                     then
                        Formal := First_Formal (Id);
                        Actual := First_Actual (Call);
                        while Present (Actual) and then Present (Formal) loop
                           if Actual = N then
                              if Ekind (Formal) in E_Out_Parameter
                                                 | E_In_Out_Parameter
                              then
                                 Is_Writable_Actual := True;
                              end if;

                              exit;
                           end if;

                           Next_Formal (Formal);
                           Next_Actual (Actual);
                        end loop;
                     end if;
                  end;
               end if;

               if Is_Writable_Actual then

                  --  Skip checking the error in non-elementary types since
                  --  RM 6.4.1(6.15/3) is restricted to elementary types, but
                  --  store this actual in Writable_Actuals_List since it is
                  --  needed to perform checks on other constructs that have
                  --  arbitrary order of evaluation (for example, aggregates).

                  if not Is_Elementary_Type (Etype (N)) then
                     if not Contains (Writable_Actuals_List, N) then
                        Append_New_Elmt (N, To => Writable_Actuals_List);
                     end if;

                  --  Second occurrence of an elementary type writable actual

                  elsif Contains (Writable_Actuals_List, N) then

                     --  Report the error on the second occurrence of the
                     --  identifier. We cannot assume that N is the second
                     --  occurrence (according to their location in the
                     --  sources), since Traverse_Func walks through Field2
                     --  last (see comment in the body of Traverse_Func).

                     declare
                        Elmt : Elmt_Id;

                     begin
                        Elmt := First_Elmt (Writable_Actuals_List);
                        while Present (Elmt)
                           and then Entity (Node (Elmt)) /= Entity (N)
                        loop
                           Next_Elmt (Elmt);
                        end loop;

                        if Sloc (N) > Sloc (Node (Elmt)) then
                           Error_Node := N;
                        else
                           Error_Node := Node (Elmt);
                        end if;

                        Error_Msg_NE
                          ("value may be affected by call to & "
                           & "because order of evaluation is arbitrary",
                           Error_Node, Id);
                        return Abandon;
                     end;

                  --  First occurrence of a elementary type writable actual

                  else
                     Append_New_Elmt (N, To => Writable_Actuals_List);
                  end if;

               else
                  if Identifiers_List = No_Elist then
                     Identifiers_List := New_Elmt_List;
                  end if;

                  Append_Unique_Elmt (N, Identifiers_List);
               end if;
            end if;

            return OK;
         end Check_Node;

         --------------
         -- Contains --
         --------------

         function Contains
           (List : Elist_Id;
            N    : Node_Id) return Boolean
         is
            pragma Assert (Nkind (N) in N_Has_Entity);

            Elmt : Elmt_Id;

         begin
            if List = No_Elist then
               return False;
            end if;

            Elmt := First_Elmt (List);
            while Present (Elmt) loop
               if Entity (Node (Elmt)) = Entity (N) then
                  return True;
               else
                  Next_Elmt (Elmt);
               end if;
            end loop;

            return False;
         end Contains;

         ------------------
         -- Do_Traversal --
         ------------------

         procedure Do_Traversal is new Traverse_Proc (Check_Node);
         --  The traversal procedure

      --  Start of processing for Collect_Identifiers

      begin
         if Present (Error_Node) then
            return;
         end if;

         if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
            return;
         end if;

         Do_Traversal (N);
      end Collect_Identifiers;

   --  Start of processing for Check_Function_Writable_Actuals

   begin
      --  The check only applies to Ada 2012 code on which Check_Actuals has
      --  been set, and only to constructs that have multiple constituents
      --  whose order of evaluation is not specified by the language.

      if Ada_Version < Ada_2012
        or else not Check_Actuals (N)
        or else Nkind (N) not in N_Op
                               | N_Membership_Test
                               | N_Range
                               | N_Aggregate
                               | N_Extension_Aggregate
                               | N_Full_Type_Declaration
                               | N_Function_Call
                               | N_Procedure_Call_Statement
                               | N_Entry_Call_Statement
        or else (Nkind (N) = N_Full_Type_Declaration
                  and then not Is_Record_Type (Defining_Identifier (N)))

        --  In addition, this check only applies to source code, not to code
        --  generated by constraint checks.

        or else not Comes_From_Source (N)
      then
         return;
      end if;

      --  If a construct C has two or more direct constituents that are names
      --  or expressions whose evaluation may occur in an arbitrary order, at
      --  least one of which contains a function call with an in out or out
      --  parameter, then the construct is legal only if: for each name N that
      --  is passed as a parameter of mode in out or out to some inner function
      --  call C2 (not including the construct C itself), there is no other
      --  name anywhere within a direct constituent of the construct C other
      --  than the one containing C2, that is known to refer to the same
      --  object (RM 6.4.1(6.17/3)).

      case Nkind (N) is
         when N_Range =>
            Collect_Identifiers (Low_Bound (N));
            Collect_Identifiers (High_Bound (N));

         when N_Membership_Test
            | N_Op
         =>
            declare
               Expr : Node_Id;

            begin
               Collect_Identifiers (Left_Opnd (N));

               if Present (Right_Opnd (N)) then
                  Collect_Identifiers (Right_Opnd (N));
               end if;

               if Nkind (N) in N_In | N_Not_In
                 and then Present (Alternatives (N))
               then
                  Expr := First (Alternatives (N));
                  while Present (Expr) loop
                     Collect_Identifiers (Expr);

                     Next (Expr);
                  end loop;
               end if;
            end;

         when N_Full_Type_Declaration =>
            declare
               function Get_Record_Part (N : Node_Id) return Node_Id;
               --  Return the record part of this record type definition

               function Get_Record_Part (N : Node_Id) return Node_Id is
                  Type_Def : constant Node_Id := Type_Definition (N);
               begin
                  if Nkind (Type_Def) = N_Derived_Type_Definition then
                     return Record_Extension_Part (Type_Def);
                  else
                     return Type_Def;
                  end if;
               end Get_Record_Part;

               Comp   : Node_Id;
               Def_Id : Entity_Id := Defining_Identifier (N);
               Rec    : Node_Id   := Get_Record_Part (N);

            begin
               --  No need to perform any analysis if the record has no
               --  components

               if No (Rec) or else No (Component_List (Rec)) then
                  return;
               end if;

               --  Collect the identifiers starting from the deepest
               --  derivation. Done to report the error in the deepest
               --  derivation.

               loop
                  if Present (Component_List (Rec)) then
                     Comp := First (Component_Items (Component_List (Rec)));
                     while Present (Comp) loop
                        if Nkind (Comp) = N_Component_Declaration
                          and then Present (Expression (Comp))
                        then
                           Collect_Identifiers (Expression (Comp));
                        end if;

                        Next (Comp);
                     end loop;
                  end if;

                  exit when No (Underlying_Type (Etype (Def_Id)))
                    or else Base_Type (Underlying_Type (Etype (Def_Id)))
                              = Def_Id;

                  Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
                  Rec := Get_Record_Part (Parent (Def_Id));
               end loop;
            end;

         when N_Entry_Call_Statement
            | N_Subprogram_Call
         =>
            declare
               Id     : constant Entity_Id := Get_Called_Entity (N);
               Formal : Node_Id;
               Actual : Node_Id;

            begin
               Formal := First_Formal (Id);
               Actual := First_Actual (N);
               while Present (Actual) and then Present (Formal) loop
                  if Ekind (Formal) in E_Out_Parameter | E_In_Out_Parameter
                  then
                     Collect_Identifiers (Actual);
                  end if;

                  Next_Formal (Formal);
                  Next_Actual (Actual);
               end loop;
            end;

         when N_Aggregate
            | N_Extension_Aggregate
         =>
            declare
               Assoc     : Node_Id;
               Choice    : Node_Id;
               Comp_Expr : Node_Id;

            begin
               --  Handle the N_Others_Choice of array aggregates with static
               --  bounds. There is no need to perform this analysis in
               --  aggregates without static bounds since we cannot evaluate
               --  if the N_Others_Choice covers several elements. There is
               --  no need to handle the N_Others choice of record aggregates
               --  since at this stage it has been already expanded by
               --  Resolve_Record_Aggregate.

               if Is_Array_Type (Etype (N))
                 and then Nkind (N) = N_Aggregate
                 and then Present (Aggregate_Bounds (N))
                 and then Compile_Time_Known_Bounds (Etype (N))
                 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
                            >
                          Expr_Value (Low_Bound (Aggregate_Bounds (N)))
               then
                  declare
                     Count_Components   : Uint := Uint_0;
                     Num_Components     : Uint;
                     Others_Assoc       : Node_Id := Empty;
                     Others_Choice      : Node_Id := Empty;
                     Others_Box_Present : Boolean := False;

                  begin
                     --  Count positional associations

                     if Present (Expressions (N)) then
                        Comp_Expr := First (Expressions (N));
                        while Present (Comp_Expr) loop
                           Count_Components := Count_Components + 1;
                           Next (Comp_Expr);
                        end loop;
                     end if;

                     --  Count the rest of elements and locate the N_Others
                     --  choice (if any)

                     Assoc := First (Component_Associations (N));
                     while Present (Assoc) loop
                        Choice := First (Choices (Assoc));
                        while Present (Choice) loop
                           if Nkind (Choice) = N_Others_Choice then
                              Others_Assoc       := Assoc;
                              Others_Choice      := Choice;
                              Others_Box_Present := Box_Present (Assoc);

                           --  Count several components

                           elsif Nkind (Choice) in
                                   N_Range | N_Subtype_Indication
                             or else (Is_Entity_Name (Choice)
                                       and then Is_Type (Entity (Choice)))
                           then
                              declare
                                 L, H : Node_Id;
                              begin
                                 Get_Index_Bounds (Choice, L, H);
                                 pragma Assert
                                   (Compile_Time_Known_Value (L)
                                     and then Compile_Time_Known_Value (H));
                                 Count_Components :=
                                   Count_Components
                                     + Expr_Value (H) - Expr_Value (L) + 1;
                              end;

                           --  Count single component. No other case available
                           --  since we are handling an aggregate with static
                           --  bounds.

                           else
                              pragma Assert (Is_OK_Static_Expression (Choice)
                                or else Nkind (Choice) = N_Identifier
                                or else Nkind (Choice) = N_Integer_Literal);

                              Count_Components := Count_Components + 1;
                           end if;

                           Next (Choice);
                        end loop;

                        Next (Assoc);
                     end loop;

                     Num_Components :=
                       Expr_Value (High_Bound (Aggregate_Bounds (N))) -
                         Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;

                     pragma Assert (Count_Components <= Num_Components);

                     --  Handle the N_Others choice if it covers several
                     --  components

                     if Present (Others_Choice)
                       and then (Num_Components - Count_Components) > 1
                     then
                        if not Others_Box_Present then

                           --  At this stage, if expansion is active, the
                           --  expression of the others choice has not been
                           --  analyzed. Hence we generate a duplicate and
                           --  we analyze it silently to have available the
                           --  minimum decoration required to collect the
                           --  identifiers.

                           pragma Assert (Present (Others_Assoc));

                           if not Expander_Active then
                              Comp_Expr := Expression (Others_Assoc);
                           else
                              Comp_Expr :=
                                New_Copy_Tree (Expression (Others_Assoc));
                              Preanalyze_Without_Errors (Comp_Expr);
                           end if;

                           Collect_Identifiers (Comp_Expr);

                           if Writable_Actuals_List /= No_Elist then

                              --  As suggested by Robert, at current stage we
                              --  report occurrences of this case as warnings.

                              Error_Msg_N
                                ("writable function parameter may affect "
                                 & "value in other component because order "
                                 & "of evaluation is unspecified??",
                                 Node (First_Elmt (Writable_Actuals_List)));
                           end if;
                        end if;
                     end if;
                  end;

               --  For an array aggregate, a discrete_choice_list that has
               --  a nonstatic range is considered as two or more separate
               --  occurrences of the expression (RM 6.4.1(20/3)).

               elsif Is_Array_Type (Etype (N))
                 and then Nkind (N) = N_Aggregate
                 and then Present (Aggregate_Bounds (N))
                 and then not Compile_Time_Known_Bounds (Etype (N))
               then
                  --  Collect identifiers found in the dynamic bounds

                  declare
                     Count_Components : Natural := 0;
                     Low, High        : Node_Id;

                  begin
                     Assoc := First (Component_Associations (N));
                     while Present (Assoc) loop
                        Choice := First (Choices (Assoc));
                        while Present (Choice) loop
                           if Nkind (Choice) in
                                N_Range | N_Subtype_Indication
                             or else (Is_Entity_Name (Choice)
                                       and then Is_Type (Entity (Choice)))
                           then
                              Get_Index_Bounds (Choice, Low, High);

                              if not Compile_Time_Known_Value (Low) then
                                 Collect_Identifiers (Low);

                                 if No (Aggr_Error_Node) then
                                    Aggr_Error_Node := Low;
                                 end if;
                              end if;

                              if not Compile_Time_Known_Value (High) then
                                 Collect_Identifiers (High);

                                 if No (Aggr_Error_Node) then
                                    Aggr_Error_Node := High;
                                 end if;
                              end if;

                           --  The RM rule is violated if there is more than
                           --  a single choice in a component association.

                           else
                              Count_Components := Count_Components + 1;

                              if No (Aggr_Error_Node)
                                and then Count_Components > 1
                              then
                                 Aggr_Error_Node := Choice;
                              end if;

                              if not Compile_Time_Known_Value (Choice) then
                                 Collect_Identifiers (Choice);
                              end if;
                           end if;

                           Next (Choice);
                        end loop;

                        Next (Assoc);
                     end loop;
                  end;
               end if;

               --  Handle ancestor part of extension aggregates

               if Nkind (N) = N_Extension_Aggregate then
                  Collect_Identifiers (Ancestor_Part (N));
               end if;

               --  Handle positional associations

               if Present (Expressions (N)) then
                  Comp_Expr := First (Expressions (N));
                  while Present (Comp_Expr) loop
                     if not Is_OK_Static_Expression (Comp_Expr) then
                        Collect_Identifiers (Comp_Expr);
                     end if;

                     Next (Comp_Expr);
                  end loop;
               end if;

               --  Handle discrete associations

               if Present (Component_Associations (N)) then
                  Assoc := First (Component_Associations (N));
                  while Present (Assoc) loop

                     if not Box_Present (Assoc) then
                        Choice := First (Choices (Assoc));
                        while Present (Choice) loop

                           --  For now we skip discriminants since it requires
                           --  performing the analysis in two phases: first one
                           --  analyzing discriminants and second one analyzing
                           --  the rest of components since discriminants are
                           --  evaluated prior to components: too much extra
                           --  work to detect a corner case???

                           if Nkind (Choice) in N_Has_Entity
                             and then Present (Entity (Choice))
                             and then Ekind (Entity (Choice)) = E_Discriminant
                           then
                              null;

                           elsif Box_Present (Assoc) then
                              null;

                           else
                              if not Analyzed (Expression (Assoc)) then
                                 Comp_Expr :=
                                   New_Copy_Tree (Expression (Assoc));
                                 Set_Parent (Comp_Expr, Parent (N));
                                 Preanalyze_Without_Errors (Comp_Expr);
                              else
                                 Comp_Expr := Expression (Assoc);
                              end if;

                              Collect_Identifiers (Comp_Expr);
                           end if;

                           Next (Choice);
                        end loop;
                     end if;

                     Next (Assoc);
                  end loop;
               end if;
            end;

         when others =>
            return;
      end case;

      --  No further action needed if we already reported an error

      if Present (Error_Node) then
         return;
      end if;

      --  Check violation of RM 6.20/3 in aggregates

      if Present (Aggr_Error_Node)
        and then Writable_Actuals_List /= No_Elist
      then
         Error_Msg_N
           ("value may be affected by call in other component because they "
            & "are evaluated in unspecified order",
            Node (First_Elmt (Writable_Actuals_List)));
         return;
      end if;

      --  Check if some writable argument of a function is referenced

      if Writable_Actuals_List /= No_Elist
        and then Identifiers_List /= No_Elist
      then
         declare
            Elmt_1 : Elmt_Id;
            Elmt_2 : Elmt_Id;

         begin
            Elmt_1 := First_Elmt (Writable_Actuals_List);
            while Present (Elmt_1) loop
               Elmt_2 := First_Elmt (Identifiers_List);
               while Present (Elmt_2) loop
                  if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
                     case Nkind (Parent (Node (Elmt_2))) is
                        when N_Aggregate
                           | N_Component_Association
                           | N_Component_Declaration
                        =>
                           Error_Msg_N
                             ("value may be affected by call in other "
                              & "component because they are evaluated "
                              & "in unspecified order",
                              Node (Elmt_2));

                        when N_In
                           | N_Not_In
                        =>
                           Error_Msg_N
                             ("value may be affected by call in other "
                              & "alternative because they are evaluated "
                              & "in unspecified order",
                              Node (Elmt_2));

                        when others =>
                           Error_Msg_N
                             ("value of actual may be affected by call in "
                              & "other actual because they are evaluated "
                              & "in unspecified order",
                           Node (Elmt_2));
                     end case;
                  end if;

                  Next_Elmt (Elmt_2);
               end loop;

               Next_Elmt (Elmt_1);
            end loop;
         end;
      end if;
   end Check_Function_Writable_Actuals;

   --------------------------------
   -- Check_Implicit_Dereference --
   --------------------------------

   procedure Check_Implicit_Dereference (N : Node_Id;  Typ : Entity_Id) is
      Disc  : Entity_Id;
      Desig : Entity_Id;
      Nam   : Node_Id;

   begin
      if Nkind (N) = N_Indexed_Component
        and then Present (Generalized_Indexing (N))
      then
         Nam := Generalized_Indexing (N);
      else
         Nam := N;
      end if;

      if Ada_Version < Ada_2012
        or else not Has_Implicit_Dereference (Base_Type (Typ))
      then
         return;

      elsif not Comes_From_Source (N)
        and then Nkind (N) /= N_Indexed_Component
      then
         return;

      elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
         null;

      else
         Disc := First_Discriminant (Typ);
         while Present (Disc) loop
            if Has_Implicit_Dereference (Disc) then
               Desig := Designated_Type (Etype (Disc));
               Add_One_Interp (Nam, Disc, Desig);

               --  If the node is a generalized indexing, add interpretation
               --  to that node as well, for subsequent resolution.

               if Nkind (N) = N_Indexed_Component then
                  Add_One_Interp (N, Disc, Desig);
               end if;

               --  If the operation comes from a generic unit and the context
               --  is a selected component, the selector name may be global
               --  and set in the instance already. Remove the entity to
               --  force resolution of the selected component, and the
               --  generation of an explicit dereference if needed.

               if In_Instance
                 and then Nkind (Parent (Nam)) = N_Selected_Component
               then
                  Set_Entity (Selector_Name (Parent (Nam)), Empty);
               end if;

               exit;
            end if;

            Next_Discriminant (Disc);
         end loop;
      end if;
   end Check_Implicit_Dereference;

   ----------------------------------
   -- Check_Internal_Protected_Use --
   ----------------------------------

   procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
      S    : Entity_Id;
      Prot : Entity_Id;

   begin
      Prot := Empty;

      S := Current_Scope;
      while Present (S) loop
         if S = Standard_Standard then
            exit;

         elsif Ekind (S) = E_Function
           and then Ekind (Scope (S)) = E_Protected_Type
         then
            Prot := Scope (S);
            exit;
         end if;

         S := Scope (S);
      end loop;

      if Present (Prot)
        and then Scope (Nam) = Prot
        and then Ekind (Nam) /= E_Function
      then
         --  An indirect function call (e.g. a callback within a protected
         --  function body) is not statically illegal. If the access type is
         --  anonymous and is the type of an access parameter, the scope of Nam
         --  will be the protected type, but it is not a protected operation.

         if Ekind (Nam) = E_Subprogram_Type
           and then Nkind (Associated_Node_For_Itype (Nam)) =
                      N_Function_Specification
         then
            null;

         elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
            Error_Msg_N
              ("within protected function cannot use protected procedure in "
               & "renaming or as generic actual", N);

         elsif Nkind (N) = N_Attribute_Reference then
            Error_Msg_N
              ("within protected function cannot take access of protected "
               & "procedure", N);

         else
            Error_Msg_N
              ("within protected function, protected object is constant", N);
            Error_Msg_N
              ("\cannot call operation that may modify it", N);
         end if;
      end if;

      --  Verify that an internal call does not appear within a precondition
      --  of a protected operation. This implements AI12-0166.
      --  The precondition aspect has been rewritten as a pragma Precondition
      --  and we check whether the scope of the called subprogram is the same
      --  as that of the entity to which the aspect applies.

      if Convention (Nam) = Convention_Protected then
         declare
            P : Node_Id;

         begin
            P := Parent (N);
            while Present (P) loop
               if Nkind (P) = N_Pragma
                 and then Chars (Pragma_Identifier (P)) = Name_Precondition
                 and then From_Aspect_Specification (P)
                 and then
                   Scope (Entity (Corresponding_Aspect (P))) = Scope (Nam)
               then
                  Error_Msg_N
                    ("internal call cannot appear in precondition of "
                     & "protected operation", N);
                  return;

               elsif Nkind (P) = N_Pragma
                 and then Chars (Pragma_Identifier (P)) = Name_Contract_Cases
               then
                  --  Check whether call is in a case guard. It is legal in a
                  --  consequence.

                  P := N;
                  while Present (P) loop
                     if Nkind (Parent (P)) = N_Component_Association
                       and then P /= Expression (Parent (P))
                     then
                        Error_Msg_N
                          ("internal call cannot appear in case guard in a "
                           & "contract case", N);
                     end if;

                     P := Parent (P);
                  end loop;

                  return;

               elsif Nkind (P) = N_Parameter_Specification
                 and then Scope (Current_Scope) = Scope (Nam)
                 and then Nkind (Parent (P)) in
                            N_Entry_Declaration | N_Subprogram_Declaration
               then
                  Error_Msg_N
                    ("internal call cannot appear in default for formal of "
                     & "protected operation", N);
                  return;
               end if;

               P := Parent (P);
            end loop;
         end;
      end if;
   end Check_Internal_Protected_Use;

   ---------------------------------------
   -- Check_Later_Vs_Basic_Declarations --
   ---------------------------------------

   procedure Check_Later_Vs_Basic_Declarations
     (Decls          : List_Id;
      During_Parsing : Boolean)
   is
      Body_Sloc : Source_Ptr;
      Decl      : Node_Id;

      function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
      --  Return whether Decl is considered as a declarative item.
      --  When During_Parsing is True, the semantics of Ada 83 is followed.
      --  When During_Parsing is False, the semantics of SPARK is followed.

      -------------------------------
      -- Is_Later_Declarative_Item --
      -------------------------------

      function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
      begin
         if Nkind (Decl) in N_Later_Decl_Item then
            return True;

         elsif Nkind (Decl) = N_Pragma then
            return True;

         elsif During_Parsing then
            return False;

         --  In SPARK, a package declaration is not considered as a later
         --  declarative item.

         elsif Nkind (Decl) = N_Package_Declaration then
            return False;

         --  In SPARK, a renaming is considered as a later declarative item

         elsif Nkind (Decl) in N_Renaming_Declaration then
            return True;

         else
            return False;
         end if;
      end Is_Later_Declarative_Item;

   --  Start of processing for Check_Later_Vs_Basic_Declarations

   begin
      Decl := First (Decls);

      --  Loop through sequence of basic declarative items

      Outer : while Present (Decl) loop
         if Nkind (Decl) not in
              N_Subprogram_Body | N_Package_Body | N_Task_Body
           and then Nkind (Decl) not in N_Body_Stub
         then
            Next (Decl);

            --  Once a body is encountered, we only allow later declarative
            --  items. The inner loop checks the rest of the list.

         else
            Body_Sloc := Sloc (Decl);

            Inner : while Present (Decl) loop
               if not Is_Later_Declarative_Item (Decl) then
                  if During_Parsing then
                     if Ada_Version = Ada_83 then
                        Error_Msg_Sloc := Body_Sloc;
                        Error_Msg_N
                          ("(Ada 83) decl cannot appear after body#", Decl);
                     end if;
                  end if;
               end if;

               Next (Decl);
            end loop Inner;
         end if;
      end loop Outer;
   end Check_Later_Vs_Basic_Declarations;

   ---------------------------
   -- Check_No_Hidden_State --
   ---------------------------

   procedure Check_No_Hidden_State (Id : Entity_Id) is
      Context     : Entity_Id := Empty;
      Not_Visible : Boolean   := False;
      Scop        : Entity_Id;

   begin
      pragma Assert (Ekind (Id) in E_Abstract_State | E_Variable);

      --  Nothing to do for internally-generated abstract states and variables
      --  because they do not represent the hidden state of the source unit.

      if not Comes_From_Source (Id) then
         return;
      end if;

      --  Find the proper context where the object or state appears

      Scop := Scope (Id);
      while Present (Scop) loop
         Context := Scop;

         --  Keep track of the context's visibility

         Not_Visible := Not_Visible or else In_Private_Part (Context);

         --  Prevent the search from going too far

         if Context = Standard_Standard then
            return;

         --  Objects and states that appear immediately within a subprogram or
         --  entry inside a construct nested within a subprogram do not
         --  introduce a hidden state. They behave as local variable
         --  declarations. The same is true for elaboration code inside a block
         --  or a task.

         elsif Is_Subprogram_Or_Entry (Context)
           or else Ekind (Context) in E_Block | E_Task_Type
         then
            return;
         end if;

         --  Stop the traversal when a package subject to a null abstract state
         --  has been found.

         if Is_Package_Or_Generic_Package (Context)
           and then Has_Null_Abstract_State (Context)
         then
            exit;
         end if;

         Scop := Scope (Scop);
      end loop;

      --  At this point we know that there is at least one package with a null
      --  abstract state in visibility. Emit an error message unconditionally
      --  if the entity being processed is a state because the placement of the
      --  related package is irrelevant. This is not the case for objects as
      --  the intermediate context matters.

      if Present (Context)
        and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
      then
         Error_Msg_N ("cannot introduce hidden state &", Id);
         Error_Msg_NE ("\package & has null abstract state", Id, Context);
      end if;
   end Check_No_Hidden_State;

   ----------------------------------------
   -- Check_Nonvolatile_Function_Profile --
   ----------------------------------------

   procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
      Formal : Entity_Id;

   begin
      --  Inspect all formal parameters

      Formal := First_Formal (Func_Id);
      while Present (Formal) loop
         if Is_Effectively_Volatile_For_Reading (Etype (Formal)) then
            Error_Msg_NE
              ("nonvolatile function & cannot have a volatile parameter",
               Formal, Func_Id);
         end if;

         Next_Formal (Formal);
      end loop;

      --  Inspect the return type

      if Is_Effectively_Volatile_For_Reading (Etype (Func_Id)) then
         Error_Msg_NE
           ("nonvolatile function & cannot have a volatile return type",
            Result_Definition (Parent (Func_Id)), Func_Id);
      end if;
   end Check_Nonvolatile_Function_Profile;

   -----------------------------
   -- Check_Part_Of_Reference --
   -----------------------------

   procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
      function Is_Enclosing_Package_Body
        (Body_Decl : Node_Id;
         Obj_Id    : Entity_Id) return Boolean;
      pragma Inline (Is_Enclosing_Package_Body);
      --  Determine whether package body Body_Decl or its corresponding spec
      --  immediately encloses the declaration of object Obj_Id.

      function Is_Internal_Declaration_Or_Body
        (Decl : Node_Id) return Boolean;
      pragma Inline (Is_Internal_Declaration_Or_Body);
      --  Determine whether declaration or body denoted by Decl is internal

      function Is_Single_Declaration_Or_Body
        (Decl     : Node_Id;
         Conc_Typ : Entity_Id) return Boolean;
      pragma Inline (Is_Single_Declaration_Or_Body);
      --  Determine whether protected/task declaration or body denoted by Decl
      --  belongs to single concurrent type Conc_Typ.

      function Is_Single_Task_Pragma
        (Prag     : Node_Id;
         Task_Typ : Entity_Id) return Boolean;
      pragma Inline (Is_Single_Task_Pragma);
      --  Determine whether pragma Prag belongs to single task type Task_Typ

      -------------------------------
      -- Is_Enclosing_Package_Body --
      -------------------------------

      function Is_Enclosing_Package_Body
        (Body_Decl : Node_Id;
         Obj_Id    : Entity_Id) return Boolean
      is
         Obj_Context : Node_Id;

      begin
         --  Find the context of the object declaration

         Obj_Context := Parent (Declaration_Node (Obj_Id));

         if Nkind (Obj_Context) = N_Package_Specification then
            Obj_Context := Parent (Obj_Context);
         end if;

         --  The object appears immediately within the package body

         if Obj_Context = Body_Decl then
            return True;

         --  The object appears immediately within the corresponding spec

         elsif Nkind (Obj_Context) = N_Package_Declaration
           and then Unit_Declaration_Node (Corresponding_Spec (Body_Decl)) =
                      Obj_Context
         then
            return True;
         end if;

         return False;
      end Is_Enclosing_Package_Body;

      -------------------------------------
      -- Is_Internal_Declaration_Or_Body --
      -------------------------------------

      function Is_Internal_Declaration_Or_Body
        (Decl : Node_Id) return Boolean
      is
      begin
         if Comes_From_Source (Decl) then
            return False;

         --  A body generated for an expression function which has not been
         --  inserted into the tree yet (In_Spec_Expression is True) is not
         --  considered internal.

         elsif Nkind (Decl) = N_Subprogram_Body
           and then Was_Expression_Function (Decl)
           and then not In_Spec_Expression
         then
            return False;
         end if;

         return True;
      end Is_Internal_Declaration_Or_Body;

      -----------------------------------
      -- Is_Single_Declaration_Or_Body --
      -----------------------------------

      function Is_Single_Declaration_Or_Body
        (Decl     : Node_Id;
         Conc_Typ : Entity_Id) return Boolean
      is
         Spec_Id : constant Entity_Id := Unique_Defining_Entity (Decl);

      begin
         return
           Present (Anonymous_Object (Spec_Id))
             and then Anonymous_Object (Spec_Id) = Conc_Typ;
      end Is_Single_Declaration_Or_Body;

      ---------------------------
      -- Is_Single_Task_Pragma --
      ---------------------------

      function Is_Single_Task_Pragma
        (Prag     : Node_Id;
         Task_Typ : Entity_Id) return Boolean
      is
         Decl : constant Node_Id := Find_Related_Declaration_Or_Body (Prag);

      begin
         --  To qualify, the pragma must be associated with single task type
         --  Task_Typ.

         return
           Is_Single_Task_Object (Task_Typ)
             and then Nkind (Decl) = N_Object_Declaration
             and then Defining_Entity (Decl) = Task_Typ;
      end Is_Single_Task_Pragma;

      --  Local variables

      Conc_Obj : constant Entity_Id := Encapsulating_State (Var_Id);
      Par      : Node_Id;
      Prag_Nam : Name_Id;
      Prev     : Node_Id;

   --  Start of processing for Check_Part_Of_Reference

   begin
      --  Nothing to do when the variable was recorded, but did not become a
      --  constituent of a single concurrent type.

      if No (Conc_Obj) then
         return;
      end if;

      --  Traverse the parent chain looking for a suitable context for the
      --  reference to the concurrent constituent.

      Prev := Ref;
      Par  := Parent (Prev);
      while Present (Par) loop
         if Nkind (Par) = N_Pragma then
            Prag_Nam := Pragma_Name (Par);

            --  A concurrent constituent is allowed to appear in pragmas
            --  Initial_Condition and Initializes as this is part of the
            --  elaboration checks for the constituent (SPARK RM 9(3)).

            if Prag_Nam in Name_Initial_Condition | Name_Initializes then
               return;

            --  When the reference appears within pragma Depends or Global,
            --  check whether the pragma applies to a single task type. Note
            --  that the pragma may not encapsulated by the type definition,
            --  but this is still a valid context.

            elsif Prag_Nam in Name_Depends | Name_Global
              and then Is_Single_Task_Pragma (Par, Conc_Obj)
            then
               return;
            end if;

         --  The reference appears somewhere in the definition of a single
         --  concurrent type (SPARK RM 9(3)).

         elsif Nkind (Par) in
                 N_Single_Protected_Declaration | N_Single_Task_Declaration
           and then Defining_Entity (Par) = Conc_Obj
         then
            return;

         --  The reference appears within the declaration or body of a single
         --  concurrent type (SPARK RM 9(3)).

         elsif Nkind (Par) in N_Protected_Body
                            | N_Protected_Type_Declaration
                            | N_Task_Body
                            | N_Task_Type_Declaration
           and then Is_Single_Declaration_Or_Body (Par, Conc_Obj)
         then
            return;

         --  The reference appears within the statement list of the object's
         --  immediately enclosing package (SPARK RM 9(3)).

         elsif Nkind (Par) = N_Package_Body
           and then Nkind (Prev) = N_Handled_Sequence_Of_Statements
           and then Is_Enclosing_Package_Body (Par, Var_Id)
         then
            return;

         --  The reference has been relocated within an internally generated
         --  package or subprogram. Assume that the reference is legal as the
         --  real check was already performed in the original context of the
         --  reference.

         elsif Nkind (Par) in N_Package_Body
                            | N_Package_Declaration
                            | N_Subprogram_Body
                            | N_Subprogram_Declaration
           and then Is_Internal_Declaration_Or_Body (Par)
         then
            return;

         --  The reference has been relocated to an inlined body for GNATprove.
         --  Assume that the reference is legal as the real check was already
         --  performed in the original context of the reference.

         elsif GNATprove_Mode
           and then Nkind (Par) = N_Subprogram_Body
           and then Chars (Defining_Entity (Par)) = Name_uParent
         then
            return;
         end if;

         Prev := Par;
         Par  := Parent (Prev);
      end loop;

      --  At this point it is known that the reference does not appear within a
      --  legal context.

      Error_Msg_NE
        ("reference to variable & cannot appear in this context", Ref, Var_Id);
      Error_Msg_Name_1 := Chars (Var_Id);

      if Is_Single_Protected_Object (Conc_Obj) then
         Error_Msg_NE
           ("\% is constituent of single protected type &", Ref, Conc_Obj);

      else
         Error_Msg_NE
           ("\% is constituent of single task type &", Ref, Conc_Obj);
      end if;
   end Check_Part_Of_Reference;

   ------------------------------------------
   -- Check_Potentially_Blocking_Operation --
   ------------------------------------------

   procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
      S : Entity_Id;

   begin
      --  N is one of the potentially blocking operations listed in 9.5.1(8).
      --  When pragma Detect_Blocking is active, the run time will raise
      --  Program_Error. Here we only issue a warning, since we generally
      --  support the use of potentially blocking operations in the absence
      --  of the pragma.

      --  Indirect blocking through a subprogram call cannot be diagnosed
      --  statically without interprocedural analysis, so we do not attempt
      --  to do it here.

      S := Scope (Current_Scope);
      while Present (S) and then S /= Standard_Standard loop
         if Is_Protected_Type (S) then
            Error_Msg_N
              ("potentially blocking operation in protected operation??", N);
            return;
         end if;

         S := Scope (S);
      end loop;
   end Check_Potentially_Blocking_Operation;

   ------------------------------------
   --  Check_Previous_Null_Procedure --
   ------------------------------------

   procedure Check_Previous_Null_Procedure
     (Decl : Node_Id;
      Prev : Entity_Id)
   is
   begin
      if Ekind (Prev) = E_Procedure
        and then Nkind (Parent (Prev)) = N_Procedure_Specification
        and then Null_Present (Parent (Prev))
      then
         Error_Msg_Sloc := Sloc (Prev);
         Error_Msg_N
           ("declaration cannot complete previous null procedure#", Decl);
      end if;
   end Check_Previous_Null_Procedure;

   ---------------------------------
   -- Check_Result_And_Post_State --
   ---------------------------------

   procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
      procedure Check_Result_And_Post_State_In_Pragma
        (Prag        : Node_Id;
         Result_Seen : in out Boolean);
      --  Determine whether pragma Prag mentions attribute 'Result and whether
      --  the pragma contains an expression that evaluates differently in pre-
      --  and post-state. Prag is a [refined] postcondition or a contract-cases
      --  pragma. Result_Seen is set when the pragma mentions attribute 'Result

      function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
      --  Determine whether subprogram Subp_Id contains at least one IN OUT
      --  formal parameter.

      -------------------------------------------
      -- Check_Result_And_Post_State_In_Pragma --
      -------------------------------------------

      procedure Check_Result_And_Post_State_In_Pragma
        (Prag        : Node_Id;
         Result_Seen : in out Boolean)
      is
         procedure Check_Conjunct (Expr : Node_Id);
         --  Check an individual conjunct in a conjunction of Boolean
         --  expressions, connected by "and" or "and then" operators.

         procedure Check_Conjuncts (Expr : Node_Id);
         --  Apply the post-state check to every conjunct in an expression, in
         --  case this is a conjunction of Boolean expressions. Otherwise apply
         --  it to the expression as a whole.

         procedure Check_Expression (Expr : Node_Id);
         --  Perform the 'Result and post-state checks on a given expression

         function Is_Function_Result (N : Node_Id) return Traverse_Result;
         --  Attempt to find attribute 'Result in a subtree denoted by N

         function Is_Trivial_Boolean (N : Node_Id) return Boolean;
         --  Determine whether source node N denotes "True" or "False"

         function Mentions_Post_State (N : Node_Id) return Boolean;
         --  Determine whether a subtree denoted by N mentions any construct
         --  that denotes a post-state.

         procedure Check_Function_Result is
           new Traverse_Proc (Is_Function_Result);

         --------------------
         -- Check_Conjunct --
         --------------------

         procedure Check_Conjunct (Expr : Node_Id) is
            function Adjust_Message (Msg : String) return String;
            --  Prepend a prefix to the input message Msg denoting that the
            --  message applies to a conjunct in the expression, when this
            --  is the case.

            function Applied_On_Conjunct return Boolean;
            --  Returns True if the message applies to a conjunct in the
            --  expression, instead of the whole expression.

            function Has_Global_Output (Subp : Entity_Id) return Boolean;
            --  Returns True if Subp has an output in its Global contract

            function Has_No_Output (Subp : Entity_Id) return Boolean;
            --  Returns True if Subp has no declared output: no function
            --  result, no output parameter, and no output in its Global
            --  contract.

            --------------------
            -- Adjust_Message --
            --------------------

            function Adjust_Message (Msg : String) return String is
            begin
               if Applied_On_Conjunct then
                  return "conjunct in " & Msg;
               else
                  return Msg;
               end if;
            end Adjust_Message;

            -------------------------
            -- Applied_On_Conjunct --
            -------------------------

            function Applied_On_Conjunct return Boolean is
            begin
               --  Expr is the conjunct of an enclosing "and" expression

               return Nkind (Parent (Expr)) in N_Subexpr

                 --  or Expr is a conjunct of an enclosing "and then"
                 --  expression in a postcondition aspect that was split into
                 --  multiple pragmas. The first conjunct has the "and then"
                 --  expression as Original_Node, and other conjuncts have
                 --  Split_PCC set to True.

                 or else Nkind (Original_Node (Expr)) = N_And_Then
                 or else Split_PPC (Prag);
            end Applied_On_Conjunct;

            -----------------------
            -- Has_Global_Output --
            -----------------------

            function Has_Global_Output (Subp : Entity_Id) return Boolean is
               Global : constant Node_Id := Get_Pragma (Subp, Pragma_Global);
               List   : Node_Id;
               Assoc  : Node_Id;

            begin
               if No (Global) then
                  return False;
               end if;

               List := Expression (Get_Argument (Global, Subp));

               --  Empty list (no global items) or single global item
               --  declaration (only input items).

               if Nkind (List) in N_Null
                                | N_Expanded_Name
                                | N_Identifier
                                | N_Selected_Component
               then
                  return False;

               --  Simple global list (only input items) or moded global list
               --  declaration.

               elsif Nkind (List) = N_Aggregate then
                  if Present (Expressions (List)) then
                     return False;

                  else
                     Assoc := First (Component_Associations (List));
                     while Present (Assoc) loop
                        if Chars (First (Choices (Assoc))) /= Name_Input then
                           return True;
                        end if;

                        Next (Assoc);
                     end loop;

                     return False;
                  end if;

               --  To accommodate partial decoration of disabled SPARK
               --  features, this routine may be called with illegal input.
               --  If this is the case, do not raise Program_Error.

               else
                  return False;
               end if;
            end Has_Global_Output;

            -------------------
            -- Has_No_Output --
            -------------------

            function Has_No_Output (Subp : Entity_Id) return Boolean is
               Param : Node_Id;

            begin
               --  A function has its result as output

               if Ekind (Subp) = E_Function then
                  return False;
               end if;

               --  An OUT or IN OUT parameter is an output

               Param := First_Formal (Subp);
               while Present (Param) loop
                  if Ekind (Param) in E_Out_Parameter | E_In_Out_Parameter then
                     return False;
                  end if;

                  Next_Formal (Param);
               end loop;

               --  An item of mode Output or In_Out in the Global contract is
               --  an output.

               if Has_Global_Output (Subp) then
                  return False;
               end if;

               return True;
            end Has_No_Output;

            --  Local variables

            Err_Node : Node_Id;
            --  Error node when reporting a warning on a (refined)
            --  postcondition.

         --  Start of processing for Check_Conjunct

         begin
            if Applied_On_Conjunct then
               Err_Node := Expr;
            else
               Err_Node := Prag;
            end if;

            --  Do not report missing reference to outcome in postcondition if
            --  either the postcondition is trivially True or False, or if the
            --  subprogram is ghost and has no declared output.

            if not Is_Trivial_Boolean (Expr)
              and then not Mentions_Post_State (Expr)
              and then not (Is_Ghost_Entity (Subp_Id)
                             and then Has_No_Output (Subp_Id))
            then
               if Pragma_Name (Prag) = Name_Contract_Cases then
                  Error_Msg_NE (Adjust_Message
                    ("contract case does not check the outcome of calling "
                     & "&?T?"), Expr, Subp_Id);

               elsif Pragma_Name (Prag) = Name_Refined_Post then
                  Error_Msg_NE (Adjust_Message
                    ("refined postcondition does not check the outcome of "
                     & "calling &?T?"), Err_Node, Subp_Id);

               else
                  Error_Msg_NE (Adjust_Message
                    ("postcondition does not check the outcome of calling "
                     & "&?T?"), Err_Node, Subp_Id);
               end if;
            end if;
         end Check_Conjunct;

         ---------------------
         -- Check_Conjuncts --
         ---------------------

         procedure Check_Conjuncts (Expr : Node_Id) is
         begin
            if Nkind (Expr) in N_Op_And | N_And_Then then
               Check_Conjuncts (Left_Opnd (Expr));
               Check_Conjuncts (Right_Opnd (Expr));
            else
               Check_Conjunct (Expr);
            end if;
         end Check_Conjuncts;

         ----------------------
         -- Check_Expression --
         ----------------------

         procedure Check_Expression (Expr : Node_Id) is
         begin
            if not Is_Trivial_Boolean (Expr) then
               Check_Function_Result (Expr);
               Check_Conjuncts (Expr);
            end if;
         end Check_Expression;

         ------------------------
         -- Is_Function_Result --
         ------------------------

         function Is_Function_Result (N : Node_Id) return Traverse_Result is
         begin
            if Is_Attribute_Result (N) then
               Result_Seen := True;
               return Abandon;

            --  Warn on infinite recursion if call is to current function

            elsif Nkind (N) = N_Function_Call
              and then Is_Entity_Name (Name (N))
              and then Entity (Name (N)) = Subp_Id
              and then not Is_Potentially_Unevaluated (N)
            then
               Error_Msg_NE
                 ("call to & within its postcondition will lead to infinite "
                  & "recursion?", N, Subp_Id);
               return OK;

            --  Continue the traversal

            else
               return OK;
            end if;
         end Is_Function_Result;

         ------------------------
         -- Is_Trivial_Boolean --
         ------------------------

         function Is_Trivial_Boolean (N : Node_Id) return Boolean is
         begin
            return
              Comes_From_Source (N)
                and then Is_Entity_Name (N)
                and then (Entity (N) = Standard_True
                            or else
                          Entity (N) = Standard_False);
         end Is_Trivial_Boolean;

         -------------------------
         -- Mentions_Post_State --
         -------------------------

         function Mentions_Post_State (N : Node_Id) return Boolean is
            Post_State_Seen : Boolean := False;

            function Is_Post_State (N : Node_Id) return Traverse_Result;
            --  Attempt to find a construct that denotes a post-state. If this
            --  is the case, set flag Post_State_Seen.

            -------------------
            -- Is_Post_State --
            -------------------

            function Is_Post_State (N : Node_Id) return Traverse_Result is
               Ent : Entity_Id;

            begin
               if Nkind (N) in N_Explicit_Dereference | N_Function_Call then
                  Post_State_Seen := True;
                  return Abandon;

               elsif Nkind (N) in N_Expanded_Name | N_Identifier then
                  Ent := Entity (N);

                  --  Treat an undecorated reference as OK

                  if No (Ent)

                    --  A reference to an assignable entity is considered a
                    --  change in the post-state of a subprogram.

                    or else Ekind (Ent) in E_Generic_In_Out_Parameter
                                         | E_In_Out_Parameter
                                         | E_Out_Parameter
                                         | E_Variable

                    --  The reference may be modified through a dereference

                    or else (Is_Access_Type (Etype (Ent))
                              and then Nkind (Parent (N)) =
                                         N_Selected_Component)
                  then
                     Post_State_Seen := True;
                     return Abandon;
                  end if;

               elsif Nkind (N) = N_Attribute_Reference then
                  if Attribute_Name (N) = Name_Old then
                     return Skip;

                  elsif Attribute_Name (N) = Name_Result then
                     Post_State_Seen := True;
                     return Abandon;
                  end if;
               end if;

               return OK;
            end Is_Post_State;

            procedure Find_Post_State is new Traverse_Proc (Is_Post_State);

         --  Start of processing for Mentions_Post_State

         begin
            Find_Post_State (N);

            return Post_State_Seen;
         end Mentions_Post_State;

         --  Local variables

         Expr  : constant Node_Id :=
                   Get_Pragma_Arg
                     (First (Pragma_Argument_Associations (Prag)));
         Nam   : constant Name_Id := Pragma_Name (Prag);
         CCase : Node_Id;

      --  Start of processing for Check_Result_And_Post_State_In_Pragma

      begin
         --  Examine all consequences

         if Nam = Name_Contract_Cases then
            CCase := First (Component_Associations (Expr));
            while Present (CCase) loop
               Check_Expression (Expression (CCase));

               Next (CCase);
            end loop;

         --  Examine the expression of a postcondition

         else pragma Assert (Nam in Name_Postcondition | Name_Refined_Post);
            Check_Expression (Expr);
         end if;
      end Check_Result_And_Post_State_In_Pragma;

      --------------------------
      -- Has_In_Out_Parameter --
      --------------------------

      function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
         Formal : Entity_Id;

      begin
         --  Traverse the formals looking for an IN OUT parameter

         Formal := First_Formal (Subp_Id);
         while Present (Formal) loop
            if Ekind (Formal) = E_In_Out_Parameter then
               return True;
            end if;

            Next_Formal (Formal);
         end loop;

         return False;
      end Has_In_Out_Parameter;

      --  Local variables

      Items        : constant Node_Id := Contract (Subp_Id);
      Subp_Decl    : constant Node_Id := Unit_Declaration_Node (Subp_Id);
      Case_Prag    : Node_Id := Empty;
      Post_Prag    : Node_Id := Empty;
      Prag         : Node_Id;
      Seen_In_Case : Boolean := False;
      Seen_In_Post : Boolean := False;
      Spec_Id      : Entity_Id;

   --  Start of processing for Check_Result_And_Post_State

   begin
      --  The lack of attribute 'Result or a post-state is classified as a
      --  suspicious contract. Do not perform the check if the corresponding
      --  swich is not set.

      if not Warn_On_Suspicious_Contract then
         return;

      --  Nothing to do if there is no contract

      elsif No (Items) then
         return;
      end if;

      --  Retrieve the entity of the subprogram spec (if any)

      if Nkind (Subp_Decl) = N_Subprogram_Body
        and then Present (Corresponding_Spec (Subp_Decl))
      then
         Spec_Id := Corresponding_Spec (Subp_Decl);

      elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
        and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
      then
         Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);

      else
         Spec_Id := Subp_Id;
      end if;

      --  Examine all postconditions for attribute 'Result and a post-state

      Prag := Pre_Post_Conditions (Items);
      while Present (Prag) loop
         if Pragma_Name_Unmapped (Prag)
              in Name_Postcondition | Name_Refined_Post
           and then not Error_Posted (Prag)
         then
            Post_Prag := Prag;
            Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
         end if;

         Prag := Next_Pragma (Prag);
      end loop;

      --  Examine the contract cases of the subprogram for attribute 'Result
      --  and a post-state.

      Prag := Contract_Test_Cases (Items);
      while Present (Prag) loop
         if Pragma_Name (Prag) = Name_Contract_Cases
           and then not Error_Posted (Prag)
         then
            Case_Prag := Prag;
            Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
         end if;

         Prag := Next_Pragma (Prag);
      end loop;

      --  Do not emit any errors if the subprogram is not a function

      if Ekind (Spec_Id) not in E_Function | E_Generic_Function then
         null;

      --  Regardless of whether the function has postconditions or contract
      --  cases, or whether they mention attribute 'Result, an IN OUT formal
      --  parameter is always treated as a result.

      elsif Has_In_Out_Parameter (Spec_Id) then
         null;

      --  The function has both a postcondition and contract cases and they do
      --  not mention attribute 'Result.

      elsif Present (Case_Prag)
        and then not Seen_In_Case
        and then Present (Post_Prag)
        and then not Seen_In_Post
      then
         Error_Msg_N
           ("neither postcondition nor contract cases mention function "
            & "result?T?", Post_Prag);

      --  The function has contract cases only and they do not mention
      --  attribute 'Result.

      elsif Present (Case_Prag) and then not Seen_In_Case then
         Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);

      --  The function has postconditions only and they do not mention
      --  attribute 'Result.

      elsif Present (Post_Prag) and then not Seen_In_Post then
         Error_Msg_N
           ("postcondition does not mention function result?T?", Post_Prag);
      end if;
   end Check_Result_And_Post_State;

   -----------------------------
   -- Check_State_Refinements --
   -----------------------------

   procedure Check_State_Refinements
     (Context      : Node_Id;
      Is_Main_Unit : Boolean := False)
   is
      procedure Check_Package (Pack : Node_Id);
      --  Verify that all abstract states of a [generic] package denoted by its
      --  declarative node Pack have proper refinement. Recursively verify the
      --  visible and private declarations of the [generic] package for other
      --  nested packages.

      procedure Check_Packages_In (Decls : List_Id);
      --  Seek out [generic] package declarations within declarative list Decls
      --  and verify the status of their abstract state refinement.

      function SPARK_Mode_Is_Off (N : Node_Id) return Boolean;
      --  Determine whether construct N is subject to pragma SPARK_Mode Off

      -------------------
      -- Check_Package --
      -------------------

      procedure Check_Package (Pack : Node_Id) is
         Body_Id : constant Entity_Id := Corresponding_Body (Pack);
         Spec    : constant Node_Id   := Specification (Pack);
         States  : constant Elist_Id  :=
                     Abstract_States (Defining_Entity (Pack));

         State_Elmt : Elmt_Id;
         State_Id   : Entity_Id;

      begin
         --  Do not verify proper state refinement when the package is subject
         --  to pragma SPARK_Mode Off because this disables the requirement for
         --  state refinement.

         if SPARK_Mode_Is_Off (Pack) then
            null;

         --  State refinement can only occur in a completing package body. Do
         --  not verify proper state refinement when the body is subject to
         --  pragma SPARK_Mode Off because this disables the requirement for
         --  state refinement.

         elsif Present (Body_Id)
           and then SPARK_Mode_Is_Off (Unit_Declaration_Node (Body_Id))
         then
            null;

         --  Do not verify proper state refinement when the package is an
         --  instance as this check was already performed in the generic.

         elsif Present (Generic_Parent (Spec)) then
            null;

         --  Otherwise examine the contents of the package

         else
            if Present (States) then
               State_Elmt := First_Elmt (States);
               while Present (State_Elmt) loop
                  State_Id := Node (State_Elmt);

                  --  Emit an error when a non-null state lacks any form of
                  --  refinement.

                  if not Is_Null_State (State_Id)
                    and then not Has_Null_Refinement (State_Id)
                    and then not Has_Non_Null_Refinement (State_Id)
                  then
                     Error_Msg_N ("state & requires refinement", State_Id);
                  end if;

                  Next_Elmt (State_Elmt);
               end loop;
            end if;

            Check_Packages_In (Visible_Declarations (Spec));
            Check_Packages_In (Private_Declarations (Spec));
         end if;
      end Check_Package;

      -----------------------
      -- Check_Packages_In --
      -----------------------

      procedure Check_Packages_In (Decls : List_Id) is
         Decl : Node_Id;

      begin
         if Present (Decls) then
            Decl := First (Decls);
            while Present (Decl) loop
               if Nkind (Decl) in N_Generic_Package_Declaration
                                | N_Package_Declaration
               then
                  Check_Package (Decl);
               end if;

               Next (Decl);
            end loop;
         end if;
      end Check_Packages_In;

      -----------------------
      -- SPARK_Mode_Is_Off --
      -----------------------

      function SPARK_Mode_Is_Off (N : Node_Id) return Boolean is
         Id   : constant Entity_Id := Defining_Entity (N);
         Prag : constant Node_Id   := SPARK_Pragma (Id);

      begin
         --  Default the mode to "off" when the context is an instance and all
         --  SPARK_Mode pragmas found within are to be ignored.

         if Ignore_SPARK_Mode_Pragmas (Id) then
            return True;

         else
            return
              Present (Prag)
                and then Get_SPARK_Mode_From_Annotation (Prag) = Off;
         end if;
      end SPARK_Mode_Is_Off;

   --  Start of processing for Check_State_Refinements

   begin
      --  A block may declare a nested package

      if Nkind (Context) = N_Block_Statement then
         Check_Packages_In (Declarations (Context));

      --  An entry, protected, subprogram, or task body may declare a nested
      --  package.

      elsif Nkind (Context) in N_Entry_Body
                             | N_Protected_Body
                             | N_Subprogram_Body
                             | N_Task_Body
      then
         --  Do not verify proper state refinement when the body is subject to
         --  pragma SPARK_Mode Off because this disables the requirement for
         --  state refinement.

         if not SPARK_Mode_Is_Off (Context) then
            Check_Packages_In (Declarations (Context));
         end if;

      --  A package body may declare a nested package

      elsif Nkind (Context) = N_Package_Body then
         Check_Package (Unit_Declaration_Node (Corresponding_Spec (Context)));

         --  Do not verify proper state refinement when the body is subject to
         --  pragma SPARK_Mode Off because this disables the requirement for
         --  state refinement.

         if not SPARK_Mode_Is_Off (Context) then
            Check_Packages_In (Declarations (Context));
         end if;

      --  A library level [generic] package may declare a nested package

      elsif Nkind (Context) in
              N_Generic_Package_Declaration | N_Package_Declaration
        and then Is_Main_Unit
      then
         Check_Package (Context);
      end if;
   end Check_State_Refinements;

   ------------------------------
   -- Check_Unprotected_Access --
   ------------------------------

   procedure Check_Unprotected_Access
     (Context : Node_Id;
      Expr    : Node_Id)
   is
      Cont_Encl_Typ : Entity_Id;
      Pref_Encl_Typ : Entity_Id;

      function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
      --  Check whether Obj is a private component of a protected object.
      --  Return the protected type where the component resides, Empty
      --  otherwise.

      function Is_Public_Operation return Boolean;
      --  Verify that the enclosing operation is callable from outside the
      --  protected object, to minimize false positives.

      ------------------------------
      -- Enclosing_Protected_Type --
      ------------------------------

      function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
      begin
         if Is_Entity_Name (Obj) then
            declare
               Ent : Entity_Id := Entity (Obj);

            begin
               --  The object can be a renaming of a private component, use
               --  the original record component.

               if Is_Prival (Ent) then
                  Ent := Prival_Link (Ent);
               end if;

               if Is_Protected_Type (Scope (Ent)) then
                  return Scope (Ent);
               end if;
            end;
         end if;

         --  For indexed and selected components, recursively check the prefix

         if Nkind (Obj) in N_Indexed_Component | N_Selected_Component then
            return Enclosing_Protected_Type (Prefix (Obj));

         --  The object does not denote a protected component

         else
            return Empty;
         end if;
      end Enclosing_Protected_Type;

      -------------------------
      -- Is_Public_Operation --
      -------------------------

      function Is_Public_Operation return Boolean is
         S : Entity_Id;
         E : Entity_Id;

      begin
         S := Current_Scope;
         while Present (S) and then S /= Pref_Encl_Typ loop
            if Scope (S) = Pref_Encl_Typ then
               E := First_Entity (Pref_Encl_Typ);
               while Present (E)
                 and then E /= First_Private_Entity (Pref_Encl_Typ)
               loop
                  if E = S then
                     return True;
                  end if;

                  Next_Entity (E);
               end loop;
            end if;

            S := Scope (S);
         end loop;

         return False;
      end Is_Public_Operation;

   --  Start of processing for Check_Unprotected_Access

   begin
      if Nkind (Expr) = N_Attribute_Reference
        and then Attribute_Name (Expr) = Name_Unchecked_Access
      then
         Cont_Encl_Typ := Enclosing_Protected_Type (Context);
         Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));

         --  Check whether we are trying to export a protected component to a
         --  context with an equal or lower access level.

         if Present (Pref_Encl_Typ)
           and then No (Cont_Encl_Typ)
           and then Is_Public_Operation
           and then Scope_Depth (Pref_Encl_Typ) >=
                                       Object_Access_Level (Context)
         then
            Error_Msg_N
              ("??possible unprotected access to protected data", Expr);
         end if;
      end if;
   end Check_Unprotected_Access;

   ------------------------------
   -- Check_Unused_Body_States --
   ------------------------------

   procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
      procedure Process_Refinement_Clause
        (Clause : Node_Id;
         States : Elist_Id);
      --  Inspect all constituents of refinement clause Clause and remove any
      --  matches from body state list States.

      procedure Report_Unused_Body_States (States : Elist_Id);
      --  Emit errors for each abstract state or object found in list States

      -------------------------------
      -- Process_Refinement_Clause --
      -------------------------------

      procedure Process_Refinement_Clause
        (Clause : Node_Id;
         States : Elist_Id)
      is
         procedure Process_Constituent (Constit : Node_Id);
         --  Remove constituent Constit from body state list States

         -------------------------
         -- Process_Constituent --
         -------------------------

         procedure Process_Constituent (Constit : Node_Id) is
            Constit_Id : Entity_Id;

         begin
            --  Guard against illegal constituents. Only abstract states and
            --  objects can appear on the right hand side of a refinement.

            if Is_Entity_Name (Constit) then
               Constit_Id := Entity_Of (Constit);

               if Present (Constit_Id)
                 and then Ekind (Constit_Id) in
                            E_Abstract_State | E_Constant | E_Variable
               then
                  Remove (States, Constit_Id);
               end if;
            end if;
         end Process_Constituent;

         --  Local variables

         Constit : Node_Id;

      --  Start of processing for Process_Refinement_Clause

      begin
         if Nkind (Clause) = N_Component_Association then
            Constit := Expression (Clause);

            --  Multiple constituents appear as an aggregate

            if Nkind (Constit) = N_Aggregate then
               Constit := First (Expressions (Constit));
               while Present (Constit) loop
                  Process_Constituent (Constit);
                  Next (Constit);
               end loop;

            --  Various forms of a single constituent

            else
               Process_Constituent (Constit);
            end if;
         end if;
      end Process_Refinement_Clause;

      -------------------------------
      -- Report_Unused_Body_States --
      -------------------------------

      procedure Report_Unused_Body_States (States : Elist_Id) is
         Posted     : Boolean := False;
         State_Elmt : Elmt_Id;
         State_Id   : Entity_Id;

      begin
         if Present (States) then
            State_Elmt := First_Elmt (States);
            while Present (State_Elmt) loop
               State_Id := Node (State_Elmt);

               --  Constants are part of the hidden state of a package, but the
               --  compiler cannot determine whether they have variable input
               --  (SPARK RM 7.1.1(2)) and cannot classify them properly as a
               --  hidden state. Do not emit an error when a constant does not
               --  participate in a state refinement, even though it acts as a
               --  hidden state.

               if Ekind (State_Id) = E_Constant then
                  null;

               --  Generate an error message of the form:

               --    body of package ... has unused hidden states
               --      abstract state ... defined at ...
               --      variable ... defined at ...

               else
                  if not Posted then
                     Posted := True;
                     SPARK_Msg_N
                       ("body of package & has unused hidden states", Body_Id);
                  end if;

                  Error_Msg_Sloc := Sloc (State_Id);

                  if Ekind (State_Id) = E_Abstract_State then
                     SPARK_Msg_NE
                       ("\abstract state & defined #", Body_Id, State_Id);

                  else
                     SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
                  end if;
               end if;

                  Next_Elmt (State_Elmt);
            end loop;
         end if;
      end Report_Unused_Body_States;

      --  Local variables

      Prag    : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
      Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
      Clause  : Node_Id;
      States  : Elist_Id;

   --  Start of processing for Check_Unused_Body_States

   begin
      --  Inspect the clauses of pragma Refined_State and determine whether all
      --  visible states declared within the package body participate in the
      --  refinement.

      if Present (Prag) then
         Clause := Expression (Get_Argument (Prag, Spec_Id));
         States := Collect_Body_States (Body_Id);

         --  Multiple non-null state refinements appear as an aggregate

         if Nkind (Clause) = N_Aggregate then
            Clause := First (Component_Associations (Clause));
            while Present (Clause) loop
               Process_Refinement_Clause (Clause, States);
               Next (Clause);
            end loop;

         --  Various forms of a single state refinement

         else
            Process_Refinement_Clause (Clause, States);
         end if;

         --  Ensure that all abstract states and objects declared in the
         --  package body state space are utilized as constituents.

         Report_Unused_Body_States (States);
      end if;
   end Check_Unused_Body_States;

   ------------------------------------
   -- Check_Volatility_Compatibility --
   ------------------------------------

   procedure Check_Volatility_Compatibility
     (Id1, Id2                     : Entity_Id;
      Description_1, Description_2 : String;
      Srcpos_Bearer                : Node_Id) is

   begin
      if SPARK_Mode /= On then
         return;
      end if;

      declare
         AR1 : constant Boolean := Async_Readers_Enabled (Id1);
         AW1 : constant Boolean := Async_Writers_Enabled (Id1);
         ER1 : constant Boolean := Effective_Reads_Enabled (Id1);
         EW1 : constant Boolean := Effective_Writes_Enabled (Id1);
         AR2 : constant Boolean := Async_Readers_Enabled (Id2);
         AW2 : constant Boolean := Async_Writers_Enabled (Id2);
         ER2 : constant Boolean := Effective_Reads_Enabled (Id2);
         EW2 : constant Boolean := Effective_Writes_Enabled (Id2);

         AR_Check_Failed : constant Boolean := AR1 and not AR2;
         AW_Check_Failed : constant Boolean := AW1 and not AW2;
         ER_Check_Failed : constant Boolean := ER1 and not ER2;
         EW_Check_Failed : constant Boolean := EW1 and not EW2;

         package Failure_Description is
            procedure Note_If_Failure
              (Failed : Boolean; Aspect_Name : String);
            --  If Failed is False, do nothing.
            --  If Failed is True, add Aspect_Name to the failure description.

            function Failure_Text return String;
            --  returns accumulated list of failing aspects
         end Failure_Description;

         package body Failure_Description is
            Description_Buffer : Bounded_String;

            ---------------------
            -- Note_If_Failure --
            ---------------------

            procedure Note_If_Failure
              (Failed : Boolean; Aspect_Name : String) is
            begin
               if Failed then
                  if Description_Buffer.Length /= 0 then
                     Append (Description_Buffer, ", ");
                  end if;
                  Append (Description_Buffer, Aspect_Name);
               end if;
            end Note_If_Failure;

            ------------------
            -- Failure_Text --
            ------------------

            function Failure_Text return String is
            begin
               return +Description_Buffer;
            end Failure_Text;
         end Failure_Description;

         use Failure_Description;
      begin
         if AR_Check_Failed
           or AW_Check_Failed
           or ER_Check_Failed
           or EW_Check_Failed
         then
            Note_If_Failure (AR_Check_Failed, "Async_Readers");
            Note_If_Failure (AW_Check_Failed, "Async_Writers");
            Note_If_Failure (ER_Check_Failed, "Effective_Reads");
            Note_If_Failure (EW_Check_Failed, "Effective_Writes");

            Error_Msg_N
              (Description_1
                 & " and "
                 & Description_2
                 & " are not compatible with respect to volatility due to "
                 & Failure_Text,
               Srcpos_Bearer);
         end if;
      end;
   end Check_Volatility_Compatibility;

   -----------------
   -- Choice_List --
   -----------------

   function Choice_List (N : Node_Id) return List_Id is
   begin
      if Nkind (N) = N_Iterated_Component_Association then
         return Discrete_Choices (N);
      else
         return Choices (N);
      end if;
   end Choice_List;

   -------------------------
   -- Collect_Body_States --
   -------------------------

   function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
      function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
      --  Determine whether object Obj_Id is a suitable visible state of a
      --  package body.

      procedure Collect_Visible_States
        (Pack_Id : Entity_Id;
         States  : in out Elist_Id);
      --  Gather the entities of all abstract states and objects declared in
      --  the visible state space of package Pack_Id.

      ----------------------------
      -- Collect_Visible_States --
      ----------------------------

      procedure Collect_Visible_States
        (Pack_Id : Entity_Id;
         States  : in out Elist_Id)
      is
         Item_Id : Entity_Id;

      begin
         --  Traverse the entity chain of the package and inspect all visible
         --  items.

         Item_Id := First_Entity (Pack_Id);
         while Present (Item_Id) and then not In_Private_Part (Item_Id) loop

            --  Do not consider internally generated items as those cannot be
            --  named and participate in refinement.

            if not Comes_From_Source (Item_Id) then
               null;

            elsif Ekind (Item_Id) = E_Abstract_State then
               Append_New_Elmt (Item_Id, States);

            elsif Ekind (Item_Id) in E_Constant | E_Variable
              and then Is_Visible_Object (Item_Id)
            then
               Append_New_Elmt (Item_Id, States);

            --  Recursively gather the visible states of a nested package

            elsif Ekind (Item_Id) = E_Package then
               Collect_Visible_States (Item_Id, States);
            end if;

            Next_Entity (Item_Id);
         end loop;
      end Collect_Visible_States;

      -----------------------
      -- Is_Visible_Object --
      -----------------------

      function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
      begin
         --  Objects that map generic formals to their actuals are not visible
         --  from outside the generic instantiation.

         if Present (Corresponding_Generic_Association
                       (Declaration_Node (Obj_Id)))
         then
            return False;

         --  Constituents of a single protected/task type act as components of
         --  the type and are not visible from outside the type.

         elsif Ekind (Obj_Id) = E_Variable
           and then Present (Encapsulating_State (Obj_Id))
           and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
         then
            return False;

         else
            return True;
         end if;
      end Is_Visible_Object;

      --  Local variables

      Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
      Decl      : Node_Id;
      Item_Id   : Entity_Id;
      States    : Elist_Id := No_Elist;

   --  Start of processing for Collect_Body_States

   begin
      --  Inspect the declarations of the body looking for source objects,
      --  packages and package instantiations. Note that even though this
      --  processing is very similar to Collect_Visible_States, a package
      --  body does not have a First/Next_Entity list.

      Decl := First (Declarations (Body_Decl));
      while Present (Decl) loop

         --  Capture source objects as internally generated temporaries cannot
         --  be named and participate in refinement.

         if Nkind (Decl) = N_Object_Declaration then
            Item_Id := Defining_Entity (Decl);

            if Comes_From_Source (Item_Id)
              and then Is_Visible_Object (Item_Id)
            then
               Append_New_Elmt (Item_Id, States);
            end if;

         --  Capture the visible abstract states and objects of a source
         --  package [instantiation].

         elsif Nkind (Decl) = N_Package_Declaration then
            Item_Id := Defining_Entity (Decl);

            if Comes_From_Source (Item_Id) then
               Collect_Visible_States (Item_Id, States);
            end if;
         end if;

         Next (Decl);
      end loop;

      return States;
   end Collect_Body_States;

   ------------------------
   -- Collect_Interfaces --
   ------------------------

   procedure Collect_Interfaces
     (T               : Entity_Id;
      Ifaces_List     : out Elist_Id;
      Exclude_Parents : Boolean := False;
      Use_Full_View   : Boolean := True)
   is
      procedure Collect (Typ : Entity_Id);
      --  Subsidiary subprogram used to traverse the whole list
      --  of directly and indirectly implemented interfaces

      -------------
      -- Collect --
      -------------

      procedure Collect (Typ : Entity_Id) is
         Ancestor   : Entity_Id;
         Full_T     : Entity_Id;
         Id         : Node_Id;
         Iface      : Entity_Id;

      begin
         Full_T := Typ;

         --  Handle private types and subtypes

         if Use_Full_View
           and then Is_Private_Type (Typ)
           and then Present (Full_View (Typ))
         then
            Full_T := Full_View (Typ);

            if Ekind (Full_T) = E_Record_Subtype then
               Full_T := Etype (Typ);

               if Present (Full_View (Full_T)) then
                  Full_T := Full_View (Full_T);
               end if;
            end if;
         end if;

         --  Include the ancestor if we are generating the whole list of
         --  abstract interfaces.

         if Etype (Full_T) /= Typ

            --  Protect the frontend against wrong sources. For example:

            --    package P is
            --      type A is tagged null record;
            --      type B is new A with private;
            --      type C is new A with private;
            --    private
            --      type B is new C with null record;
            --      type C is new B with null record;
            --    end P;

           and then Etype (Full_T) /= T
         then
            Ancestor := Etype (Full_T);
            Collect (Ancestor);

            if Is_Interface (Ancestor) and then not Exclude_Parents then
               Append_Unique_Elmt (Ancestor, Ifaces_List);
            end if;
         end if;

         --  Traverse the graph of ancestor interfaces

         if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
            Id := First (Abstract_Interface_List (Full_T));
            while Present (Id) loop
               Iface := Etype (Id);

               --  Protect against wrong uses. For example:
               --    type I is interface;
               --    type O is tagged null record;
               --    type Wrong is new I and O with null record; -- ERROR

               if Is_Interface (Iface) then
                  if Exclude_Parents
                    and then Etype (T) /= T
                    and then Interface_Present_In_Ancestor (Etype (T), Iface)
                  then
                     null;
                  else
                     Collect (Iface);
                     Append_Unique_Elmt (Iface, Ifaces_List);
                  end if;
               end if;

               Next (Id);
            end loop;
         end if;
      end Collect;

   --  Start of processing for Collect_Interfaces

   begin
      pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
      Ifaces_List := New_Elmt_List;
      Collect (T);
   end Collect_Interfaces;

   ----------------------------------
   -- Collect_Interface_Components --
   ----------------------------------

   procedure Collect_Interface_Components
     (Tagged_Type     : Entity_Id;
      Components_List : out Elist_Id)
   is
      procedure Collect (Typ : Entity_Id);
      --  Subsidiary subprogram used to climb to the parents

      -------------
      -- Collect --
      -------------

      procedure Collect (Typ : Entity_Id) is
         Tag_Comp   : Entity_Id;
         Parent_Typ : Entity_Id;

      begin
         --  Handle private types

         if Present (Full_View (Etype (Typ))) then
            Parent_Typ := Full_View (Etype (Typ));
         else
            Parent_Typ := Etype (Typ);
         end if;

         if Parent_Typ /= Typ

            --  Protect the frontend against wrong sources. For example:

            --    package P is
            --      type A is tagged null record;
            --      type B is new A with private;
            --      type C is new A with private;
            --    private
            --      type B is new C with null record;
            --      type C is new B with null record;
            --    end P;

           and then Parent_Typ /= Tagged_Type
         then
            Collect (Parent_Typ);
         end if;

         --  Collect the components containing tags of secondary dispatch
         --  tables.

         Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
         while Present (Tag_Comp) loop
            pragma Assert (Present (Related_Type (Tag_Comp)));
            Append_Elmt (Tag_Comp, Components_List);

            Tag_Comp := Next_Tag_Component (Tag_Comp);
         end loop;
      end Collect;

   --  Start of processing for Collect_Interface_Components

   begin
      pragma Assert (Ekind (Tagged_Type) = E_Record_Type
        and then Is_Tagged_Type (Tagged_Type));

      Components_List := New_Elmt_List;
      Collect (Tagged_Type);
   end Collect_Interface_Components;

   -----------------------------
   -- Collect_Interfaces_Info --
   -----------------------------

   procedure Collect_Interfaces_Info
     (T               : Entity_Id;
      Ifaces_List     : out Elist_Id;
      Components_List : out Elist_Id;
      Tags_List       : out Elist_Id)
   is
      Comps_List : Elist_Id;
      Comp_Elmt  : Elmt_Id;
      Comp_Iface : Entity_Id;
      Iface_Elmt : Elmt_Id;
      Iface      : Entity_Id;

      function Search_Tag (Iface : Entity_Id) return Entity_Id;
      --  Search for the secondary tag associated with the interface type
      --  Iface that is implemented by T.

      ----------------
      -- Search_Tag --
      ----------------

      function Search_Tag (Iface : Entity_Id) return Entity_Id is
         ADT : Elmt_Id;
      begin
         if not Is_CPP_Class (T) then
            ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
         else
            ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
         end if;

         while Present (ADT)
           and then Is_Tag (Node (ADT))
           and then Related_Type (Node (ADT)) /= Iface
         loop
            --  Skip secondary dispatch table referencing thunks to user
            --  defined primitives covered by this interface.

            pragma Assert (Has_Suffix (Node (ADT), 'P'));
            Next_Elmt (ADT);

            --  Skip secondary dispatch tables of Ada types

            if not Is_CPP_Class (T) then

               --  Skip secondary dispatch table referencing thunks to
               --  predefined primitives.

               pragma Assert (Has_Suffix (Node (ADT), 'Y'));
               Next_Elmt (ADT);

               --  Skip secondary dispatch table referencing user-defined
               --  primitives covered by this interface.

               pragma Assert (Has_Suffix (Node (ADT), 'D'));
               Next_Elmt (ADT);

               --  Skip secondary dispatch table referencing predefined
               --  primitives.

               pragma Assert (Has_Suffix (Node (ADT), 'Z'));
               Next_Elmt (ADT);
            end if;
         end loop;

         pragma Assert (Is_Tag (Node (ADT)));
         return Node (ADT);
      end Search_Tag;

   --  Start of processing for Collect_Interfaces_Info

   begin
      Collect_Interfaces (T, Ifaces_List);
      Collect_Interface_Components (T, Comps_List);

      --  Search for the record component and tag associated with each
      --  interface type of T.

      Components_List := New_Elmt_List;
      Tags_List       := New_Elmt_List;

      Iface_Elmt := First_Elmt (Ifaces_List);
      while Present (Iface_Elmt) loop
         Iface := Node (Iface_Elmt);

         --  Associate the primary tag component and the primary dispatch table
         --  with all the interfaces that are parents of T

         if Is_Ancestor (Iface, T, Use_Full_View => True) then
            Append_Elmt (First_Tag_Component (T), Components_List);
            Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);

         --  Otherwise search for the tag component and secondary dispatch
         --  table of Iface

         else
            Comp_Elmt := First_Elmt (Comps_List);
            while Present (Comp_Elmt) loop
               Comp_Iface := Related_Type (Node (Comp_Elmt));

               if Comp_Iface = Iface
                 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
               then
                  Append_Elmt (Node (Comp_Elmt), Components_List);
                  Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
                  exit;
               end if;

               Next_Elmt (Comp_Elmt);
            end loop;
            pragma Assert (Present (Comp_Elmt));
         end if;

         Next_Elmt (Iface_Elmt);
      end loop;
   end Collect_Interfaces_Info;

   ---------------------
   -- Collect_Parents --
   ---------------------

   procedure Collect_Parents
     (T             : Entity_Id;
      List          : out Elist_Id;
      Use_Full_View : Boolean := True)
   is
      Current_Typ : Entity_Id := T;
      Parent_Typ  : Entity_Id;

   begin
      List := New_Elmt_List;

      --  No action if the if the type has no parents

      if T = Etype (T) then
         return;
      end if;

      loop
         Parent_Typ := Etype (Current_Typ);

         if Is_Private_Type (Parent_Typ)
           and then Present (Full_View (Parent_Typ))
           and then Use_Full_View
         then
            Parent_Typ := Full_View (Base_Type (Parent_Typ));
         end if;

         Append_Elmt (Parent_Typ, List);

         exit when Parent_Typ = Current_Typ;
         Current_Typ := Parent_Typ;
      end loop;
   end Collect_Parents;

   ----------------------------------
   -- Collect_Primitive_Operations --
   ----------------------------------

   function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
      B_Type : constant Entity_Id := Base_Type (T);

      function Match (E : Entity_Id) return Boolean;
      --  True if E's base type is B_Type, or E is of an anonymous access type
      --  and the base type of its designated type is B_Type.

      -----------
      -- Match --
      -----------

      function Match (E : Entity_Id) return Boolean is
         Etyp : Entity_Id := Etype (E);

      begin
         if Ekind (Etyp) = E_Anonymous_Access_Type then
            Etyp := Designated_Type (Etyp);
         end if;

         --  In Ada 2012 a primitive operation may have a formal of an
         --  incomplete view of the parent type.

         return Base_Type (Etyp) = B_Type
           or else
             (Ada_Version >= Ada_2012
               and then Ekind (Etyp) = E_Incomplete_Type
               and then Full_View (Etyp) = B_Type);
      end Match;

      --  Local variables

      B_Decl         : constant Node_Id := Original_Node (Parent (B_Type));
      B_Scope        : Entity_Id        := Scope (B_Type);
      Op_List        : Elist_Id;
      Eq_Prims_List  : Elist_Id := No_Elist;
      Formal         : Entity_Id;
      Is_Prim        : Boolean;
      Is_Type_In_Pkg : Boolean;
      Formal_Derived : Boolean := False;
      Id             : Entity_Id;

   --  Start of processing for Collect_Primitive_Operations

   begin
      --  For tagged types, the primitive operations are collected as they
      --  are declared, and held in an explicit list which is simply returned.

      if Is_Tagged_Type (B_Type) then
         return Primitive_Operations (B_Type);

      --  An untagged generic type that is a derived type inherits the
      --  primitive operations of its parent type. Other formal types only
      --  have predefined operators, which are not explicitly represented.

      elsif Is_Generic_Type (B_Type) then
         if Nkind (B_Decl) = N_Formal_Type_Declaration
           and then Nkind (Formal_Type_Definition (B_Decl)) =
                                           N_Formal_Derived_Type_Definition
         then
            Formal_Derived := True;
         else
            return New_Elmt_List;
         end if;
      end if;

      Op_List := New_Elmt_List;

      if B_Scope = Standard_Standard then
         if B_Type = Standard_String then
            Append_Elmt (Standard_Op_Concat, Op_List);

         elsif B_Type = Standard_Wide_String then
            Append_Elmt (Standard_Op_Concatw, Op_List);

         else
            null;
         end if;

      --  Locate the primitive subprograms of the type

      else
         --  The primitive operations appear after the base type, except if the
         --  derivation happens within the private part of B_Scope and the type
         --  is a private type, in which case both the type and some primitive
         --  operations may appear before the base type, and the list of
         --  candidates starts after the type.

         if In_Open_Scopes (B_Scope)
           and then Scope (T) = B_Scope
           and then In_Private_Part (B_Scope)
         then
            Id := Next_Entity (T);

         --  In Ada 2012, If the type has an incomplete partial view, there may
         --  be primitive operations declared before the full view, so we need
         --  to start scanning from the incomplete view, which is earlier on
         --  the entity chain.

         elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
           and then Present (Incomplete_View (Parent (B_Type)))
         then
            Id := Defining_Entity (Incomplete_View (Parent (B_Type)));

            --  If T is a derived from a type with an incomplete view declared
            --  elsewhere, that incomplete view is irrelevant, we want the
            --  operations in the scope of T.

            if Scope (Id) /= Scope (B_Type) then
               Id := Next_Entity (B_Type);
            end if;

         else
            Id := Next_Entity (B_Type);
         end if;

         --  Set flag if this is a type in a package spec

         Is_Type_In_Pkg :=
           Is_Package_Or_Generic_Package (B_Scope)
             and then
               Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
                                                           N_Package_Body;

         while Present (Id) loop

            --  Test whether the result type or any of the parameter types of
            --  each subprogram following the type match that type when the
            --  type is declared in a package spec, is a derived type, or the
            --  subprogram is marked as primitive. (The Is_Primitive test is
            --  needed to find primitives of nonderived types in declarative
            --  parts that happen to override the predefined "=" operator.)

            --  Note that generic formal subprograms are not considered to be
            --  primitive operations and thus are never inherited.

            if Is_Overloadable (Id)
              and then (Is_Type_In_Pkg
                         or else Is_Derived_Type (B_Type)
                         or else Is_Primitive (Id))
              and then Nkind (Parent (Parent (Id)))
                         not in N_Formal_Subprogram_Declaration
            then
               Is_Prim := False;

               if Match (Id) then
                  Is_Prim := True;

               else
                  Formal := First_Formal (Id);
                  while Present (Formal) loop
                     if Match (Formal) then
                        Is_Prim := True;
                        exit;
                     end if;

                     Next_Formal (Formal);
                  end loop;
               end if;

               --  For a formal derived type, the only primitives are the ones
               --  inherited from the parent type. Operations appearing in the
               --  package declaration are not primitive for it.

               if Is_Prim
                 and then (not Formal_Derived or else Present (Alias (Id)))
               then
                  --  In the special case of an equality operator aliased to
                  --  an overriding dispatching equality belonging to the same
                  --  type, we don't include it in the list of primitives.
                  --  This avoids inheriting multiple equality operators when
                  --  deriving from untagged private types whose full type is
                  --  tagged, which can otherwise cause ambiguities. Note that
                  --  this should only happen for this kind of untagged parent
                  --  type, since normally dispatching operations are inherited
                  --  using the type's Primitive_Operations list.

                  if Chars (Id) = Name_Op_Eq
                    and then Is_Dispatching_Operation (Id)
                    and then Present (Alias (Id))
                    and then Present (Overridden_Operation (Alias (Id)))
                    and then Base_Type (Etype (First_Entity (Id))) =
                               Base_Type (Etype (First_Entity (Alias (Id))))
                  then
                     null;

                  --  Include the subprogram in the list of primitives

                  else
                     Append_Elmt (Id, Op_List);

                     --  Save collected equality primitives for later filtering
                     --  (if we are processing a private type for which we can
                     --  collect several candidates).

                     if Inherits_From_Tagged_Full_View (T)
                       and then Chars (Id) = Name_Op_Eq
                       and then Etype (First_Formal (Id)) =
                                Etype (Next_Formal (First_Formal (Id)))
                     then
                        if No (Eq_Prims_List) then
                           Eq_Prims_List := New_Elmt_List;
                        end if;

                        Append_Elmt (Id, Eq_Prims_List);
                     end if;
                  end if;
               end if;
            end if;

            Next_Entity (Id);

            --  For a type declared in System, some of its operations may
            --  appear in the target-specific extension to System.

            if No (Id)
              and then B_Scope = RTU_Entity (System)
              and then Present_System_Aux
            then
               B_Scope := System_Aux_Id;
               Id := First_Entity (System_Aux_Id);
            end if;
         end loop;

         --  Filter collected equality primitives

         if Inherits_From_Tagged_Full_View (T)
           and then Present (Eq_Prims_List)
         then
            declare
               First  : constant Elmt_Id := First_Elmt (Eq_Prims_List);
               Second : Elmt_Id;

            begin
               pragma Assert (No (Next_Elmt (First))
                 or else No (Next_Elmt (Next_Elmt (First))));

               --  No action needed if we have collected a single equality
               --  primitive

               if Present (Next_Elmt (First)) then
                  Second := Next_Elmt (First);

                  if Is_Dispatching_Operation
                       (Ultimate_Alias (Node (First)))
                  then
                     Remove (Op_List, Node (First));

                  elsif Is_Dispatching_Operation
                          (Ultimate_Alias (Node (Second)))
                  then
                     Remove (Op_List, Node (Second));

                  else
                     pragma Assert (False);
                     raise Program_Error;
                  end if;
               end if;
            end;
         end if;
      end if;

      return Op_List;
   end Collect_Primitive_Operations;

   -----------------------------------
   -- Compile_Time_Constraint_Error --
   -----------------------------------

   function Compile_Time_Constraint_Error
     (N         : Node_Id;
      Msg       : String;
      Ent       : Entity_Id  := Empty;
      Loc       : Source_Ptr := No_Location;
      Warn      : Boolean    := False;
      Extra_Msg : String     := "") return Node_Id
   is
      Msgc : String (1 .. Msg'Length + 3);
      --  Copy of message, with room for possible ?? or << and ! at end

      Msgl : Natural;
      Wmsg : Boolean;
      Eloc : Source_Ptr;

   --  Start of processing for Compile_Time_Constraint_Error

   begin
      --  If this is a warning, convert it into an error if we are in code
      --  subject to SPARK_Mode being set On, unless Warn is True to force a
      --  warning. The rationale is that a compile-time constraint error should
      --  lead to an error instead of a warning when SPARK_Mode is On, but in
      --  a few cases we prefer to issue a warning and generate both a suitable
      --  run-time error in GNAT and a suitable check message in GNATprove.
      --  Those cases are those that likely correspond to deactivated SPARK
      --  code, so that this kind of code can be compiled and analyzed instead
      --  of being rejected.

      Error_Msg_Warn := Warn or SPARK_Mode /= On;

      --  A static constraint error in an instance body is not a fatal error.
      --  we choose to inhibit the message altogether, because there is no
      --  obvious node (for now) on which to post it. On the other hand the
      --  offending node must be replaced with a constraint_error in any case.

      --  No messages are generated if we already posted an error on this node

      if not Error_Posted (N) then
         if Loc /= No_Location then
            Eloc := Loc;
         else
            Eloc := Sloc (N);
         end if;

         --  Copy message to Msgc, converting any ? in the message into <
         --  instead, so that we have an error in GNATprove mode.

         Msgl := Msg'Length;

         for J in 1 .. Msgl loop
            if Msg (J) = '?' and then (J = 1 or else Msg (J - 1) /= ''') then
               Msgc (J) := '<';
            else
               Msgc (J) := Msg (J);
            end if;
         end loop;

         --  Message is a warning, even in Ada 95 case

         if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
            Wmsg := True;

         --  In Ada 83, all messages are warnings. In the private part and the
         --  body of an instance, constraint_checks are only warnings. We also
         --  make this a warning if the Warn parameter is set.

         elsif Warn
           or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
           or else In_Instance_Not_Visible
         then
            Msgl := Msgl + 1;
            Msgc (Msgl) := '<';
            Msgl := Msgl + 1;
            Msgc (Msgl) := '<';
            Wmsg := True;

         --  Otherwise we have a real error message (Ada 95 static case) and we
         --  make this an unconditional message. Note that in the warning case
         --  we do not make the message unconditional, it seems reasonable to
         --  delete messages like this (about exceptions that will be raised)
         --  in dead code.

         else
            Wmsg := False;
            Msgl := Msgl + 1;
            Msgc (Msgl) := '!';
         end if;

         --  One more test, skip the warning if the related expression is
         --  statically unevaluated, since we don't want to warn about what
         --  will happen when something is evaluated if it never will be
         --  evaluated.

         --  Suppress error reporting when checking that the expression of a
         --  static expression function is a potentially static expression,
         --  because we don't want additional errors being reported during the
         --  preanalysis of the expression (see Analyze_Expression_Function).

         if not Is_Statically_Unevaluated (N)
           and then not Checking_Potentially_Static_Expression
         then
            if Present (Ent) then
               Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
            else
               Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
            end if;

            --  Emit any extra message as a continuation

            if Extra_Msg /= "" then
               Error_Msg_N ('\' & Extra_Msg, N);
            end if;

            if Wmsg then

               --  Check whether the context is an Init_Proc

               if Inside_Init_Proc then
                  declare
                     Conc_Typ : constant Entity_Id :=
                                  Corresponding_Concurrent_Type
                                    (Entity (Parameter_Type (First
                                      (Parameter_Specifications
                                        (Parent (Current_Scope))))));

                  begin
                     --  Don't complain if the corresponding concurrent type
                     --  doesn't come from source (i.e. a single task/protected
                     --  object).

                     if Present (Conc_Typ)
                       and then not Comes_From_Source (Conc_Typ)
                     then
                        Error_Msg_NEL
                          ("\& [<<", N, Standard_Constraint_Error, Eloc);

                     else
                        if GNATprove_Mode then
                           Error_Msg_NEL
                             ("\& would have been raised for objects of this "
                              & "type", N, Standard_Constraint_Error, Eloc);
                        else
                           Error_Msg_NEL
                             ("\& will be raised for objects of this type??",
                              N, Standard_Constraint_Error, Eloc);
                        end if;
                     end if;
                  end;

               else
                  Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
               end if;

            else
               Error_Msg ("\static expression fails Constraint_Check", Eloc);
               Set_Error_Posted (N);
            end if;
         end if;
      end if;

      return N;
   end Compile_Time_Constraint_Error;

   -----------------------
   -- Conditional_Delay --
   -----------------------

   procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
   begin
      if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
         Set_Has_Delayed_Freeze (New_Ent);
      end if;
   end Conditional_Delay;

   -------------------------
   -- Copy_Component_List --
   -------------------------

   function Copy_Component_List
     (R_Typ : Entity_Id;
      Loc   : Source_Ptr) return List_Id
   is
      Comp  : Node_Id;
      Comps : constant List_Id := New_List;

   begin
      Comp := First_Component (Underlying_Type (R_Typ));
      while Present (Comp) loop
         if Comes_From_Source (Comp) then
            declare
               Comp_Decl : constant Node_Id := Declaration_Node (Comp);
            begin
               Append_To (Comps,
                 Make_Component_Declaration (Loc,
                   Defining_Identifier =>
                     Make_Defining_Identifier (Loc, Chars (Comp)),
                   Component_Definition =>
                     New_Copy_Tree
                       (Component_Definition (Comp_Decl), New_Sloc => Loc)));
            end;
         end if;

         Next_Component (Comp);
      end loop;

      return Comps;
   end Copy_Component_List;

   -------------------------
   -- Copy_Parameter_List --
   -------------------------

   function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
      Loc    : constant Source_Ptr := Sloc (Subp_Id);
      Plist  : List_Id;
      Formal : Entity_Id;

   begin
      if No (First_Formal (Subp_Id)) then
         return No_List;
      else
         Plist  := New_List;
         Formal := First_Formal (Subp_Id);
         while Present (Formal) loop
            Append_To (Plist,
              Make_Parameter_Specification (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
                In_Present          => In_Present (Parent (Formal)),
                Out_Present         => Out_Present (Parent (Formal)),
                Parameter_Type      =>
                  New_Occurrence_Of (Etype (Formal), Loc),
                Expression          =>
                  New_Copy_Tree (Expression (Parent (Formal)))));

            Next_Formal (Formal);
         end loop;
      end if;

      return Plist;
   end Copy_Parameter_List;

   ----------------------------
   -- Copy_SPARK_Mode_Aspect --
   ----------------------------

   procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id) is
      pragma Assert (not Has_Aspects (To));
      Asp : Node_Id;

   begin
      if Has_Aspects (From) then
         Asp := Find_Aspect (Defining_Entity (From), Aspect_SPARK_Mode);

         if Present (Asp) then
            Set_Aspect_Specifications (To, New_List (New_Copy_Tree (Asp)));
            Set_Has_Aspects (To, True);
         end if;
      end if;
   end Copy_SPARK_Mode_Aspect;

   --------------------------
   -- Copy_Subprogram_Spec --
   --------------------------

   function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
      Def_Id      : Node_Id;
      Formal_Spec : Node_Id;
      Result      : Node_Id;

   begin
      --  The structure of the original tree must be replicated without any
      --  alterations. Use New_Copy_Tree for this purpose.

      Result := New_Copy_Tree (Spec);

      --  However, the spec of a null procedure carries the corresponding null
      --  statement of the body (created by the parser), and this cannot be
      --  shared with the new subprogram spec.

      if Nkind (Result) = N_Procedure_Specification then
         Set_Null_Statement (Result, Empty);
      end if;

      --  Create a new entity for the defining unit name

      Def_Id := Defining_Unit_Name (Result);
      Set_Defining_Unit_Name (Result,
        Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));

      --  Create new entities for the formal parameters

      if Present (Parameter_Specifications (Result)) then
         Formal_Spec := First (Parameter_Specifications (Result));
         while Present (Formal_Spec) loop
            Def_Id := Defining_Identifier (Formal_Spec);
            Set_Defining_Identifier (Formal_Spec,
              Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));

            Next (Formal_Spec);
         end loop;
      end if;

      return Result;
   end Copy_Subprogram_Spec;

   --------------------------------
   -- Corresponding_Generic_Type --
   --------------------------------

   function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
      Inst : Entity_Id;
      Gen  : Entity_Id;
      Typ  : Entity_Id;

   begin
      if not Is_Generic_Actual_Type (T) then
         return Any_Type;

      --  If the actual is the actual of an enclosing instance, resolution
      --  was correct in the generic.

      elsif Nkind (Parent (T)) = N_Subtype_Declaration
        and then Is_Entity_Name (Subtype_Indication (Parent (T)))
        and then
          Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
      then
         return Any_Type;

      else
         Inst := Scope (T);

         if Is_Wrapper_Package (Inst) then
            Inst := Related_Instance (Inst);
         end if;

         Gen  :=
           Generic_Parent
             (Specification (Unit_Declaration_Node (Inst)));

         --  Generic actual has the same name as the corresponding formal

         Typ := First_Entity (Gen);
         while Present (Typ) loop
            if Chars (Typ) = Chars (T) then
               return Typ;
            end if;

            Next_Entity (Typ);
         end loop;

         return Any_Type;
      end if;
   end Corresponding_Generic_Type;

   --------------------
   -- Current_Entity --
   --------------------

   --  The currently visible definition for a given identifier is the
   --  one most chained at the start of the visibility chain, i.e. the
   --  one that is referenced by the Node_Id value of the name of the
   --  given identifier.

   function Current_Entity (N : Node_Id) return Entity_Id is
   begin
      return Get_Name_Entity_Id (Chars (N));
   end Current_Entity;

   -----------------------------
   -- Current_Entity_In_Scope --
   -----------------------------

   function Current_Entity_In_Scope (N : Name_Id) return Entity_Id is
      E  : Entity_Id;
      CS : constant Entity_Id := Current_Scope;

      Transient_Case : constant Boolean := Scope_Is_Transient;

   begin
      E := Get_Name_Entity_Id (N);
      while Present (E)
        and then Scope (E) /= CS
        and then (not Transient_Case or else Scope (E) /= Scope (CS))
      loop
         E := Homonym (E);
      end loop;

      return E;
   end Current_Entity_In_Scope;

   -----------------------------
   -- Current_Entity_In_Scope --
   -----------------------------

   function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
   begin
      return Current_Entity_In_Scope (Chars (N));
   end Current_Entity_In_Scope;

   -------------------
   -- Current_Scope --
   -------------------

   function Current_Scope return Entity_Id is
   begin
      if Scope_Stack.Last = -1 then
         return Standard_Standard;
      else
         declare
            C : constant Entity_Id :=
                  Scope_Stack.Table (Scope_Stack.Last).Entity;
         begin
            if Present (C) then
               return C;
            else
               return Standard_Standard;
            end if;
         end;
      end if;
   end Current_Scope;

   ----------------------------
   -- Current_Scope_No_Loops --
   ----------------------------

   function Current_Scope_No_Loops return Entity_Id is
      S : Entity_Id;

   begin
      --  Examine the scope stack starting from the current scope and skip any
      --  internally generated loops.

      S := Current_Scope;
      while Present (S) and then S /= Standard_Standard loop
         if Ekind (S) = E_Loop and then not Comes_From_Source (S) then
            S := Scope (S);
         else
            exit;
         end if;
      end loop;

      return S;
   end Current_Scope_No_Loops;

   ------------------------
   -- Current_Subprogram --
   ------------------------

   function Current_Subprogram return Entity_Id is
      Scop : constant Entity_Id := Current_Scope;
   begin
      if Is_Subprogram_Or_Generic_Subprogram (Scop) then
         return Scop;
      else
         return Enclosing_Subprogram (Scop);
      end if;
   end Current_Subprogram;

   ----------------------------------
   -- Deepest_Type_Access_Level --
   ----------------------------------

   function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
   begin
      if Ekind (Typ) = E_Anonymous_Access_Type
        and then not Is_Local_Anonymous_Access (Typ)
        and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
      then
         --  Typ is the type of an Ada 2012 stand-alone object of an anonymous
         --  access type.

         return
           Scope_Depth (Enclosing_Dynamic_Scope
                         (Defining_Identifier
                           (Associated_Node_For_Itype (Typ))));

      --  For generic formal type, return Int'Last (infinite).
      --  See comment preceding Is_Generic_Type call in Type_Access_Level.

      elsif Is_Generic_Type (Root_Type (Typ)) then
         return UI_From_Int (Int'Last);

      else
         return Type_Access_Level (Typ);
      end if;
   end Deepest_Type_Access_Level;

   ---------------------
   -- Defining_Entity --
   ---------------------

   function Defining_Entity (N : Node_Id) return Entity_Id is
   begin
      case Nkind (N) is
         when N_Abstract_Subprogram_Declaration
            | N_Expression_Function
            | N_Formal_Subprogram_Declaration
            | N_Generic_Package_Declaration
            | N_Generic_Subprogram_Declaration
            | N_Package_Declaration
            | N_Subprogram_Body
            | N_Subprogram_Body_Stub
            | N_Subprogram_Declaration
            | N_Subprogram_Renaming_Declaration
         =>
            return Defining_Entity (Specification (N));

         when N_Component_Declaration
            | N_Defining_Program_Unit_Name
            | N_Discriminant_Specification
            | N_Entry_Body
            | N_Entry_Declaration
            | N_Entry_Index_Specification
            | N_Exception_Declaration
            | N_Exception_Renaming_Declaration
            | N_Formal_Object_Declaration
            | N_Formal_Package_Declaration
            | N_Formal_Type_Declaration
            | N_Full_Type_Declaration
            | N_Implicit_Label_Declaration
            | N_Incomplete_Type_Declaration
            | N_Iterator_Specification
            | N_Loop_Parameter_Specification
            | N_Number_Declaration
            | N_Object_Declaration
            | N_Object_Renaming_Declaration
            | N_Package_Body_Stub
            | N_Parameter_Specification
            | N_Private_Extension_Declaration
            | N_Private_Type_Declaration
            | N_Protected_Body
            | N_Protected_Body_Stub
            | N_Protected_Type_Declaration
            | N_Single_Protected_Declaration
            | N_Single_Task_Declaration
            | N_Subtype_Declaration
            | N_Task_Body
            | N_Task_Body_Stub
            | N_Task_Type_Declaration
         =>
            return Defining_Identifier (N);

         when N_Compilation_Unit =>
            return Defining_Entity (Unit (N));

         when N_Subunit =>
            return Defining_Entity (Proper_Body (N));

         when N_Function_Instantiation
            | N_Function_Specification
            | N_Generic_Function_Renaming_Declaration
            | N_Generic_Package_Renaming_Declaration
            | N_Generic_Procedure_Renaming_Declaration
            | N_Package_Body
            | N_Package_Instantiation
            | N_Package_Renaming_Declaration
            | N_Package_Specification
            | N_Procedure_Instantiation
            | N_Procedure_Specification
         =>
            declare
               Nam : constant Node_Id := Defining_Unit_Name (N);
               Err : Entity_Id := Empty;

            begin
               if Nkind (Nam) in N_Entity then
                  return Nam;

               --  For Error, make up a name and attach to declaration so we
               --  can continue semantic analysis.

               elsif Nam = Error then
                  Err := Make_Temporary (Sloc (N), 'T');
                  Set_Defining_Unit_Name (N, Err);

                  return Err;

               --  If not an entity, get defining identifier

               else
                  return Defining_Identifier (Nam);
               end if;
            end;

         when N_Block_Statement
            | N_Loop_Statement
         =>
            return Entity (Identifier (N));

         when others =>
            raise Program_Error;
      end case;
   end Defining_Entity;

   --------------------------
   -- Denotes_Discriminant --
   --------------------------

   function Denotes_Discriminant
     (N                : Node_Id;
      Check_Concurrent : Boolean := False) return Boolean
   is
      E : Entity_Id;

   begin
      if not Is_Entity_Name (N) or else No (Entity (N)) then
         return False;
      else
         E := Entity (N);
      end if;

      --  If we are checking for a protected type, the discriminant may have
      --  been rewritten as the corresponding discriminal of the original type
      --  or of the corresponding concurrent record, depending on whether we
      --  are in the spec or body of the protected type.

      return Ekind (E) = E_Discriminant
        or else
          (Check_Concurrent
            and then Ekind (E) = E_In_Parameter
            and then Present (Discriminal_Link (E))
            and then
              (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
                or else
                  Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
   end Denotes_Discriminant;

   -------------------------
   -- Denotes_Same_Object --
   -------------------------

   function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
      function Is_Renaming (N : Node_Id) return Boolean;
      --  Return true if N names a renaming entity

      function Is_Valid_Renaming (N : Node_Id) return Boolean;
      --  For renamings, return False if the prefix of any dereference within
      --  the renamed object_name is a variable, or any expression within the
      --  renamed object_name contains references to variables or calls on
      --  nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))

      -----------------
      -- Is_Renaming --
      -----------------

      function Is_Renaming (N : Node_Id) return Boolean is
      begin
         if not Is_Entity_Name (N) then
            return False;
         end if;

         case Ekind (Entity (N)) is
            when E_Variable | E_Constant =>
               return Present (Renamed_Object (Entity (N)));

            when E_Exception
               | E_Function
               | E_Generic_Function
               | E_Generic_Package
               | E_Generic_Procedure
               | E_Operator
               | E_Package
               | E_Procedure
            =>
               return Present (Renamed_Entity (Entity (N)));

            when others =>
               return False;
         end case;
      end Is_Renaming;

      -----------------------
      -- Is_Valid_Renaming --
      -----------------------

      function Is_Valid_Renaming (N : Node_Id) return Boolean is
         function Check_Renaming (N : Node_Id) return Boolean;
         --  Recursive function used to traverse all the prefixes of N

         --------------------
         -- Check_Renaming --
         --------------------

         function Check_Renaming (N : Node_Id) return Boolean is
         begin
            if Is_Renaming (N)
              and then not Check_Renaming (Renamed_Entity (Entity (N)))
            then
               return False;
            end if;

            if Nkind (N) = N_Indexed_Component then
               declare
                  Indx : Node_Id;

               begin
                  Indx := First (Expressions (N));
                  while Present (Indx) loop
                     if not Is_OK_Static_Expression (Indx) then
                        return False;
                     end if;

                     Next_Index (Indx);
                  end loop;
               end;
            end if;

            if Has_Prefix (N) then
               declare
                  P : constant Node_Id := Prefix (N);

               begin
                  if Nkind (N) = N_Explicit_Dereference
                    and then Is_Variable (P)
                  then
                     return False;

                  elsif Is_Entity_Name (P)
                    and then Ekind (Entity (P)) = E_Function
                  then
                     return False;

                  elsif Nkind (P) = N_Function_Call then
                     return False;
                  end if;

                  --  Recursion to continue traversing the prefix of the
                  --  renaming expression

                  return Check_Renaming (P);
               end;
            end if;

            return True;
         end Check_Renaming;

      --  Start of processing for Is_Valid_Renaming

      begin
         return Check_Renaming (N);
      end Is_Valid_Renaming;

      --  Local variables

      Obj1 : Node_Id := A1;
      Obj2 : Node_Id := A2;

   --  Start of processing for Denotes_Same_Object

   begin
      --  Both names statically denote the same stand-alone object or parameter
      --  (RM 6.4.1(6.5/3))

      if Is_Entity_Name (Obj1)
        and then Is_Entity_Name (Obj2)
        and then Entity (Obj1) = Entity (Obj2)
      then
         return True;
      end if;

      --  For renamings, the prefix of any dereference within the renamed
      --  object_name is not a variable, and any expression within the
      --  renamed object_name contains no references to variables nor
      --  calls on nonstatic functions (RM 6.4.1(6.10/3)).

      if Is_Renaming (Obj1) then
         if Is_Valid_Renaming (Obj1) then
            Obj1 := Renamed_Entity (Entity (Obj1));
         else
            return False;
         end if;
      end if;

      if Is_Renaming (Obj2) then
         if Is_Valid_Renaming (Obj2) then
            Obj2 := Renamed_Entity (Entity (Obj2));
         else
            return False;
         end if;
      end if;

      --  No match if not same node kind (such cases are handled by
      --  Denotes_Same_Prefix)

      if Nkind (Obj1) /= Nkind (Obj2) then
         return False;

      --  After handling valid renamings, one of the two names statically
      --  denoted a renaming declaration whose renamed object_name is known
      --  to denote the same object as the other (RM 6.4.1(6.10/3))

      elsif Is_Entity_Name (Obj1) then
         if Is_Entity_Name (Obj2) then
            return Entity (Obj1) = Entity (Obj2);
         else
            return False;
         end if;

      --  Both names are selected_components, their prefixes are known to
      --  denote the same object, and their selector_names denote the same
      --  component (RM 6.4.1(6.6/3)).

      elsif Nkind (Obj1) = N_Selected_Component then
         return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
           and then
             Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));

      --  Both names are dereferences and the dereferenced names are known to
      --  denote the same object (RM 6.4.1(6.7/3))

      elsif Nkind (Obj1) = N_Explicit_Dereference then
         return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));

      --  Both names are indexed_components, their prefixes are known to denote
      --  the same object, and each of the pairs of corresponding index values
      --  are either both static expressions with the same static value or both
      --  names that are known to denote the same object (RM 6.4.1(6.8/3))

      elsif Nkind (Obj1) = N_Indexed_Component then
         if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
            return False;
         else
            declare
               Indx1 : Node_Id;
               Indx2 : Node_Id;

            begin
               Indx1 := First (Expressions (Obj1));
               Indx2 := First (Expressions (Obj2));
               while Present (Indx1) loop

                  --  Indexes must denote the same static value or same object

                  if Is_OK_Static_Expression (Indx1) then
                     if not Is_OK_Static_Expression (Indx2) then
                        return False;

                     elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
                        return False;
                     end if;

                  elsif not Denotes_Same_Object (Indx1, Indx2) then
                     return False;
                  end if;

                  Next (Indx1);
                  Next (Indx2);
               end loop;

               return True;
            end;
         end if;

      --  Both names are slices, their prefixes are known to denote the same
      --  object, and the two slices have statically matching index constraints
      --  (RM 6.4.1(6.9/3))

      elsif Nkind (Obj1) = N_Slice
        and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
      then
         declare
            Lo1, Lo2, Hi1, Hi2 : Node_Id;

         begin
            Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
            Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);

            --  Check whether bounds are statically identical. There is no
            --  attempt to detect partial overlap of slices.

            return Denotes_Same_Object (Lo1, Lo2)
                     and then
                   Denotes_Same_Object (Hi1, Hi2);
         end;

      --  In the recursion, literals appear as indexes

      elsif Nkind (Obj1) = N_Integer_Literal
              and then
            Nkind (Obj2) = N_Integer_Literal
      then
         return Intval (Obj1) = Intval (Obj2);

      else
         return False;
      end if;
   end Denotes_Same_Object;

   -------------------------
   -- Denotes_Same_Prefix --
   -------------------------

   function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
   begin
      if Is_Entity_Name (A1) then
         if Nkind (A2) in N_Selected_Component | N_Indexed_Component
           and then not Is_Access_Type (Etype (A1))
         then
            return Denotes_Same_Object (A1, Prefix (A2))
              or else Denotes_Same_Prefix (A1, Prefix (A2));
         else
            return False;
         end if;

      elsif Is_Entity_Name (A2) then
         return Denotes_Same_Prefix (A1 => A2, A2 => A1);

      elsif Nkind (A1) in N_Selected_Component | N_Indexed_Component | N_Slice
              and then
            Nkind (A2) in N_Selected_Component | N_Indexed_Component | N_Slice
      then
         declare
            Root1, Root2   : Node_Id;
            Depth1, Depth2 : Nat := 0;

         begin
            Root1 := Prefix (A1);
            while not Is_Entity_Name (Root1) loop
               if Nkind (Root1) not in
                    N_Selected_Component | N_Indexed_Component
               then
                  return False;
               else
                  Root1 := Prefix (Root1);
               end if;

               Depth1 := Depth1 + 1;
            end loop;

            Root2 := Prefix (A2);
            while not Is_Entity_Name (Root2) loop
               if Nkind (Root2) not in
                    N_Selected_Component | N_Indexed_Component
               then
                  return False;
               else
                  Root2 := Prefix (Root2);
               end if;

               Depth2 := Depth2 + 1;
            end loop;

            --  If both have the same depth and they do not denote the same
            --  object, they are disjoint and no warning is needed.

            if Depth1 = Depth2 then
               return False;

            elsif Depth1 > Depth2 then
               Root1 := Prefix (A1);
               for J in 1 .. Depth1 - Depth2 - 1 loop
                  Root1 := Prefix (Root1);
               end loop;

               return Denotes_Same_Object (Root1, A2);

            else
               Root2 := Prefix (A2);
               for J in 1 .. Depth2 - Depth1 - 1 loop
                  Root2 := Prefix (Root2);
               end loop;

               return Denotes_Same_Object (A1, Root2);
            end if;
         end;

      else
         return False;
      end if;
   end Denotes_Same_Prefix;

   ----------------------
   -- Denotes_Variable --
   ----------------------

   function Denotes_Variable (N : Node_Id) return Boolean is
   begin
      return Is_Variable (N) and then Paren_Count (N) = 0;
   end Denotes_Variable;

   -----------------------------
   -- Depends_On_Discriminant --
   -----------------------------

   function Depends_On_Discriminant (N : Node_Id) return Boolean is
      L : Node_Id;
      H : Node_Id;

   begin
      Get_Index_Bounds (N, L, H);
      return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
   end Depends_On_Discriminant;

   -------------------------
   -- Designate_Same_Unit --
   -------------------------

   function Designate_Same_Unit
     (Name1 : Node_Id;
      Name2 : Node_Id) return Boolean
   is
      K1 : constant Node_Kind := Nkind (Name1);
      K2 : constant Node_Kind := Nkind (Name2);

      function Prefix_Node (N : Node_Id) return Node_Id;
      --  Returns the parent unit name node of a defining program unit name
      --  or the prefix if N is a selected component or an expanded name.

      function Select_Node (N : Node_Id) return Node_Id;
      --  Returns the defining identifier node of a defining program unit
      --  name or  the selector node if N is a selected component or an
      --  expanded name.

      -----------------
      -- Prefix_Node --
      -----------------

      function Prefix_Node (N : Node_Id) return Node_Id is
      begin
         if Nkind (N) = N_Defining_Program_Unit_Name then
            return Name (N);
         else
            return Prefix (N);
         end if;
      end Prefix_Node;

      -----------------
      -- Select_Node --
      -----------------

      function Select_Node (N : Node_Id) return Node_Id is
      begin
         if Nkind (N) = N_Defining_Program_Unit_Name then
            return Defining_Identifier (N);
         else
            return Selector_Name (N);
         end if;
      end Select_Node;

   --  Start of processing for Designate_Same_Unit

   begin
      if K1 in N_Identifier | N_Defining_Identifier
           and then
         K2 in N_Identifier | N_Defining_Identifier
      then
         return Chars (Name1) = Chars (Name2);

      elsif K1 in N_Expanded_Name
                | N_Selected_Component
                | N_Defining_Program_Unit_Name
        and then
            K2 in N_Expanded_Name
                | N_Selected_Component
                | N_Defining_Program_Unit_Name
      then
         return
           (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
             and then
               Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));

      else
         return False;
      end if;
   end Designate_Same_Unit;

   ---------------------------------------------
   -- Diagnose_Iterated_Component_Association --
   ---------------------------------------------

   procedure Diagnose_Iterated_Component_Association (N : Node_Id) is
      Def_Id : constant Entity_Id := Defining_Identifier (N);
      Aggr   : Node_Id;

   begin
      --  Determine whether the iterated component association appears within
      --  an aggregate. If this is the case, raise Program_Error because the
      --  iterated component association cannot be left in the tree as is and
      --  must always be processed by the related aggregate.

      Aggr := N;
      while Present (Aggr) loop
         if Nkind (Aggr) = N_Aggregate then
            raise Program_Error;

         --  Prevent the search from going too far

         elsif Is_Body_Or_Package_Declaration (Aggr) then
            exit;
         end if;

         Aggr := Parent (Aggr);
      end loop;

      --  At this point it is known that the iterated component association is
      --  not within an aggregate. This is really a quantified expression with
      --  a missing "all" or "some" quantifier.

      Error_Msg_N ("missing quantifier", Def_Id);

      --  Rewrite the iterated component association as True to prevent any
      --  cascaded errors.

      Rewrite (N, New_Occurrence_Of (Standard_True, Sloc (N)));
      Analyze (N);
   end Diagnose_Iterated_Component_Association;

   ---------------------------------
   -- Dynamic_Accessibility_Level --
   ---------------------------------

   function Dynamic_Accessibility_Level (N : Node_Id) return Node_Id is
      Loc : constant Source_Ptr := Sloc (N);

      function Make_Level_Literal (Level : Uint) return Node_Id;
      --  Construct an integer literal representing an accessibility level
      --  with its type set to Natural.

      ------------------------
      -- Make_Level_Literal --
      ------------------------

      function Make_Level_Literal (Level : Uint) return Node_Id is
         Result : constant Node_Id := Make_Integer_Literal (Loc, Level);

      begin
         Set_Etype (Result, Standard_Natural);
         return Result;
      end Make_Level_Literal;

      --  Local variables

      Expr : Node_Id := Original_Node (N);
      --  Expr references the original node because at this stage N may be the
      --  reference to a variable internally created by the frontend to remove
      --  side effects of an expression.

      E    : Entity_Id;

   --  Start of processing for Dynamic_Accessibility_Level

   begin
      if Is_Entity_Name (Expr) then
         E := Entity (Expr);

         if Present (Renamed_Object (E)) then
            return Dynamic_Accessibility_Level (Renamed_Object (E));
         end if;

         if (Is_Formal (E)
              or else Ekind (E) in E_Variable | E_Constant)
           and then Present (Get_Accessibility (E))
         then
            return New_Occurrence_Of (Get_Accessibility (E), Loc);
         end if;
      end if;

      --  Handle a constant-folded conditional expression by avoiding use of
      --  the original node.

      if Nkind (Expr) in N_Case_Expression | N_If_Expression then
         Expr := N;
      end if;

      --  Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???

      case Nkind (Expr) is
         --  It may be possible that we have an access object denoted by an
         --  attribute reference for 'Loop_Entry which may, in turn, have an
         --  indexed component representing a loop identifier.

         --  In this case we must climb up the indexed component and set expr
         --  to the attribute reference so the rest of the machinery can
         --  operate as expected.

         when N_Indexed_Component =>
            if Nkind (Prefix (Expr)) = N_Attribute_Reference
              and then Get_Attribute_Id (Attribute_Name (Prefix (Expr)))
                         = Attribute_Loop_Entry
            then
               Expr := Prefix (Expr);
            end if;

         --  For access discriminant, the level of the enclosing object

         when N_Selected_Component =>
            if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
              and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
                                            E_Anonymous_Access_Type
            then
               return Make_Level_Literal (Object_Access_Level (Expr));
            end if;

         when N_Attribute_Reference =>
            case Get_Attribute_Id (Attribute_Name (Expr)) is

               --  Ignore 'Loop_Entry, 'Result, and 'Old as they can be used to
               --  identify access objects and do not have an effect on
               --  accessibility level.

               when Attribute_Loop_Entry | Attribute_Old | Attribute_Result =>
                  null;

               --  For X'Access, the level of the prefix X

               when Attribute_Access =>
                  return Make_Level_Literal
                           (Object_Access_Level (Prefix (Expr)));

               --  Treat the unchecked attributes as library-level

               when Attribute_Unchecked_Access
                  | Attribute_Unrestricted_Access
               =>
                  return Make_Level_Literal (Scope_Depth (Standard_Standard));

               --  No other access-valued attributes

               when others =>
                  raise Program_Error;
            end case;

         when N_Allocator =>

            --  This is not fully implemented since it depends on context (see
            --  3.10.2(14/3-14.2/3). More work is needed in the following cases
            --
            --  1) For an anonymous allocator defining the value of an access
            --     parameter, the accessibility level is that of the innermost
            --     master of the call; however currently we pass the level of
            --     execution of the called subprogram, which is one greater
            --     than the current scope level (see Expand_Call_Helper).
            --
            --     For example, a statement is a master and a declaration is
            --     not a master; so we should not pass in the same level for
            --     the following cases:
            --
            --         function F (X : access Integer) return T is ... ;
            --         Decl : T := F (new Integer); -- level is off by one
            --      begin
            --         Decl := F (new Integer); -- we get this case right
            --
            --  2) For an anonymous allocator that defines the result of a
            --     function with an access result, the accessibility level is
            --     determined as though the allocator were in place of the call
            --     of the function. In the special case of a call that is the
            --     operand of a type conversion the level is that of the target
            --     access type of the conversion.
            --
            --  3) For an anonymous allocator defining an access discriminant
            --     the accessibility level is determined as follows:
            --       * for an allocator used to define the discriminant of an
            --         object, the level of the object
            --       * for an allocator used to define the constraint in a
            --         subtype_indication in any other context, the level of
            --         the master that elaborates the subtype_indication.

            case Nkind (Parent (N)) is
               when N_Object_Declaration =>

                  --  For an anonymous allocator whose type is that of a
                  --  stand-alone object of an anonymous access-to-object type,
                  --  the accessibility level is that of the declaration of the
                  --  stand-alone object.

                  return
                    Make_Level_Literal
                      (Object_Access_Level
                         (Defining_Identifier (Parent (N))));

               when N_Assignment_Statement =>
                  return
                    Make_Level_Literal
                      (Object_Access_Level (Name (Parent (N))));

               when others =>
                  declare
                     S : constant String :=
                           Node_Kind'Image (Nkind (Parent (N)));
                  begin
                     Error_Msg_Strlen := S'Length;
                     Error_Msg_String (1 .. Error_Msg_Strlen) := S;
                     Error_Msg_N
                       ("unsupported context for anonymous allocator (~)",
                        Parent (N));
                  end;
            end case;

         when N_Type_Conversion =>
            if not Is_Local_Anonymous_Access (Etype (Expr)) then

               --  Handle type conversions introduced for a rename of an
               --  Ada 2012 stand-alone object of an anonymous access type.

               return Dynamic_Accessibility_Level (Expression (Expr));
            end if;

         when others =>
            null;
      end case;

      return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
   end Dynamic_Accessibility_Level;

   ------------------------
   -- Discriminated_Size --
   ------------------------

   function Discriminated_Size (Comp : Entity_Id) return Boolean is
      function Non_Static_Bound (Bound : Node_Id) return Boolean;
      --  Check whether the bound of an index is non-static and does denote
      --  a discriminant, in which case any object of the type (protected or
      --  otherwise) will have a non-static size.

      ----------------------
      -- Non_Static_Bound --
      ----------------------

      function Non_Static_Bound (Bound : Node_Id) return Boolean is
      begin
         if Is_OK_Static_Expression (Bound) then
            return False;

         --  If the bound is given by a discriminant it is non-static
         --  (A static constraint replaces the reference with the value).
         --  In an protected object the discriminant has been replaced by
         --  the corresponding discriminal within the protected operation.

         elsif Is_Entity_Name (Bound)
           and then
             (Ekind (Entity (Bound)) = E_Discriminant
               or else Present (Discriminal_Link (Entity (Bound))))
         then
            return False;

         else
            return True;
         end if;
      end Non_Static_Bound;

      --  Local variables

      Typ   : constant Entity_Id := Etype (Comp);
      Index : Node_Id;

   --  Start of processing for Discriminated_Size

   begin
      if not Is_Array_Type (Typ) then
         return False;
      end if;

      if Ekind (Typ) = E_Array_Subtype then
         Index := First_Index (Typ);
         while Present (Index) loop
            if Non_Static_Bound (Low_Bound (Index))
              or else Non_Static_Bound (High_Bound (Index))
            then
               return False;
            end if;

            Next_Index (Index);
         end loop;

         return True;
      end if;

      return False;
   end Discriminated_Size;

   -----------------------------------
   -- Effective_Extra_Accessibility --
   -----------------------------------

   function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
   begin
      if Present (Renamed_Object (Id))
        and then Is_Entity_Name (Renamed_Object (Id))
      then
         return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
      else
         return Extra_Accessibility (Id);
      end if;
   end Effective_Extra_Accessibility;

   -----------------------------
   -- Effective_Reads_Enabled --
   -----------------------------

   function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
   begin
      return Has_Enabled_Property (Id, Name_Effective_Reads);
   end Effective_Reads_Enabled;

   ------------------------------
   -- Effective_Writes_Enabled --
   ------------------------------

   function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
   begin
      return Has_Enabled_Property (Id, Name_Effective_Writes);
   end Effective_Writes_Enabled;

   ------------------------------
   -- Enclosing_Comp_Unit_Node --
   ------------------------------

   function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
      Current_Node : Node_Id;

   begin
      Current_Node := N;
      while Present (Current_Node)
        and then Nkind (Current_Node) /= N_Compilation_Unit
      loop
         Current_Node := Parent (Current_Node);
      end loop;

      if Nkind (Current_Node) /= N_Compilation_Unit then
         return Empty;
      else
         return Current_Node;
      end if;
   end Enclosing_Comp_Unit_Node;

   --------------------------
   -- Enclosing_CPP_Parent --
   --------------------------

   function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
      Parent_Typ : Entity_Id := Typ;

   begin
      while not Is_CPP_Class (Parent_Typ)
         and then Etype (Parent_Typ) /= Parent_Typ
      loop
         Parent_Typ := Etype (Parent_Typ);

         if Is_Private_Type (Parent_Typ) then
            Parent_Typ := Full_View (Base_Type (Parent_Typ));
         end if;
      end loop;

      pragma Assert (Is_CPP_Class (Parent_Typ));
      return Parent_Typ;
   end Enclosing_CPP_Parent;

   ---------------------------
   -- Enclosing_Declaration --
   ---------------------------

   function Enclosing_Declaration (N : Node_Id) return Node_Id is
      Decl : Node_Id := N;

   begin
      while Present (Decl)
        and then not (Nkind (Decl) in N_Declaration
                        or else
                      Nkind (Decl) in N_Later_Decl_Item
                        or else
                      Nkind (Decl) = N_Number_Declaration)
      loop
         Decl := Parent (Decl);
      end loop;

      return Decl;
   end Enclosing_Declaration;

   ----------------------------
   -- Enclosing_Generic_Body --
   ----------------------------

   function Enclosing_Generic_Body (N : Node_Id) return Node_Id is
      Par     : Node_Id;
      Spec_Id : Entity_Id;

   begin
      Par := Parent (N);
      while Present (Par) loop
         if Nkind (Par) in N_Package_Body | N_Subprogram_Body then
            Spec_Id := Corresponding_Spec (Par);

            if Present (Spec_Id)
              and then Nkind (Unit_Declaration_Node (Spec_Id)) in
                         N_Generic_Package_Declaration |
                         N_Generic_Subprogram_Declaration
            then
               return Par;
            end if;
         end if;

         Par := Parent (Par);
      end loop;

      return Empty;
   end Enclosing_Generic_Body;

   ----------------------------
   -- Enclosing_Generic_Unit --
   ----------------------------

   function Enclosing_Generic_Unit (N : Node_Id) return Node_Id is
      Par       : Node_Id;
      Spec_Decl : Node_Id;
      Spec_Id   : Entity_Id;

   begin
      Par := Parent (N);
      while Present (Par) loop
         if Nkind (Par) in N_Generic_Package_Declaration
                         | N_Generic_Subprogram_Declaration
         then
            return Par;

         elsif Nkind (Par) in N_Package_Body | N_Subprogram_Body then
            Spec_Id := Corresponding_Spec (Par);

            if Present (Spec_Id) then
               Spec_Decl := Unit_Declaration_Node (Spec_Id);

               if Nkind (Spec_Decl) in N_Generic_Package_Declaration
                                     | N_Generic_Subprogram_Declaration
               then
                  return Spec_Decl;
               end if;
            end if;
         end if;

         Par := Parent (Par);
      end loop;

      return Empty;
   end Enclosing_Generic_Unit;

   -------------------------------
   -- Enclosing_Lib_Unit_Entity --
   -------------------------------

   function Enclosing_Lib_Unit_Entity
      (E : Entity_Id := Current_Scope) return Entity_Id
   is
      Unit_Entity : Entity_Id;

   begin
      --  Look for enclosing library unit entity by following scope links.
      --  Equivalent to, but faster than indexing through the scope stack.

      Unit_Entity := E;
      while (Present (Scope (Unit_Entity))
        and then Scope (Unit_Entity) /= Standard_Standard)
        and not Is_Child_Unit (Unit_Entity)
      loop
         Unit_Entity := Scope (Unit_Entity);
      end loop;

      return Unit_Entity;
   end Enclosing_Lib_Unit_Entity;

   -----------------------------
   -- Enclosing_Lib_Unit_Node --
   -----------------------------

   function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
      Encl_Unit : Node_Id;

   begin
      Encl_Unit := Enclosing_Comp_Unit_Node (N);
      while Present (Encl_Unit)
        and then Nkind (Unit (Encl_Unit)) = N_Subunit
      loop
         Encl_Unit := Library_Unit (Encl_Unit);
      end loop;

      pragma Assert (Nkind (Encl_Unit) = N_Compilation_Unit);
      return Encl_Unit;
   end Enclosing_Lib_Unit_Node;

   -----------------------
   -- Enclosing_Package --
   -----------------------

   function Enclosing_Package (E : Entity_Id) return Entity_Id is
      Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);

   begin
      if Dynamic_Scope = Standard_Standard then
         return Standard_Standard;

      elsif Dynamic_Scope = Empty then
         return Empty;

      elsif Ekind (Dynamic_Scope) in
              E_Generic_Package | E_Package | E_Package_Body
      then
         return Dynamic_Scope;

      else
         return Enclosing_Package (Dynamic_Scope);
      end if;
   end Enclosing_Package;

   -------------------------------------
   -- Enclosing_Package_Or_Subprogram --
   -------------------------------------

   function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
      S : Entity_Id;

   begin
      S := Scope (E);
      while Present (S) loop
         if Is_Package_Or_Generic_Package (S)
           or else Is_Subprogram_Or_Generic_Subprogram (S)
         then
            return S;

         else
            S := Scope (S);
         end if;
      end loop;

      return Empty;
   end Enclosing_Package_Or_Subprogram;

   --------------------------
   -- Enclosing_Subprogram --
   --------------------------

   function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
      Dyn_Scop : constant Entity_Id := Enclosing_Dynamic_Scope (E);

   begin
      if Dyn_Scop = Standard_Standard then
         return Empty;

      elsif Dyn_Scop = Empty then
         return Empty;

      elsif Ekind (Dyn_Scop) = E_Subprogram_Body then
         return Corresponding_Spec (Parent (Parent (Dyn_Scop)));

      elsif Ekind (Dyn_Scop) in E_Block | E_Loop | E_Return_Statement then
         return Enclosing_Subprogram (Dyn_Scop);

      elsif Ekind (Dyn_Scop) in E_Entry | E_Entry_Family then

         --  For a task entry or entry family, return the enclosing subprogram
         --  of the task itself.

         if Ekind (Scope (Dyn_Scop)) = E_Task_Type then
            return Enclosing_Subprogram (Dyn_Scop);

         --  A protected entry or entry family is rewritten as a protected
         --  procedure which is the desired enclosing subprogram. This is
         --  relevant when unnesting a procedure local to an entry body.

         else
            return Protected_Body_Subprogram (Dyn_Scop);
         end if;

      elsif Ekind (Dyn_Scop) = E_Task_Type then
         return Get_Task_Body_Procedure (Dyn_Scop);

      --  The scope may appear as a private type or as a private extension
      --  whose completion is a task or protected type.

      elsif Ekind (Dyn_Scop) in
              E_Limited_Private_Type | E_Record_Type_With_Private
        and then Present (Full_View (Dyn_Scop))
        and then Ekind (Full_View (Dyn_Scop)) in E_Task_Type | E_Protected_Type
      then
         return Get_Task_Body_Procedure (Full_View (Dyn_Scop));

      --  No body is generated if the protected operation is eliminated

      elsif not Is_Eliminated (Dyn_Scop)
        and then Present (Protected_Body_Subprogram (Dyn_Scop))
      then
         return Protected_Body_Subprogram (Dyn_Scop);

      else
         return Dyn_Scop;
      end if;
   end Enclosing_Subprogram;

   --------------------------
   -- End_Keyword_Location --
   --------------------------

   function End_Keyword_Location (N : Node_Id) return Source_Ptr is
      function End_Label_Loc (Nod : Node_Id) return Source_Ptr;
      --  Return the source location of Nod's end label according to the
      --  following precedence rules:
      --
      --    1) If the end label exists, return its location
      --    2) If Nod exists, return its location
      --    3) Return the location of N

      -------------------
      -- End_Label_Loc --
      -------------------

      function End_Label_Loc (Nod : Node_Id) return Source_Ptr is
         Label : Node_Id;

      begin
         if Present (Nod) then
            Label := End_Label (Nod);

            if Present (Label) then
               return Sloc (Label);
            else
               return Sloc (Nod);
            end if;

         else
            return Sloc (N);
         end if;
      end End_Label_Loc;

      --  Local variables

      Owner : Node_Id;

   --  Start of processing for End_Keyword_Location

   begin
      if Nkind (N) in N_Block_Statement
                    | N_Entry_Body
                    | N_Package_Body
                    | N_Subprogram_Body
                    | N_Task_Body
      then
         Owner := Handled_Statement_Sequence (N);

      elsif Nkind (N) = N_Package_Declaration then
         Owner := Specification (N);

      elsif Nkind (N) = N_Protected_Body then
         Owner := N;

      elsif Nkind (N) in N_Protected_Type_Declaration
                       | N_Single_Protected_Declaration
      then
         Owner := Protected_Definition (N);

      elsif Nkind (N) in N_Single_Task_Declaration | N_Task_Type_Declaration
      then
         Owner := Task_Definition (N);

      --  This routine should not be called with other contexts

      else
         pragma Assert (False);
         null;
      end if;

      return End_Label_Loc (Owner);
   end End_Keyword_Location;

   ------------------------
   -- Ensure_Freeze_Node --
   ------------------------

   procedure Ensure_Freeze_Node (E : Entity_Id) is
      FN : Node_Id;
   begin
      if No (Freeze_Node (E)) then
         FN := Make_Freeze_Entity (Sloc (E));
         Set_Has_Delayed_Freeze (E);
         Set_Freeze_Node (E, FN);
         Set_Access_Types_To_Process (FN, No_Elist);
         Set_TSS_Elist (FN, No_Elist);
         Set_Entity (FN, E);
      end if;
   end Ensure_Freeze_Node;

   ----------------
   -- Enter_Name --
   ----------------

   procedure Enter_Name (Def_Id : Entity_Id) is
      C : constant Entity_Id := Current_Entity (Def_Id);
      E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
      S : constant Entity_Id := Current_Scope;

   begin
      Generate_Definition (Def_Id);

      --  Add new name to current scope declarations. Check for duplicate
      --  declaration, which may or may not be a genuine error.

      if Present (E) then

         --  Case of previous entity entered because of a missing declaration
         --  or else a bad subtype indication. Best is to use the new entity,
         --  and make the previous one invisible.

         if Etype (E) = Any_Type then
            Set_Is_Immediately_Visible (E, False);

         --  Case of renaming declaration constructed for package instances.
         --  if there is an explicit declaration with the same identifier,
         --  the renaming is not immediately visible any longer, but remains
         --  visible through selected component notation.

         elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
           and then not Comes_From_Source (E)
         then
            Set_Is_Immediately_Visible (E, False);

         --  The new entity may be the package renaming, which has the same
         --  same name as a generic formal which has been seen already.

         elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
           and then not Comes_From_Source (Def_Id)
         then
            Set_Is_Immediately_Visible (E, False);

         --  For a fat pointer corresponding to a remote access to subprogram,
         --  we use the same identifier as the RAS type, so that the proper
         --  name appears in the stub. This type is only retrieved through
         --  the RAS type and never by visibility, and is not added to the
         --  visibility list (see below).

         elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
           and then Ekind (Def_Id) = E_Record_Type
           and then Present (Corresponding_Remote_Type (Def_Id))
         then
            null;

         --  Case of an implicit operation or derived literal. The new entity
         --  hides the implicit one,  which is removed from all visibility,
         --  i.e. the entity list of its scope, and homonym chain of its name.

         elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
           or else Is_Internal (E)
         then
            declare
               Decl     : constant Node_Id := Parent (E);
               Prev     : Entity_Id;
               Prev_Vis : Entity_Id;

            begin
               --  If E is an implicit declaration, it cannot be the first
               --  entity in the scope.

               Prev := First_Entity (Current_Scope);
               while Present (Prev) and then Next_Entity (Prev) /= E loop
                  Next_Entity (Prev);
               end loop;

               if No (Prev) then

                  --  If E is not on the entity chain of the current scope,
                  --  it is an implicit declaration in the generic formal
                  --  part of a generic subprogram. When analyzing the body,
                  --  the generic formals are visible but not on the entity
                  --  chain of the subprogram. The new entity will become
                  --  the visible one in the body.

                  pragma Assert
                    (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
                  null;

               else
                  Link_Entities (Prev, Next_Entity (E));

                  if No (Next_Entity (Prev)) then
                     Set_Last_Entity (Current_Scope, Prev);
                  end if;

                  if E = Current_Entity (E) then
                     Prev_Vis := Empty;

                  else
                     Prev_Vis := Current_Entity (E);
                     while Homonym (Prev_Vis) /= E loop
                        Prev_Vis := Homonym (Prev_Vis);
                     end loop;
                  end if;

                  if Present (Prev_Vis) then

                     --  Skip E in the visibility chain

                     Set_Homonym (Prev_Vis, Homonym (E));

                  else
                     Set_Name_Entity_Id (Chars (E), Homonym (E));
                  end if;
               end if;
            end;

         --  This section of code could use a comment ???

         elsif Present (Etype (E))
           and then Is_Concurrent_Type (Etype (E))
           and then E = Def_Id
         then
            return;

         --  If the homograph is a protected component renaming, it should not
         --  be hiding the current entity. Such renamings are treated as weak
         --  declarations.

         elsif Is_Prival (E) then
            Set_Is_Immediately_Visible (E, False);

         --  In this case the current entity is a protected component renaming.
         --  Perform minimal decoration by setting the scope and return since
         --  the prival should not be hiding other visible entities.

         elsif Is_Prival (Def_Id) then
            Set_Scope (Def_Id, Current_Scope);
            return;

         --  Analogous to privals, the discriminal generated for an entry index
         --  parameter acts as a weak declaration. Perform minimal decoration
         --  to avoid bogus errors.

         elsif Is_Discriminal (Def_Id)
           and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
         then
            Set_Scope (Def_Id, Current_Scope);
            return;

         --  In the body or private part of an instance, a type extension may
         --  introduce a component with the same name as that of an actual. The
         --  legality rule is not enforced, but the semantics of the full type
         --  with two components of same name are not clear at this point???

         elsif In_Instance_Not_Visible then
            null;

         --  When compiling a package body, some child units may have become
         --  visible. They cannot conflict with local entities that hide them.

         elsif Is_Child_Unit (E)
           and then In_Open_Scopes (Scope (E))
           and then not Is_Immediately_Visible (E)
         then
            null;

         --  Conversely, with front-end inlining we may compile the parent body
         --  first, and a child unit subsequently. The context is now the
         --  parent spec, and body entities are not visible.

         elsif Is_Child_Unit (Def_Id)
           and then Is_Package_Body_Entity (E)
           and then not In_Package_Body (Current_Scope)
         then
            null;

         --  Case of genuine duplicate declaration

         else
            Error_Msg_Sloc := Sloc (E);

            --  If the previous declaration is an incomplete type declaration
            --  this may be an attempt to complete it with a private type. The
            --  following avoids confusing cascaded errors.

            if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
              and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
            then
               Error_Msg_N
                 ("incomplete type cannot be completed with a private " &
                  "declaration", Parent (Def_Id));
               Set_Is_Immediately_Visible (E, False);
               Set_Full_View (E, Def_Id);

            --  An inherited component of a record conflicts with a new
            --  discriminant. The discriminant is inserted first in the scope,
            --  but the error should be posted on it, not on the component.

            elsif Ekind (E) = E_Discriminant
              and then Present (Scope (Def_Id))
              and then Scope (Def_Id) /= Current_Scope
            then
               Error_Msg_Sloc := Sloc (Def_Id);
               Error_Msg_N ("& conflicts with declaration#", E);
               return;

            --  If the name of the unit appears in its own context clause, a
            --  dummy package with the name has already been created, and the
            --  error emitted. Try to continue quietly.

            elsif Error_Posted (E)
              and then Sloc (E) = No_Location
              and then Nkind (Parent (E)) = N_Package_Specification
              and then Current_Scope = Standard_Standard
            then
               Set_Scope (Def_Id, Current_Scope);
               return;

            else
               Error_Msg_N ("& conflicts with declaration#", Def_Id);

               --  Avoid cascaded messages with duplicate components in
               --  derived types.

               if Ekind (E) in E_Component | E_Discriminant then
                  return;
               end if;
            end if;

            if Nkind (Parent (Parent (Def_Id))) =
                                             N_Generic_Subprogram_Declaration
              and then Def_Id =
                Defining_Entity (Specification (Parent (Parent (Def_Id))))
            then
               Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
            end if;

            --  If entity is in standard, then we are in trouble, because it
            --  means that we have a library package with a duplicated name.
            --  That's hard to recover from, so abort.

            if S = Standard_Standard then
               raise Unrecoverable_Error;

            --  Otherwise we continue with the declaration. Having two
            --  identical declarations should not cause us too much trouble.

            else
               null;
            end if;
         end if;
      end if;

      --  If we fall through, declaration is OK, at least OK enough to continue

      --  If Def_Id is a discriminant or a record component we are in the midst
      --  of inheriting components in a derived record definition. Preserve
      --  their Ekind and Etype.

      if Ekind (Def_Id) in E_Discriminant | E_Component then
         null;

      --  If a type is already set, leave it alone (happens when a type
      --  declaration is reanalyzed following a call to the optimizer).

      elsif Present (Etype (Def_Id)) then
         null;

      --  Otherwise, the kind E_Void insures that premature uses of the entity
      --  will be detected. Any_Type insures that no cascaded errors will occur

      else
         Set_Ekind (Def_Id, E_Void);
         Set_Etype (Def_Id, Any_Type);
      end if;

      --  All entities except Itypes are immediately visible

      if not Is_Itype (Def_Id) then
         Set_Is_Immediately_Visible (Def_Id);
         Set_Current_Entity         (Def_Id);
      end if;

      Set_Homonym       (Def_Id, C);
      Append_Entity     (Def_Id, S);
      Set_Public_Status (Def_Id);

      --  Warn if new entity hides an old one

      if Warn_On_Hiding and then Present (C)

        --  Don't warn for record components since they always have a well
        --  defined scope which does not confuse other uses. Note that in
        --  some cases, Ekind has not been set yet.

        and then Ekind (C) /= E_Component
        and then Ekind (C) /= E_Discriminant
        and then Nkind (Parent (C)) /= N_Component_Declaration
        and then Ekind (Def_Id) /= E_Component
        and then Ekind (Def_Id) /= E_Discriminant
        and then Nkind (Parent (Def_Id)) /= N_Component_Declaration

        --  Don't warn for one character variables. It is too common to use
        --  such variables as locals and will just cause too many false hits.

        and then Length_Of_Name (Chars (C)) /= 1

        --  Don't warn for non-source entities

        and then Comes_From_Source (C)
        and then Comes_From_Source (Def_Id)

        --  Don't warn unless entity in question is in extended main source

        and then In_Extended_Main_Source_Unit (Def_Id)

        --  Finally, the hidden entity must be either immediately visible or
        --  use visible (i.e. from a used package).

        and then
          (Is_Immediately_Visible (C)
             or else
           Is_Potentially_Use_Visible (C))
      then
         Error_Msg_Sloc := Sloc (C);
         Error_Msg_N ("declaration hides &#?h?", Def_Id);
      end if;
   end Enter_Name;

   ---------------
   -- Entity_Of --
   ---------------

   function Entity_Of (N : Node_Id) return Entity_Id is
      Id  : Entity_Id;
      Ren : Node_Id;

   begin
      --  Assume that the arbitrary node does not have an entity

      Id := Empty;

      if Is_Entity_Name (N) then
         Id := Entity (N);

         --  Follow a possible chain of renamings to reach the earliest renamed
         --  source object.

         while Present (Id)
           and then Is_Object (Id)
           and then Present (Renamed_Object (Id))
         loop
            Ren := Renamed_Object (Id);

            --  The reference renames an abstract state or a whole object

            --    Obj : ...;
            --    Ren : ... renames Obj;

            if Is_Entity_Name (Ren) then

               --  Do not follow a renaming that goes through a generic formal,
               --  because these entities are hidden and must not be referenced
               --  from outside the generic.

               if Is_Hidden (Entity (Ren)) then
                  exit;

               else
                  Id := Entity (Ren);
               end if;

            --  The reference renames a function result. Check the original
            --  node in case expansion relocates the function call.

            --    Ren : ... renames Func_Call;

            elsif Nkind (Original_Node (Ren)) = N_Function_Call then
               exit;

            --  Otherwise the reference renames something which does not yield
            --  an abstract state or a whole object. Treat the reference as not
            --  having a proper entity for SPARK legality purposes.

            else
               Id := Empty;
               exit;
            end if;
         end loop;
      end if;

      return Id;
   end Entity_Of;

   --------------------------
   -- Examine_Array_Bounds --
   --------------------------

   procedure Examine_Array_Bounds
     (Typ        : Entity_Id;
      All_Static : out Boolean;
      Has_Empty  : out Boolean)
   is
      function Is_OK_Static_Bound (Bound : Node_Id) return Boolean;
      --  Determine whether bound Bound is a suitable static bound

      ------------------------
      -- Is_OK_Static_Bound --
      ------------------------

      function Is_OK_Static_Bound (Bound : Node_Id) return Boolean is
      begin
         return
           not Error_Posted (Bound)
             and then Is_OK_Static_Expression (Bound);
      end Is_OK_Static_Bound;

      --  Local variables

      Hi_Bound : Node_Id;
      Index    : Node_Id;
      Lo_Bound : Node_Id;

   --  Start of processing for Examine_Array_Bounds

   begin
      --  An unconstrained array type does not have static bounds, and it is
      --  not known whether they are empty or not.

      if not Is_Constrained (Typ) then
         All_Static := False;
         Has_Empty  := False;

      --  A string literal has static bounds, and is not empty as long as it
      --  contains at least one character.

      elsif Ekind (Typ) = E_String_Literal_Subtype then
         All_Static := True;
         Has_Empty  := String_Literal_Length (Typ) > 0;
      end if;

      --  Assume that all bounds are static and not empty

      All_Static := True;
      Has_Empty  := False;

      --  Examine each index

      Index := First_Index (Typ);
      while Present (Index) loop
         if Is_Discrete_Type (Etype (Index)) then
            Get_Index_Bounds (Index, Lo_Bound, Hi_Bound);

            if Is_OK_Static_Bound (Lo_Bound)
                 and then
               Is_OK_Static_Bound (Hi_Bound)
            then
               --  The static bounds produce an empty range

               if Is_Null_Range (Lo_Bound, Hi_Bound) then
                  Has_Empty := True;
               end if;

            --  Otherwise at least one of the bounds is not static

            else
               All_Static := False;
            end if;

         --  Otherwise the index is non-discrete, therefore not static

         else
            All_Static := False;
         end if;

         Next_Index (Index);
      end loop;
   end Examine_Array_Bounds;

   -------------------
   -- Exceptions_OK --
   -------------------

   function Exceptions_OK return Boolean is
   begin
      return
        not (Restriction_Active (No_Exception_Handlers)    or else
             Restriction_Active (No_Exception_Propagation) or else
             Restriction_Active (No_Exceptions));
   end Exceptions_OK;

   --------------------------
   -- Explain_Limited_Type --
   --------------------------

   procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
      C : Entity_Id;

   begin
      --  For array, component type must be limited

      if Is_Array_Type (T) then
         Error_Msg_Node_2 := T;
         Error_Msg_NE
           ("\component type& of type& is limited", N, Component_Type (T));
         Explain_Limited_Type (Component_Type (T), N);

      elsif Is_Record_Type (T) then

         --  No need for extra messages if explicit limited record

         if Is_Limited_Record (Base_Type (T)) then
            return;
         end if;

         --  Otherwise find a limited component. Check only components that
         --  come from source, or inherited components that appear in the
         --  source of the ancestor.

         C := First_Component (T);
         while Present (C) loop
            if Is_Limited_Type (Etype (C))
              and then
                (Comes_From_Source (C)
                   or else
                     (Present (Original_Record_Component (C))
                       and then
                         Comes_From_Source (Original_Record_Component (C))))
            then
               Error_Msg_Node_2 := T;
               Error_Msg_NE ("\component& of type& has limited type", N, C);
               Explain_Limited_Type (Etype (C), N);
               return;
            end if;

            Next_Component (C);
         end loop;

         --  The type may be declared explicitly limited, even if no component
         --  of it is limited, in which case we fall out of the loop.
         return;
      end if;
   end Explain_Limited_Type;

   ---------------------------------------
   -- Expression_Of_Expression_Function --
   ---------------------------------------

   function Expression_Of_Expression_Function
     (Subp : Entity_Id) return Node_Id
   is
      Expr_Func : Node_Id;

   begin
      pragma Assert (Is_Expression_Function_Or_Completion (Subp));

      if Nkind (Original_Node (Subprogram_Spec (Subp))) =
           N_Expression_Function
      then
         Expr_Func := Original_Node (Subprogram_Spec (Subp));

      elsif Nkind (Original_Node (Subprogram_Body (Subp))) =
              N_Expression_Function
      then
         Expr_Func := Original_Node (Subprogram_Body (Subp));

      else
         pragma Assert (False);
         null;
      end if;

      return Original_Node (Expression (Expr_Func));
   end Expression_Of_Expression_Function;

   -------------------------------
   -- Extensions_Visible_Status --
   -------------------------------

   function Extensions_Visible_Status
     (Id : Entity_Id) return Extensions_Visible_Mode
   is
      Arg  : Node_Id;
      Decl : Node_Id;
      Expr : Node_Id;
      Prag : Node_Id;
      Subp : Entity_Id;

   begin
      --  When a formal parameter is subject to Extensions_Visible, the pragma
      --  is stored in the contract of related subprogram.

      if Is_Formal (Id) then
         Subp := Scope (Id);

      elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
         Subp := Id;

      --  No other construct carries this pragma

      else
         return Extensions_Visible_None;
      end if;

      Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);

      --  In certain cases analysis may request the Extensions_Visible status
      --  of an expression function before the pragma has been analyzed yet.
      --  Inspect the declarative items after the expression function looking
      --  for the pragma (if any).

      if No (Prag) and then Is_Expression_Function (Subp) then
         Decl := Next (Unit_Declaration_Node (Subp));
         while Present (Decl) loop
            if Nkind (Decl) = N_Pragma
              and then Pragma_Name (Decl) = Name_Extensions_Visible
            then
               Prag := Decl;
               exit;

            --  A source construct ends the region where Extensions_Visible may
            --  appear, stop the traversal. An expanded expression function is
            --  no longer a source construct, but it must still be recognized.

            elsif Comes_From_Source (Decl)
              or else
                (Nkind (Decl) in N_Subprogram_Body | N_Subprogram_Declaration
                  and then Is_Expression_Function (Defining_Entity (Decl)))
            then
               exit;
            end if;

            Next (Decl);
         end loop;
      end if;

      --  Extract the value from the Boolean expression (if any)

      if Present (Prag) then
         Arg := First (Pragma_Argument_Associations (Prag));

         if Present (Arg) then
            Expr := Get_Pragma_Arg (Arg);

            --  When the associated subprogram is an expression function, the
            --  argument of the pragma may not have been analyzed.

            if not Analyzed (Expr) then
               Preanalyze_And_Resolve (Expr, Standard_Boolean);
            end if;

            --  Guard against cascading errors when the argument of pragma
            --  Extensions_Visible is not a valid static Boolean expression.

            if Error_Posted (Expr) then
               return Extensions_Visible_None;

            elsif Is_True (Expr_Value (Expr)) then
               return Extensions_Visible_True;

            else
               return Extensions_Visible_False;
            end if;

         --  Otherwise the aspect or pragma defaults to True

         else
            return Extensions_Visible_True;
         end if;

      --  Otherwise aspect or pragma Extensions_Visible is not inherited or
      --  directly specified. In SPARK code, its value defaults to "False".

      elsif SPARK_Mode = On then
         return Extensions_Visible_False;

      --  In non-SPARK code, aspect or pragma Extensions_Visible defaults to
      --  "True".

      else
         return Extensions_Visible_True;
      end if;
   end Extensions_Visible_Status;

   -----------------
   -- Find_Actual --
   -----------------

   procedure Find_Actual
     (N        : Node_Id;
      Formal   : out Entity_Id;
      Call     : out Node_Id)
   is
      Context  : constant Node_Id := Parent (N);
      Actual   : Node_Id;
      Call_Nam : Node_Id;

   begin
      if Nkind (Context) in N_Indexed_Component | N_Selected_Component
        and then N = Prefix (Context)
      then
         Find_Actual (Context, Formal, Call);
         return;

      elsif Nkind (Context) = N_Parameter_Association
        and then N = Explicit_Actual_Parameter (Context)
      then
         Call := Parent (Context);

      elsif Nkind (Context) in N_Entry_Call_Statement
                             | N_Function_Call
                             | N_Procedure_Call_Statement
      then
         Call := Context;

      else
         Formal := Empty;
         Call   := Empty;
         return;
      end if;

      --  If we have a call to a subprogram look for the parameter. Note that
      --  we exclude overloaded calls, since we don't know enough to be sure
      --  of giving the right answer in this case.

      if Nkind (Call) in N_Entry_Call_Statement
                       | N_Function_Call
                       | N_Procedure_Call_Statement
      then
         Call_Nam := Name (Call);

         --  A call to a protected or task entry appears as a selected
         --  component rather than an expanded name.

         if Nkind (Call_Nam) = N_Selected_Component then
            Call_Nam := Selector_Name (Call_Nam);
         end if;

         if Is_Entity_Name (Call_Nam)
           and then Present (Entity (Call_Nam))
           and then Is_Overloadable (Entity (Call_Nam))
           and then not Is_Overloaded (Call_Nam)
         then
            --  If node is name in call it is not an actual

            if N = Call_Nam then
               Formal := Empty;
               Call   := Empty;
               return;
            end if;

            --  Fall here if we are definitely a parameter

            Actual := First_Actual (Call);
            Formal := First_Formal (Entity (Call_Nam));
            while Present (Formal) and then Present (Actual) loop
               if Actual = N then
                  return;

               --  An actual that is the prefix in a prefixed call may have
               --  been rewritten in the call, after the deferred reference
               --  was collected. Check if sloc and kinds and names match.

               elsif Sloc (Actual) = Sloc (N)
                 and then Nkind (Actual) = N_Identifier
                 and then Nkind (Actual) = Nkind (N)
                 and then Chars (Actual) = Chars (N)
               then
                  return;

               else
                  Next_Actual (Actual);
                  Next_Formal (Formal);
               end if;
            end loop;
         end if;
      end if;

      --  Fall through here if we did not find matching actual

      Formal := Empty;
      Call   := Empty;
   end Find_Actual;

   ---------------------------
   -- Find_Body_Discriminal --
   ---------------------------

   function Find_Body_Discriminal
     (Spec_Discriminant : Entity_Id) return Entity_Id
   is
      Tsk  : Entity_Id;
      Disc : Entity_Id;

   begin
      --  If expansion is suppressed, then the scope can be the concurrent type
      --  itself rather than a corresponding concurrent record type.

      if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
         Tsk := Scope (Spec_Discriminant);

      else
         pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));

         Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
      end if;

      --  Find discriminant of original concurrent type, and use its current
      --  discriminal, which is the renaming within the task/protected body.

      Disc := First_Discriminant (Tsk);
      while Present (Disc) loop
         if Chars (Disc) = Chars (Spec_Discriminant) then
            return Discriminal (Disc);
         end if;

         Next_Discriminant (Disc);
      end loop;

      --  That loop should always succeed in finding a matching entry and
      --  returning. Fatal error if not.

      raise Program_Error;
   end Find_Body_Discriminal;

   -------------------------------------
   -- Find_Corresponding_Discriminant --
   -------------------------------------

   function Find_Corresponding_Discriminant
     (Id  : Node_Id;
      Typ : Entity_Id) return Entity_Id
   is
      Par_Disc : Entity_Id;
      Old_Disc : Entity_Id;
      New_Disc : Entity_Id;

   begin
      Par_Disc := Original_Record_Component (Original_Discriminant (Id));

      --  The original type may currently be private, and the discriminant
      --  only appear on its full view.

      if Is_Private_Type (Scope (Par_Disc))
        and then not Has_Discriminants (Scope (Par_Disc))
        and then Present (Full_View (Scope (Par_Disc)))
      then
         Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
      else
         Old_Disc := First_Discriminant (Scope (Par_Disc));
      end if;

      if Is_Class_Wide_Type (Typ) then
         New_Disc := First_Discriminant (Root_Type (Typ));
      else
         New_Disc := First_Discriminant (Typ);
      end if;

      while Present (Old_Disc) and then Present (New_Disc) loop
         if Old_Disc = Par_Disc then
            return New_Disc;
         end if;

         Next_Discriminant (Old_Disc);
         Next_Discriminant (New_Disc);
      end loop;

      --  Should always find it

      raise Program_Error;
   end Find_Corresponding_Discriminant;

   -------------------
   -- Find_DIC_Type --
   -------------------

   function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is
      Curr_Typ : Entity_Id;
      --  The current type being examined in the parent hierarchy traversal

      DIC_Typ : Entity_Id;
      --  The type which carries the DIC pragma. This variable denotes the
      --  partial view when private types are involved.

      Par_Typ : Entity_Id;
      --  The parent type of the current type. This variable denotes the full
      --  view when private types are involved.

   begin
      --  The input type defines its own DIC pragma, therefore it is the owner

      if Has_Own_DIC (Typ) then
         DIC_Typ := Typ;

      --  Otherwise the DIC pragma is inherited from a parent type

      else
         pragma Assert (Has_Inherited_DIC (Typ));

         --  Climb the parent chain

         Curr_Typ := Typ;
         loop
            --  Inspect the parent type. Do not consider subtypes as they
            --  inherit the DIC attributes from their base types.

            DIC_Typ := Base_Type (Etype (Curr_Typ));

            --  Look at the full view of a private type because the type may
            --  have a hidden parent introduced in the full view.

            Par_Typ := DIC_Typ;

            if Is_Private_Type (Par_Typ)
              and then Present (Full_View (Par_Typ))
            then
               Par_Typ := Full_View (Par_Typ);
            end if;

            --  Stop the climb once the nearest parent type which defines a DIC
            --  pragma of its own is encountered or when the root of the parent
            --  chain is reached.

            exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ;

            Curr_Typ := Par_Typ;
         end loop;
      end if;

      return DIC_Typ;
   end Find_DIC_Type;

   ----------------------------------
   -- Find_Enclosing_Iterator_Loop --
   ----------------------------------

   function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
      Constr : Node_Id;
      S      : Entity_Id;

   begin
      --  Traverse the scope chain looking for an iterator loop. Such loops are
      --  usually transformed into blocks, hence the use of Original_Node.

      S := Id;
      while Present (S) and then S /= Standard_Standard loop
         if Ekind (S) = E_Loop
           and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
         then
            Constr := Original_Node (Label_Construct (Parent (S)));

            if Nkind (Constr) = N_Loop_Statement
              and then Present (Iteration_Scheme (Constr))
              and then Nkind (Iterator_Specification
                                (Iteration_Scheme (Constr))) =
                                                 N_Iterator_Specification
            then
               return S;
            end if;
         end if;

         S := Scope (S);
      end loop;

      return Empty;
   end Find_Enclosing_Iterator_Loop;

   --------------------------
   -- Find_Enclosing_Scope --
   --------------------------

   function Find_Enclosing_Scope (N : Node_Id) return Entity_Id is
      Par : Node_Id;

   begin
      --  Examine the parent chain looking for a construct which defines a
      --  scope.

      Par := Parent (N);
      while Present (Par) loop
         case Nkind (Par) is

            --  The construct denotes a declaration, the proper scope is its
            --  entity.

            when N_Entry_Declaration
               | N_Expression_Function
               | N_Full_Type_Declaration
               | N_Generic_Package_Declaration
               | N_Generic_Subprogram_Declaration
               | N_Package_Declaration
               | N_Private_Extension_Declaration
               | N_Protected_Type_Declaration
               | N_Single_Protected_Declaration
               | N_Single_Task_Declaration
               | N_Subprogram_Declaration
               | N_Task_Type_Declaration
            =>
               return Defining_Entity (Par);

            --  The construct denotes a body, the proper scope is the entity of
            --  the corresponding spec or that of the body if the body does not
            --  complete a previous declaration.

            when N_Entry_Body
               | N_Package_Body
               | N_Protected_Body
               | N_Subprogram_Body
               | N_Task_Body
            =>
               return Unique_Defining_Entity (Par);

            --  Special cases

            --  Blocks carry either a source or an internally-generated scope,
            --  unless the block is a byproduct of exception handling.

            when N_Block_Statement =>
               if not Exception_Junk (Par) then
                  return Entity (Identifier (Par));
               end if;

            --  Loops carry an internally-generated scope

            when N_Loop_Statement =>
               return Entity (Identifier (Par));

            --  Extended return statements carry an internally-generated scope

            when N_Extended_Return_Statement =>
               return Return_Statement_Entity (Par);

            --  A traversal from a subunit continues via the corresponding stub

            when N_Subunit =>
               Par := Corresponding_Stub (Par);

            when others =>
               null;
         end case;

         Par := Parent (Par);
      end loop;

      return Standard_Standard;
   end Find_Enclosing_Scope;

   ------------------------------------
   -- Find_Loop_In_Conditional_Block --
   ------------------------------------

   function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
      Stmt : Node_Id;

   begin
      Stmt := N;

      if Nkind (Stmt) = N_If_Statement then
         Stmt := First (Then_Statements (Stmt));
      end if;

      pragma Assert (Nkind (Stmt) = N_Block_Statement);

      --  Inspect the statements of the conditional block. In general the loop
      --  should be the first statement in the statement sequence of the block,
      --  but the finalization machinery may have introduced extra object
      --  declarations.

      Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
      while Present (Stmt) loop
         if Nkind (Stmt) = N_Loop_Statement then
            return Stmt;
         end if;

         Next (Stmt);
      end loop;

      --  The expansion of attribute 'Loop_Entry produced a malformed block

      raise Program_Error;
   end Find_Loop_In_Conditional_Block;

   --------------------------
   -- Find_Overlaid_Entity --
   --------------------------

   procedure Find_Overlaid_Entity
     (N   : Node_Id;
      Ent : out Entity_Id;
      Off : out Boolean)
   is
      Expr : Node_Id;

   begin
      --  We are looking for one of the two following forms:

      --    for X'Address use Y'Address

      --  or

      --    Const : constant Address := expr;
      --    ...
      --    for X'Address use Const;

      --  In the second case, the expr is either Y'Address, or recursively a
      --  constant that eventually references Y'Address.

      Ent := Empty;
      Off := False;

      if Nkind (N) = N_Attribute_Definition_Clause
        and then Chars (N) = Name_Address
      then
         Expr := Expression (N);

         --  This loop checks the form of the expression for Y'Address,
         --  using recursion to deal with intermediate constants.

         loop
            --  Check for Y'Address

            if Nkind (Expr) = N_Attribute_Reference
              and then Attribute_Name (Expr) = Name_Address
            then
               Expr := Prefix (Expr);
               exit;

            --  Check for Const where Const is a constant entity

            elsif Is_Entity_Name (Expr)
              and then Ekind (Entity (Expr)) = E_Constant
            then
               Expr := Constant_Value (Entity (Expr));

            --  Anything else does not need checking

            else
               return;
            end if;
         end loop;

         --  This loop checks the form of the prefix for an entity, using
         --  recursion to deal with intermediate components.

         loop
            --  Check for Y where Y is an entity

            if Is_Entity_Name (Expr) then
               Ent := Entity (Expr);
               return;

            --  Check for components

            elsif Nkind (Expr) in N_Selected_Component | N_Indexed_Component
            then
               Expr := Prefix (Expr);
               Off := True;

            --  Anything else does not need checking

            else
               return;
            end if;
         end loop;
      end if;
   end Find_Overlaid_Entity;

   -------------------------
   -- Find_Parameter_Type --
   -------------------------

   function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
   begin
      if Nkind (Param) /= N_Parameter_Specification then
         return Empty;

      --  For an access parameter, obtain the type from the formal entity
      --  itself, because access to subprogram nodes do not carry a type.
      --  Shouldn't we always use the formal entity ???

      elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
         return Etype (Defining_Identifier (Param));

      else
         return Etype (Parameter_Type (Param));
      end if;
   end Find_Parameter_Type;

   -----------------------------------
   -- Find_Placement_In_State_Space --
   -----------------------------------

   procedure Find_Placement_In_State_Space
     (Item_Id   : Entity_Id;
      Placement : out State_Space_Kind;
      Pack_Id   : out Entity_Id)
   is
      Context : Entity_Id;

   begin
      --  Assume that the item does not appear in the state space of a package

      Placement := Not_In_Package;
      Pack_Id   := Empty;

      --  Climb the scope stack and examine the enclosing context

      Context := Scope (Item_Id);
      while Present (Context) and then Context /= Standard_Standard loop
         if Is_Package_Or_Generic_Package (Context) then
            Pack_Id := Context;

            --  A package body is a cut off point for the traversal as the item
            --  cannot be visible to the outside from this point on. Note that
            --  this test must be done first as a body is also classified as a
            --  private part.

            if In_Package_Body (Context) then
               Placement := Body_State_Space;
               return;

            --  The private part of a package is a cut off point for the
            --  traversal as the item cannot be visible to the outside from
            --  this point on.

            elsif In_Private_Part (Context) then
               Placement := Private_State_Space;
               return;

            --  When the item appears in the visible state space of a package,
            --  continue to climb the scope stack as this may not be the final
            --  state space.

            else
               Placement := Visible_State_Space;

               --  The visible state space of a child unit acts as the proper
               --  placement of an item.

               if Is_Child_Unit (Context) then
                  return;
               end if;
            end if;

         --  The item or its enclosing package appear in a construct that has
         --  no state space.

         else
            Placement := Not_In_Package;
            return;
         end if;

         Context := Scope (Context);
      end loop;
   end Find_Placement_In_State_Space;

   -----------------------
   -- Find_Primitive_Eq --
   -----------------------

   function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id is
      function Find_Eq_Prim (Prims_List : Elist_Id) return Entity_Id;
      --  Search for the equality primitive; return Empty if the primitive is
      --  not found.

      ------------------
      -- Find_Eq_Prim --
      ------------------

      function Find_Eq_Prim (Prims_List : Elist_Id) return Entity_Id is
         Prim      : Entity_Id;
         Prim_Elmt : Elmt_Id;

      begin
         Prim_Elmt := First_Elmt (Prims_List);
         while Present (Prim_Elmt) loop
            Prim := Node (Prim_Elmt);

            --  Locate primitive equality with the right signature

            if Chars (Prim) = Name_Op_Eq
              and then Etype (First_Formal (Prim)) =
                       Etype (Next_Formal (First_Formal (Prim)))
              and then Base_Type (Etype (Prim)) = Standard_Boolean
            then
               return Prim;
            end if;

            Next_Elmt (Prim_Elmt);
         end loop;

         return Empty;
      end Find_Eq_Prim;

      --  Local Variables

      Eq_Prim   : Entity_Id;
      Full_Type : Entity_Id;

   --  Start of processing for Find_Primitive_Eq

   begin
      if Is_Private_Type (Typ) then
         Full_Type := Underlying_Type (Typ);
      else
         Full_Type := Typ;
      end if;

      if No (Full_Type) then
         return Empty;
      end if;

      Full_Type := Base_Type (Full_Type);

      --  When the base type itself is private, use the full view

      if Is_Private_Type (Full_Type) then
         Full_Type := Underlying_Type (Full_Type);
      end if;

      if Is_Class_Wide_Type (Full_Type) then
         Full_Type := Root_Type (Full_Type);
      end if;

      if not Is_Tagged_Type (Full_Type) then
         Eq_Prim := Find_Eq_Prim (Collect_Primitive_Operations (Typ));

      --  If this is an untagged private type completed with a derivation of
      --  an untagged private type whose full view is a tagged type, we use
      --  the primitive operations of the private parent type (since it does
      --  not have a full view, and also because its equality primitive may
      --  have been overridden in its untagged full view). If no equality was
      --  defined for it then take its dispatching equality primitive.

      elsif Inherits_From_Tagged_Full_View (Typ) then
         Eq_Prim := Find_Eq_Prim (Collect_Primitive_Operations (Typ));

         if No (Eq_Prim) then
            Eq_Prim := Find_Eq_Prim (Primitive_Operations (Full_Type));
         end if;

      else
         Eq_Prim := Find_Eq_Prim (Primitive_Operations (Full_Type));
      end if;

      return Eq_Prim;
   end Find_Primitive_Eq;

   ------------------------
   -- Find_Specific_Type --
   ------------------------

   function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
      Typ : Entity_Id := Root_Type (CW);

   begin
      if Ekind (Typ) = E_Incomplete_Type then
         if From_Limited_With (Typ) then
            Typ := Non_Limited_View (Typ);
         else
            Typ := Full_View (Typ);
         end if;
      end if;

      if Is_Private_Type (Typ)
        and then not Is_Tagged_Type (Typ)
        and then Present (Full_View (Typ))
      then
         return Full_View (Typ);
      else
         return Typ;
      end if;
   end Find_Specific_Type;

   -----------------------------
   -- Find_Static_Alternative --
   -----------------------------

   function Find_Static_Alternative (N : Node_Id) return Node_Id is
      Expr   : constant Node_Id := Expression (N);
      Val    : constant Uint    := Expr_Value (Expr);
      Alt    : Node_Id;
      Choice : Node_Id;

   begin
      Alt := First (Alternatives (N));

      Search : loop
         if Nkind (Alt) /= N_Pragma then
            Choice := First (Discrete_Choices (Alt));
            while Present (Choice) loop

               --  Others choice, always matches

               if Nkind (Choice) = N_Others_Choice then
                  exit Search;

               --  Range, check if value is in the range

               elsif Nkind (Choice) = N_Range then
                  exit Search when
                    Val >= Expr_Value (Low_Bound (Choice))
                      and then
                    Val <= Expr_Value (High_Bound (Choice));

               --  Choice is a subtype name. Note that we know it must
               --  be a static subtype, since otherwise it would have
               --  been diagnosed as illegal.

               elsif Is_Entity_Name (Choice)
                 and then Is_Type (Entity (Choice))
               then
                  exit Search when Is_In_Range (Expr, Etype (Choice),
                                                Assume_Valid => False);

               --  Choice is a subtype indication

               elsif Nkind (Choice) = N_Subtype_Indication then
                  declare
                     C : constant Node_Id := Constraint (Choice);
                     R : constant Node_Id := Range_Expression (C);

                  begin
                     exit Search when
                       Val >= Expr_Value (Low_Bound  (R))
                         and then
                       Val <= Expr_Value (High_Bound (R));
                  end;

               --  Choice is a simple expression

               else
                  exit Search when Val = Expr_Value (Choice);
               end if;

               Next (Choice);
            end loop;
         end if;

         Next (Alt);
         pragma Assert (Present (Alt));
      end loop Search;

      --  The above loop *must* terminate by finding a match, since we know the
      --  case statement is valid, and the value of the expression is known at
      --  compile time. When we fall out of the loop, Alt points to the
      --  alternative that we know will be selected at run time.

      return Alt;
   end Find_Static_Alternative;

   ------------------
   -- First_Actual --
   ------------------

   function First_Actual (Node : Node_Id) return Node_Id is
      N : Node_Id;

   begin
      if No (Parameter_Associations (Node)) then
         return Empty;
      end if;

      N := First (Parameter_Associations (Node));

      if Nkind (N) = N_Parameter_Association then
         return First_Named_Actual (Node);
      else
         return N;
      end if;
   end First_Actual;

   ------------------
   -- First_Global --
   ------------------

   function First_Global
     (Subp        : Entity_Id;
      Global_Mode : Name_Id;
      Refined     : Boolean := False) return Node_Id
   is
      function First_From_Global_List
        (List        : Node_Id;
         Global_Mode : Name_Id := Name_Input) return Entity_Id;
      --  Get the first item with suitable mode from List

      ----------------------------
      -- First_From_Global_List --
      ----------------------------

      function First_From_Global_List
        (List        : Node_Id;
         Global_Mode : Name_Id := Name_Input) return Entity_Id
      is
         Assoc : Node_Id;

      begin
         --  Empty list (no global items)

         if Nkind (List) = N_Null then
            return Empty;

         --  Single global item declaration (only input items)

         elsif Nkind (List) in N_Expanded_Name | N_Identifier then
            if Global_Mode = Name_Input then
               return List;
            else
               return Empty;
            end if;

         --  Simple global list (only input items) or moded global list
         --  declaration.

         elsif Nkind (List) = N_Aggregate then
            if Present (Expressions (List)) then
               if Global_Mode = Name_Input then
                  return First (Expressions (List));
               else
                  return Empty;
               end if;

            else
               Assoc := First (Component_Associations (List));
               while Present (Assoc) loop

                  --  When we find the desired mode in an association, call
                  --  recursively First_From_Global_List as if the mode was
                  --  Name_Input, in order to reuse the existing machinery
                  --  for the other cases.

                  if Chars (First (Choices (Assoc))) = Global_Mode then
                     return First_From_Global_List (Expression (Assoc));
                  end if;

                  Next (Assoc);
               end loop;

               return Empty;
            end if;

            --  To accommodate partial decoration of disabled SPARK features,
            --  this routine may be called with illegal input. If this is the
            --  case, do not raise Program_Error.

         else
            return Empty;
         end if;
      end First_From_Global_List;

      --  Local variables

      Global  : Node_Id := Empty;
      Body_Id : Entity_Id;

   --  Start of processing for First_Global

   begin
      pragma Assert (Global_Mode in Name_In_Out
                                  | Name_Input
                                  | Name_Output
                                  | Name_Proof_In);

      --  Retrieve the suitable pragma Global or Refined_Global. In the second
      --  case, it can only be located on the body entity.

      if Refined then
         if Is_Subprogram_Or_Generic_Subprogram (Subp) then
            Body_Id := Subprogram_Body_Entity (Subp);

         elsif Is_Entry (Subp) or else Is_Task_Type (Subp) then
            Body_Id := Corresponding_Body (Parent (Subp));

         --  ??? It should be possible to retrieve the Refined_Global on the
         --  task body associated to the task object. This is not yet possible.

         elsif Is_Single_Task_Object (Subp) then
            Body_Id := Empty;

         else
            Body_Id := Empty;
         end if;

         if Present (Body_Id) then
            Global := Get_Pragma (Body_Id, Pragma_Refined_Global);
         end if;
      else
         Global := Get_Pragma (Subp, Pragma_Global);
      end if;

      --  No corresponding global if pragma is not present

      if No (Global) then
         return Empty;

      --  Otherwise retrieve the corresponding list of items depending on the
      --  Global_Mode.

      else
         return First_From_Global_List
           (Expression (Get_Argument (Global, Subp)), Global_Mode);
      end if;
   end First_Global;

   -------------
   -- Fix_Msg --
   -------------

   function Fix_Msg (Id : Entity_Id; Msg : String) return String is
      Is_Task   : constant Boolean :=
                    Ekind (Id) in E_Task_Body | E_Task_Type
                      or else Is_Single_Task_Object (Id);
      Msg_Last  : constant Natural := Msg'Last;
      Msg_Index : Natural;
      Res       : String (Msg'Range) := (others => ' ');
      Res_Index : Natural;

   begin
      --  Copy all characters from the input message Msg to result Res with
      --  suitable replacements.

      Msg_Index := Msg'First;
      Res_Index := Res'First;
      while Msg_Index <= Msg_Last loop

         --  Replace "subprogram" with a different word

         if Msg_Index <= Msg_Last - 10
           and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
         then
            if Is_Entry (Id) then
               Res (Res_Index .. Res_Index + 4) := "entry";
               Res_Index := Res_Index + 5;

            elsif Is_Task then
               Res (Res_Index .. Res_Index + 8) := "task type";
               Res_Index := Res_Index + 9;

            else
               Res (Res_Index .. Res_Index + 9) := "subprogram";
               Res_Index := Res_Index + 10;
            end if;

            Msg_Index := Msg_Index + 10;

         --  Replace "protected" with a different word

         elsif Msg_Index <= Msg_Last - 9
           and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
           and then Is_Task
         then
            Res (Res_Index .. Res_Index + 3) := "task";
            Res_Index := Res_Index + 4;
            Msg_Index := Msg_Index + 9;

         --  Otherwise copy the character

         else
            Res (Res_Index) := Msg (Msg_Index);
            Msg_Index := Msg_Index + 1;
            Res_Index := Res_Index + 1;
         end if;
      end loop;

      return Res (Res'First .. Res_Index - 1);
   end Fix_Msg;

   -------------------------
   -- From_Nested_Package --
   -------------------------

   function From_Nested_Package (T : Entity_Id) return Boolean is
      Pack : constant Entity_Id := Scope (T);

   begin
      return
        Ekind (Pack) = E_Package
          and then not Is_Frozen (Pack)
          and then not Scope_Within_Or_Same (Current_Scope, Pack)
          and then In_Open_Scopes (Scope (Pack));
   end From_Nested_Package;

   -----------------------
   -- Gather_Components --
   -----------------------

   procedure Gather_Components
     (Typ           : Entity_Id;
      Comp_List     : Node_Id;
      Governed_By   : List_Id;
      Into          : Elist_Id;
      Report_Errors : out Boolean)
   is
      Assoc           : Node_Id;
      Variant         : Node_Id;
      Discrete_Choice : Node_Id;
      Comp_Item       : Node_Id;
      Discrim         : Entity_Id;
      Discrim_Name    : Node_Id;

      type Discriminant_Value_Status is
        (Static_Expr, Static_Subtype, Bad);
      subtype Good_Discrim_Value_Status is Discriminant_Value_Status
        range Static_Expr .. Static_Subtype; -- range excludes Bad

      Discrim_Value         : Node_Id;
      Discrim_Value_Subtype : Node_Id;
      Discrim_Value_Status  : Discriminant_Value_Status := Bad;
   begin
      Report_Errors := False;

      if No (Comp_List) or else Null_Present (Comp_List) then
         return;

      elsif Present (Component_Items (Comp_List)) then
         Comp_Item := First (Component_Items (Comp_List));

      else
         Comp_Item := Empty;
      end if;

      while Present (Comp_Item) loop

         --  Skip the tag of a tagged record, the interface tags, as well
         --  as all items that are not user components (anonymous types,
         --  rep clauses, Parent field, controller field).

         if Nkind (Comp_Item) = N_Component_Declaration then
            declare
               Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
            begin
               if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
                  Append_Elmt (Comp, Into);
               end if;
            end;
         end if;

         Next (Comp_Item);
      end loop;

      if No (Variant_Part (Comp_List)) then
         return;
      else
         Discrim_Name := Name (Variant_Part (Comp_List));
         Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
      end if;

      --  Look for the discriminant that governs this variant part.
      --  The discriminant *must* be in the Governed_By List

      Assoc := First (Governed_By);
      Find_Constraint : loop
         Discrim := First (Choices (Assoc));
         exit Find_Constraint when
           Chars (Discrim_Name) = Chars (Discrim)
             or else
               (Present (Corresponding_Discriminant (Entity (Discrim)))
                 and then Chars (Corresponding_Discriminant
                            (Entity (Discrim))) = Chars  (Discrim_Name))
             or else
               Chars (Original_Record_Component (Entity (Discrim))) =
                 Chars (Discrim_Name);

         if No (Next (Assoc)) then
            if not Is_Constrained (Typ) and then Is_Derived_Type (Typ) then

               --  If the type is a tagged type with inherited discriminants,
               --  use the stored constraint on the parent in order to find
               --  the values of discriminants that are otherwise hidden by an
               --  explicit constraint. Renamed discriminants are handled in
               --  the code above.

               --  If several parent discriminants are renamed by a single
               --  discriminant of the derived type, the call to obtain the
               --  Corresponding_Discriminant field only retrieves the last
               --  of them. We recover the constraint on the others from the
               --  Stored_Constraint as well.

               --  An inherited discriminant may have been constrained in a
               --  later ancestor (not the immediate parent) so we must examine
               --  the stored constraint of all of them to locate the inherited
               --  value.

               declare
                  C : Elmt_Id;
                  D : Entity_Id;
                  T : Entity_Id := Typ;

               begin
                  while Is_Derived_Type (T) loop
                     if Present (Stored_Constraint (T)) then
                        D := First_Discriminant (Etype (T));
                        C := First_Elmt (Stored_Constraint (T));
                        while Present (D) and then Present (C) loop
                           if Chars (Discrim_Name) = Chars (D) then
                              if Is_Entity_Name (Node (C))
                                and then Entity (Node (C)) = Entity (Discrim)
                              then
                                 --  D is renamed by Discrim, whose value is
                                 --  given in Assoc.

                                 null;

                              else
                                 Assoc :=
                                   Make_Component_Association (Sloc (Typ),
                                     New_List
                                       (New_Occurrence_Of (D, Sloc (Typ))),
                                     Duplicate_Subexpr_No_Checks (Node (C)));
                              end if;

                              exit Find_Constraint;
                           end if;

                           Next_Discriminant (D);
                           Next_Elmt (C);
                        end loop;
                     end if;

                     --  Discriminant may be inherited from ancestor

                     T := Etype (T);
                  end loop;
               end;
            end if;
         end if;

         if No (Next (Assoc)) then
            Error_Msg_NE
              (" missing value for discriminant&",
               First (Governed_By), Discrim_Name);

            Report_Errors := True;
            return;
         end if;

         Next (Assoc);
      end loop Find_Constraint;

      Discrim_Value := Expression (Assoc);
      if Is_OK_Static_Expression (Discrim_Value) then
         Discrim_Value_Status := Static_Expr;
      else
         if Ada_Version >= Ada_2020 then
            if Original_Node (Discrim_Value) /= Discrim_Value
               and then Nkind (Discrim_Value) = N_Type_Conversion
               and then Etype (Original_Node (Discrim_Value))
                      = Etype (Expression (Discrim_Value))
            then
               Discrim_Value_Subtype := Etype (Original_Node (Discrim_Value));
               --  An unhelpful (for this code) type conversion may be
               --  introduced in some cases; deal with it.
            else
               Discrim_Value_Subtype := Etype (Discrim_Value);
            end if;

            if Is_OK_Static_Subtype (Discrim_Value_Subtype) and then
               not Is_Null_Range (Type_Low_Bound (Discrim_Value_Subtype),
                                  Type_High_Bound (Discrim_Value_Subtype))
            then
               --  Is_Null_Range test doesn't account for predicates, as in
               --    subtype Null_By_Predicate is Natural
               --      with Static_Predicate => Null_By_Predicate < 0;
               --  so test for that null case separately.

               if (not Has_Static_Predicate (Discrim_Value_Subtype))
                 or else Present (First (Static_Discrete_Predicate
                                           (Discrim_Value_Subtype)))
               then
                  Discrim_Value_Status := Static_Subtype;
               end if;
            end if;
         end if;

         if Discrim_Value_Status = Bad then

            --  If the variant part is governed by a discriminant of the type
            --  this is an error. If the variant part and the discriminant are
            --  inherited from an ancestor this is legal (AI05-220) unless the
            --  components are being gathered for an aggregate, in which case
            --  the caller must check Report_Errors.
            --
            --  In Ada 2020 the above rules are relaxed. A nonstatic governing
            --  discriminant is OK as long as it has a static subtype and
            --  every value of that subtype (and there must be at least one)
            --  selects the same variant.

            if Scope (Original_Record_Component
                        ((Entity (First (Choices (Assoc)))))) = Typ
            then
               if Ada_Version >= Ada_2020 then
                  Error_Msg_FE
                    ("value for discriminant & must be static or " &
                     "discriminant's nominal subtype must be static " &
                     "and non-null!",
                     Discrim_Value, Discrim);
               else
                  Error_Msg_FE
                    ("value for discriminant & must be static!",
                     Discrim_Value, Discrim);
               end if;
               Why_Not_Static (Discrim_Value);
            end if;

            Report_Errors := True;
            return;
         end if;
      end if;

      Search_For_Discriminant_Value : declare
         Low  : Node_Id;
         High : Node_Id;

         UI_High          : Uint;
         UI_Low           : Uint;
         UI_Discrim_Value : Uint;

      begin
         case Good_Discrim_Value_Status'(Discrim_Value_Status) is
            when Static_Expr =>
               UI_Discrim_Value := Expr_Value (Discrim_Value);
            when Static_Subtype =>
               --  Arbitrarily pick one value of the subtype and look
               --  for the variant associated with that value; we will
               --  check later that the same variant is associated with
               --  all of the other values of the subtype.
               if Has_Static_Predicate (Discrim_Value_Subtype) then
                  declare
                     Range_Or_Expr : constant Node_Id :=
                       First (Static_Discrete_Predicate
                                (Discrim_Value_Subtype));
                  begin
                     if Nkind (Range_Or_Expr) = N_Range then
                        UI_Discrim_Value :=
                          Expr_Value (Low_Bound (Range_Or_Expr));
                     else
                        UI_Discrim_Value := Expr_Value (Range_Or_Expr);
                     end if;
                  end;
               else
                  UI_Discrim_Value
                    := Expr_Value (Type_Low_Bound (Discrim_Value_Subtype));
               end if;
         end case;

         Find_Discrete_Value : while Present (Variant) loop

            --  If a choice is a subtype with a static predicate, it must
            --  be rewritten as an explicit list of non-predicated choices.

            Expand_Static_Predicates_In_Choices (Variant);

            Discrete_Choice := First (Discrete_Choices (Variant));
            while Present (Discrete_Choice) loop
               exit Find_Discrete_Value when
                 Nkind (Discrete_Choice) = N_Others_Choice;

               Get_Index_Bounds (Discrete_Choice, Low, High);

               UI_Low  := Expr_Value (Low);
               UI_High := Expr_Value (High);

               exit Find_Discrete_Value when
                 UI_Low <= UI_Discrim_Value
                   and then
                 UI_High >= UI_Discrim_Value;

               Next (Discrete_Choice);
            end loop;

            Next_Non_Pragma (Variant);
         end loop Find_Discrete_Value;
      end Search_For_Discriminant_Value;

      --  The case statement must include a variant that corresponds to the
      --  value of the discriminant, unless the discriminant type has a
      --  static predicate. In that case the absence of an others_choice that
      --  would cover this value becomes a run-time error (3.8.1 (21.1/2)).

      if No (Variant)
        and then not Has_Static_Predicate (Etype (Discrim_Name))
      then
         Error_Msg_NE
           ("value of discriminant & is out of range", Discrim_Value, Discrim);
         Report_Errors := True;
         return;
      end  if;

      --  If we have found the corresponding choice, recursively add its
      --  components to the Into list. The nested components are part of
      --  the same record type.

      if Present (Variant) then
         if Discrim_Value_Status = Static_Subtype then
            declare
               Discrim_Value_Subtype_Intervals
                 : constant Interval_Lists.Discrete_Interval_List
                 := Interval_Lists.Type_Intervals (Discrim_Value_Subtype);

               Variant_Intervals
                 : constant Interval_Lists.Discrete_Interval_List
                 := Interval_Lists.Choice_List_Intervals
                     (Discrete_Choices => Discrete_Choices (Variant));
            begin
               if not Interval_Lists.Is_Subset
                        (Subset => Discrim_Value_Subtype_Intervals,
                         Of_Set => Variant_Intervals)
               then
                  Error_Msg_NE
                    ("no single variant is associated with all values of " &
                     "the subtype of discriminant value &",
                     Discrim_Value, Discrim);
                  Report_Errors := True;
                  return;
               end if;
            end;
         end if;

         Gather_Components
           (Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
      end if;
   end Gather_Components;

   -----------------------
   -- Get_Accessibility --
   -----------------------

   function Get_Accessibility (E : Entity_Id) return Entity_Id is
   begin
      --  When minimum accessibility is set for E then we utilize it - except
      --  in a few edge cases like the expansion of select statements where
      --  generated subprogram may attempt to unnecessarily use a minimum
      --  accessibility object declared outside of scope.

      --  To avoid these situations where expansion may get complex we verify
      --  that the minimum accessibility object is within scope.

      if Is_Formal (E)
        and then Present (Minimum_Accessibility (E))
        and then In_Open_Scopes (Scope (Minimum_Accessibility (E)))
      then
         return Minimum_Accessibility (E);
      end if;

      return Extra_Accessibility (E);
   end Get_Accessibility;

   ------------------------
   -- Get_Actual_Subtype --
   ------------------------

   function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
      Typ  : constant Entity_Id := Etype (N);
      Utyp : Entity_Id := Underlying_Type (Typ);
      Decl : Node_Id;
      Atyp : Entity_Id;

   begin
      if No (Utyp) then
         Utyp := Typ;
      end if;

      --  If what we have is an identifier that references a subprogram
      --  formal, or a variable or constant object, then we get the actual
      --  subtype from the referenced entity if one has been built.

      if Nkind (N) = N_Identifier
        and then
          (Is_Formal (Entity (N))
            or else Ekind (Entity (N)) = E_Constant
            or else Ekind (Entity (N)) = E_Variable)
        and then Present (Actual_Subtype (Entity (N)))
      then
         return Actual_Subtype (Entity (N));

      --  Actual subtype of unchecked union is always itself. We never need
      --  the "real" actual subtype. If we did, we couldn't get it anyway
      --  because the discriminant is not available. The restrictions on
      --  Unchecked_Union are designed to make sure that this is OK.

      elsif Is_Unchecked_Union (Base_Type (Utyp)) then
         return Typ;

      --  Here for the unconstrained case, we must find actual subtype
      --  No actual subtype is available, so we must build it on the fly.

      --  Checking the type, not the underlying type, for constrainedness
      --  seems to be necessary. Maybe all the tests should be on the type???

      elsif (not Is_Constrained (Typ))
           and then (Is_Array_Type (Utyp)
                      or else (Is_Record_Type (Utyp)
                                and then Has_Discriminants (Utyp)))
           and then not Has_Unknown_Discriminants (Utyp)
           and then not (Ekind (Utyp) = E_String_Literal_Subtype)
      then
         --  Nothing to do if in spec expression (why not???)

         if In_Spec_Expression then
            return Typ;

         elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then

            --  If the type has no discriminants, there is no subtype to
            --  build, even if the underlying type is discriminated.

            return Typ;

         --  Else build the actual subtype

         else
            Decl := Build_Actual_Subtype (Typ, N);

            --  The call may yield a declaration, or just return the entity

            if Decl = Typ then
               return Typ;
            end if;

            Atyp := Defining_Identifier (Decl);

            --  If Build_Actual_Subtype generated a new declaration then use it

            if Atyp /= Typ then

               --  The actual subtype is an Itype, so analyze the declaration,
               --  but do not attach it to the tree, to get the type defined.

               Set_Parent (Decl, N);
               Set_Is_Itype (Atyp);
               Analyze (Decl, Suppress => All_Checks);
               Set_Associated_Node_For_Itype (Atyp, N);
               Set_Has_Delayed_Freeze (Atyp, False);

               --  We need to freeze the actual subtype immediately. This is
               --  needed, because otherwise this Itype will not get frozen
               --  at all, and it is always safe to freeze on creation because
               --  any associated types must be frozen at this point.

               Freeze_Itype (Atyp, N);
               return Atyp;

            --  Otherwise we did not build a declaration, so return original

            else
               return Typ;
            end if;
         end if;

      --  For all remaining cases, the actual subtype is the same as
      --  the nominal type.

      else
         return Typ;
      end if;
   end Get_Actual_Subtype;

   -------------------------------------
   -- Get_Actual_Subtype_If_Available --
   -------------------------------------

   function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
      Typ  : constant Entity_Id := Etype (N);

   begin
      --  If what we have is an identifier that references a subprogram
      --  formal, or a variable or constant object, then we get the actual
      --  subtype from the referenced entity if one has been built.

      if Nkind (N) = N_Identifier
        and then
          (Is_Formal (Entity (N))
            or else Ekind (Entity (N)) = E_Constant
            or else Ekind (Entity (N)) = E_Variable)
        and then Present (Actual_Subtype (Entity (N)))
      then
         return Actual_Subtype (Entity (N));

      --  Otherwise the Etype of N is returned unchanged

      else
         return Typ;
      end if;
   end Get_Actual_Subtype_If_Available;

   ------------------------
   -- Get_Body_From_Stub --
   ------------------------

   function Get_Body_From_Stub (N : Node_Id) return Node_Id is
   begin
      return Proper_Body (Unit (Library_Unit (N)));
   end Get_Body_From_Stub;

   ---------------------
   -- Get_Cursor_Type --
   ---------------------

   function Get_Cursor_Type
     (Aspect : Node_Id;
      Typ    : Entity_Id) return Entity_Id
   is
      Assoc    : Node_Id;
      Func     : Entity_Id;
      First_Op : Entity_Id;
      Cursor   : Entity_Id;

   begin
      --  If error already detected, return

      if Error_Posted (Aspect) then
         return Any_Type;
      end if;

      --  The cursor type for an Iterable aspect is the return type of a
      --  non-overloaded First primitive operation. Locate association for
      --  First.

      Assoc := First (Component_Associations (Expression (Aspect)));
      First_Op  := Any_Id;
      while Present (Assoc) loop
         if Chars (First (Choices (Assoc))) = Name_First then
            First_Op := Expression (Assoc);
            exit;
         end if;

         Next (Assoc);
      end loop;

      if First_Op = Any_Id then
         Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
         return Any_Type;

      elsif not Analyzed (First_Op) then
         Analyze (First_Op);
      end if;

      Cursor := Any_Type;

      --  Locate function with desired name and profile in scope of type
      --  In the rare case where the type is an integer type, a base type
      --  is created for it, check that the base type of the first formal
      --  of First matches the base type of the domain.

      Func := First_Entity (Scope (Typ));
      while Present (Func) loop
         if Chars (Func) = Chars (First_Op)
           and then Ekind (Func) = E_Function
           and then Present (First_Formal (Func))
           and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
           and then No (Next_Formal (First_Formal (Func)))
         then
            if Cursor /= Any_Type then
               Error_Msg_N
                 ("Operation First for iterable type must be unique", Aspect);
               return Any_Type;
            else
               Cursor := Etype (Func);
            end if;
         end if;

         Next_Entity (Func);
      end loop;

      --  If not found, no way to resolve remaining primitives

      if Cursor = Any_Type then
         Error_Msg_N
           ("primitive operation for Iterable type must appear in the same "
            & "list of declarations as the type", Aspect);
      end if;

      return Cursor;
   end Get_Cursor_Type;

   function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
   begin
      return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
   end Get_Cursor_Type;

   -------------------------------
   -- Get_Default_External_Name --
   -------------------------------

   function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
   begin
      Get_Decoded_Name_String (Chars (E));

      if Opt.External_Name_Imp_Casing = Uppercase then
         Set_Casing (All_Upper_Case);
      else
         Set_Casing (All_Lower_Case);
      end if;

      return
        Make_String_Literal (Sloc (E),
          Strval => String_From_Name_Buffer);
   end Get_Default_External_Name;

   --------------------------
   -- Get_Enclosing_Object --
   --------------------------

   function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
   begin
      if Is_Entity_Name (N) then
         return Entity (N);
      else
         case Nkind (N) is
            when N_Indexed_Component
               | N_Selected_Component
               | N_Slice
            =>
               --  If not generating code, a dereference may be left implicit.
               --  In thoses cases, return Empty.

               if Is_Access_Type (Etype (Prefix (N))) then
                  return Empty;
               else
                  return Get_Enclosing_Object (Prefix (N));
               end if;

            when N_Type_Conversion =>
               return Get_Enclosing_Object (Expression (N));

            when others =>
               return Empty;
         end case;
      end if;
   end Get_Enclosing_Object;

   ---------------------------
   -- Get_Enum_Lit_From_Pos --
   ---------------------------

   function Get_Enum_Lit_From_Pos
     (T   : Entity_Id;
      Pos : Uint;
      Loc : Source_Ptr) return Node_Id
   is
      Btyp : Entity_Id := Base_Type (T);
      Lit  : Node_Id;
      LLoc : Source_Ptr;

   begin
      --  In the case where the literal is of type Character, Wide_Character
      --  or Wide_Wide_Character or of a type derived from them, there needs
      --  to be some special handling since there is no explicit chain of
      --  literals to search. Instead, an N_Character_Literal node is created
      --  with the appropriate Char_Code and Chars fields.

      if Is_Standard_Character_Type (T) then
         Set_Character_Literal_Name (UI_To_CC (Pos));

         return
           Make_Character_Literal (Loc,
             Chars              => Name_Find,
             Char_Literal_Value => Pos);

      --  For all other cases, we have a complete table of literals, and
      --  we simply iterate through the chain of literal until the one
      --  with the desired position value is found.

      else
         if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
            Btyp := Full_View (Btyp);
         end if;

         Lit := First_Literal (Btyp);

         --  Position in the enumeration type starts at 0

         if UI_To_Int (Pos) < 0 then
            raise Constraint_Error;
         end if;

         for J in 1 .. UI_To_Int (Pos) loop
            Next_Literal (Lit);

            --  If Lit is Empty, Pos is not in range, so raise Constraint_Error
            --  inside the loop to avoid calling Next_Literal on Empty.

            if No (Lit) then
               raise Constraint_Error;
            end if;
         end loop;

         --  Create a new node from Lit, with source location provided by Loc
         --  if not equal to No_Location, or by copying the source location of
         --  Lit otherwise.

         LLoc := Loc;

         if LLoc = No_Location then
            LLoc := Sloc (Lit);
         end if;

         return New_Occurrence_Of (Lit, LLoc);
      end if;
   end Get_Enum_Lit_From_Pos;

   ----------------------
   -- Get_Fullest_View --
   ----------------------

   function Get_Fullest_View
     (E : Entity_Id; Include_PAT : Boolean := True) return Entity_Id is
   begin
      --  Strictly speaking, the recursion below isn't necessary, but
      --  it's both simplest and safest.

      case Ekind (E) is
         when Incomplete_Kind =>
            if From_Limited_With (E) then
               return Get_Fullest_View (Non_Limited_View (E), Include_PAT);
            elsif Present (Full_View (E)) then
               return Get_Fullest_View (Full_View (E), Include_PAT);
            elsif Ekind (E) = E_Incomplete_Subtype then
               return Get_Fullest_View (Etype (E));
            end if;

         when Private_Kind =>
            if Present (Underlying_Full_View (E)) then
               return
                 Get_Fullest_View (Underlying_Full_View (E), Include_PAT);
            elsif Present (Full_View (E)) then
               return Get_Fullest_View (Full_View (E), Include_PAT);
            elsif Etype (E) /= E then
               return Get_Fullest_View (Etype (E), Include_PAT);
            end if;

         when Array_Kind =>
            if Include_PAT and then Present (Packed_Array_Impl_Type (E)) then
               return Get_Fullest_View (Packed_Array_Impl_Type (E));
            end if;

         when E_Record_Subtype =>
            if Present (Cloned_Subtype (E)) then
               return Get_Fullest_View (Cloned_Subtype (E), Include_PAT);
            end if;

         when E_Class_Wide_Type =>
            return Get_Fullest_View (Root_Type (E), Include_PAT);

         when  E_Class_Wide_Subtype =>
            if Present (Equivalent_Type (E)) then
               return Get_Fullest_View (Equivalent_Type (E), Include_PAT);
            elsif Present (Cloned_Subtype (E)) then
               return Get_Fullest_View (Cloned_Subtype (E), Include_PAT);
            end if;

         when E_Protected_Type | E_Protected_Subtype
            | E_Task_Type |  E_Task_Subtype =>
            if Present (Corresponding_Record_Type (E)) then
               return Get_Fullest_View (Corresponding_Record_Type (E),
                                        Include_PAT);
            end if;

         when E_Access_Protected_Subprogram_Type
            | E_Anonymous_Access_Protected_Subprogram_Type =>
            if Present (Equivalent_Type (E)) then
               return Get_Fullest_View (Equivalent_Type (E), Include_PAT);
            end if;

         when E_Access_Subtype =>
            return Get_Fullest_View (Base_Type (E), Include_PAT);

         when others =>
            null;
      end case;

      return E;
   end Get_Fullest_View;

   ------------------------
   -- Get_Generic_Entity --
   ------------------------

   function Get_Generic_Entity (N : Node_Id) return Entity_Id is
      Ent : constant Entity_Id := Entity (Name (N));
   begin
      if Present (Renamed_Object (Ent)) then
         return Renamed_Object (Ent);
      else
         return Ent;
      end if;
   end Get_Generic_Entity;

   -------------------------------------
   -- Get_Incomplete_View_Of_Ancestor --
   -------------------------------------

   function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
      Cur_Unit  : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
      Par_Scope : Entity_Id;
      Par_Type  : Entity_Id;

   begin
      --  The incomplete view of an ancestor is only relevant for private
      --  derived types in child units.

      if not Is_Derived_Type (E)
        or else not Is_Child_Unit (Cur_Unit)
      then
         return Empty;

      else
         Par_Scope := Scope (Cur_Unit);
         if No (Par_Scope) then
            return Empty;
         end if;

         Par_Type := Etype (Base_Type (E));

         --  Traverse list of ancestor types until we find one declared in
         --  a parent or grandparent unit (two levels seem sufficient).

         while Present (Par_Type) loop
            if Scope (Par_Type) = Par_Scope
              or else Scope (Par_Type) = Scope (Par_Scope)
            then
               return Par_Type;

            elsif not Is_Derived_Type (Par_Type) then
               return Empty;

            else
               Par_Type := Etype (Base_Type (Par_Type));
            end if;
         end loop;

         --  If none found, there is no relevant ancestor type.

         return Empty;
      end if;
   end Get_Incomplete_View_Of_Ancestor;

   ----------------------
   -- Get_Index_Bounds --
   ----------------------

   procedure Get_Index_Bounds
     (N             : Node_Id;
      L             : out Node_Id;
      H             : out Node_Id;
      Use_Full_View : Boolean := False)
   is
      function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id;
      --  Obtain the scalar range of type Typ. If flag Use_Full_View is set and
      --  Typ qualifies, the scalar range is obtained from the full view of the
      --  type.

      --------------------------
      -- Scalar_Range_Of_Type --
      --------------------------

      function Scalar_Range_Of_Type (Typ : Entity_Id) return Node_Id is
         T : Entity_Id := Typ;

      begin
         if Use_Full_View and then Present (Full_View (T)) then
            T := Full_View (T);
         end if;

         return Scalar_Range (T);
      end Scalar_Range_Of_Type;

      --  Local variables

      Kind : constant Node_Kind := Nkind (N);
      Rng  : Node_Id;

   --  Start of processing for Get_Index_Bounds

   begin
      if Kind = N_Range then
         L := Low_Bound (N);
         H := High_Bound (N);

      elsif Kind = N_Subtype_Indication then
         Rng := Range_Expression (Constraint (N));

         if Rng = Error then
            L := Error;
            H := Error;
            return;

         else
            L := Low_Bound  (Range_Expression (Constraint (N)));
            H := High_Bound (Range_Expression (Constraint (N)));
         end if;

      elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
         Rng := Scalar_Range_Of_Type (Entity (N));

         if Error_Posted (Rng) then
            L := Error;
            H := Error;

         elsif Nkind (Rng) = N_Subtype_Indication then
            Get_Index_Bounds (Rng, L, H);

         else
            L := Low_Bound  (Rng);
            H := High_Bound (Rng);
         end if;

      else
         --  N is an expression, indicating a range with one value

         L := N;
         H := N;
      end if;
   end Get_Index_Bounds;

   -----------------------------
   -- Get_Interfacing_Aspects --
   -----------------------------

   procedure Get_Interfacing_Aspects
     (Iface_Asp : Node_Id;
      Conv_Asp  : out Node_Id;
      EN_Asp    : out Node_Id;
      Expo_Asp  : out Node_Id;
      Imp_Asp   : out Node_Id;
      LN_Asp    : out Node_Id;
      Do_Checks : Boolean := False)
   is
      procedure Save_Or_Duplication_Error
        (Asp : Node_Id;
         To  : in out Node_Id);
      --  Save the value of aspect Asp in node To. If To already has a value,
      --  then this is considered a duplicate use of aspect. Emit an error if
      --  flag Do_Checks is set.

      -------------------------------
      -- Save_Or_Duplication_Error --
      -------------------------------

      procedure Save_Or_Duplication_Error
        (Asp : Node_Id;
         To  : in out Node_Id)
      is
      begin
         --  Detect an extra aspect and issue an error

         if Present (To) then
            if Do_Checks then
               Error_Msg_Name_1 := Chars (Identifier (Asp));
               Error_Msg_Sloc   := Sloc (To);
               Error_Msg_N ("aspect % previously given #", Asp);
            end if;

         --  Otherwise capture the aspect

         else
            To := Asp;
         end if;
      end Save_Or_Duplication_Error;

      --  Local variables

      Asp    : Node_Id;
      Asp_Id : Aspect_Id;

      --  The following variables capture each individual aspect

      Conv : Node_Id := Empty;
      EN   : Node_Id := Empty;
      Expo : Node_Id := Empty;
      Imp  : Node_Id := Empty;
      LN   : Node_Id := Empty;

   --  Start of processing for Get_Interfacing_Aspects

   begin
      --  The input interfacing aspect should reside in an aspect specification
      --  list.

      pragma Assert (Is_List_Member (Iface_Asp));

      --  Examine the aspect specifications of the related entity. Find and
      --  capture all interfacing aspects. Detect duplicates and emit errors
      --  if applicable.

      Asp := First (List_Containing (Iface_Asp));
      while Present (Asp) loop
         Asp_Id := Get_Aspect_Id (Asp);

         if Asp_Id = Aspect_Convention then
            Save_Or_Duplication_Error (Asp, Conv);

         elsif Asp_Id = Aspect_External_Name then
            Save_Or_Duplication_Error (Asp, EN);

         elsif Asp_Id = Aspect_Export then
            Save_Or_Duplication_Error (Asp, Expo);

         elsif Asp_Id = Aspect_Import then
            Save_Or_Duplication_Error (Asp, Imp);

         elsif Asp_Id = Aspect_Link_Name then
            Save_Or_Duplication_Error (Asp, LN);
         end if;

         Next (Asp);
      end loop;

      Conv_Asp := Conv;
      EN_Asp   := EN;
      Expo_Asp := Expo;
      Imp_Asp  := Imp;
      LN_Asp   := LN;
   end Get_Interfacing_Aspects;

   ---------------------------------
   -- Get_Iterable_Type_Primitive --
   ---------------------------------

   function Get_Iterable_Type_Primitive
     (Typ : Entity_Id;
      Nam : Name_Id) return Entity_Id
   is
      pragma Assert
        (Is_Type (Typ)
         and then
           Nam in Name_Element
                | Name_First
                | Name_Has_Element
                | Name_Last
                | Name_Next
                | Name_Previous);

      Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
      Assoc : Node_Id;

   begin
      if No (Funcs) then
         return Empty;

      else
         Assoc := First (Component_Associations (Funcs));
         while Present (Assoc) loop
            if Chars (First (Choices (Assoc))) = Nam then
               return Entity (Expression (Assoc));
            end if;

            Next (Assoc);
         end loop;

         return Empty;
      end if;
   end Get_Iterable_Type_Primitive;

   ----------------------------------
   -- Get_Library_Unit_Name_String --
   ----------------------------------

   procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
      Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);

   begin
      Get_Unit_Name_String (Unit_Name_Id);

      --  Remove seven last character (" (spec)" or " (body)")

      Name_Len := Name_Len - 7;
      pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
   end Get_Library_Unit_Name_String;

   --------------------------
   -- Get_Max_Queue_Length --
   --------------------------

   function Get_Max_Queue_Length (Id : Entity_Id) return Uint is
      pragma Assert (Is_Entry (Id));
      Prag : constant Entity_Id := Get_Pragma (Id, Pragma_Max_Queue_Length);
      Max  : Uint;

   begin
      --  A value of 0 or -1 represents no maximum specified, and entries and
      --  entry families with no Max_Queue_Length aspect or pragma default to
      --  it.

      if not Present (Prag) then
         return Uint_0;
      end if;

      Max := Expr_Value
        (Expression (First (Pragma_Argument_Associations (Prag))));

      --  Since -1 and 0 are equivalent, return 0 for instances of -1 for
      --  uniformity.

      if Max = -1 then
         return Uint_0;
      end if;

      return Max;
   end Get_Max_Queue_Length;

   ------------------------
   -- Get_Name_Entity_Id --
   ------------------------

   function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
   begin
      return Entity_Id (Get_Name_Table_Int (Id));
   end Get_Name_Entity_Id;

   ------------------------------
   -- Get_Name_From_CTC_Pragma --
   ------------------------------

   function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
      Arg : constant Node_Id :=
              Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
   begin
      return Strval (Expr_Value_S (Arg));
   end Get_Name_From_CTC_Pragma;

   -----------------------
   -- Get_Parent_Entity --
   -----------------------

   function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
   begin
      if Nkind (Unit) = N_Package_Body
        and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
      then
         return Defining_Entity
                  (Specification (Instance_Spec (Original_Node (Unit))));
      elsif Nkind (Unit) = N_Package_Instantiation then
         return Defining_Entity (Specification (Instance_Spec (Unit)));
      else
         return Defining_Entity (Unit);
      end if;
   end Get_Parent_Entity;

   -------------------
   -- Get_Pragma_Id --
   -------------------

   function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
   begin
      return Get_Pragma_Id (Pragma_Name_Unmapped (N));
   end Get_Pragma_Id;

   ------------------------
   -- Get_Qualified_Name --
   ------------------------

   function Get_Qualified_Name
     (Id     : Entity_Id;
      Suffix : Entity_Id := Empty) return Name_Id
   is
      Suffix_Nam : Name_Id := No_Name;

   begin
      if Present (Suffix) then
         Suffix_Nam := Chars (Suffix);
      end if;

      return Get_Qualified_Name (Chars (Id), Suffix_Nam, Scope (Id));
   end Get_Qualified_Name;

   function Get_Qualified_Name
     (Nam    : Name_Id;
      Suffix : Name_Id   := No_Name;
      Scop   : Entity_Id := Current_Scope) return Name_Id
   is
      procedure Add_Scope (S : Entity_Id);
      --  Add the fully qualified form of scope S to the name buffer. The
      --  format is:
      --    s-1__s__

      ---------------
      -- Add_Scope --
      ---------------

      procedure Add_Scope (S : Entity_Id) is
      begin
         if S = Empty then
            null;

         elsif S = Standard_Standard then
            null;

         else
            Add_Scope (Scope (S));
            Get_Name_String_And_Append (Chars (S));
            Add_Str_To_Name_Buffer ("__");
         end if;
      end Add_Scope;

   --  Start of processing for Get_Qualified_Name

   begin
      Name_Len := 0;
      Add_Scope (Scop);

      --  Append the base name after all scopes have been chained

      Get_Name_String_And_Append (Nam);

      --  Append the suffix (if present)

      if Suffix /= No_Name then
         Add_Str_To_Name_Buffer ("__");
         Get_Name_String_And_Append (Suffix);
      end if;

      return Name_Find;
   end Get_Qualified_Name;

   -----------------------
   -- Get_Reason_String --
   -----------------------

   procedure Get_Reason_String (N : Node_Id) is
   begin
      if Nkind (N) = N_String_Literal then
         Store_String_Chars (Strval (N));

      elsif Nkind (N) = N_Op_Concat then
         Get_Reason_String (Left_Opnd (N));
         Get_Reason_String (Right_Opnd (N));

      --  If not of required form, error

      else
         Error_Msg_N
           ("Reason for pragma Warnings has wrong form", N);
         Error_Msg_N
           ("\must be string literal or concatenation of string literals", N);
         return;
      end if;
   end Get_Reason_String;

   --------------------------------
   -- Get_Reference_Discriminant --
   --------------------------------

   function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
      D : Entity_Id;

   begin
      D := First_Discriminant (Typ);
      while Present (D) loop
         if Has_Implicit_Dereference (D) then
            return D;
         end if;
         Next_Discriminant (D);
      end loop;

      return Empty;
   end Get_Reference_Discriminant;

   ---------------------------
   -- Get_Referenced_Object --
   ---------------------------

   function Get_Referenced_Object (N : Node_Id) return Node_Id is
      R : Node_Id;

   begin
      R := N;
      while Is_Entity_Name (R)
        and then Is_Object (Entity (R))
        and then Present (Renamed_Object (Entity (R)))
      loop
         R := Renamed_Object (Entity (R));
      end loop;

      return R;
   end Get_Referenced_Object;

   ------------------------
   -- Get_Renamed_Entity --
   ------------------------

   function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
      R : Entity_Id;

   begin
      R := E;
      while Present (Renamed_Entity (R)) loop
         R := Renamed_Entity (R);
      end loop;

      return R;
   end Get_Renamed_Entity;

   -----------------------
   -- Get_Return_Object --
   -----------------------

   function Get_Return_Object (N : Node_Id) return Entity_Id is
      Decl : Node_Id;

   begin
      Decl := First (Return_Object_Declarations (N));
      while Present (Decl) loop
         exit when Nkind (Decl) = N_Object_Declaration
           and then Is_Return_Object (Defining_Identifier (Decl));
         Next (Decl);
      end loop;

      pragma Assert (Present (Decl));
      return Defining_Identifier (Decl);
   end Get_Return_Object;

   ---------------------------
   -- Get_Subprogram_Entity --
   ---------------------------

   function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
      Subp    : Node_Id;
      Subp_Id : Entity_Id;

   begin
      if Nkind (Nod) = N_Accept_Statement then
         Subp := Entry_Direct_Name (Nod);

      elsif Nkind (Nod) = N_Slice then
         Subp := Prefix (Nod);

      else
         Subp := Name (Nod);
      end if;

      --  Strip the subprogram call

      loop
         if Nkind (Subp) in N_Explicit_Dereference
                          | N_Indexed_Component
                          | N_Selected_Component
         then
            Subp := Prefix (Subp);

         elsif Nkind (Subp) in N_Type_Conversion
                             | N_Unchecked_Type_Conversion
         then
            Subp := Expression (Subp);

         else
            exit;
         end if;
      end loop;

      --  Extract the entity of the subprogram call

      if Is_Entity_Name (Subp) then
         Subp_Id := Entity (Subp);

         if Ekind (Subp_Id) = E_Access_Subprogram_Type then
            Subp_Id := Directly_Designated_Type (Subp_Id);
         end if;

         if Is_Subprogram (Subp_Id) then
            return Subp_Id;
         else
            return Empty;
         end if;

      --  The search did not find a construct that denotes a subprogram

      else
         return Empty;
      end if;
   end Get_Subprogram_Entity;

   -----------------------------
   -- Get_Task_Body_Procedure --
   -----------------------------

   function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id is
   begin
      --  Note: A task type may be the completion of a private type with
      --  discriminants. When performing elaboration checks on a task
      --  declaration, the current view of the type may be the private one,
      --  and the procedure that holds the body of the task is held in its
      --  underlying type.

      --  This is an odd function, why not have Task_Body_Procedure do
      --  the following digging???

      return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
   end Get_Task_Body_Procedure;

   -------------------------
   -- Get_User_Defined_Eq --
   -------------------------

   function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
      Prim : Elmt_Id;
      Op   : Entity_Id;

   begin
      Prim := First_Elmt (Collect_Primitive_Operations (E));
      while Present (Prim) loop
         Op := Node (Prim);

         if Chars (Op) = Name_Op_Eq
           and then Etype (Op) = Standard_Boolean
           and then Etype (First_Formal (Op)) = E
           and then Etype (Next_Formal (First_Formal (Op))) = E
         then
            return Op;
         end if;

         Next_Elmt (Prim);
      end loop;

      return Empty;
   end Get_User_Defined_Eq;

   ---------------
   -- Get_Views --
   ---------------

   procedure Get_Views
     (Typ       : Entity_Id;
      Priv_Typ  : out Entity_Id;
      Full_Typ  : out Entity_Id;
      UFull_Typ : out Entity_Id;
      CRec_Typ  : out Entity_Id)
   is
      IP_View : Entity_Id;

   begin
      --  Assume that none of the views can be recovered

      Priv_Typ  := Empty;
      Full_Typ  := Empty;
      UFull_Typ := Empty;
      CRec_Typ  := Empty;

      --  The input type is the corresponding record type of a protected or a
      --  task type.

      if Ekind (Typ) = E_Record_Type
        and then Is_Concurrent_Record_Type (Typ)
      then
         CRec_Typ := Typ;
         Full_Typ := Corresponding_Concurrent_Type (CRec_Typ);
         Priv_Typ := Incomplete_Or_Partial_View (Full_Typ);

      --  Otherwise the input type denotes an arbitrary type

      else
         IP_View := Incomplete_Or_Partial_View (Typ);

         --  The input type denotes the full view of a private type

         if Present (IP_View) then
            Priv_Typ := IP_View;
            Full_Typ := Typ;

         --  The input type is a private type

         elsif Is_Private_Type (Typ) then
            Priv_Typ := Typ;
            Full_Typ := Full_View (Priv_Typ);

         --  Otherwise the input type does not have any views

         else
            Full_Typ := Typ;
         end if;

         if Present (Full_Typ) and then Is_Private_Type (Full_Typ) then
            UFull_Typ := Underlying_Full_View (Full_Typ);

            if Present (UFull_Typ)
              and then Ekind (UFull_Typ) in E_Protected_Type | E_Task_Type
            then
               CRec_Typ := Corresponding_Record_Type (UFull_Typ);
            end if;

         else
            if Present (Full_Typ)
              and then Ekind (Full_Typ) in E_Protected_Type | E_Task_Type
            then
               CRec_Typ := Corresponding_Record_Type (Full_Typ);
            end if;
         end if;
      end if;
   end Get_Views;

   -----------------------
   -- Has_Access_Values --
   -----------------------

   function Has_Access_Values (T : Entity_Id) return Boolean is
      Typ : constant Entity_Id := Underlying_Type (T);

   begin
      --  Case of a private type which is not completed yet. This can only
      --  happen in the case of a generic format type appearing directly, or
      --  as a component of the type to which this function is being applied
      --  at the top level. Return False in this case, since we certainly do
      --  not know that the type contains access types.

      if No (Typ) then
         return False;

      elsif Is_Access_Type (Typ) then
         return True;

      elsif Is_Array_Type (Typ) then
         return Has_Access_Values (Component_Type (Typ));

      elsif Is_Record_Type (Typ) then
         declare
            Comp : Entity_Id;

         begin
            --  Loop to Check components

            Comp := First_Component_Or_Discriminant (Typ);
            while Present (Comp) loop

               --  Check for access component, tag field does not count, even
               --  though it is implemented internally using an access type.

               if Has_Access_Values (Etype (Comp))
                 and then Chars (Comp) /= Name_uTag
               then
                  return True;
               end if;

               Next_Component_Or_Discriminant (Comp);
            end loop;
         end;

         return False;

      else
         return False;
      end if;
   end Has_Access_Values;

   ------------------------------
   -- Has_Compatible_Alignment --
   ------------------------------

   function Has_Compatible_Alignment
     (Obj         : Entity_Id;
      Expr        : Node_Id;
      Layout_Done : Boolean) return Alignment_Result
   is
      function Has_Compatible_Alignment_Internal
        (Obj         : Entity_Id;
         Expr        : Node_Id;
         Layout_Done : Boolean;
         Default     : Alignment_Result) return Alignment_Result;
      --  This is the internal recursive function that actually does the work.
      --  There is one additional parameter, which says what the result should
      --  be if no alignment information is found, and there is no definite
      --  indication of compatible alignments. At the outer level, this is set
      --  to Unknown, but for internal recursive calls in the case where types
      --  are known to be correct, it is set to Known_Compatible.

      ---------------------------------------
      -- Has_Compatible_Alignment_Internal --
      ---------------------------------------

      function Has_Compatible_Alignment_Internal
        (Obj         : Entity_Id;
         Expr        : Node_Id;
         Layout_Done : Boolean;
         Default     : Alignment_Result) return Alignment_Result
      is
         Result : Alignment_Result := Known_Compatible;
         --  Holds the current status of the result. Note that once a value of
         --  Known_Incompatible is set, it is sticky and does not get changed
         --  to Unknown (the value in Result only gets worse as we go along,
         --  never better).

         Offs : Uint := No_Uint;
         --  Set to a factor of the offset from the base object when Expr is a
         --  selected or indexed component, based on Component_Bit_Offset and
         --  Component_Size respectively. A negative value is used to represent
         --  a value which is not known at compile time.

         procedure Check_Prefix;
         --  Checks the prefix recursively in the case where the expression
         --  is an indexed or selected component.

         procedure Set_Result (R : Alignment_Result);
         --  If R represents a worse outcome (unknown instead of known
         --  compatible, or known incompatible), then set Result to R.

         ------------------
         -- Check_Prefix --
         ------------------

         procedure Check_Prefix is
         begin
            --  The subtlety here is that in doing a recursive call to check
            --  the prefix, we have to decide what to do in the case where we
            --  don't find any specific indication of an alignment problem.

            --  At the outer level, we normally set Unknown as the result in
            --  this case, since we can only set Known_Compatible if we really
            --  know that the alignment value is OK, but for the recursive
            --  call, in the case where the types match, and we have not
            --  specified a peculiar alignment for the object, we are only
            --  concerned about suspicious rep clauses, the default case does
            --  not affect us, since the compiler will, in the absence of such
            --  rep clauses, ensure that the alignment is correct.

            if Default = Known_Compatible
              or else
                (Etype (Obj) = Etype (Expr)
                  and then (Unknown_Alignment (Obj)
                             or else
                               Alignment (Obj) = Alignment (Etype (Obj))))
            then
               Set_Result
                 (Has_Compatible_Alignment_Internal
                    (Obj, Prefix (Expr), Layout_Done, Known_Compatible));

            --  In all other cases, we need a full check on the prefix

            else
               Set_Result
                 (Has_Compatible_Alignment_Internal
                    (Obj, Prefix (Expr), Layout_Done, Unknown));
            end if;
         end Check_Prefix;

         ----------------
         -- Set_Result --
         ----------------

         procedure Set_Result (R : Alignment_Result) is
         begin
            if R > Result then
               Result := R;
            end if;
         end Set_Result;

      --  Start of processing for Has_Compatible_Alignment_Internal

      begin
         --  If Expr is a selected component, we must make sure there is no
         --  potentially troublesome component clause and that the record is
         --  not packed if the layout is not done.

         if Nkind (Expr) = N_Selected_Component then

            --  Packing generates unknown alignment if layout is not done

            if Is_Packed (Etype (Prefix (Expr))) and then not Layout_Done then
               Set_Result (Unknown);
            end if;

            --  Check prefix and component offset

            Check_Prefix;
            Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));

         --  If Expr is an indexed component, we must make sure there is no
         --  potentially troublesome Component_Size clause and that the array
         --  is not bit-packed if the layout is not done.

         elsif Nkind (Expr) = N_Indexed_Component then
            declare
               Typ : constant Entity_Id := Etype (Prefix (Expr));

            begin
               --  Packing generates unknown alignment if layout is not done

               if Is_Bit_Packed_Array (Typ) and then not Layout_Done then
                  Set_Result (Unknown);
               end if;

               --  Check prefix and component offset (or at least size)

               Check_Prefix;
               Offs := Indexed_Component_Bit_Offset (Expr);
               if Offs = No_Uint then
                  Offs := Component_Size (Typ);
               end if;
            end;
         end if;

         --  If we have a null offset, the result is entirely determined by
         --  the base object and has already been computed recursively.

         if Offs = Uint_0 then
            null;

         --  Case where we know the alignment of the object

         elsif Known_Alignment (Obj) then
            declare
               ObjA : constant Uint := Alignment (Obj);
               ExpA : Uint          := No_Uint;
               SizA : Uint          := No_Uint;

            begin
               --  If alignment of Obj is 1, then we are always OK

               if ObjA = 1 then
                  Set_Result (Known_Compatible);

               --  Alignment of Obj is greater than 1, so we need to check

               else
                  --  If we have an offset, see if it is compatible

                  if Offs /= No_Uint and Offs > Uint_0 then
                     if Offs mod (System_Storage_Unit * ObjA) /= 0 then
                        Set_Result (Known_Incompatible);
                     end if;

                     --  See if Expr is an object with known alignment

                  elsif Is_Entity_Name (Expr)
                    and then Known_Alignment (Entity (Expr))
                  then
                     ExpA := Alignment (Entity (Expr));

                     --  Otherwise, we can use the alignment of the type of
                     --  Expr given that we already checked for
                     --  discombobulating rep clauses for the cases of indexed
                     --  and selected components above.

                  elsif Known_Alignment (Etype (Expr)) then
                     ExpA := Alignment (Etype (Expr));

                     --  Otherwise the alignment is unknown

                  else
                     Set_Result (Default);
                  end if;

                  --  If we got an alignment, see if it is acceptable

                  if ExpA /= No_Uint and then ExpA < ObjA then
                     Set_Result (Known_Incompatible);
                  end if;

                  --  If Expr is not a piece of a larger object, see if size
                  --  is given. If so, check that it is not too small for the
                  --  required alignment.

                  if Offs /= No_Uint then
                     null;

                     --  See if Expr is an object with known size

                  elsif Is_Entity_Name (Expr)
                    and then Known_Static_Esize (Entity (Expr))
                  then
                     SizA := Esize (Entity (Expr));

                     --  Otherwise, we check the object size of the Expr type

                  elsif Known_Static_Esize (Etype (Expr)) then
                     SizA := Esize (Etype (Expr));
                  end if;

                  --  If we got a size, see if it is a multiple of the Obj
                  --  alignment, if not, then the alignment cannot be
                  --  acceptable, since the size is always a multiple of the
                  --  alignment.

                  if SizA /= No_Uint then
                     if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
                        Set_Result (Known_Incompatible);
                     end if;
                  end if;
               end if;
            end;

         --  If we do not know required alignment, any non-zero offset is a
         --  potential problem (but certainly may be OK, so result is unknown).

         elsif Offs /= No_Uint then
            Set_Result (Unknown);

         --  If we can't find the result by direct comparison of alignment
         --  values, then there is still one case that we can determine known
         --  result, and that is when we can determine that the types are the
         --  same, and no alignments are specified. Then we known that the
         --  alignments are compatible, even if we don't know the alignment
         --  value in the front end.

         elsif Etype (Obj) = Etype (Expr) then

            --  Types are the same, but we have to check for possible size
            --  and alignments on the Expr object that may make the alignment
            --  different, even though the types are the same.

            if Is_Entity_Name (Expr) then

               --  First check alignment of the Expr object. Any alignment less
               --  than Maximum_Alignment is worrisome since this is the case
               --  where we do not know the alignment of Obj.

               if Known_Alignment (Entity (Expr))
                 and then UI_To_Int (Alignment (Entity (Expr))) <
                                                    Ttypes.Maximum_Alignment
               then
                  Set_Result (Unknown);

                  --  Now check size of Expr object. Any size that is not an
                  --  even multiple of Maximum_Alignment is also worrisome
                  --  since it may cause the alignment of the object to be less
                  --  than the alignment of the type.

               elsif Known_Static_Esize (Entity (Expr))
                 and then
                   (UI_To_Int (Esize (Entity (Expr))) mod
                     (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
                                                                        /= 0
               then
                  Set_Result (Unknown);

                  --  Otherwise same type is decisive

               else
                  Set_Result (Known_Compatible);
               end if;
            end if;

         --  Another case to deal with is when there is an explicit size or
         --  alignment clause when the types are not the same. If so, then the
         --  result is Unknown. We don't need to do this test if the Default is
         --  Unknown, since that result will be set in any case.

         elsif Default /= Unknown
           and then (Has_Size_Clause      (Etype (Expr))
                       or else
                     Has_Alignment_Clause (Etype (Expr)))
         then
            Set_Result (Unknown);

         --  If no indication found, set default

         else
            Set_Result (Default);
         end if;

         --  Return worst result found

         return Result;
      end Has_Compatible_Alignment_Internal;

   --  Start of processing for Has_Compatible_Alignment

   begin
      --  If Obj has no specified alignment, then set alignment from the type
      --  alignment. Perhaps we should always do this, but for sure we should
      --  do it when there is an address clause since we can do more if the
      --  alignment is known.

      if Unknown_Alignment (Obj) then
         Set_Alignment (Obj, Alignment (Etype (Obj)));
      end if;

      --  Now do the internal call that does all the work

      return
        Has_Compatible_Alignment_Internal (Obj, Expr, Layout_Done, Unknown);
   end Has_Compatible_Alignment;

   ----------------------
   -- Has_Declarations --
   ----------------------

   function Has_Declarations (N : Node_Id) return Boolean is
   begin
      return Nkind (N) in N_Accept_Statement
                        | N_Block_Statement
                        | N_Compilation_Unit_Aux
                        | N_Entry_Body
                        | N_Package_Body
                        | N_Protected_Body
                        | N_Subprogram_Body
                        | N_Task_Body
                        | N_Package_Specification;
   end Has_Declarations;

   ---------------------------------
   -- Has_Defaulted_Discriminants --
   ---------------------------------

   function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
   begin
      return Has_Discriminants (Typ)
       and then Present (First_Discriminant (Typ))
       and then Present (Discriminant_Default_Value
                           (First_Discriminant (Typ)));
   end Has_Defaulted_Discriminants;

   -------------------
   -- Has_Denormals --
   -------------------

   function Has_Denormals (E : Entity_Id) return Boolean is
   begin
      return Is_Floating_Point_Type (E) and then Denorm_On_Target;
   end Has_Denormals;

   -------------------------------------------
   -- Has_Discriminant_Dependent_Constraint --
   -------------------------------------------

   function Has_Discriminant_Dependent_Constraint
     (Comp : Entity_Id) return Boolean
   is
      Comp_Decl  : constant Node_Id := Parent (Comp);
      Subt_Indic : Node_Id;
      Constr     : Node_Id;
      Assn       : Node_Id;

   begin
      --  Discriminants can't depend on discriminants

      if Ekind (Comp) = E_Discriminant then
         return False;

      else
         Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));

         if Nkind (Subt_Indic) = N_Subtype_Indication then
            Constr := Constraint (Subt_Indic);

            if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
               Assn := First (Constraints (Constr));
               while Present (Assn) loop
                  case Nkind (Assn) is
                     when N_Identifier
                        | N_Range
                        | N_Subtype_Indication
                     =>
                        if Depends_On_Discriminant (Assn) then
                           return True;
                        end if;

                     when N_Discriminant_Association =>
                        if Depends_On_Discriminant (Expression (Assn)) then
                           return True;
                        end if;

                     when others =>
                        null;
                  end case;

                  Next (Assn);
               end loop;
            end if;
         end if;
      end if;

      return False;
   end Has_Discriminant_Dependent_Constraint;

   --------------------------------------
   -- Has_Effectively_Volatile_Profile --
   --------------------------------------

   function Has_Effectively_Volatile_Profile
     (Subp_Id : Entity_Id) return Boolean
   is
      Formal : Entity_Id;

   begin
      --  Inspect the formal parameters looking for an effectively volatile
      --  type for reading.

      Formal := First_Formal (Subp_Id);
      while Present (Formal) loop
         if Is_Effectively_Volatile_For_Reading (Etype (Formal)) then
            return True;
         end if;

         Next_Formal (Formal);
      end loop;

      --  Inspect the return type of functions

      if Ekind (Subp_Id) in E_Function | E_Generic_Function
        and then Is_Effectively_Volatile_For_Reading (Etype (Subp_Id))
      then
         return True;
      end if;

      return False;
   end Has_Effectively_Volatile_Profile;

   --------------------------
   -- Has_Enabled_Property --
   --------------------------

   function Has_Enabled_Property
     (Item_Id  : Entity_Id;
      Property : Name_Id) return Boolean
   is
      function Protected_Type_Or_Variable_Has_Enabled_Property return Boolean;
      --  Determine whether a protected type or variable denoted by Item_Id
      --  has the property enabled.

      function State_Has_Enabled_Property return Boolean;
      --  Determine whether a state denoted by Item_Id has the property enabled

      function Type_Or_Variable_Has_Enabled_Property
        (Item_Id : Entity_Id) return Boolean;
      --  Determine whether type or variable denoted by Item_Id has the
      --  property enabled.

      -----------------------------------------------------
      -- Protected_Type_Or_Variable_Has_Enabled_Property --
      -----------------------------------------------------

      function Protected_Type_Or_Variable_Has_Enabled_Property return Boolean
      is
      begin
         --  Protected entities always have the properties Async_Readers and
         --  Async_Writers (SPARK RM 7.1.2(16)).

         if Property = Name_Async_Readers
           or else Property = Name_Async_Writers
         then
            return True;

         --  Protected objects that have Part_Of components also inherit their
         --  properties Effective_Reads and Effective_Writes
         --  (SPARK RM 7.1.2(16)).

         elsif Is_Single_Protected_Object (Item_Id) then
            declare
               Constit_Elmt : Elmt_Id;
               Constit_Id   : Entity_Id;
               Constits     : constant Elist_Id
                 := Part_Of_Constituents (Item_Id);
            begin
               if Present (Constits) then
                  Constit_Elmt := First_Elmt (Constits);
                  while Present (Constit_Elmt) loop
                     Constit_Id := Node (Constit_Elmt);

                     if Has_Enabled_Property (Constit_Id, Property) then
                        return True;
                     end if;

                     Next_Elmt (Constit_Elmt);
                  end loop;
               end if;
            end;
         end if;

         return False;
      end Protected_Type_Or_Variable_Has_Enabled_Property;

      --------------------------------
      -- State_Has_Enabled_Property --
      --------------------------------

      function State_Has_Enabled_Property return Boolean is
         Decl : constant Node_Id := Parent (Item_Id);

         procedure Find_Simple_Properties
           (Has_External    : out Boolean;
            Has_Synchronous : out Boolean);
         --  Extract the simple properties associated with declaration Decl

         function Is_Enabled_External_Property return Boolean;
         --  Determine whether property Property appears within the external
         --  property list of declaration Decl, and return its status.

         ----------------------------
         -- Find_Simple_Properties --
         ----------------------------

         procedure Find_Simple_Properties
           (Has_External    : out Boolean;
            Has_Synchronous : out Boolean)
         is
            Opt : Node_Id;

         begin
            --  Assume that none of the properties are available

            Has_External    := False;
            Has_Synchronous := False;

            Opt := First (Expressions (Decl));
            while Present (Opt) loop
               if Nkind (Opt) = N_Identifier then
                  if Chars (Opt) = Name_External then
                     Has_External := True;

                  elsif Chars (Opt) = Name_Synchronous then
                     Has_Synchronous := True;
                  end if;
               end if;

               Next (Opt);
            end loop;
         end Find_Simple_Properties;

         ----------------------------------
         -- Is_Enabled_External_Property --
         ----------------------------------

         function Is_Enabled_External_Property return Boolean is
            Opt      : Node_Id;
            Opt_Nam  : Node_Id;
            Prop     : Node_Id;
            Prop_Nam : Node_Id;
            Props    : Node_Id;

         begin
            Opt := First (Component_Associations (Decl));
            while Present (Opt) loop
               Opt_Nam := First (Choices (Opt));

               if Nkind (Opt_Nam) = N_Identifier
                 and then Chars (Opt_Nam) = Name_External
               then
                  Props := Expression (Opt);

                  --  Multiple properties appear as an aggregate

                  if Nkind (Props) = N_Aggregate then

                     --  Simple property form

                     Prop := First (Expressions (Props));
                     while Present (Prop) loop
                        if Chars (Prop) = Property then
                           return True;
                        end if;

                        Next (Prop);
                     end loop;

                     --  Property with expression form

                     Prop := First (Component_Associations (Props));
                     while Present (Prop) loop
                        Prop_Nam := First (Choices (Prop));

                        --  The property can be represented in two ways:
                        --      others   => <value>
                        --    <property> => <value>

                        if Nkind (Prop_Nam) = N_Others_Choice
                          or else (Nkind (Prop_Nam) = N_Identifier
                                    and then Chars (Prop_Nam) = Property)
                        then
                           return Is_True (Expr_Value (Expression (Prop)));
                        end if;

                        Next (Prop);
                     end loop;

                  --  Single property

                  else
                     return Chars (Props) = Property;
                  end if;
               end if;

               Next (Opt);
            end loop;

            return False;
         end Is_Enabled_External_Property;

         --  Local variables

         Has_External    : Boolean;
         Has_Synchronous : Boolean;

      --  Start of processing for State_Has_Enabled_Property

      begin
         --  The declaration of an external abstract state appears as an
         --  extension aggregate. If this is not the case, properties can
         --  never be set.

         if Nkind (Decl) /= N_Extension_Aggregate then
            return False;
         end if;

         Find_Simple_Properties (Has_External, Has_Synchronous);

         --  Simple option External enables all properties (SPARK RM 7.1.2(2))

         if Has_External then
            return True;

         --  Option External may enable or disable specific properties

         elsif Is_Enabled_External_Property then
            return True;

         --  Simple option Synchronous
         --
         --    enables                disables
         --       Async_Readers          Effective_Reads
         --       Async_Writers          Effective_Writes
         --
         --  Note that both forms of External have higher precedence than
         --  Synchronous (SPARK RM 7.1.4(9)).

         elsif Has_Synchronous then
            return Property in Name_Async_Readers | Name_Async_Writers;
         end if;

         return False;
      end State_Has_Enabled_Property;

      -------------------------------------------
      -- Type_Or_Variable_Has_Enabled_Property --
      -------------------------------------------

      function Type_Or_Variable_Has_Enabled_Property
        (Item_Id : Entity_Id) return Boolean
      is
         function Is_Enabled (Prag : Node_Id) return Boolean;
         --  Determine whether property pragma Prag (if present) denotes an
         --  enabled property.

         ----------------
         -- Is_Enabled --
         ----------------

         function Is_Enabled (Prag : Node_Id) return Boolean is
            Arg1 : Node_Id;

         begin
            if Present (Prag) then
               Arg1 := First (Pragma_Argument_Associations (Prag));

               --  The pragma has an optional Boolean expression, the related
               --  property is enabled only when the expression evaluates to
               --  True.

               if Present (Arg1) then
                  return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));

               --  Otherwise the lack of expression enables the property by
               --  default.

               else
                  return True;
               end if;

            --  The property was never set in the first place

            else
               return False;
            end if;
         end Is_Enabled;

         --  Local variables

         AR : constant Node_Id :=
                Get_Pragma (Item_Id, Pragma_Async_Readers);
         AW : constant Node_Id :=
                Get_Pragma (Item_Id, Pragma_Async_Writers);
         ER : constant Node_Id :=
                Get_Pragma (Item_Id, Pragma_Effective_Reads);
         EW : constant Node_Id :=
                Get_Pragma (Item_Id, Pragma_Effective_Writes);

         Is_Derived_Type_With_Volatile_Parent_Type : constant Boolean :=
           Is_Derived_Type (Item_Id)
           and then Is_Effectively_Volatile (Etype (Base_Type (Item_Id)));

      --  Start of processing for Type_Or_Variable_Has_Enabled_Property

      begin
         --  A non-effectively volatile object can never possess external
         --  properties.

         if not Is_Effectively_Volatile (Item_Id) then
            return False;

         --  External properties related to variables come in two flavors -
         --  explicit and implicit. The explicit case is characterized by the
         --  presence of a property pragma with an optional Boolean flag. The
         --  property is enabled when the flag evaluates to True or the flag is
         --  missing altogether.

         elsif Property = Name_Async_Readers    and then Present (AR) then
            return Is_Enabled (AR);

         elsif Property = Name_Async_Writers    and then Present (AW) then
            return Is_Enabled (AW);

         elsif Property = Name_Effective_Reads  and then Present (ER) then
            return Is_Enabled (ER);

         elsif Property = Name_Effective_Writes and then Present (EW) then
            return Is_Enabled (EW);

         --  If other properties are set explicitly, then this one is set
         --  implicitly to False, except in the case of a derived type
         --  whose parent type is volatile (in that case, we will inherit
         --  from the parent type, below).

         elsif (Present (AR)
           or else Present (AW)
           or else Present (ER)
           or else Present (EW))
           and then not Is_Derived_Type_With_Volatile_Parent_Type
         then
            return False;

         --  For a private type, may need to look at the full view

         elsif Is_Private_Type (Item_Id) and then Present (Full_View (Item_Id))
         then
            return Type_Or_Variable_Has_Enabled_Property (Full_View (Item_Id));

         --  For a derived type whose parent type is volatile, the
         --  property may be inherited (but ignore a non-volatile parent).

         elsif Is_Derived_Type_With_Volatile_Parent_Type then
            return Type_Or_Variable_Has_Enabled_Property
              (First_Subtype (Etype (Base_Type (Item_Id))));

         --  If not specified explicitly for an object and the type
         --  is effectively volatile, then take result from the type.

         elsif not Is_Type (Item_Id)
           and then Is_Effectively_Volatile (Etype (Item_Id))
         then
            return Has_Enabled_Property (Etype (Item_Id), Property);

         --  The implicit case lacks all property pragmas

         elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
            if Is_Protected_Type (Etype (Item_Id)) then
               return Protected_Type_Or_Variable_Has_Enabled_Property;
            else
               return True;
            end if;

         else
            return False;
         end if;
      end Type_Or_Variable_Has_Enabled_Property;

   --  Start of processing for Has_Enabled_Property

   begin
      --  Abstract states and variables have a flexible scheme of specifying
      --  external properties.

      if Ekind (Item_Id) = E_Abstract_State then
         return State_Has_Enabled_Property;

      elsif Ekind (Item_Id) in E_Variable | E_Constant then
         return Type_Or_Variable_Has_Enabled_Property (Item_Id);

      --  Other objects can only inherit properties through their type. We
      --  cannot call directly Type_Or_Variable_Has_Enabled_Property on
      --  these as they don't have contracts attached, which is expected by
      --  this function.

      elsif Is_Object (Item_Id) then
         return Type_Or_Variable_Has_Enabled_Property (Etype (Item_Id));

      elsif Is_Type (Item_Id) then
         return Type_Or_Variable_Has_Enabled_Property
           (Item_Id => First_Subtype (Item_Id));

      --  Otherwise a property is enabled when the related item is effectively
      --  volatile.

      else
         return Is_Effectively_Volatile (Item_Id);
      end if;
   end Has_Enabled_Property;

   -------------------------------------
   -- Has_Full_Default_Initialization --
   -------------------------------------

   function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
      Comp : Entity_Id;

   begin
      --  A type subject to pragma Default_Initial_Condition may be fully
      --  default initialized depending on inheritance and the argument of
      --  the pragma. Since any type may act as the full view of a private
      --  type, this check must be performed prior to the specialized tests
      --  below.

      if Has_Fully_Default_Initializing_DIC_Pragma (Typ) then
         return True;
      end if;

      --  A scalar type is fully default initialized if it is subject to aspect
      --  Default_Value.

      if Is_Scalar_Type (Typ) then
         return Has_Default_Aspect (Typ);

      --  An access type is fully default initialized by default

      elsif Is_Access_Type (Typ) then
         return True;

      --  An array type is fully default initialized if its element type is
      --  scalar and the array type carries aspect Default_Component_Value or
      --  the element type is fully default initialized.

      elsif Is_Array_Type (Typ) then
         return
           Has_Default_Aspect (Typ)
             or else Has_Full_Default_Initialization (Component_Type (Typ));

      --  A protected type, record type, or type extension is fully default
      --  initialized if all its components either carry an initialization
      --  expression or have a type that is fully default initialized. The
      --  parent type of a type extension must be fully default initialized.

      elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then

         --  Inspect all entities defined in the scope of the type, looking for
         --  uninitialized components.

         Comp := First_Component (Typ);
         while Present (Comp) loop
            if Comes_From_Source (Comp)
              and then No (Expression (Parent (Comp)))
              and then not Has_Full_Default_Initialization (Etype (Comp))
            then
               return False;
            end if;

            Next_Component (Comp);
         end loop;

         --  Ensure that the parent type of a type extension is fully default
         --  initialized.

         if Etype (Typ) /= Typ
           and then not Has_Full_Default_Initialization (Etype (Typ))
         then
            return False;
         end if;

         --  If we get here, then all components and parent portion are fully
         --  default initialized.

         return True;

      --  A task type is fully default initialized by default

      elsif Is_Task_Type (Typ) then
         return True;

      --  Otherwise the type is not fully default initialized

      else
         return False;
      end if;
   end Has_Full_Default_Initialization;

   -----------------------------------------------
   -- Has_Fully_Default_Initializing_DIC_Pragma --
   -----------------------------------------------

   function Has_Fully_Default_Initializing_DIC_Pragma
     (Typ : Entity_Id) return Boolean
   is
      Args : List_Id;
      Prag : Node_Id;

   begin
      --  A type that inherits pragma Default_Initial_Condition from a parent
      --  type is automatically fully default initialized.

      if Has_Inherited_DIC (Typ) then
         return True;

      --  Otherwise the type is fully default initialized only when the pragma
      --  appears without an argument, or the argument is non-null.

      elsif Has_Own_DIC (Typ) then
         Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
         pragma Assert (Present (Prag));
         Args := Pragma_Argument_Associations (Prag);

         --  The pragma appears without an argument in which case it defaults
         --  to True.

         if No (Args) then
            return True;

         --  The pragma appears with a non-null expression

         elsif Nkind (Get_Pragma_Arg (First (Args))) /= N_Null then
            return True;
         end if;
      end if;

      return False;
   end Has_Fully_Default_Initializing_DIC_Pragma;

   --------------------
   -- Has_Infinities --
   --------------------

   function Has_Infinities (E : Entity_Id) return Boolean is
   begin
      return
        Is_Floating_Point_Type (E)
          and then Nkind (Scalar_Range (E)) = N_Range
          and then Includes_Infinities (Scalar_Range (E));
   end Has_Infinities;

   --------------------
   -- Has_Interfaces --
   --------------------

   function Has_Interfaces
     (T             : Entity_Id;
      Use_Full_View : Boolean := True) return Boolean
   is
      Typ : Entity_Id := Base_Type (T);

   begin
      --  Handle concurrent types

      if Is_Concurrent_Type (Typ) then
         Typ := Corresponding_Record_Type (Typ);
      end if;

      if not Present (Typ)
        or else not Is_Record_Type (Typ)
        or else not Is_Tagged_Type (Typ)
      then
         return False;
      end if;

      --  Handle private types

      if Use_Full_View and then Present (Full_View (Typ)) then
         Typ := Full_View (Typ);
      end if;

      --  Handle concurrent record types

      if Is_Concurrent_Record_Type (Typ)
        and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
      then
         return True;
      end if;

      loop
         if Is_Interface (Typ)
           or else
             (Is_Record_Type (Typ)
               and then Present (Interfaces (Typ))
               and then not Is_Empty_Elmt_List (Interfaces (Typ)))
         then
            return True;
         end if;

         exit when Etype (Typ) = Typ

            --  Handle private types

            or else (Present (Full_View (Etype (Typ)))
                      and then Full_View (Etype (Typ)) = Typ)

            --  Protect frontend against wrong sources with cyclic derivations

            or else Etype (Typ) = T;

         --  Climb to the ancestor type handling private types

         if Present (Full_View (Etype (Typ))) then
            Typ := Full_View (Etype (Typ));
         else
            Typ := Etype (Typ);
         end if;
      end loop;

      return False;
   end Has_Interfaces;

   --------------------------
   -- Has_Max_Queue_Length --
   --------------------------

   function Has_Max_Queue_Length (Id : Entity_Id) return Boolean is
   begin
      return
        Ekind (Id) = E_Entry
          and then Present (Get_Pragma (Id, Pragma_Max_Queue_Length));
   end Has_Max_Queue_Length;

   ---------------------------------
   -- Has_No_Obvious_Side_Effects --
   ---------------------------------

   function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
   begin
      --  For now handle literals, constants, and non-volatile variables and
      --  expressions combining these with operators or short circuit forms.

      if Nkind (N) in N_Numeric_Or_String_Literal then
         return True;

      elsif Nkind (N) = N_Character_Literal then
         return True;

      elsif Nkind (N) in N_Unary_Op then
         return Has_No_Obvious_Side_Effects (Right_Opnd (N));

      elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
         return Has_No_Obvious_Side_Effects (Left_Opnd  (N))
                   and then
                Has_No_Obvious_Side_Effects (Right_Opnd (N));

      elsif Nkind (N) = N_Expression_With_Actions
        and then Is_Empty_List (Actions (N))
      then
         return Has_No_Obvious_Side_Effects (Expression (N));

      elsif Nkind (N) in N_Has_Entity then
         return Present (Entity (N))
           and then
             Ekind (Entity (N)) in
               E_Variable     | E_Constant      | E_Enumeration_Literal |
               E_In_Parameter | E_Out_Parameter | E_In_Out_Parameter
           and then not Is_Volatile (Entity (N));

      else
         return False;
      end if;
   end Has_No_Obvious_Side_Effects;

   -----------------------------
   -- Has_Non_Null_Refinement --
   -----------------------------

   function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
      Constits : Elist_Id;

   begin
      pragma Assert (Ekind (Id) = E_Abstract_State);
      Constits := Refinement_Constituents (Id);

      --  For a refinement to be non-null, the first constituent must be
      --  anything other than null.

      return
        Present (Constits)
          and then Nkind (Node (First_Elmt (Constits))) /= N_Null;
   end Has_Non_Null_Refinement;

   -----------------------------
   -- Has_Non_Null_Statements --
   -----------------------------

   function Has_Non_Null_Statements (L : List_Id) return Boolean is
      Node : Node_Id;

   begin
      if Is_Non_Empty_List (L) then
         Node := First (L);

         loop
            if Nkind (Node) not in N_Null_Statement | N_Call_Marker then
               return True;
            end if;

            Next (Node);
            exit when Node = Empty;
         end loop;
      end if;

      return False;
   end Has_Non_Null_Statements;

   ----------------------------------
   -- Is_Access_Subprogram_Wrapper --
   ----------------------------------

   function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean is
      Formal : constant Entity_Id := Last_Formal (E);
   begin
      return Present (Formal)
        and then Ekind (Etype (Formal)) in Access_Subprogram_Kind
        and then Access_Subprogram_Wrapper
           (Directly_Designated_Type (Etype (Formal))) = E;
   end Is_Access_Subprogram_Wrapper;

   ---------------------------------
   -- Side_Effect_Free_Statements --
   ---------------------------------

   function Side_Effect_Free_Statements (L : List_Id) return Boolean is
      Node : Node_Id;

   begin
      if Is_Non_Empty_List (L) then
         Node := First (L);

         loop
            case Nkind (Node) is
               when N_Null_Statement | N_Call_Marker | N_Raise_xxx_Error =>
                  null;
               when N_Object_Declaration =>
                  if Present (Expression (Node))
                    and then not Side_Effect_Free (Expression (Node))
                  then
                     return False;
                  end if;

               when others =>
                  return False;
            end case;

            Next (Node);
            exit when Node = Empty;
         end loop;
      end if;

      return True;
   end Side_Effect_Free_Statements;

   ---------------------------
   -- Side_Effect_Free_Loop --
   ---------------------------

   function Side_Effect_Free_Loop (N : Node_Id) return Boolean is
      Scheme : Node_Id;
      Spec   : Node_Id;
      Subt   : Node_Id;

   begin
      --  If this is not a loop (e.g. because the loop has been rewritten),
      --  then return false.

      if Nkind (N) /= N_Loop_Statement then
         return False;
      end if;

      --  First check the statements

      if Side_Effect_Free_Statements (Statements (N)) then

         --  Then check the loop condition/indexes

         if Present (Iteration_Scheme (N)) then
            Scheme := Iteration_Scheme (N);

            if Present (Condition (Scheme))
              or else Present (Iterator_Specification (Scheme))
            then
               return False;
            elsif Present (Loop_Parameter_Specification (Scheme)) then
               Spec := Loop_Parameter_Specification (Scheme);
               Subt := Discrete_Subtype_Definition (Spec);

               if Present (Subt) then
                  if Nkind (Subt) = N_Range then
                     return Side_Effect_Free (Low_Bound (Subt))
                       and then Side_Effect_Free (High_Bound (Subt));
                  else
                     --  subtype indication

                     return True;
                  end if;
               end if;
            end if;
         end if;
      end if;

      return False;
   end Side_Effect_Free_Loop;

   ----------------------------------
   -- Has_Non_Trivial_Precondition --
   ----------------------------------

   function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean is
      Pre : constant Node_Id := Find_Aspect (Subp, Aspect_Pre);

   begin
      return
        Present (Pre)
          and then Class_Present (Pre)
          and then not Is_Entity_Name (Expression (Pre));
   end Has_Non_Trivial_Precondition;

   -------------------
   -- Has_Null_Body --
   -------------------

   function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
      Body_Id : Entity_Id;
      Decl    : Node_Id;
      Spec    : Node_Id;
      Stmt1   : Node_Id;
      Stmt2   : Node_Id;

   begin
      Spec := Parent (Proc_Id);
      Decl := Parent (Spec);

      --  Retrieve the entity of the procedure body (e.g. invariant proc).

      if Nkind (Spec) = N_Procedure_Specification
        and then Nkind (Decl) = N_Subprogram_Declaration
      then
         Body_Id := Corresponding_Body (Decl);

      --  The body acts as a spec

      else
         Body_Id := Proc_Id;
      end if;

      --  The body will be generated later

      if No (Body_Id) then
         return False;
      end if;

      Spec := Parent (Body_Id);
      Decl := Parent (Spec);

      pragma Assert
        (Nkind (Spec) = N_Procedure_Specification
          and then Nkind (Decl) = N_Subprogram_Body);

      Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));

      --  Look for a null statement followed by an optional return
      --  statement.

      if Nkind (Stmt1) = N_Null_Statement then
         Stmt2 := Next (Stmt1);

         if Present (Stmt2) then
            return Nkind (Stmt2) = N_Simple_Return_Statement;
         else
            return True;
         end if;
      end if;

      return False;
   end Has_Null_Body;

   ------------------------
   -- Has_Null_Exclusion --
   ------------------------

   function Has_Null_Exclusion (N : Node_Id) return Boolean is
   begin
      case Nkind (N) is
         when N_Access_Definition
            | N_Access_Function_Definition
            | N_Access_Procedure_Definition
            | N_Access_To_Object_Definition
            | N_Allocator
            | N_Derived_Type_Definition
            | N_Function_Specification
            | N_Subtype_Declaration
         =>
            return Null_Exclusion_Present (N);

         when N_Component_Definition
            | N_Formal_Object_Declaration
         =>
            if Present (Subtype_Mark (N)) then
               return Null_Exclusion_Present (N);
            else pragma Assert (Present (Access_Definition (N)));
               return Null_Exclusion_Present (Access_Definition (N));
            end if;

         when N_Object_Renaming_Declaration =>
            if Present (Subtype_Mark (N)) then
               return Null_Exclusion_Present (N);
            elsif Present (Access_Definition (N)) then
               return Null_Exclusion_Present (Access_Definition (N));
            else
               return False;  -- Case of no subtype in renaming (AI12-0275)
            end if;

         when N_Discriminant_Specification =>
            if Nkind (Discriminant_Type (N)) = N_Access_Definition then
               return Null_Exclusion_Present (Discriminant_Type (N));
            else
               return Null_Exclusion_Present (N);
            end if;

         when N_Object_Declaration =>
            if Nkind (Object_Definition (N)) = N_Access_Definition then
               return Null_Exclusion_Present (Object_Definition (N));
            else
               return Null_Exclusion_Present (N);
            end if;

         when N_Parameter_Specification =>
            if Nkind (Parameter_Type (N)) = N_Access_Definition then
               return Null_Exclusion_Present (Parameter_Type (N))
                 or else Null_Exclusion_Present (N);
            else
               return Null_Exclusion_Present (N);
            end if;

         when others =>
            return False;
      end case;
   end Has_Null_Exclusion;

   ------------------------
   -- Has_Null_Extension --
   ------------------------

   function Has_Null_Extension (T : Entity_Id) return Boolean is
      B     : constant Entity_Id := Base_Type (T);
      Comps : Node_Id;
      Ext   : Node_Id;

   begin
      if Nkind (Parent (B)) = N_Full_Type_Declaration
        and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
      then
         Ext := Record_Extension_Part (Type_Definition (Parent (B)));

         if Present (Ext) then
            if Null_Present (Ext) then
               return True;
            else
               Comps := Component_List (Ext);

               --  The null component list is rewritten during analysis to
               --  include the parent component. Any other component indicates
               --  that the extension was not originally null.

               return Null_Present (Comps)
                 or else No (Next (First (Component_Items (Comps))));
            end if;
         else
            return False;
         end if;

      else
         return False;
      end if;
   end Has_Null_Extension;

   -------------------------
   -- Has_Null_Refinement --
   -------------------------

   function Has_Null_Refinement (Id : Entity_Id) return Boolean is
      Constits : Elist_Id;

   begin
      pragma Assert (Ekind (Id) = E_Abstract_State);
      Constits := Refinement_Constituents (Id);

      --  For a refinement to be null, the state's sole constituent must be a
      --  null.

      return
        Present (Constits)
          and then Nkind (Node (First_Elmt (Constits))) = N_Null;
   end Has_Null_Refinement;

   -------------------------------
   -- Has_Overriding_Initialize --
   -------------------------------

   function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
      BT   : constant Entity_Id := Base_Type (T);
      P    : Elmt_Id;

   begin
      if Is_Controlled (BT) then
         if Is_RTU (Scope (BT), Ada_Finalization) then
            return False;

         elsif Present (Primitive_Operations (BT)) then
            P := First_Elmt (Primitive_Operations (BT));
            while Present (P) loop
               declare
                  Init : constant Entity_Id := Node (P);
                  Formal : constant Entity_Id := First_Formal (Init);
               begin
                  if Ekind (Init) = E_Procedure
                    and then Chars (Init) = Name_Initialize
                    and then Comes_From_Source (Init)
                    and then Present (Formal)
                    and then Etype (Formal) = BT
                    and then No (Next_Formal (Formal))
                    and then (Ada_Version < Ada_2012
                               or else not Null_Present (Parent (Init)))
                  then
                     return True;
                  end if;
               end;

               Next_Elmt (P);
            end loop;
         end if;

         --  Here if type itself does not have a non-null Initialize operation:
         --  check immediate ancestor.

         if Is_Derived_Type (BT)
           and then Has_Overriding_Initialize (Etype (BT))
         then
            return True;
         end if;
      end if;

      return False;
   end Has_Overriding_Initialize;

   --------------------------------------
   -- Has_Preelaborable_Initialization --
   --------------------------------------

   function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
      Has_PE : Boolean;

      procedure Check_Components (E : Entity_Id);
      --  Check component/discriminant chain, sets Has_PE False if a component
      --  or discriminant does not meet the preelaborable initialization rules.

      ----------------------
      -- Check_Components --
      ----------------------

      procedure Check_Components (E : Entity_Id) is
         Ent : Entity_Id;
         Exp : Node_Id;

      begin
         --  Loop through entities of record or protected type

         Ent := E;
         while Present (Ent) loop

            --  We are interested only in components and discriminants

            Exp := Empty;

            case Ekind (Ent) is
               when E_Component =>

                  --  Get default expression if any. If there is no declaration
                  --  node, it means we have an internal entity. The parent and
                  --  tag fields are examples of such entities. For such cases,
                  --  we just test the type of the entity.

                  if Present (Declaration_Node (Ent)) then
                     Exp := Expression (Declaration_Node (Ent));
                  end if;

               when E_Discriminant =>

                  --  Note: for a renamed discriminant, the Declaration_Node
                  --  may point to the one from the ancestor, and have a
                  --  different expression, so use the proper attribute to
                  --  retrieve the expression from the derived constraint.

                  Exp := Discriminant_Default_Value (Ent);

               when others =>
                  goto Check_Next_Entity;
            end case;

            --  A component has PI if it has no default expression and the
            --  component type has PI.

            if No (Exp) then
               if not Has_Preelaborable_Initialization (Etype (Ent)) then
                  Has_PE := False;
                  exit;
               end if;

            --  Require the default expression to be preelaborable

            elsif not Is_Preelaborable_Construct (Exp) then
               Has_PE := False;
               exit;
            end if;

         <<Check_Next_Entity>>
            Next_Entity (Ent);
         end loop;
      end Check_Components;

   --  Start of processing for Has_Preelaborable_Initialization

   begin
      --  Immediate return if already marked as known preelaborable init. This
      --  covers types for which this function has already been called once
      --  and returned True (in which case the result is cached), and also
      --  types to which a pragma Preelaborable_Initialization applies.

      if Known_To_Have_Preelab_Init (E) then
         return True;
      end if;

      --  If the type is a subtype representing a generic actual type, then
      --  test whether its base type has preelaborable initialization since
      --  the subtype representing the actual does not inherit this attribute
      --  from the actual or formal. (but maybe it should???)

      if Is_Generic_Actual_Type (E) then
         return Has_Preelaborable_Initialization (Base_Type (E));
      end if;

      --  All elementary types have preelaborable initialization

      if Is_Elementary_Type (E) then
         Has_PE := True;

      --  Array types have PI if the component type has PI

      elsif Is_Array_Type (E) then
         Has_PE := Has_Preelaborable_Initialization (Component_Type (E));

      --  A derived type has preelaborable initialization if its parent type
      --  has preelaborable initialization and (in the case of a derived record
      --  extension) if the non-inherited components all have preelaborable
      --  initialization. However, a user-defined controlled type with an
      --  overriding Initialize procedure does not have preelaborable
      --  initialization.

      elsif Is_Derived_Type (E) then

         --  If the derived type is a private extension then it doesn't have
         --  preelaborable initialization.

         if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
            return False;
         end if;

         --  First check whether ancestor type has preelaborable initialization

         Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));

         --  If OK, check extension components (if any)

         if Has_PE and then Is_Record_Type (E) then
            Check_Components (First_Entity (E));
         end if;

         --  Check specifically for 10.2.1(11.4/2) exception: a controlled type
         --  with a user defined Initialize procedure does not have PI. If
         --  the type is untagged, the control primitives come from a component
         --  that has already been checked.

         if Has_PE
           and then Is_Controlled (E)
           and then Is_Tagged_Type (E)
           and then Has_Overriding_Initialize (E)
         then
            Has_PE := False;
         end if;

      --  Private types not derived from a type having preelaborable init and
      --  that are not marked with pragma Preelaborable_Initialization do not
      --  have preelaborable initialization.

      elsif Is_Private_Type (E) then
         return False;

      --  Record type has PI if it is non private and all components have PI

      elsif Is_Record_Type (E) then
         Has_PE := True;
         Check_Components (First_Entity (E));

      --  Protected types must not have entries, and components must meet
      --  same set of rules as for record components.

      elsif Is_Protected_Type (E) then
         if Has_Entries (E) then
            Has_PE := False;
         else
            Has_PE := True;
            Check_Components (First_Entity (E));
            Check_Components (First_Private_Entity (E));
         end if;

      --  Type System.Address always has preelaborable initialization

      elsif Is_RTE (E, RE_Address) then
         Has_PE := True;

      --  In all other cases, type does not have preelaborable initialization

      else
         return False;
      end if;

      --  If type has preelaborable initialization, cache result

      if Has_PE then
         Set_Known_To_Have_Preelab_Init (E);
      end if;

      return Has_PE;
   end Has_Preelaborable_Initialization;

   ----------------
   -- Has_Prefix --
   ----------------

   function Has_Prefix (N : Node_Id) return Boolean is
   begin
      return Nkind (N) in
        N_Attribute_Reference | N_Expanded_Name | N_Explicit_Dereference |
        N_Indexed_Component   | N_Reference     | N_Selected_Component   |
        N_Slice;
   end Has_Prefix;

   ---------------------------
   -- Has_Private_Component --
   ---------------------------

   function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
      Btype     : Entity_Id := Base_Type (Type_Id);
      Component : Entity_Id;

   begin
      if Error_Posted (Type_Id)
        or else Error_Posted (Btype)
      then
         return False;
      end if;

      if Is_Class_Wide_Type (Btype) then
         Btype := Root_Type (Btype);
      end if;

      if Is_Private_Type (Btype) then
         declare
            UT : constant Entity_Id := Underlying_Type (Btype);
         begin
            if No (UT) then
               if No (Full_View (Btype)) then
                  return not Is_Generic_Type (Btype)
                            and then
                         not Is_Generic_Type (Root_Type (Btype));
               else
                  return not Is_Generic_Type (Root_Type (Full_View (Btype)));
               end if;
            else
               return not Is_Frozen (UT) and then Has_Private_Component (UT);
            end if;
         end;

      elsif Is_Array_Type (Btype) then
         return Has_Private_Component (Component_Type (Btype));

      elsif Is_Record_Type (Btype) then
         Component := First_Component (Btype);
         while Present (Component) loop
            if Has_Private_Component (Etype (Component)) then
               return True;
            end if;

            Next_Component (Component);
         end loop;

         return False;

      elsif Is_Protected_Type (Btype)
        and then Present (Corresponding_Record_Type (Btype))
      then
         return Has_Private_Component (Corresponding_Record_Type (Btype));

      else
         return False;
      end if;
   end Has_Private_Component;

   --------------------------------
   -- Has_Relaxed_Initialization --
   --------------------------------

   function Has_Relaxed_Initialization (E : Entity_Id) return Boolean is

      function Denotes_Relaxed_Parameter
        (Expr  : Node_Id;
         Param : Entity_Id)
         return Boolean;
      --  Returns True iff expression Expr denotes a formal parameter or
      --  function Param (through its attribute Result).

      -------------------------------
      -- Denotes_Relaxed_Parameter --
      -------------------------------

      function Denotes_Relaxed_Parameter
        (Expr  : Node_Id;
         Param : Entity_Id) return Boolean is
      begin
         if Nkind (Expr) in N_Identifier | N_Expanded_Name then
            return Entity (Expr) = Param;
         else
            pragma Assert (Is_Attribute_Result (Expr));
            return Entity (Prefix (Expr)) = Param;
         end if;
      end Denotes_Relaxed_Parameter;

   --  Start of processing for Has_Relaxed_Initialization

   begin
      --  When analyzing, we checked all syntax legality rules for the aspect
      --  Relaxed_Initialization, but didn't store the property anywhere (e.g.
      --  as an Einfo flag). To query the property we look directly at the AST,
      --  but now without any syntactic checks.

      case Ekind (E) is
         --  Abstract states have option Relaxed_Initialization

         when E_Abstract_State =>
            return Is_Relaxed_Initialization_State (E);

         --  Constants have this aspect attached directly; for deferred
         --  constants, the aspect is attached to the partial view.

         when E_Constant =>
            return Has_Aspect (E, Aspect_Relaxed_Initialization);

         --  Variables have this aspect attached directly

         when E_Variable =>
            return Has_Aspect (E, Aspect_Relaxed_Initialization);

         --  Types have this aspect attached directly (though we only allow it
         --  to be specified for the first subtype). For private types, the
         --  aspect is attached to the partial view.

         when Type_Kind =>
            pragma Assert (Is_First_Subtype (E));
            return Has_Aspect (E, Aspect_Relaxed_Initialization);

         --  Formal parameters and functions have the Relaxed_Initialization
         --  aspect attached to the subprogram entity and must be listed in
         --  the aspect expression.

         when Formal_Kind
            | E_Function
         =>
            declare
               Subp_Id     : Entity_Id;
               Aspect_Expr : Node_Id;
               Param_Expr  : Node_Id;
               Assoc       : Node_Id;

            begin
               if Is_Formal (E) then
                  Subp_Id := Scope (E);
               else
                  Subp_Id := E;
               end if;

               if Has_Aspect (Subp_Id, Aspect_Relaxed_Initialization) then
                  Aspect_Expr :=
                    Find_Value_Of_Aspect
                      (Subp_Id, Aspect_Relaxed_Initialization);

                  --  Aspect expression is either an aggregate with an optional
                  --  Boolean expression (which defaults to True), e.g.:
                  --
                  --    function F (X : Integer) return Integer
                  --      with Relaxed_Initialization => (X => True, F'Result);

                  if Nkind (Aspect_Expr) = N_Aggregate then

                     if Present (Component_Associations (Aspect_Expr)) then
                        Assoc := First (Component_Associations (Aspect_Expr));

                        while Present (Assoc) loop
                           if Denotes_Relaxed_Parameter
                             (First (Choices (Assoc)), E)
                           then
                              return
                                Is_True
                                  (Static_Boolean (Expression (Assoc)));
                           end if;

                           Next (Assoc);
                        end loop;
                     end if;

                     Param_Expr := First (Expressions (Aspect_Expr));

                     while Present (Param_Expr) loop
                        if Denotes_Relaxed_Parameter (Param_Expr, E) then
                           return True;
                        end if;

                        Next (Param_Expr);
                     end loop;

                     return False;

                  --  or it is a single identifier, e.g.:
                  --
                  --    function F (X : Integer) return Integer
                  --      with Relaxed_Initialization => X;

                  else
                     return Denotes_Relaxed_Parameter (Aspect_Expr, E);
                  end if;
               else
                  return False;
               end if;
            end;

         when others =>
            raise Program_Error;
      end case;
   end Has_Relaxed_Initialization;

   ----------------------
   -- Has_Signed_Zeros --
   ----------------------

   function Has_Signed_Zeros (E : Entity_Id) return Boolean is
   begin
      return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
   end Has_Signed_Zeros;

   ------------------------------
   -- Has_Significant_Contract --
   ------------------------------

   function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
      Subp_Nam : constant Name_Id := Chars (Subp_Id);

   begin
      --  _Finalizer procedure

      if Subp_Nam = Name_uFinalizer then
         return False;

      --  _Postconditions procedure

      elsif Subp_Nam = Name_uPostconditions then
         return False;

      --  Predicate function

      elsif Ekind (Subp_Id) = E_Function
        and then Is_Predicate_Function (Subp_Id)
      then
         return False;

      --  TSS subprogram

      elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
         return False;

      else
         return True;
      end if;
   end Has_Significant_Contract;

   -----------------------------
   -- Has_Static_Array_Bounds --
   -----------------------------

   function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
      All_Static : Boolean;
      Dummy      : Boolean;

   begin
      Examine_Array_Bounds (Typ, All_Static, Dummy);

      return All_Static;
   end Has_Static_Array_Bounds;

   ---------------------------------------
   -- Has_Static_Non_Empty_Array_Bounds --
   ---------------------------------------

   function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean is
      All_Static : Boolean;
      Has_Empty  : Boolean;

   begin
      Examine_Array_Bounds (Typ, All_Static, Has_Empty);

      return All_Static and not Has_Empty;
   end Has_Static_Non_Empty_Array_Bounds;

   ----------------
   -- Has_Stream --
   ----------------

   function Has_Stream (T : Entity_Id) return Boolean is
      E : Entity_Id;

   begin
      if No (T) then
         return False;

      elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
         return True;

      elsif Is_Array_Type (T) then
         return Has_Stream (Component_Type (T));

      elsif Is_Record_Type (T) then
         E := First_Component (T);
         while Present (E) loop
            if Has_Stream (Etype (E)) then
               return True;
            else
               Next_Component (E);
            end if;
         end loop;

         return False;

      elsif Is_Private_Type (T) then
         return Has_Stream (Underlying_Type (T));

      else
         return False;
      end if;
   end Has_Stream;

   ----------------
   -- Has_Suffix --
   ----------------

   function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
   begin
      Get_Name_String (Chars (E));
      return Name_Buffer (Name_Len) = Suffix;
   end Has_Suffix;

   ----------------
   -- Add_Suffix --
   ----------------

   function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
   begin
      Get_Name_String (Chars (E));
      Add_Char_To_Name_Buffer (Suffix);
      return Name_Find;
   end Add_Suffix;

   -------------------
   -- Remove_Suffix --
   -------------------

   function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
   begin
      pragma Assert (Has_Suffix (E, Suffix));
      Get_Name_String (Chars (E));
      Name_Len := Name_Len - 1;
      return Name_Find;
   end Remove_Suffix;

   ----------------------------------
   -- Replace_Null_By_Null_Address --
   ----------------------------------

   procedure Replace_Null_By_Null_Address (N : Node_Id) is
      procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id);
      --  Replace operand Op with a reference to Null_Address when the operand
      --  denotes a null Address. Other_Op denotes the other operand.

      --------------------------
      -- Replace_Null_Operand --
      --------------------------

      procedure Replace_Null_Operand (Op : Node_Id; Other_Op : Node_Id) is
      begin
         --  Check the type of the complementary operand since the N_Null node
         --  has not been decorated yet.

         if Nkind (Op) = N_Null
           and then Is_Descendant_Of_Address (Etype (Other_Op))
         then
            Rewrite (Op, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (Op)));
         end if;
      end Replace_Null_Operand;

   --  Start of processing for Replace_Null_By_Null_Address

   begin
      pragma Assert (Relaxed_RM_Semantics);
      pragma Assert
        (Nkind (N) in
           N_Null | N_Op_Eq | N_Op_Ge | N_Op_Gt | N_Op_Le | N_Op_Lt | N_Op_Ne);

      if Nkind (N) = N_Null then
         Rewrite (N, New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));

      else
         declare
            L : constant Node_Id := Left_Opnd  (N);
            R : constant Node_Id := Right_Opnd (N);

         begin
            Replace_Null_Operand (L, Other_Op => R);
            Replace_Null_Operand (R, Other_Op => L);
         end;
      end if;
   end Replace_Null_By_Null_Address;

   --------------------------
   -- Has_Tagged_Component --
   --------------------------

   function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
      Comp : Entity_Id;

   begin
      if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
         return Has_Tagged_Component (Underlying_Type (Typ));

      elsif Is_Array_Type (Typ) then
         return Has_Tagged_Component (Component_Type (Typ));

      elsif Is_Tagged_Type (Typ) then
         return True;

      elsif Is_Record_Type (Typ) then
         Comp := First_Component (Typ);
         while Present (Comp) loop
            if Has_Tagged_Component (Etype (Comp)) then
               return True;
            end if;

            Next_Component (Comp);
         end loop;

         return False;

      else
         return False;
      end if;
   end Has_Tagged_Component;

   --------------------------------------------
   -- Has_Unconstrained_Access_Discriminants --
   --------------------------------------------

   function Has_Unconstrained_Access_Discriminants
     (Subtyp : Entity_Id) return Boolean
   is
      Discr : Entity_Id;

   begin
      if Has_Discriminants (Subtyp)
        and then not Is_Constrained (Subtyp)
      then
         Discr := First_Discriminant (Subtyp);
         while Present (Discr) loop
            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
               return True;
            end if;

            Next_Discriminant (Discr);
         end loop;
      end if;

      return False;
   end Has_Unconstrained_Access_Discriminants;

   -----------------------------
   -- Has_Undefined_Reference --
   -----------------------------

   function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
      Has_Undef_Ref : Boolean := False;
      --  Flag set when expression Expr contains at least one undefined
      --  reference.

      function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
      --  Determine whether N denotes a reference and if it does, whether it is
      --  undefined.

      ----------------------------
      -- Is_Undefined_Reference --
      ----------------------------

      function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
      begin
         if Is_Entity_Name (N)
           and then Present (Entity (N))
           and then Entity (N) = Any_Id
         then
            Has_Undef_Ref := True;
            return Abandon;
         end if;

         return OK;
      end Is_Undefined_Reference;

      procedure Find_Undefined_References is
        new Traverse_Proc (Is_Undefined_Reference);

   --  Start of processing for Has_Undefined_Reference

   begin
      Find_Undefined_References (Expr);

      return Has_Undef_Ref;
   end Has_Undefined_Reference;

   ----------------------------
   -- Has_Volatile_Component --
   ----------------------------

   function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
      Comp : Entity_Id;

   begin
      if Has_Volatile_Components (Typ) then
         return True;

      elsif Is_Array_Type (Typ) then
         return Is_Volatile (Component_Type (Typ));

      elsif Is_Record_Type (Typ) then
         Comp := First_Component (Typ);
         while Present (Comp) loop
            if Is_Volatile_Object (Comp) then
               return True;
            end if;

            Next_Component (Comp);
         end loop;
      end if;

      return False;
   end Has_Volatile_Component;

   -------------------------
   -- Implementation_Kind --
   -------------------------

   function Implementation_Kind (Subp : Entity_Id) return Name_Id is
      Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
      Arg       : Node_Id;
   begin
      pragma Assert (Present (Impl_Prag));
      Arg := Last (Pragma_Argument_Associations (Impl_Prag));
      return Chars (Get_Pragma_Arg (Arg));
   end Implementation_Kind;

   --------------------------
   -- Implements_Interface --
   --------------------------

   function Implements_Interface
     (Typ_Ent         : Entity_Id;
      Iface_Ent       : Entity_Id;
      Exclude_Parents : Boolean := False) return Boolean
   is
      Ifaces_List : Elist_Id;
      Elmt        : Elmt_Id;
      Iface       : Entity_Id := Base_Type (Iface_Ent);
      Typ         : Entity_Id := Base_Type (Typ_Ent);

   begin
      if Is_Class_Wide_Type (Typ) then
         Typ := Root_Type (Typ);
      end if;

      if not Has_Interfaces (Typ) then
         return False;
      end if;

      if Is_Class_Wide_Type (Iface) then
         Iface := Root_Type (Iface);
      end if;

      Collect_Interfaces (Typ, Ifaces_List);

      Elmt := First_Elmt (Ifaces_List);
      while Present (Elmt) loop
         if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
           and then Exclude_Parents
         then
            null;

         elsif Node (Elmt) = Iface then
            return True;
         end if;

         Next_Elmt (Elmt);
      end loop;

      return False;
   end Implements_Interface;

   --------------------------------
   -- Implicitly_Designated_Type --
   --------------------------------

   function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id is
      Desig : constant Entity_Id := Designated_Type (Typ);

   begin
      --  An implicit dereference is a legal occurrence of an incomplete type
      --  imported through a limited_with clause, if the full view is visible.

      if Is_Incomplete_Type (Desig)
        and then From_Limited_With (Desig)
        and then not From_Limited_With (Scope (Desig))
        and then
          (Is_Immediately_Visible (Scope (Desig))
            or else
              (Is_Child_Unit (Scope (Desig))
                and then Is_Visible_Lib_Unit (Scope (Desig))))
      then
         return Available_View (Desig);
      else
         return Desig;
      end if;
   end Implicitly_Designated_Type;

   ------------------------------------
   -- In_Assertion_Expression_Pragma --
   ------------------------------------

   function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
      Par  : Node_Id;
      Prag : Node_Id := Empty;

   begin
      --  Climb the parent chain looking for an enclosing pragma

      Par := N;
      while Present (Par) loop
         if Nkind (Par) = N_Pragma then
            Prag := Par;
            exit;

         --  Precondition-like pragmas are expanded into if statements, check
         --  the original node instead.

         elsif Nkind (Original_Node (Par)) = N_Pragma then
            Prag := Original_Node (Par);
            exit;

         --  The expansion of attribute 'Old generates a constant to capture
         --  the result of the prefix. If the parent traversal reaches
         --  one of these constants, then the node technically came from a
         --  postcondition-like pragma. Note that the Ekind is not tested here
         --  because N may be the expression of an object declaration which is
         --  currently being analyzed. Such objects carry Ekind of E_Void.

         elsif Nkind (Par) = N_Object_Declaration
           and then Constant_Present (Par)
           and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
         then
            return True;

         --  Prevent the search from going too far

         elsif Is_Body_Or_Package_Declaration (Par) then
            return False;
         end if;

         Par := Parent (Par);
      end loop;

      return
        Present (Prag)
          and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
   end In_Assertion_Expression_Pragma;

   ----------------------
   -- In_Generic_Scope --
   ----------------------

   function In_Generic_Scope (E : Entity_Id) return Boolean is
      S : Entity_Id;

   begin
      S := Scope (E);
      while Present (S) and then S /= Standard_Standard loop
         if Is_Generic_Unit (S) then
            return True;
         end if;

         S := Scope (S);
      end loop;

      return False;
   end In_Generic_Scope;

   -----------------
   -- In_Instance --
   -----------------

   function In_Instance return Boolean is
      Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
      S         : Entity_Id;

   begin
      S := Current_Scope;
      while Present (S) and then S /= Standard_Standard loop
         if Is_Generic_Instance (S) then

            --  A child instance is always compiled in the context of a parent
            --  instance. Nevertheless, its actuals must not be analyzed in an
            --  instance context. We detect this case by examining the current
            --  compilation unit, which must be a child instance, and checking
            --  that it has not been analyzed yet.

            if Is_Child_Unit (Curr_Unit)
              and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
                                                     N_Package_Instantiation
              and then Ekind (Curr_Unit) = E_Void
            then
               return False;
            else
               return True;
            end if;
         end if;

         S := Scope (S);
      end loop;

      return False;
   end In_Instance;

   ----------------------
   -- In_Instance_Body --
   ----------------------

   function In_Instance_Body return Boolean is
      S : Entity_Id;

   begin
      S := Current_Scope;
      while Present (S) and then S /= Standard_Standard loop
         if Ekind (S) in E_Function | E_Procedure
           and then Is_Generic_Instance (S)
         then
            return True;

         elsif Ekind (S) = E_Package
           and then In_Package_Body (S)
           and then Is_Generic_Instance (S)
         then
            return True;
         end if;

         S := Scope (S);
      end loop;

      return False;
   end In_Instance_Body;

   -----------------------------
   -- In_Instance_Not_Visible --
   -----------------------------

   function In_Instance_Not_Visible return Boolean is
      S : Entity_Id;

   begin
      S := Current_Scope;
      while Present (S) and then S /= Standard_Standard loop
         if Ekind (S) in E_Function | E_Procedure
           and then Is_Generic_Instance (S)
         then
            return True;

         elsif Ekind (S) = E_Package
           and then (In_Package_Body (S) or else In_Private_Part (S))
           and then Is_Generic_Instance (S)
         then
            return True;
         end if;

         S := Scope (S);
      end loop;

      return False;
   end In_Instance_Not_Visible;

   ------------------------------
   -- In_Instance_Visible_Part --
   ------------------------------

   function In_Instance_Visible_Part
     (Id : Entity_Id := Current_Scope) return Boolean
   is
      Inst : Entity_Id;

   begin
      Inst := Id;
      while Present (Inst) and then Inst /= Standard_Standard loop
         if Ekind (Inst) = E_Package
           and then Is_Generic_Instance (Inst)
           and then not In_Package_Body (Inst)
           and then not In_Private_Part (Inst)
         then
            return True;
         end if;

         Inst := Scope (Inst);
      end loop;

      return False;
   end In_Instance_Visible_Part;

   ---------------------
   -- In_Package_Body --
   ---------------------

   function In_Package_Body return Boolean is
      S : Entity_Id;

   begin
      S := Current_Scope;
      while Present (S) and then S /= Standard_Standard loop
         if Ekind (S) = E_Package and then In_Package_Body (S) then
            return True;
         else
            S := Scope (S);
         end if;
      end loop;

      return False;
   end In_Package_Body;

   --------------------------
   -- In_Pragma_Expression --
   --------------------------

   function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
      P : Node_Id;
   begin
      P := Parent (N);
      loop
         if No (P) then
            return False;
         elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
            return True;
         else
            P := Parent (P);
         end if;
      end loop;
   end In_Pragma_Expression;

   ---------------------------
   -- In_Pre_Post_Condition --
   ---------------------------

   function In_Pre_Post_Condition (N : Node_Id) return Boolean is
      Par     : Node_Id;
      Prag    : Node_Id := Empty;
      Prag_Id : Pragma_Id;

   begin
      --  Climb the parent chain looking for an enclosing pragma

      Par := N;
      while Present (Par) loop
         if Nkind (Par) = N_Pragma then
            Prag := Par;
            exit;

         --  Prevent the search from going too far

         elsif Is_Body_Or_Package_Declaration (Par) then
            exit;
         end if;

         Par := Parent (Par);
      end loop;

      if Present (Prag) then
         Prag_Id := Get_Pragma_Id (Prag);

         return
           Prag_Id = Pragma_Post
             or else Prag_Id = Pragma_Post_Class
             or else Prag_Id = Pragma_Postcondition
             or else Prag_Id = Pragma_Pre
             or else Prag_Id = Pragma_Pre_Class
             or else Prag_Id = Pragma_Precondition;

      --  Otherwise the node is not enclosed by a pre/postcondition pragma

      else
         return False;
      end if;
   end In_Pre_Post_Condition;

   ------------------------------
   -- In_Quantified_Expression --
   ------------------------------

   function In_Quantified_Expression (N : Node_Id) return Boolean is
      P : Node_Id;
   begin
      P := Parent (N);
      loop
         if No (P) then
            return False;
         elsif Nkind (P) = N_Quantified_Expression then
            return True;
         else
            P := Parent (P);
         end if;
      end loop;
   end In_Quantified_Expression;

   -------------------------------------
   -- In_Reverse_Storage_Order_Object --
   -------------------------------------

   function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
      Pref : Node_Id;
      Btyp : Entity_Id := Empty;

   begin
      --  Climb up indexed components

      Pref := N;
      loop
         case Nkind (Pref) is
            when N_Selected_Component =>
               Pref := Prefix (Pref);
               exit;

            when N_Indexed_Component =>
               Pref := Prefix (Pref);

            when others =>
               Pref := Empty;
               exit;
         end case;
      end loop;

      if Present (Pref) then
         Btyp := Base_Type (Etype (Pref));
      end if;

      return Present (Btyp)
        and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
        and then Reverse_Storage_Order (Btyp);
   end In_Reverse_Storage_Order_Object;

   ------------------------------
   -- In_Same_Declarative_Part --
   ------------------------------

   function In_Same_Declarative_Part
     (Context : Node_Id;
      N       : Node_Id) return Boolean
   is
      Cont : Node_Id := Context;
      Nod  : Node_Id;

   begin
      if Nkind (Cont) = N_Compilation_Unit_Aux then
         Cont := Parent (Cont);
      end if;

      Nod := Parent (N);
      while Present (Nod) loop
         if Nod = Cont then
            return True;

         elsif Nkind (Nod) in N_Accept_Statement
                            | N_Block_Statement
                            | N_Compilation_Unit
                            | N_Entry_Body
                            | N_Package_Body
                            | N_Package_Declaration
                            | N_Protected_Body
                            | N_Subprogram_Body
                            | N_Task_Body
         then
            return False;

         elsif Nkind (Nod) = N_Subunit then
            Nod := Corresponding_Stub (Nod);

         else
            Nod := Parent (Nod);
         end if;
      end loop;

      return False;
   end In_Same_Declarative_Part;

   --------------------------------------
   -- In_Subprogram_Or_Concurrent_Unit --
   --------------------------------------

   function In_Subprogram_Or_Concurrent_Unit return Boolean is
      E : Entity_Id;
      K : Entity_Kind;

   begin
      --  Use scope chain to check successively outer scopes

      E := Current_Scope;
      loop
         K := Ekind (E);

         if K in Subprogram_Kind
           or else K in Concurrent_Kind
           or else K in Generic_Subprogram_Kind
         then
            return True;

         elsif E = Standard_Standard then
            return False;
         end if;

         E := Scope (E);
      end loop;
   end In_Subprogram_Or_Concurrent_Unit;

   ----------------
   -- In_Subtree --
   ----------------

   function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean is
      Curr : Node_Id;

   begin
      Curr := N;
      while Present (Curr) loop
         if Curr = Root then
            return True;
         end if;

         Curr := Parent (Curr);
      end loop;

      return False;
   end In_Subtree;

   ----------------
   -- In_Subtree --
   ----------------

   function In_Subtree
     (N     : Node_Id;
      Root1 : Node_Id;
      Root2 : Node_Id) return Boolean
   is
      Curr : Node_Id;

   begin
      Curr := N;
      while Present (Curr) loop
         if Curr = Root1 or else Curr = Root2 then
            return True;
         end if;

         Curr := Parent (Curr);
      end loop;

      return False;
   end In_Subtree;

   ---------------------
   -- In_Visible_Part --
   ---------------------

   function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
   begin
      return Is_Package_Or_Generic_Package (Scope_Id)
        and then In_Open_Scopes (Scope_Id)
        and then not In_Package_Body (Scope_Id)
        and then not In_Private_Part (Scope_Id);
   end In_Visible_Part;

   -----------------------------
   -- In_While_Loop_Condition --
   -----------------------------

   function In_While_Loop_Condition (N : Node_Id) return Boolean is
      Prev : Node_Id := N;
      P    : Node_Id := Parent (N);
      --  P and Prev will be used for traversing the AST, while maintaining an
      --  invariant that P = Parent (Prev).
   begin
      loop
         if No (P) then
            return False;
         elsif Nkind (P) = N_Iteration_Scheme
           and then Prev = Condition (P)
         then
            return True;
         else
            Prev := P;
            P := Parent (P);
         end if;
      end loop;
   end In_While_Loop_Condition;

   --------------------------------
   -- Incomplete_Or_Partial_View --
   --------------------------------

   function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
      function Inspect_Decls
        (Decls : List_Id;
         Taft  : Boolean := False) return Entity_Id;
      --  Check whether a declarative region contains the incomplete or partial
      --  view of Id.

      -------------------
      -- Inspect_Decls --
      -------------------

      function Inspect_Decls
        (Decls : List_Id;
         Taft  : Boolean := False) return Entity_Id
      is
         Decl  : Node_Id;
         Match : Node_Id;

      begin
         Decl := First (Decls);
         while Present (Decl) loop
            Match := Empty;

            --  The partial view of a Taft-amendment type is an incomplete
            --  type.

            if Taft then
               if Nkind (Decl) = N_Incomplete_Type_Declaration then
                  Match := Defining_Identifier (Decl);
               end if;

            --  Otherwise look for a private type whose full view matches the
            --  input type. Note that this checks full_type_declaration nodes
            --  to account for derivations from a private type where the type
            --  declaration hold the partial view and the full view is an
            --  itype.

            elsif Nkind (Decl) in N_Full_Type_Declaration
                                | N_Private_Extension_Declaration
                                | N_Private_Type_Declaration
            then
               Match := Defining_Identifier (Decl);
            end if;

            --  Guard against unanalyzed entities

            if Present (Match)
              and then Is_Type (Match)
              and then Present (Full_View (Match))
              and then Full_View (Match) = Id
            then
               return Match;
            end if;

            Next (Decl);
         end loop;

         return Empty;
      end Inspect_Decls;

      --  Local variables

      Prev : Entity_Id;

   --  Start of processing for Incomplete_Or_Partial_View

   begin
      --  Deferred constant or incomplete type case

      Prev := Current_Entity_In_Scope (Id);

      if Present (Prev)
        and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
        and then Present (Full_View (Prev))
        and then Full_View (Prev) = Id
      then
         return Prev;
      end if;

      --  Private or Taft amendment type case

      declare
         Pkg      : constant Entity_Id := Scope (Id);
         Pkg_Decl : Node_Id := Pkg;

      begin
         if Present (Pkg)
           and then Is_Package_Or_Generic_Package (Pkg)
         then
            while Nkind (Pkg_Decl) /= N_Package_Specification loop
               Pkg_Decl := Parent (Pkg_Decl);
            end loop;

            --  It is knows that Typ has a private view, look for it in the
            --  visible declarations of the enclosing scope. A special case
            --  of this is when the two views have been exchanged - the full
            --  appears earlier than the private.

            if Has_Private_Declaration (Id) then
               Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));

               --  Exchanged view case, look in the private declarations

               if No (Prev) then
                  Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
               end if;

               return Prev;

            --  Otherwise if this is the package body, then Typ is a potential
            --  Taft amendment type. The incomplete view should be located in
            --  the private declarations of the enclosing scope.

            elsif In_Package_Body (Pkg) then
               return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
            end if;
         end if;
      end;

      --  The type has no incomplete or private view

      return Empty;
   end Incomplete_Or_Partial_View;

   ---------------------------------------
   -- Incomplete_View_From_Limited_With --
   ---------------------------------------

   function Incomplete_View_From_Limited_With
     (Typ : Entity_Id) return Entity_Id
   is
   begin
      --  It might make sense to make this an attribute in Einfo, and set it
      --  in Sem_Ch10 in Build_Shadow_Entity. However, we're running short on
      --  slots for new attributes, and it seems a bit simpler to just search
      --  the Limited_View (if it exists) for an incomplete type whose
      --  Non_Limited_View is Typ.

      if Ekind (Scope (Typ)) = E_Package
        and then Present (Limited_View (Scope (Typ)))
      then
         declare
            Ent : Entity_Id := First_Entity (Limited_View (Scope (Typ)));
         begin
            while Present (Ent) loop
               if Is_Incomplete_Type (Ent)
                 and then Non_Limited_View (Ent) = Typ
               then
                  return Ent;
               end if;

               Next_Entity (Ent);
            end loop;
         end;
      end if;

      return Typ;
   end Incomplete_View_From_Limited_With;

   ----------------------------------
   -- Indexed_Component_Bit_Offset --
   ----------------------------------

   function Indexed_Component_Bit_Offset (N : Node_Id) return Uint is
      Exp : constant Node_Id   := First (Expressions (N));
      Typ : constant Entity_Id := Etype (Prefix (N));
      Off : constant Uint      := Component_Size (Typ);
      Ind : Node_Id;

   begin
      --  Return early if the component size is not known or variable

      if Off = No_Uint or else Off < Uint_0 then
         return No_Uint;
      end if;

      --  Deal with the degenerate case of an empty component

      if Off = Uint_0 then
         return Off;
      end if;

      --  Check that both the index value and the low bound are known

      if not Compile_Time_Known_Value (Exp) then
         return No_Uint;
      end if;

      Ind := First_Index (Typ);
      if No (Ind) then
         return No_Uint;
      end if;

      if Nkind (Ind) = N_Subtype_Indication then
         Ind := Constraint (Ind);

         if Nkind (Ind) = N_Range_Constraint then
            Ind := Range_Expression (Ind);
         end if;
      end if;

      if Nkind (Ind) /= N_Range
        or else not Compile_Time_Known_Value (Low_Bound (Ind))
      then
         return No_Uint;
      end if;

      --  Return the scaled offset

      return Off * (Expr_Value (Exp) - Expr_Value (Low_Bound ((Ind))));
   end Indexed_Component_Bit_Offset;

   -----------------------------
   -- Inherit_Predicate_Flags --
   -----------------------------

   procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
   begin
      if Present (Predicate_Function (Subt)) then
         return;
      end if;

      Set_Has_Predicates (Subt, Has_Predicates (Par));
      Set_Has_Static_Predicate_Aspect
        (Subt, Has_Static_Predicate_Aspect (Par));
      Set_Has_Dynamic_Predicate_Aspect
        (Subt, Has_Dynamic_Predicate_Aspect (Par));

      --  A named subtype does not inherit the predicate function of its
      --  parent but an itype declared for a loop index needs the discrete
      --  predicate information of its parent to execute the loop properly.
      --  A non-discrete type may has a static predicate (for example True)
      --  but has no static_discrete_predicate.

      if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
         Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));

         if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
            Set_Static_Discrete_Predicate
              (Subt, Static_Discrete_Predicate (Par));
         end if;
      end if;
   end Inherit_Predicate_Flags;

   ----------------------------
   -- Inherit_Rep_Item_Chain --
   ----------------------------

   procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
      Item      : Node_Id;
      Next_Item : Node_Id;

   begin
      --  There are several inheritance scenarios to consider depending on
      --  whether both types have rep item chains and whether the destination
      --  type already inherits part of the source type's rep item chain.

      --  1) The source type lacks a rep item chain
      --     From_Typ ---> Empty
      --
      --     Typ --------> Item (or Empty)

      --  In this case inheritance cannot take place because there are no items
      --  to inherit.

      --  2) The destination type lacks a rep item chain
      --     From_Typ ---> Item ---> ...
      --
      --     Typ --------> Empty

      --  Inheritance takes place by setting the First_Rep_Item of the
      --  destination type to the First_Rep_Item of the source type.
      --     From_Typ ---> Item ---> ...
      --                    ^
      --     Typ -----------+

      --  3.1) Both source and destination types have at least one rep item.
      --  The destination type does NOT inherit a rep item from the source
      --  type.
      --     From_Typ ---> Item ---> Item
      --
      --     Typ --------> Item ---> Item

      --  Inheritance takes place by setting the Next_Rep_Item of the last item
      --  of the destination type to the First_Rep_Item of the source type.
      --     From_Typ -------------------> Item ---> Item
      --                                    ^
      --     Typ --------> Item ---> Item --+

      --  3.2) Both source and destination types have at least one rep item.
      --  The destination type DOES inherit part of the rep item chain of the
      --  source type.
      --     From_Typ ---> Item ---> Item ---> Item
      --                              ^
      --     Typ --------> Item ------+

      --  This rare case arises when the full view of a private extension must
      --  inherit the rep item chain from the full view of its parent type and
      --  the full view of the parent type contains extra rep items. Currently
      --  only invariants may lead to such form of inheritance.

      --     type From_Typ is tagged private
      --       with Type_Invariant'Class => Item_2;

      --     type Typ is new From_Typ with private
      --       with Type_Invariant => Item_4;

      --  At this point the rep item chains contain the following items

      --     From_Typ -----------> Item_2 ---> Item_3
      --                            ^
      --     Typ --------> Item_4 --+

      --  The full views of both types may introduce extra invariants

      --     type From_Typ is tagged null record
      --       with Type_Invariant => Item_1;

      --     type Typ is new From_Typ with null record;

      --  The full view of Typ would have to inherit any new rep items added to
      --  the full view of From_Typ.

      --     From_Typ -----------> Item_1 ---> Item_2 ---> Item_3
      --                            ^
      --     Typ --------> Item_4 --+

      --  To achieve this form of inheritance, the destination type must first
      --  sever the link between its own rep chain and that of the source type,
      --  then inheritance 3.1 takes place.

      --  Case 1: The source type lacks a rep item chain

      if No (First_Rep_Item (From_Typ)) then
         return;

      --  Case 2: The destination type lacks a rep item chain

      elsif No (First_Rep_Item (Typ)) then
         Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));

      --  Case 3: Both the source and destination types have at least one rep
      --  item. Traverse the rep item chain of the destination type to find the
      --  last rep item.

      else
         Item      := Empty;
         Next_Item := First_Rep_Item (Typ);
         while Present (Next_Item) loop

            --  Detect a link between the destination type's rep chain and that
            --  of the source type. There are two possibilities:

            --    Variant 1
            --                  Next_Item
            --                      V
            --       From_Typ ---> Item_1 --->
            --                      ^
            --       Typ -----------+
            --
            --       Item is Empty

            --    Variant 2
            --                              Next_Item
            --                                  V
            --       From_Typ ---> Item_1 ---> Item_2 --->
            --                                  ^
            --       Typ --------> Item_3 ------+
            --                      ^
            --                     Item

            if Has_Rep_Item (From_Typ, Next_Item) then
               exit;
            end if;

            Item      := Next_Item;
            Next_Item := Next_Rep_Item (Next_Item);
         end loop;

         --  Inherit the source type's rep item chain

         if Present (Item) then
            Set_Next_Rep_Item (Item, First_Rep_Item (From_Typ));
         else
            Set_First_Rep_Item (Typ, First_Rep_Item (From_Typ));
         end if;
      end if;
   end Inherit_Rep_Item_Chain;

   ------------------------------------
   -- Inherits_From_Tagged_Full_View --
   ------------------------------------

   function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean is
   begin
      return Is_Private_Type (Typ)
        and then Present (Full_View (Typ))
        and then Is_Private_Type (Full_View (Typ))
        and then not Is_Tagged_Type (Full_View (Typ))
        and then Present (Underlying_Type (Full_View (Typ)))
        and then Is_Tagged_Type (Underlying_Type (Full_View (Typ)));
   end Inherits_From_Tagged_Full_View;

   ---------------------------------
   -- Insert_Explicit_Dereference --
   ---------------------------------

   procedure Insert_Explicit_Dereference (N : Node_Id) is
      New_Prefix : constant Node_Id := Relocate_Node (N);
      Ent        : Entity_Id := Empty;
      Pref       : Node_Id := Empty;
      I          : Interp_Index;
      It         : Interp;
      T          : Entity_Id;

   begin
      Save_Interps (N, New_Prefix);

      Rewrite (N,
        Make_Explicit_Dereference (Sloc (Parent (N)),
          Prefix => New_Prefix));

      Set_Etype (N, Designated_Type (Etype (New_Prefix)));

      if Is_Overloaded (New_Prefix) then

         --  The dereference is also overloaded, and its interpretations are
         --  the designated types of the interpretations of the original node.

         Set_Etype (N, Any_Type);

         Get_First_Interp (New_Prefix, I, It);
         while Present (It.Nam) loop
            T := It.Typ;

            if Is_Access_Type (T) then
               Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
            end if;

            Get_Next_Interp (I, It);
         end loop;

         End_Interp_List;

      else
         --  Prefix is unambiguous: mark the original prefix (which might
         --  Come_From_Source) as a reference, since the new (relocated) one
         --  won't be taken into account.

         if Is_Entity_Name (New_Prefix) then
            Ent := Entity (New_Prefix);
            Pref := New_Prefix;

         --  For a retrieval of a subcomponent of some composite object,
         --  retrieve the ultimate entity if there is one.

         elsif Nkind (New_Prefix) in N_Selected_Component | N_Indexed_Component
         then
            Pref := Prefix (New_Prefix);
            while Present (Pref)
              and then Nkind (Pref) in
                         N_Selected_Component | N_Indexed_Component
            loop
               Pref := Prefix (Pref);
            end loop;

            if Present (Pref) and then Is_Entity_Name (Pref) then
               Ent := Entity (Pref);
            end if;
         end if;

         --  Place the reference on the entity node

         if Present (Ent) then
            Generate_Reference (Ent, Pref);
         end if;
      end if;
   end Insert_Explicit_Dereference;

   ------------------------------------------
   -- Inspect_Deferred_Constant_Completion --
   ------------------------------------------

   procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
      Decl : Node_Id;

   begin
      Decl := First (Decls);
      while Present (Decl) loop

         --  Deferred constant signature

         if Nkind (Decl) = N_Object_Declaration
           and then Constant_Present (Decl)
           and then No (Expression (Decl))

            --  No need to check internally generated constants

           and then Comes_From_Source (Decl)

            --  The constant is not completed. A full object declaration or a
            --  pragma Import complete a deferred constant.

           and then not Has_Completion (Defining_Identifier (Decl))
         then
            Error_Msg_N
              ("constant declaration requires initialization expression",
              Defining_Identifier (Decl));
         end if;

         Next (Decl);
      end loop;
   end Inspect_Deferred_Constant_Completion;

   -------------------------------
   -- Install_Elaboration_Model --
   -------------------------------

   procedure Install_Elaboration_Model (Unit_Id : Entity_Id) is
      function Find_Elaboration_Checks_Pragma (L : List_Id) return Node_Id;
      --  Try to find pragma Elaboration_Checks in arbitrary list L. Return
      --  Empty if there is no such pragma.

      ------------------------------------
      -- Find_Elaboration_Checks_Pragma --
      ------------------------------------

      function Find_Elaboration_Checks_Pragma (L : List_Id) return Node_Id is
         Item : Node_Id;

      begin
         Item := First (L);
         while Present (Item) loop
            if Nkind (Item) = N_Pragma
              and then Pragma_Name (Item) = Name_Elaboration_Checks
            then
               return Item;
            end if;

            Next (Item);
         end loop;

         return Empty;
      end Find_Elaboration_Checks_Pragma;

      --  Local variables

      Args  : List_Id;
      Model : Node_Id;
      Prag  : Node_Id;
      Unit  : Node_Id;

   --  Start of processing for Install_Elaboration_Model

   begin
      --  Nothing to do when the unit does not exist

      if No (Unit_Id) then
         return;
      end if;

      Unit := Parent (Unit_Declaration_Node (Unit_Id));

      --  Nothing to do when the unit is not a library unit

      if Nkind (Unit) /= N_Compilation_Unit then
         return;
      end if;

      Prag := Find_Elaboration_Checks_Pragma (Context_Items (Unit));

      --  The compilation unit is subject to pragma Elaboration_Checks. Set the
      --  elaboration model as specified by the pragma.

      if Present (Prag) then
         Args := Pragma_Argument_Associations (Prag);

         --  Guard against an illegal pragma. The sole argument must be an
         --  identifier which specifies either Dynamic or Static model.

         if Present (Args) then
            Model := Get_Pragma_Arg (First (Args));

            if Nkind (Model) = N_Identifier then
               Dynamic_Elaboration_Checks := Chars (Model) = Name_Dynamic;
            end if;
         end if;
      end if;
   end Install_Elaboration_Model;

   -----------------------------
   -- Install_Generic_Formals --
   -----------------------------

   procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
      E : Entity_Id;

   begin
      pragma Assert (Is_Generic_Subprogram (Subp_Id));

      E := First_Entity (Subp_Id);
      while Present (E) loop
         Install_Entity (E);
         Next_Entity (E);
      end loop;
   end Install_Generic_Formals;

   ------------------------
   -- Install_SPARK_Mode --
   ------------------------

   procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id) is
   begin
      SPARK_Mode        := Mode;
      SPARK_Mode_Pragma := Prag;
   end Install_SPARK_Mode;

   --------------------------
   -- Invalid_Scalar_Value --
   --------------------------

   function Invalid_Scalar_Value
     (Loc      : Source_Ptr;
      Scal_Typ : Scalar_Id) return Node_Id
   is
      function Invalid_Binder_Value return Node_Id;
      --  Return a reference to the corresponding invalid value for type
      --  Scal_Typ as defined in unit System.Scalar_Values.

      function Invalid_Float_Value return Node_Id;
      --  Return the invalid value of float type Scal_Typ

      function Invalid_Integer_Value return Node_Id;
      --  Return the invalid value of integer type Scal_Typ

      procedure Set_Invalid_Binder_Values;
      --  Set the contents of collection Invalid_Binder_Values

      --------------------------
      -- Invalid_Binder_Value --
      --------------------------

      function Invalid_Binder_Value return Node_Id is
         Val_Id : Entity_Id;

      begin
         --  Initialize the collection of invalid binder values the first time
         --  around.

         Set_Invalid_Binder_Values;

         --  Obtain the corresponding variable from System.Scalar_Values which
         --  holds the invalid value for this type.

         Val_Id := Invalid_Binder_Values (Scal_Typ);
         pragma Assert (Present (Val_Id));

         return New_Occurrence_Of (Val_Id, Loc);
      end Invalid_Binder_Value;

      -------------------------
      -- Invalid_Float_Value --
      -------------------------

      function Invalid_Float_Value return Node_Id is
         Value : constant Ureal := Invalid_Floats (Scal_Typ);

      begin
         --  Pragma Invalid_Scalars did not specify an invalid value for this
         --  type. Fall back to the value provided by the binder.

         if Value = No_Ureal then
            return Invalid_Binder_Value;
         else
            return Make_Real_Literal (Loc, Realval => Value);
         end if;
      end Invalid_Float_Value;

      ---------------------------
      -- Invalid_Integer_Value --
      ---------------------------

      function Invalid_Integer_Value return Node_Id is
         Value : constant Uint := Invalid_Integers (Scal_Typ);

      begin
         --  Pragma Invalid_Scalars did not specify an invalid value for this
         --  type. Fall back to the value provided by the binder.

         if Value = No_Uint then
            return Invalid_Binder_Value;
         else
            return Make_Integer_Literal (Loc, Intval => Value);
         end if;
      end Invalid_Integer_Value;

      -------------------------------
      -- Set_Invalid_Binder_Values --
      -------------------------------

      procedure Set_Invalid_Binder_Values is
      begin
         if not Invalid_Binder_Values_Set then
            Invalid_Binder_Values_Set := True;

            --  Initialize the contents of the collection once since RTE calls
            --  are not cheap.

            Invalid_Binder_Values :=
              (Name_Short_Float     => RTE (RE_IS_Isf),
               Name_Float           => RTE (RE_IS_Ifl),
               Name_Long_Float      => RTE (RE_IS_Ilf),
               Name_Long_Long_Float => RTE (RE_IS_Ill),
               Name_Signed_8        => RTE (RE_IS_Is1),
               Name_Signed_16       => RTE (RE_IS_Is2),
               Name_Signed_32       => RTE (RE_IS_Is4),
               Name_Signed_64       => RTE (RE_IS_Is8),
               Name_Signed_128      => Empty,
               Name_Unsigned_8      => RTE (RE_IS_Iu1),
               Name_Unsigned_16     => RTE (RE_IS_Iu2),
               Name_Unsigned_32     => RTE (RE_IS_Iu4),
               Name_Unsigned_64     => RTE (RE_IS_Iu8),
               Name_Unsigned_128    => Empty);

            if System_Max_Integer_Size < 128 then
               Invalid_Binder_Values (Name_Signed_128)   := RTE (RE_IS_Is8);
               Invalid_Binder_Values (Name_Unsigned_128) := RTE (RE_IS_Iu8);
            else
               Invalid_Binder_Values (Name_Signed_128)   := RTE (RE_IS_Is16);
               Invalid_Binder_Values (Name_Unsigned_128) := RTE (RE_IS_Iu16);
            end if;
         end if;
      end Set_Invalid_Binder_Values;

   --  Start of processing for Invalid_Scalar_Value

   begin
      if Scal_Typ in Float_Scalar_Id then
         return Invalid_Float_Value;

      else pragma Assert (Scal_Typ in Integer_Scalar_Id);
         return Invalid_Integer_Value;
      end if;
   end Invalid_Scalar_Value;

   --------------------------------
   -- Is_Anonymous_Access_Actual --
   --------------------------------

   function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean is
      Par : Node_Id;
   begin
      if Ekind (Etype (N)) /= E_Anonymous_Access_Type then
         return False;
      end if;

      Par := Parent (N);
      while Present (Par)
        and then Nkind (Par) in N_Case_Expression
                              | N_If_Expression
                              | N_Parameter_Association
      loop
         Par := Parent (Par);
      end loop;
      return Nkind (Par) in N_Subprogram_Call;
   end Is_Anonymous_Access_Actual;

   ------------------------
   -- Is_Access_Variable --
   ------------------------

   function Is_Access_Variable (E : Entity_Id) return Boolean is
   begin
      return Is_Access_Object_Type (E)
        and then not Is_Access_Constant (E);
   end Is_Access_Variable;

   -----------------------------
   -- Is_Actual_Out_Parameter --
   -----------------------------

   function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
      Formal : Entity_Id;
      Call   : Node_Id;
   begin
      Find_Actual (N, Formal, Call);
      return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
   end Is_Actual_Out_Parameter;

   --------------------------------
   -- Is_Actual_In_Out_Parameter --
   --------------------------------

   function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean is
      Formal : Entity_Id;
      Call   : Node_Id;
   begin
      Find_Actual (N, Formal, Call);
      return Present (Formal) and then Ekind (Formal) = E_In_Out_Parameter;
   end Is_Actual_In_Out_Parameter;

   -------------------------
   -- Is_Actual_Parameter --
   -------------------------

   function Is_Actual_Parameter (N : Node_Id) return Boolean is
      PK : constant Node_Kind := Nkind (Parent (N));

   begin
      case PK is
         when N_Parameter_Association =>
            return N = Explicit_Actual_Parameter (Parent (N));

         when N_Subprogram_Call =>
            return Is_List_Member (N)
              and then
                List_Containing (N) = Parameter_Associations (Parent (N));

         when others =>
            return False;
      end case;
   end Is_Actual_Parameter;

   --------------------------------
   -- Is_Actual_Tagged_Parameter --
   --------------------------------

   function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
      Formal : Entity_Id;
      Call   : Node_Id;
   begin
      Find_Actual (N, Formal, Call);
      return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
   end Is_Actual_Tagged_Parameter;

   ---------------------
   -- Is_Aliased_View --
   ---------------------

   function Is_Aliased_View (Obj : Node_Id) return Boolean is
      E : Entity_Id;

   begin
      if Is_Entity_Name (Obj) then
         E := Entity (Obj);

         return
           (Is_Object (E)
             and then
               (Is_Aliased (E)
                 or else (Present (Renamed_Object (E))
                           and then Is_Aliased_View (Renamed_Object (E)))))

           or else ((Is_Formal (E) or else Is_Formal_Object (E))
                      and then Is_Tagged_Type (Etype (E)))

           or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))

           --  Current instance of type, either directly or as rewritten
           --  reference to the current object.

           or else (Is_Entity_Name (Original_Node (Obj))
                     and then Present (Entity (Original_Node (Obj)))
                     and then Is_Type (Entity (Original_Node (Obj))))

           or else (Is_Type (E) and then E = Current_Scope)

           or else (Is_Incomplete_Or_Private_Type (E)
                     and then Full_View (E) = Current_Scope)

           --  Ada 2012 AI05-0053: the return object of an extended return
           --  statement is aliased if its type is immutably limited.

           or else (Is_Return_Object (E)
                     and then Is_Limited_View (Etype (E)));

      elsif Nkind (Obj) = N_Selected_Component then
         return Is_Aliased (Entity (Selector_Name (Obj)));

      elsif Nkind (Obj) = N_Indexed_Component then
         return Has_Aliased_Components (Etype (Prefix (Obj)))
           or else
             (Is_Access_Type (Etype (Prefix (Obj)))
               and then Has_Aliased_Components
                          (Designated_Type (Etype (Prefix (Obj)))));

      elsif Nkind (Obj) in N_Unchecked_Type_Conversion | N_Type_Conversion then
         return Is_Tagged_Type (Etype (Obj))
           and then Is_Aliased_View (Expression (Obj));

      --  Ada 202x AI12-0228

      elsif Nkind (Obj) = N_Qualified_Expression
        and then Ada_Version >= Ada_2012
      then
         return Is_Aliased_View (Expression (Obj));

      elsif Nkind (Obj) = N_Explicit_Dereference then
         return Nkind (Original_Node (Obj)) /= N_Function_Call;

      else
         return False;
      end if;
   end Is_Aliased_View;

   -------------------------
   -- Is_Ancestor_Package --
   -------------------------

   function Is_Ancestor_Package
     (E1 : Entity_Id;
      E2 : Entity_Id) return Boolean
   is
      Par : Entity_Id;

   begin
      Par := E2;
      while Present (Par) and then Par /= Standard_Standard loop
         if Par = E1 then
            return True;
         end if;

         Par := Scope (Par);
      end loop;

      return False;
   end Is_Ancestor_Package;

   ----------------------
   -- Is_Atomic_Object --
   ----------------------

   function Is_Atomic_Object (N : Node_Id) return Boolean is
      function Prefix_Has_Atomic_Components (P : Node_Id) return Boolean;
      --  Determine whether prefix P has atomic components. This requires the
      --  presence of an Atomic_Components aspect/pragma.

      ---------------------------------
      -- Prefix_Has_Atomic_Components --
      ---------------------------------

      function Prefix_Has_Atomic_Components (P : Node_Id) return Boolean is
         Typ : constant Entity_Id := Etype (P);

      begin
         if Is_Access_Type (Typ) then
            return Has_Atomic_Components (Designated_Type (Typ));

         elsif Has_Atomic_Components (Typ) then
            return True;

         elsif Is_Entity_Name (P)
           and then Has_Atomic_Components (Entity (P))
         then
            return True;

         else
            return False;
         end if;
      end Prefix_Has_Atomic_Components;

   --  Start of processing for Is_Atomic_Object

   begin
      if Is_Entity_Name (N) then
         return Is_Atomic_Object_Entity (Entity (N));

      elsif Is_Atomic (Etype (N)) then
         return True;

      elsif Nkind (N) = N_Indexed_Component then
         return Prefix_Has_Atomic_Components (Prefix (N));

      elsif Nkind (N) = N_Selected_Component then
         return Is_Atomic (Entity (Selector_Name (N)));

      else
         return False;
      end if;
   end Is_Atomic_Object;

   -----------------------------
   -- Is_Atomic_Object_Entity --
   -----------------------------

   function Is_Atomic_Object_Entity (Id : Entity_Id) return Boolean is
   begin
      return
        Is_Object (Id)
          and then (Is_Atomic (Id) or else Is_Atomic (Etype (Id)));
   end Is_Atomic_Object_Entity;

   -----------------------------
   -- Is_Atomic_Or_VFA_Object --
   -----------------------------

   function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
   begin
      return Is_Atomic_Object (N) or else Is_Volatile_Full_Access_Object (N);
   end Is_Atomic_Or_VFA_Object;

   -----------------------------
   -- Is_Attribute_Loop_Entry --
   -----------------------------

   function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) = Name_Loop_Entry;
   end Is_Attribute_Loop_Entry;

   ----------------------
   -- Is_Attribute_Old --
   ----------------------

   function Is_Attribute_Old (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) = Name_Old;
   end Is_Attribute_Old;

   -------------------------
   -- Is_Attribute_Result --
   -------------------------

   function Is_Attribute_Result (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) = Name_Result;
   end Is_Attribute_Result;

   -------------------------
   -- Is_Attribute_Update --
   -------------------------

   function Is_Attribute_Update (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) = Name_Update;
   end Is_Attribute_Update;

   ------------------------------------
   -- Is_Body_Or_Package_Declaration --
   ------------------------------------

   function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
   begin
      return Is_Body (N) or else Nkind (N) = N_Package_Declaration;
   end Is_Body_Or_Package_Declaration;

   -----------------------
   -- Is_Bounded_String --
   -----------------------

   function Is_Bounded_String (T : Entity_Id) return Boolean is
      Under : constant Entity_Id := Underlying_Type (Root_Type (T));

   begin
      --  Check whether T is ultimately derived from Ada.Strings.Superbounded.
      --  Super_String, or one of the [Wide_]Wide_ versions. This will
      --  be True for all the Bounded_String types in instances of the
      --  Generic_Bounded_Length generics, and for types derived from those.

      return Present (Under)
        and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
                  Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
                  Is_RTE (Root_Type (Under), RO_WW_Super_String));
   end Is_Bounded_String;

   -------------------------------
   -- Is_By_Protected_Procedure --
   -------------------------------

   function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean is
   begin
      return Ekind (Id) = E_Procedure
        and then Present (Get_Rep_Pragma (Id, Name_Implemented))
        and then Implementation_Kind (Id) = Name_By_Protected_Procedure;
   end Is_By_Protected_Procedure;

   ---------------------
   -- Is_CCT_Instance --
   ---------------------

   function Is_CCT_Instance
     (Ref_Id     : Entity_Id;
      Context_Id : Entity_Id) return Boolean
   is
   begin
      pragma Assert (Ekind (Ref_Id) in E_Protected_Type | E_Task_Type);

      if Is_Single_Task_Object (Context_Id) then
         return Scope_Within_Or_Same (Etype (Context_Id), Ref_Id);

      else
         pragma Assert
           (Ekind (Context_Id) in
              E_Entry     | E_Entry_Family   | E_Function  | E_Package |
              E_Procedure | E_Protected_Type | E_Task_Type
             or else Is_Record_Type (Context_Id));
         return Scope_Within_Or_Same (Context_Id, Ref_Id);
      end if;
   end Is_CCT_Instance;

   -------------------------
   -- Is_Child_Or_Sibling --
   -------------------------

   function Is_Child_Or_Sibling
     (Pack_1 : Entity_Id;
      Pack_2 : Entity_Id) return Boolean
   is
      function Distance_From_Standard (Pack : Entity_Id) return Nat;
      --  Given an arbitrary package, return the number of "climbs" necessary
      --  to reach scope Standard_Standard.

      procedure Equalize_Depths
        (Pack           : in out Entity_Id;
         Depth          : in out Nat;
         Depth_To_Reach : Nat);
      --  Given an arbitrary package, its depth and a target depth to reach,
      --  climb the scope chain until the said depth is reached. The pointer
      --  to the package and its depth a modified during the climb.

      ----------------------------
      -- Distance_From_Standard --
      ----------------------------

      function Distance_From_Standard (Pack : Entity_Id) return Nat is
         Dist : Nat;
         Scop : Entity_Id;

      begin
         Dist := 0;
         Scop := Pack;
         while Present (Scop) and then Scop /= Standard_Standard loop
            Dist := Dist + 1;
            Scop := Scope (Scop);
         end loop;

         return Dist;
      end Distance_From_Standard;

      ---------------------
      -- Equalize_Depths --
      ---------------------

      procedure Equalize_Depths
        (Pack           : in out Entity_Id;
         Depth          : in out Nat;
         Depth_To_Reach : Nat)
      is
      begin
         --  The package must be at a greater or equal depth

         if Depth < Depth_To_Reach then
            raise Program_Error;
         end if;

         --  Climb the scope chain until the desired depth is reached

         while Present (Pack) and then Depth /= Depth_To_Reach loop
            Pack  := Scope (Pack);
            Depth := Depth - 1;
         end loop;
      end Equalize_Depths;

      --  Local variables

      P_1       : Entity_Id := Pack_1;
      P_1_Child : Boolean   := False;
      P_1_Depth : Nat       := Distance_From_Standard (P_1);
      P_2       : Entity_Id := Pack_2;
      P_2_Child : Boolean   := False;
      P_2_Depth : Nat       := Distance_From_Standard (P_2);

   --  Start of processing for Is_Child_Or_Sibling

   begin
      pragma Assert
        (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);

      --  Both packages denote the same entity, therefore they cannot be
      --  children or siblings.

      if P_1 = P_2 then
         return False;

      --  One of the packages is at a deeper level than the other. Note that
      --  both may still come from different hierarchies.

      --        (root)           P_2
      --        /    \            :
      --       X     P_2    or    X
      --       :                  :
      --      P_1                P_1

      elsif P_1_Depth > P_2_Depth then
         Equalize_Depths
           (Pack           => P_1,
            Depth          => P_1_Depth,
            Depth_To_Reach => P_2_Depth);
         P_1_Child := True;

      --        (root)           P_1
      --        /    \            :
      --      P_1     X     or    X
      --              :           :
      --             P_2         P_2

      elsif P_2_Depth > P_1_Depth then
         Equalize_Depths
           (Pack           => P_2,
            Depth          => P_2_Depth,
            Depth_To_Reach => P_1_Depth);
         P_2_Child := True;
      end if;

      --  At this stage the package pointers have been elevated to the same
      --  depth. If the related entities are the same, then one package is a
      --  potential child of the other:

      --      P_1
      --       :
      --       X    became   P_1 P_2   or vice versa
      --       :
      --      P_2

      if P_1 = P_2 then
         if P_1_Child then
            return Is_Child_Unit (Pack_1);

         else pragma Assert (P_2_Child);
            return Is_Child_Unit (Pack_2);
         end if;

      --  The packages may come from the same package chain or from entirely
      --  different hierarcies. To determine this, climb the scope stack until
      --  a common root is found.

      --        (root)      (root 1)  (root 2)
      --        /    \         |         |
      --      P_1    P_2      P_1       P_2

      else
         while Present (P_1) and then Present (P_2) loop

            --  The two packages may be siblings

            if P_1 = P_2 then
               return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
            end if;

            P_1 := Scope (P_1);
            P_2 := Scope (P_2);
         end loop;
      end if;

      return False;
   end Is_Child_Or_Sibling;

   -----------------------------
   -- Is_Concurrent_Interface --
   -----------------------------

   function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
   begin
      return Is_Interface (T)
        and then
          (Is_Protected_Interface (T)
            or else Is_Synchronized_Interface (T)
            or else Is_Task_Interface (T));
   end Is_Concurrent_Interface;

   -----------------------
   -- Is_Constant_Bound --
   -----------------------

   function Is_Constant_Bound (Exp : Node_Id) return Boolean is
   begin
      if Compile_Time_Known_Value (Exp) then
         return True;

      elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
         return Is_Constant_Object (Entity (Exp))
           or else Ekind (Entity (Exp)) = E_Enumeration_Literal;

      elsif Nkind (Exp) in N_Binary_Op then
         return Is_Constant_Bound (Left_Opnd (Exp))
           and then Is_Constant_Bound (Right_Opnd (Exp))
           and then Scope (Entity (Exp)) = Standard_Standard;

      else
         return False;
      end if;
   end Is_Constant_Bound;

   ---------------------------
   --  Is_Container_Element --
   ---------------------------

   function Is_Container_Element (Exp : Node_Id) return Boolean is
      Loc  : constant Source_Ptr := Sloc (Exp);
      Pref : constant Node_Id   := Prefix (Exp);

      Call : Node_Id;
      --  Call to an indexing aspect

      Cont_Typ : Entity_Id;
      --  The type of the container being accessed

      Elem_Typ : Entity_Id;
      --  Its element type

      Indexing : Entity_Id;
      Is_Const : Boolean;
      --  Indicates that constant indexing is used, and the element is thus
      --  a constant.

      Ref_Typ : Entity_Id;
      --  The reference type returned by the indexing operation

   begin
      --  If C is a container, in a context that imposes the element type of
      --  that container, the indexing notation C (X) is rewritten as:

      --    Indexing (C, X).Discr.all

      --  where Indexing is one of the indexing aspects of the container.
      --  If the context does not require a reference, the construct can be
      --  rewritten as

      --    Element (C, X)

      --  First, verify that the construct has the proper form

      if not Expander_Active then
         return False;

      elsif Nkind (Pref) /= N_Selected_Component then
         return False;

      elsif Nkind (Prefix (Pref)) /= N_Function_Call then
         return False;

      else
         Call    := Prefix (Pref);
         Ref_Typ := Etype (Call);
      end if;

      if not Has_Implicit_Dereference (Ref_Typ)
        or else No (First (Parameter_Associations (Call)))
        or else not Is_Entity_Name (Name (Call))
      then
         return False;
      end if;

      --  Retrieve type of container object, and its iterator aspects

      Cont_Typ := Etype (First (Parameter_Associations (Call)));
      Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
      Is_Const := False;

      if No (Indexing) then

         --  Container should have at least one indexing operation

         return False;

      elsif Entity (Name (Call)) /= Entity (Indexing) then

         --  This may be a variable indexing operation

         Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);

         if No (Indexing)
           or else Entity (Name (Call)) /= Entity (Indexing)
         then
            return False;
         end if;

      else
         Is_Const := True;
      end if;

      Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);

      if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
         return False;
      end if;

      --  Check that the expression is not the target of an assignment, in
      --  which case the rewriting is not possible.

      if not Is_Const then
         declare
            Par : Node_Id;

         begin
            Par := Exp;
            while Present (Par)
            loop
               if Nkind (Parent (Par)) = N_Assignment_Statement
                 and then Par = Name (Parent (Par))
               then
                  return False;

               --  A renaming produces a reference, and the transformation
               --  does not apply.

               elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
                  return False;

               elsif Nkind (Parent (Par)) in
                       N_Function_Call            |
                       N_Procedure_Call_Statement |
                       N_Entry_Call_Statement
               then
                  --  Check that the element is not part of an actual for an
                  --  in-out parameter.

                  declare
                     F : Entity_Id;
                     A : Node_Id;

                  begin
                     F := First_Formal (Entity (Name (Parent (Par))));
                     A := First (Parameter_Associations (Parent (Par)));
                     while Present (F) loop
                        if A = Par and then Ekind (F) /= E_In_Parameter then
                           return False;
                        end if;

                        Next_Formal (F);
                        Next (A);
                     end loop;
                  end;

                  --  E_In_Parameter in a call: element is not modified.

                  exit;
               end if;

               Par := Parent (Par);
            end loop;
         end;
      end if;

      --  The expression has the proper form and the context requires the
      --  element type. Retrieve the Element function of the container and
      --  rewrite the construct as a call to it.

      declare
         Op : Elmt_Id;

      begin
         Op := First_Elmt (Primitive_Operations (Cont_Typ));
         while Present (Op) loop
            exit when Chars (Node (Op)) = Name_Element;
            Next_Elmt (Op);
         end loop;

         if No (Op) then
            return False;

         else
            Rewrite (Exp,
              Make_Function_Call (Loc,
                Name                   => New_Occurrence_Of (Node (Op), Loc),
                Parameter_Associations => Parameter_Associations (Call)));
            Analyze_And_Resolve (Exp, Entity (Elem_Typ));
            return True;
         end if;
      end;
   end Is_Container_Element;

   ----------------------------
   -- Is_Contract_Annotation --
   ----------------------------

   function Is_Contract_Annotation (Item : Node_Id) return Boolean is
   begin
      return Is_Package_Contract_Annotation (Item)
               or else
             Is_Subprogram_Contract_Annotation (Item);
   end Is_Contract_Annotation;

   --------------------------------------
   -- Is_Controlling_Limited_Procedure --
   --------------------------------------

   function Is_Controlling_Limited_Procedure
     (Proc_Nam : Entity_Id) return Boolean
   is
      Param     : Node_Id;
      Param_Typ : Entity_Id := Empty;

   begin
      if Ekind (Proc_Nam) = E_Procedure
        and then Present (Parameter_Specifications (Parent (Proc_Nam)))
      then
         Param :=
           Parameter_Type
             (First (Parameter_Specifications (Parent (Proc_Nam))));

         --  The formal may be an anonymous access type

         if Nkind (Param) = N_Access_Definition then
            Param_Typ := Entity (Subtype_Mark (Param));
         else
            Param_Typ := Etype (Param);
         end if;

      --  In the case where an Itype was created for a dispatchin call, the
      --  procedure call has been rewritten. The actual may be an access to
      --  interface type in which case it is the designated type that is the
      --  controlling type.

      elsif Present (Associated_Node_For_Itype (Proc_Nam))
        and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
        and then
          Present (Parameter_Associations
                     (Associated_Node_For_Itype (Proc_Nam)))
      then
         Param_Typ :=
           Etype (First (Parameter_Associations
                          (Associated_Node_For_Itype (Proc_Nam))));

         if Ekind (Param_Typ) = E_Anonymous_Access_Type then
            Param_Typ := Directly_Designated_Type (Param_Typ);
         end if;
      end if;

      if Present (Param_Typ) then
         return
           Is_Interface (Param_Typ)
             and then Is_Limited_Record (Param_Typ);
      end if;

      return False;
   end Is_Controlling_Limited_Procedure;

   -----------------------------
   -- Is_CPP_Constructor_Call --
   -----------------------------

   function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
   begin
      return Nkind (N) = N_Function_Call
        and then Is_CPP_Class (Etype (Etype (N)))
        and then Is_Constructor (Entity (Name (N)))
        and then Is_Imported (Entity (Name (N)));
   end Is_CPP_Constructor_Call;

   -------------------------
   -- Is_Current_Instance --
   -------------------------

   function Is_Current_Instance (N : Node_Id) return Boolean is
      Typ : constant Entity_Id := Entity (N);
      P   : Node_Id;

   begin
      --  Simplest case: entity is a concurrent type and we are currently
      --  inside the body. This will eventually be expanded into a call to
      --  Self (for tasks) or _object (for protected objects).

      if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
         return True;

      else
         --  Check whether the context is a (sub)type declaration for the
         --  type entity.

         P := Parent (N);
         while Present (P) loop
            if Nkind (P) in N_Full_Type_Declaration
                          | N_Private_Type_Declaration
                          | N_Subtype_Declaration
              and then Comes_From_Source (P)
              and then Defining_Entity (P) = Typ
            then
               return True;

            --  A subtype name may appear in an aspect specification for a
            --  Predicate_Failure aspect, for which we do not construct a
            --  wrapper procedure. The subtype will be replaced by the
            --  expression being tested when the corresponding predicate
            --  check is expanded.

            elsif Nkind (P) = N_Aspect_Specification
              and then Nkind (Parent (P)) = N_Subtype_Declaration
            then
               return True;

            elsif Nkind (P) = N_Pragma
              and then Get_Pragma_Id (P) = Pragma_Predicate_Failure
            then
               return True;
            end if;

            P := Parent (P);
         end loop;
      end if;

      --  In any other context this is not a current occurrence

      return False;
   end Is_Current_Instance;

   --------------------------------------------------
   -- Is_Current_Instance_Reference_In_Type_Aspect --
   --------------------------------------------------

   function Is_Current_Instance_Reference_In_Type_Aspect
     (N : Node_Id) return Boolean
   is
   begin
      --  When a current_instance is referenced within an aspect_specification
      --  of a type or subtype, it will show up as a reference to the formal
      --  parameter of the aspect's associated subprogram rather than as a
      --  reference to the type or subtype itself (in fact, the original name
      --  is never even analyzed). We check for predicate, invariant, and
      --  Default_Initial_Condition subprograms (in theory there could be
      --  other cases added, in which case this function will need updating).

      if Is_Entity_Name (N) then
         return Present (Entity (N))
           and then Ekind (Entity (N)) = E_In_Parameter
           and then Ekind (Scope (Entity (N))) in E_Function | E_Procedure
           and then
             (Is_Predicate_Function (Scope (Entity (N)))
               or else Is_Predicate_Function_M (Scope (Entity (N)))
               or else Is_Invariant_Procedure (Scope (Entity (N)))
               or else Is_Partial_Invariant_Procedure (Scope (Entity (N)))
               or else Is_DIC_Procedure (Scope (Entity (N))));

      else
         case Nkind (N) is
            when N_Indexed_Component
               | N_Slice
            =>
               return
                 Is_Current_Instance_Reference_In_Type_Aspect (Prefix (N));

            when N_Selected_Component =>
               return
                 Is_Current_Instance_Reference_In_Type_Aspect (Prefix (N));

            when N_Type_Conversion =>
               return Is_Current_Instance_Reference_In_Type_Aspect
                        (Expression (N));

            when N_Qualified_Expression =>
               return Is_Current_Instance_Reference_In_Type_Aspect
                        (Expression (N));

            when others =>
               return False;
         end case;
      end if;
   end Is_Current_Instance_Reference_In_Type_Aspect;

   --------------------
   -- Is_Declaration --
   --------------------

   function Is_Declaration
     (N                : Node_Id;
      Body_OK          : Boolean := True;
      Concurrent_OK    : Boolean := True;
      Formal_OK        : Boolean := True;
      Generic_OK       : Boolean := True;
      Instantiation_OK : Boolean := True;
      Renaming_OK      : Boolean := True;
      Stub_OK          : Boolean := True;
      Subprogram_OK    : Boolean := True;
      Type_OK          : Boolean := True) return Boolean
   is
   begin
      case Nkind (N) is

         --  Body declarations

         when N_Proper_Body =>
            return Body_OK;

         --  Concurrent type declarations

         when N_Protected_Type_Declaration
            | N_Single_Protected_Declaration
            | N_Single_Task_Declaration
            | N_Task_Type_Declaration
         =>
            return Concurrent_OK or Type_OK;

         --  Formal declarations

         when N_Formal_Abstract_Subprogram_Declaration
            | N_Formal_Concrete_Subprogram_Declaration
            | N_Formal_Object_Declaration
            | N_Formal_Package_Declaration
            | N_Formal_Type_Declaration
         =>
            return Formal_OK;

         --  Generic declarations

         when N_Generic_Package_Declaration
            | N_Generic_Subprogram_Declaration
         =>
            return Generic_OK;

         --  Generic instantiations

         when N_Function_Instantiation
            | N_Package_Instantiation
            | N_Procedure_Instantiation
         =>
            return Instantiation_OK;

         --  Generic renaming declarations

         when N_Generic_Renaming_Declaration =>
            return Generic_OK or Renaming_OK;

         --  Renaming declarations

         when N_Exception_Renaming_Declaration
            | N_Object_Renaming_Declaration
            | N_Package_Renaming_Declaration
            | N_Subprogram_Renaming_Declaration
         =>
            return Renaming_OK;

         --  Stub declarations

         when N_Body_Stub =>
            return Stub_OK;

         --  Subprogram declarations

         when N_Abstract_Subprogram_Declaration
            | N_Entry_Declaration
            | N_Expression_Function
            | N_Subprogram_Declaration
         =>
            return Subprogram_OK;

         --  Type declarations

         when N_Full_Type_Declaration
            | N_Incomplete_Type_Declaration
            | N_Private_Extension_Declaration
            | N_Private_Type_Declaration
            | N_Subtype_Declaration
         =>
            return Type_OK;

         --  Miscellaneous

         when N_Component_Declaration
            | N_Exception_Declaration
            | N_Implicit_Label_Declaration
            | N_Number_Declaration
            | N_Object_Declaration
            | N_Package_Declaration
         =>
            return True;

         when others =>
            return False;
      end case;
   end Is_Declaration;

   --------------------------------
   -- Is_Declared_Within_Variant --
   --------------------------------

   function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
      Comp_Decl : constant Node_Id := Parent (Comp);
      Comp_List : constant Node_Id := Parent (Comp_Decl);
   begin
      return Nkind (Parent (Comp_List)) = N_Variant;
   end Is_Declared_Within_Variant;

   ----------------------------------------------
   -- Is_Dependent_Component_Of_Mutable_Object --
   ----------------------------------------------

   function Is_Dependent_Component_Of_Mutable_Object
     (Object : Node_Id) return Boolean
   is
      P           : Node_Id;
      Prefix_Type : Entity_Id;
      P_Aliased   : Boolean := False;
      Comp        : Entity_Id;

      Deref : Node_Id := Object;
      --  Dereference node, in something like X.all.Y(2)

   --  Start of processing for Is_Dependent_Component_Of_Mutable_Object

   begin
      --  Find the dereference node if any

      while Nkind (Deref) in
              N_Indexed_Component | N_Selected_Component | N_Slice
      loop
         Deref := Prefix (Deref);
      end loop;

      Deref := Original_Node (Deref);

      --  If the prefix is a qualified expression of a variable, then function
      --  Is_Variable will return False for that because a qualified expression
      --  denotes a constant view, so we need to get the name being qualified
      --  so we can test below whether that's a variable (or a dereference).

      if Nkind (Deref) = N_Qualified_Expression then
         Deref := Expression (Deref);
      end if;

      --  Ada 2005: If we have a component or slice of a dereference, something
      --  like X.all.Y (2) and the type of X is access-to-constant, Is_Variable
      --  will return False, because it is indeed a constant view. But it might
      --  be a view of a variable object, so we want the following condition to
      --  be True in that case.

      if Is_Variable (Object)
        or else Is_Variable (Deref)
        or else
          (Ada_Version >= Ada_2005
            and then (Nkind (Deref) = N_Explicit_Dereference
                       or else (Present (Etype (Deref))
                                 and then Is_Access_Type (Etype (Deref)))))
      then
         if Nkind (Object) = N_Selected_Component then

            --  If the selector is not a component, then we definitely return
            --  False (it could be a function selector in a prefix form call
            --  occurring in an iterator specification).

            if Ekind (Entity (Selector_Name (Object))) not in
                 E_Component | E_Discriminant
            then
               return False;
            end if;

            --  Get the original node of the prefix in case it has been
            --  rewritten, which can occur, for example, in qualified
            --  expression cases. Also, a discriminant check on a selected
            --  component may be expanded into a dereference when removing
            --  side effects, and the subtype of the original node may be
            --  unconstrained.

            P := Original_Node (Prefix (Object));
            Prefix_Type := Etype (P);

            --  If the prefix is a qualified expression, we want to look at its
            --  operand.

            if Nkind (P) = N_Qualified_Expression then
               P := Expression (P);
               Prefix_Type := Etype (P);
            end if;

            if Is_Entity_Name (P) then
               if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
                  Prefix_Type := Base_Type (Prefix_Type);
               end if;

               if Is_Aliased (Entity (P)) then
                  P_Aliased := True;
               end if;

            --  For explicit dereferences we get the access prefix so we can
            --  treat this similarly to implicit dereferences and examine the
            --  kind of the access type and its designated subtype further
            --  below.

            elsif Nkind (P) = N_Explicit_Dereference then
               P := Prefix (P);
               Prefix_Type := Etype (P);

            else
               --  Check for prefix being an aliased component???

               null;
            end if;

            --  A heap object is constrained by its initial value

            --  Ada 2005 (AI-363): Always assume the object could be mutable in
            --  the dereferenced case, since the access value might denote an
            --  unconstrained aliased object, whereas in Ada 95 the designated
            --  object is guaranteed to be constrained. A worst-case assumption
            --  has to apply in Ada 2005 because we can't tell at compile
            --  time whether the object is "constrained by its initial value",
            --  despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
            --  rules (these rules are acknowledged to need fixing). We don't
            --  impose this more stringent checking for earlier Ada versions or
            --  when Relaxed_RM_Semantics applies (the latter for CodePeer's
            --  benefit, though it's unclear on why using -gnat95 would not be
            --  sufficient???).

            if Ada_Version < Ada_2005 or else Relaxed_RM_Semantics then
               if Is_Access_Type (Prefix_Type)
                 or else Nkind (P) = N_Explicit_Dereference
               then
                  return False;
               end if;

            else pragma Assert (Ada_Version >= Ada_2005);
               if Is_Access_Type (Prefix_Type) then
                  --  We need to make sure we have the base subtype, in case
                  --  this is actually an access subtype (whose Ekind will be
                  --  E_Access_Subtype).

                  Prefix_Type := Etype (Prefix_Type);

                  --  If the access type is pool-specific, and there is no
                  --  constrained partial view of the designated type, then the
                  --  designated object is known to be constrained. If it's a
                  --  formal access type and the renaming is in the generic
                  --  spec, we also treat it as pool-specific (known to be
                  --  constrained), but assume the worst if in the generic body
                  --  (see RM 3.3(23.3/3)).

                  if Ekind (Prefix_Type) = E_Access_Type
                    and then (not Is_Generic_Type (Prefix_Type)
                               or else not In_Generic_Body (Current_Scope))
                    and then not Object_Type_Has_Constrained_Partial_View
                                   (Typ  => Designated_Type (Prefix_Type),
                                    Scop => Current_Scope)
                  then
                     return False;

                  --  Otherwise (general access type, or there is a constrained
                  --  partial view of the designated type), we need to check
                  --  based on the designated type.

                  else
                     Prefix_Type := Designated_Type (Prefix_Type);
                  end if;
               end if;
            end if;

            Comp :=
              Original_Record_Component (Entity (Selector_Name (Object)));

            --  As per AI-0017, the renaming is illegal in a generic body, even
            --  if the subtype is indefinite (only applies to prefixes of an
            --  untagged formal type, see RM 3.3 (23.11/3)).

            --  Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable

            if not Is_Constrained (Prefix_Type)
              and then (Is_Definite_Subtype (Prefix_Type)
                         or else
                           (not Is_Tagged_Type (Prefix_Type)
                             and then Is_Generic_Type (Prefix_Type)
                             and then In_Generic_Body (Current_Scope)))

              and then (Is_Declared_Within_Variant (Comp)
                         or else Has_Discriminant_Dependent_Constraint (Comp))
              and then (not P_Aliased or else Ada_Version >= Ada_2005)
            then
               return True;

            --  If the prefix is of an access type at this point, then we want
            --  to return False, rather than calling this function recursively
            --  on the access object (which itself might be a discriminant-
            --  dependent component of some other object, but that isn't
            --  relevant to checking the object passed to us). This avoids
            --  issuing wrong errors when compiling with -gnatc, where there
            --  can be implicit dereferences that have not been expanded.

            elsif Is_Access_Type (Etype (Prefix (Object))) then
               return False;

            else
               return
                 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
            end if;

         elsif Nkind (Object) = N_Indexed_Component
           or else Nkind (Object) = N_Slice
         then
            return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));

         --  A type conversion that Is_Variable is a view conversion:
         --  go back to the denoted object.

         elsif Nkind (Object) = N_Type_Conversion then
            return
              Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
         end if;
      end if;

      return False;
   end Is_Dependent_Component_Of_Mutable_Object;

   ---------------------
   -- Is_Dereferenced --
   ---------------------

   function Is_Dereferenced (N : Node_Id) return Boolean is
      P : constant Node_Id := Parent (N);
   begin
      return Nkind (P) in N_Selected_Component
                        | N_Explicit_Dereference
                        | N_Indexed_Component
                        | N_Slice
        and then Prefix (P) = N;
   end Is_Dereferenced;

   ----------------------
   -- Is_Descendant_Of --
   ----------------------

   function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
      T    : Entity_Id;
      Etyp : Entity_Id;

   begin
      pragma Assert (Nkind (T1) in N_Entity);
      pragma Assert (Nkind (T2) in N_Entity);

      T := Base_Type (T1);

      --  Immediate return if the types match

      if T = T2 then
         return True;

      --  Comment needed here ???

      elsif Ekind (T) = E_Class_Wide_Type then
         return Etype (T) = T2;

      --  All other cases

      else
         loop
            Etyp := Etype (T);

            --  Done if we found the type we are looking for

            if Etyp = T2 then
               return True;

            --  Done if no more derivations to check

            elsif T = T1
              or else T = Etyp
            then
               return False;

            --  Following test catches error cases resulting from prev errors

            elsif No (Etyp) then
               return False;

            elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
               return False;

            elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
               return False;
            end if;

            T := Base_Type (Etyp);
         end loop;
      end if;
   end Is_Descendant_Of;

   ----------------------------------------
   -- Is_Descendant_Of_Suspension_Object --
   ----------------------------------------

   function Is_Descendant_Of_Suspension_Object
     (Typ : Entity_Id) return Boolean
   is
      Cur_Typ : Entity_Id;
      Par_Typ : Entity_Id;

   begin
      --  Climb the type derivation chain checking each parent type against
      --  Suspension_Object.

      Cur_Typ := Base_Type (Typ);
      while Present (Cur_Typ) loop
         Par_Typ := Etype (Cur_Typ);

         --  The current type is a match

         if Is_Suspension_Object (Cur_Typ) then
            return True;

         --  Stop the traversal once the root of the derivation chain has been
         --  reached. In that case the current type is its own base type.

         elsif Cur_Typ = Par_Typ then
            exit;
         end if;

         Cur_Typ := Base_Type (Par_Typ);
      end loop;

      return False;
   end Is_Descendant_Of_Suspension_Object;

   ---------------------------------------------
   -- Is_Double_Precision_Floating_Point_Type --
   ---------------------------------------------

   function Is_Double_Precision_Floating_Point_Type
     (E : Entity_Id) return Boolean is
   begin
      return Is_Floating_Point_Type (E)
        and then Machine_Radix_Value (E) = Uint_2
        and then Machine_Mantissa_Value (E) = UI_From_Int (53)
        and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
        and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
   end Is_Double_Precision_Floating_Point_Type;

   -----------------------------
   -- Is_Effectively_Volatile --
   -----------------------------

   function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
   begin
      if Is_Type (Id) then

         --  An arbitrary type is effectively volatile when it is subject to
         --  pragma Atomic or Volatile.

         if Is_Volatile (Id) then
            return True;

         --  An array type is effectively volatile when it is subject to pragma
         --  Atomic_Components or Volatile_Components or its component type is
         --  effectively volatile.

         elsif Is_Array_Type (Id) then
            if Has_Volatile_Components (Id) then
               return True;
            else
               declare
                  Anc : Entity_Id := Base_Type (Id);
               begin
                  if Is_Private_Type (Anc) then
                     Anc := Full_View (Anc);
                  end if;

                  --  Test for presence of ancestor, as the full view of a
                  --  private type may be missing in case of error.

                  return
                    Present (Anc)
                      and then Is_Effectively_Volatile (Component_Type (Anc));
               end;
            end if;

         --  A protected type is always volatile

         elsif Is_Protected_Type (Id) then
            return True;

         --  A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
         --  automatically volatile.

         elsif Is_Descendant_Of_Suspension_Object (Id) then
            return True;

         --  Otherwise the type is not effectively volatile

         else
            return False;
         end if;

      --  Otherwise Id denotes an object

      else pragma Assert (Is_Object (Id));
         --  A volatile object for which No_Caching is enabled is not
         --  effectively volatile.

         return
           (Is_Volatile (Id)
            and then not
              (Ekind (Id) = E_Variable and then No_Caching_Enabled (Id)))
             or else Has_Volatile_Components (Id)
             or else Is_Effectively_Volatile (Etype (Id));
      end if;
   end Is_Effectively_Volatile;

   -----------------------------------------
   -- Is_Effectively_Volatile_For_Reading --
   -----------------------------------------

   function Is_Effectively_Volatile_For_Reading
     (Id : Entity_Id) return Boolean
   is
   begin
      --  A concurrent type is effectively volatile for reading

      if Is_Concurrent_Type (Id) then
         return True;

      elsif Is_Effectively_Volatile (Id) then

        --  Other volatile types and objects are effectively volatile for
        --  reading when they have property Async_Writers or Effective_Reads
        --  set to True. This includes the case of an array type whose
        --  Volatile_Components aspect is True (hence it is effectively
        --  volatile) which does not have the properties Async_Writers
        --  and Effective_Reads set to False.

         if Async_Writers_Enabled (Id)
           or else Effective_Reads_Enabled (Id)
         then
            return True;

         --  In addition, an array type is effectively volatile for reading
         --  when its component type is effectively volatile for reading.

         elsif Is_Array_Type (Id) then
            declare
               Anc : Entity_Id := Base_Type (Id);
            begin
               if Is_Private_Type (Anc) then
                  Anc := Full_View (Anc);
               end if;

               --  Test for presence of ancestor, as the full view of a
               --  private type may be missing in case of error.

               return
                 Present (Anc)
                   and then Is_Effectively_Volatile_For_Reading
                     (Component_Type (Anc));
            end;
         end if;
      end if;

      return False;

   end Is_Effectively_Volatile_For_Reading;

   ------------------------------------
   -- Is_Effectively_Volatile_Object --
   ------------------------------------

   function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
      function Is_Effectively_Volatile_Object_Inst
      is new Is_Effectively_Volatile_Object_Shared (Is_Effectively_Volatile);
   begin
      return Is_Effectively_Volatile_Object_Inst (N);
   end Is_Effectively_Volatile_Object;

   ------------------------------------------------
   -- Is_Effectively_Volatile_Object_For_Reading --
   ------------------------------------------------

   function Is_Effectively_Volatile_Object_For_Reading
     (N : Node_Id) return Boolean
   is
      function Is_Effectively_Volatile_Object_For_Reading_Inst
      is new Is_Effectively_Volatile_Object_Shared
        (Is_Effectively_Volatile_For_Reading);
   begin
      return Is_Effectively_Volatile_Object_For_Reading_Inst (N);
   end Is_Effectively_Volatile_Object_For_Reading;

   -------------------------------------------
   -- Is_Effectively_Volatile_Object_Shared --
   -------------------------------------------

   function Is_Effectively_Volatile_Object_Shared
     (N : Node_Id) return Boolean
   is
   begin
      if Is_Entity_Name (N) then
         return Is_Object (Entity (N))
           and then Is_Effectively_Volatile_Entity (Entity (N));

      elsif Nkind (N) in N_Indexed_Component | N_Slice then
         return Is_Effectively_Volatile_Object_Shared (Prefix (N));

      elsif Nkind (N) = N_Selected_Component then
         return
           Is_Effectively_Volatile_Object_Shared (Prefix (N))
             or else
           Is_Effectively_Volatile_Object_Shared (Selector_Name (N));

      elsif Nkind (N) in N_Qualified_Expression
                       | N_Unchecked_Type_Conversion
                       | N_Type_Conversion
      then
         return Is_Effectively_Volatile_Object_Shared (Expression (N));

      else
         return False;
      end if;
   end Is_Effectively_Volatile_Object_Shared;

   -------------------
   -- Is_Entry_Body --
   -------------------

   function Is_Entry_Body (Id : Entity_Id) return Boolean is
   begin
      return
        Is_Entry (Id)
          and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
   end Is_Entry_Body;

   --------------------------
   -- Is_Entry_Declaration --
   --------------------------

   function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
   begin
      return
        Is_Entry (Id)
          and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
   end Is_Entry_Declaration;

   ------------------------------------
   -- Is_Expanded_Priority_Attribute --
   ------------------------------------

   function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean is
   begin
      return
        Nkind (E) = N_Function_Call
          and then not Configurable_Run_Time_Mode
          and then Nkind (Original_Node (E)) = N_Attribute_Reference
          and then (Entity (Name (E)) = RTE (RE_Get_Ceiling)
                     or else Entity (Name (E)) = RTE (RO_PE_Get_Ceiling));
   end Is_Expanded_Priority_Attribute;

   ----------------------------
   -- Is_Expression_Function --
   ----------------------------

   function Is_Expression_Function (Subp : Entity_Id) return Boolean is
   begin
      if Ekind (Subp) in E_Function | E_Subprogram_Body then
         return
           Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
             N_Expression_Function;
      else
         return False;
      end if;
   end Is_Expression_Function;

   ------------------------------------------
   -- Is_Expression_Function_Or_Completion --
   ------------------------------------------

   function Is_Expression_Function_Or_Completion
     (Subp : Entity_Id) return Boolean
   is
      Subp_Decl : Node_Id;

   begin
      if Ekind (Subp) = E_Function then
         Subp_Decl := Unit_Declaration_Node (Subp);

         --  The function declaration is either an expression function or is
         --  completed by an expression function body.

         return
           Is_Expression_Function (Subp)
             or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
                       and then Present (Corresponding_Body (Subp_Decl))
                       and then Is_Expression_Function
                                  (Corresponding_Body (Subp_Decl)));

      elsif Ekind (Subp) = E_Subprogram_Body then
         return Is_Expression_Function (Subp);

      else
         return False;
      end if;
   end Is_Expression_Function_Or_Completion;

   -----------------------
   -- Is_EVF_Expression --
   -----------------------

   function Is_EVF_Expression (N : Node_Id) return Boolean is
      Orig_N : constant Node_Id := Original_Node (N);
      Alt    : Node_Id;
      Expr   : Node_Id;
      Id     : Entity_Id;

   begin
      --  Detect a reference to a formal parameter of a specific tagged type
      --  whose related subprogram is subject to pragma Expresions_Visible with
      --  value "False".

      if Is_Entity_Name (N) and then Present (Entity (N)) then
         Id := Entity (N);

         return
           Is_Formal (Id)
             and then Is_Specific_Tagged_Type (Etype (Id))
             and then Extensions_Visible_Status (Id) =
                      Extensions_Visible_False;

      --  A case expression is an EVF expression when it contains at least one
      --  EVF dependent_expression. Note that a case expression may have been
      --  expanded, hence the use of Original_Node.

      elsif Nkind (Orig_N) = N_Case_Expression then
         Alt := First (Alternatives (Orig_N));
         while Present (Alt) loop
            if Is_EVF_Expression (Expression (Alt)) then
               return True;
            end if;

            Next (Alt);
         end loop;

      --  An if expression is an EVF expression when it contains at least one
      --  EVF dependent_expression. Note that an if expression may have been
      --  expanded, hence the use of Original_Node.

      elsif Nkind (Orig_N) = N_If_Expression then
         Expr := Next (First (Expressions (Orig_N)));
         while Present (Expr) loop
            if Is_EVF_Expression (Expr) then
               return True;
            end if;

            Next (Expr);
         end loop;

      --  A qualified expression or a type conversion is an EVF expression when
      --  its operand is an EVF expression.

      elsif Nkind (N) in N_Qualified_Expression
                       | N_Unchecked_Type_Conversion
                       | N_Type_Conversion
      then
         return Is_EVF_Expression (Expression (N));

      --  Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
      --  their prefix denotes an EVF expression.

      elsif Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) in Name_Loop_Entry
                                     | Name_Old
                                     | Name_Update
      then
         return Is_EVF_Expression (Prefix (N));
      end if;

      return False;
   end Is_EVF_Expression;

   --------------
   -- Is_False --
   --------------

   function Is_False (U : Uint) return Boolean is
   begin
      return (U = 0);
   end Is_False;

   ---------------------------
   -- Is_Fixed_Model_Number --
   ---------------------------

   function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
      S : constant Ureal := Small_Value (T);
      M : Urealp.Save_Mark;
      R : Boolean;

   begin
      M := Urealp.Mark;
      R := (U = UR_Trunc (U / S) * S);
      Urealp.Release (M);
      return R;
   end Is_Fixed_Model_Number;

   -------------------------------
   -- Is_Fully_Initialized_Type --
   -------------------------------

   function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
   begin
      --  Scalar types

      if Is_Scalar_Type (Typ) then

         --  A scalar type with an aspect Default_Value is fully initialized

         --  Note: Iniitalize/Normalize_Scalars also ensure full initialization
         --  of a scalar type, but we don't take that into account here, since
         --  we don't want these to affect warnings.

         return Has_Default_Aspect (Typ);

      elsif Is_Access_Type (Typ) then
         return True;

      elsif Is_Array_Type (Typ) then
         if Is_Fully_Initialized_Type (Component_Type (Typ))
           or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
         then
            return True;
         end if;

         --  An interesting case, if we have a constrained type one of whose
         --  bounds is known to be null, then there are no elements to be
         --  initialized, so all the elements are initialized.

         if Is_Constrained (Typ) then
            declare
               Indx     : Node_Id;
               Indx_Typ : Entity_Id;
               Lbd, Hbd : Node_Id;

            begin
               Indx := First_Index (Typ);
               while Present (Indx) loop
                  if Etype (Indx) = Any_Type then
                     return False;

                  --  If index is a range, use directly

                  elsif Nkind (Indx) = N_Range then
                     Lbd := Low_Bound  (Indx);
                     Hbd := High_Bound (Indx);

                  else
                     Indx_Typ := Etype (Indx);

                     if Is_Private_Type (Indx_Typ) then
                        Indx_Typ := Full_View (Indx_Typ);
                     end if;

                     if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
                        return False;
                     else
                        Lbd := Type_Low_Bound  (Indx_Typ);
                        Hbd := Type_High_Bound (Indx_Typ);
                     end if;
                  end if;

                  if Compile_Time_Known_Value (Lbd)
                       and then
                     Compile_Time_Known_Value (Hbd)
                  then
                     if Expr_Value (Hbd) < Expr_Value (Lbd) then
                        return True;
                     end if;
                  end if;

                  Next_Index (Indx);
               end loop;
            end;
         end if;

         --  If no null indexes, then type is not fully initialized

         return False;

      --  Record types

      elsif Is_Record_Type (Typ) then
         if Has_Discriminants (Typ)
           and then
             Present (Discriminant_Default_Value (First_Discriminant (Typ)))
           and then Is_Fully_Initialized_Variant (Typ)
         then
            return True;
         end if;

         --  We consider bounded string types to be fully initialized, because
         --  otherwise we get false alarms when the Data component is not
         --  default-initialized.

         if Is_Bounded_String (Typ) then
            return True;
         end if;

         --  Controlled records are considered to be fully initialized if
         --  there is a user defined Initialize routine. This may not be
         --  entirely correct, but as the spec notes, we are guessing here
         --  what is best from the point of view of issuing warnings.

         if Is_Controlled (Typ) then
            declare
               Utyp : constant Entity_Id := Underlying_Type (Typ);

            begin
               if Present (Utyp) then
                  declare
                     Init : constant Entity_Id :=
                              (Find_Optional_Prim_Op
                                 (Underlying_Type (Typ), Name_Initialize));

                  begin
                     if Present (Init)
                       and then Comes_From_Source (Init)
                       and then not In_Predefined_Unit (Init)
                     then
                        return True;

                     elsif Has_Null_Extension (Typ)
                        and then
                          Is_Fully_Initialized_Type
                            (Etype (Base_Type (Typ)))
                     then
                        return True;
                     end if;
                  end;
               end if;
            end;
         end if;

         --  Otherwise see if all record components are initialized

         declare
            Ent : Entity_Id;

         begin
            Ent := First_Entity (Typ);
            while Present (Ent) loop
               if Ekind (Ent) = E_Component
                 and then (No (Parent (Ent))
                            or else No (Expression (Parent (Ent))))
                 and then not Is_Fully_Initialized_Type (Etype (Ent))

                  --  Special VM case for tag components, which need to be
                  --  defined in this case, but are never initialized as VMs
                  --  are using other dispatching mechanisms. Ignore this
                  --  uninitialized case. Note that this applies both to the
                  --  uTag entry and the main vtable pointer (CPP_Class case).

                 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
               then
                  return False;
               end if;

               Next_Entity (Ent);
            end loop;
         end;

         --  No uninitialized components, so type is fully initialized.
         --  Note that this catches the case of no components as well.

         return True;

      elsif Is_Concurrent_Type (Typ) then
         return True;

      elsif Is_Private_Type (Typ) then
         declare
            U : constant Entity_Id := Underlying_Type (Typ);

         begin
            if No (U) then
               return False;
            else
               return Is_Fully_Initialized_Type (U);
            end if;
         end;

      else
         return False;
      end if;
   end Is_Fully_Initialized_Type;

   ----------------------------------
   -- Is_Fully_Initialized_Variant --
   ----------------------------------

   function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
      Loc           : constant Source_Ptr := Sloc (Typ);
      Constraints   : constant List_Id    := New_List;
      Components    : constant Elist_Id   := New_Elmt_List;
      Comp_Elmt     : Elmt_Id;
      Comp_Id       : Node_Id;
      Comp_List     : Node_Id;
      Discr         : Entity_Id;
      Discr_Val     : Node_Id;

      Report_Errors : Boolean;
      pragma Warnings (Off, Report_Errors);

   begin
      if Serious_Errors_Detected > 0 then
         return False;
      end if;

      if Is_Record_Type (Typ)
        and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
        and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
      then
         Comp_List := Component_List (Type_Definition (Parent (Typ)));

         Discr := First_Discriminant (Typ);
         while Present (Discr) loop
            if Nkind (Parent (Discr)) = N_Discriminant_Specification then
               Discr_Val := Expression (Parent (Discr));

               if Present (Discr_Val)
                 and then Is_OK_Static_Expression (Discr_Val)
               then
                  Append_To (Constraints,
                    Make_Component_Association (Loc,
                      Choices    => New_List (New_Occurrence_Of (Discr, Loc)),
                      Expression => New_Copy (Discr_Val)));
               else
                  return False;
               end if;
            else
               return False;
            end if;

            Next_Discriminant (Discr);
         end loop;

         Gather_Components
           (Typ           => Typ,
            Comp_List     => Comp_List,
            Governed_By   => Constraints,
            Into          => Components,
            Report_Errors => Report_Errors);

         --  Check that each component present is fully initialized

         Comp_Elmt := First_Elmt (Components);
         while Present (Comp_Elmt) loop
            Comp_Id := Node (Comp_Elmt);

            if Ekind (Comp_Id) = E_Component
              and then (No (Parent (Comp_Id))
                         or else No (Expression (Parent (Comp_Id))))
              and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
            then
               return False;
            end if;

            Next_Elmt (Comp_Elmt);
         end loop;

         return True;

      elsif Is_Private_Type (Typ) then
         declare
            U : constant Entity_Id := Underlying_Type (Typ);

         begin
            if No (U) then
               return False;
            else
               return Is_Fully_Initialized_Variant (U);
            end if;
         end;

      else
         return False;
      end if;
   end Is_Fully_Initialized_Variant;

   ------------------------------------
   -- Is_Generic_Declaration_Or_Body --
   ------------------------------------

   function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
      Spec_Decl : Node_Id;

   begin
      --  Package/subprogram body

      if Nkind (Decl) in N_Package_Body | N_Subprogram_Body
        and then Present (Corresponding_Spec (Decl))
      then
         Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));

      --  Package/subprogram body stub

      elsif Nkind (Decl) in N_Package_Body_Stub | N_Subprogram_Body_Stub
        and then Present (Corresponding_Spec_Of_Stub (Decl))
      then
         Spec_Decl :=
           Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));

      --  All other cases

      else
         Spec_Decl := Decl;
      end if;

      --  Rather than inspecting the defining entity of the spec declaration,
      --  look at its Nkind. This takes care of the case where the analysis of
      --  a generic body modifies the Ekind of its spec to allow for recursive
      --  calls.

      return
        Nkind (Spec_Decl) in N_Generic_Package_Declaration
                           | N_Generic_Subprogram_Declaration;
   end Is_Generic_Declaration_Or_Body;

   ---------------------------
   -- Is_Independent_Object --
   ---------------------------

   function Is_Independent_Object (N : Node_Id) return Boolean is
      function Is_Independent_Object_Entity (Id : Entity_Id) return Boolean;
      --  Determine whether arbitrary entity Id denotes an object that is
      --  Independent.

      function Prefix_Has_Independent_Components (P : Node_Id) return Boolean;
      --  Determine whether prefix P has independent components. This requires
      --  the presence of an Independent_Components aspect/pragma.

      ------------------------------------
      --  Is_Independent_Object_Entity  --
      ------------------------------------

      function Is_Independent_Object_Entity (Id : Entity_Id) return Boolean is
      begin
         return
           Is_Object (Id)
             and then (Is_Independent (Id)
                        or else
                      Is_Independent (Etype (Id)));
      end Is_Independent_Object_Entity;

      -------------------------------------
      -- Prefix_Has_Independent_Components --
      -------------------------------------

      function Prefix_Has_Independent_Components (P : Node_Id) return Boolean
      is
         Typ : constant Entity_Id := Etype (P);

      begin
         if Is_Access_Type (Typ) then
            return Has_Independent_Components (Designated_Type (Typ));

         elsif Has_Independent_Components (Typ) then
            return True;

         elsif Is_Entity_Name (P)
           and then Has_Independent_Components (Entity (P))
         then
            return True;

         else
            return False;
         end if;
      end Prefix_Has_Independent_Components;

   --  Start of processing for Is_Independent_Object

   begin
      if Is_Entity_Name (N) then
         return Is_Independent_Object_Entity (Entity (N));

      elsif Is_Independent (Etype (N)) then
         return True;

      elsif Nkind (N) = N_Indexed_Component then
         return Prefix_Has_Independent_Components (Prefix (N));

      elsif Nkind (N) = N_Selected_Component then
         return Prefix_Has_Independent_Components (Prefix (N))
           or else Is_Independent (Entity (Selector_Name (N)));

      else
         return False;
      end if;
   end Is_Independent_Object;

   ----------------------------
   -- Is_Inherited_Operation --
   ----------------------------

   function Is_Inherited_Operation (E : Entity_Id) return Boolean is
      pragma Assert (Is_Overloadable (E));
      Kind : constant Node_Kind := Nkind (Parent (E));
   begin
      return Kind = N_Full_Type_Declaration
        or else Kind = N_Private_Extension_Declaration
        or else Kind = N_Subtype_Declaration
        or else (Ekind (E) = E_Enumeration_Literal
                  and then Is_Derived_Type (Etype (E)));
   end Is_Inherited_Operation;

   -------------------------------------
   -- Is_Inherited_Operation_For_Type --
   -------------------------------------

   function Is_Inherited_Operation_For_Type
     (E   : Entity_Id;
      Typ : Entity_Id) return Boolean
   is
   begin
      --  Check that the operation has been created by the type declaration

      return Is_Inherited_Operation (E)
        and then Defining_Identifier (Parent (E)) = Typ;
   end Is_Inherited_Operation_For_Type;

   --------------------------------------
   -- Is_Inlinable_Expression_Function --
   --------------------------------------

   function Is_Inlinable_Expression_Function
     (Subp : Entity_Id) return Boolean
   is
      Return_Expr : Node_Id;

   begin
      if Is_Expression_Function_Or_Completion (Subp)
        and then Has_Pragma_Inline_Always (Subp)
        and then Needs_No_Actuals (Subp)
        and then No (Contract (Subp))
        and then not Is_Dispatching_Operation (Subp)
        and then Needs_Finalization (Etype (Subp))
        and then not Is_Class_Wide_Type (Etype (Subp))
        and then not Has_Invariants (Etype (Subp))
        and then Present (Subprogram_Body (Subp))
        and then Was_Expression_Function (Subprogram_Body (Subp))
      then
         Return_Expr := Expression_Of_Expression_Function (Subp);

         --  The returned object must not have a qualified expression and its
         --  nominal subtype must be statically compatible with the result
         --  subtype of the expression function.

         return
           Nkind (Return_Expr) = N_Identifier
             and then Etype (Return_Expr) = Etype (Subp);
      end if;

      return False;
   end Is_Inlinable_Expression_Function;

   -----------------
   -- Is_Iterator --
   -----------------

   function Is_Iterator (Typ : Entity_Id) return Boolean is
      function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
      --  Determine whether type Iter_Typ is a predefined forward or reversible
      --  iterator.

      ----------------------
      -- Denotes_Iterator --
      ----------------------

      function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
      begin
         --  Check that the name matches, and that the ultimate ancestor is in
         --  a predefined unit, i.e the one that declares iterator interfaces.

         return
           Chars (Iter_Typ) in Name_Forward_Iterator | Name_Reversible_Iterator
             and then In_Predefined_Unit (Root_Type (Iter_Typ));
      end Denotes_Iterator;

      --  Local variables

      Iface_Elmt : Elmt_Id;
      Ifaces     : Elist_Id;

   --  Start of processing for Is_Iterator

   begin
      --  The type may be a subtype of a descendant of the proper instance of
      --  the predefined interface type, so we must use the root type of the
      --  given type. The same is done for Is_Reversible_Iterator.

      if Is_Class_Wide_Type (Typ)
        and then Denotes_Iterator (Root_Type (Typ))
      then
         return True;

      elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
         return False;

      elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
         return True;

      else
         Collect_Interfaces (Typ, Ifaces);

         Iface_Elmt := First_Elmt (Ifaces);
         while Present (Iface_Elmt) loop
            if Denotes_Iterator (Node (Iface_Elmt)) then
               return True;
            end if;

            Next_Elmt (Iface_Elmt);
         end loop;

         return False;
      end if;
   end Is_Iterator;

   ----------------------------
   -- Is_Iterator_Over_Array --
   ----------------------------

   function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
      Container     : constant Node_Id   := Name (N);
      Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
   begin
      return Is_Array_Type (Container_Typ);
   end Is_Iterator_Over_Array;

   ------------
   -- Is_LHS --
   ------------

   --  We seem to have a lot of overlapping functions that do similar things
   --  (testing for left hand sides or lvalues???).

   function Is_LHS (N : Node_Id) return Is_LHS_Result is
      P : constant Node_Id := Parent (N);

   begin
      --  Return True if we are the left hand side of an assignment statement

      if Nkind (P) = N_Assignment_Statement then
         if Name (P) = N then
            return Yes;
         else
            return No;
         end if;

      --  Case of prefix of indexed or selected component or slice

      elsif Nkind (P) in N_Indexed_Component | N_Selected_Component | N_Slice
        and then N = Prefix (P)
      then
         --  Here we have the case where the parent P is N.Q or N(Q .. R).
         --  If P is an LHS, then N is also effectively an LHS, but there
         --  is an important exception. If N is of an access type, then
         --  what we really have is N.all.Q (or N.all(Q .. R)). In either
         --  case this makes N.all a left hand side but not N itself.

         --  If we don't know the type yet, this is the case where we return
         --  Unknown, since the answer depends on the type which is unknown.

         if No (Etype (N)) then
            return Unknown;

         --  We have an Etype set, so we can check it

         elsif Is_Access_Type (Etype (N)) then
            return No;

         --  OK, not access type case, so just test whole expression

         else
            return Is_LHS (P);
         end if;

      --  All other cases are not left hand sides

      else
         return No;
      end if;
   end Is_LHS;

   -----------------------------
   -- Is_Library_Level_Entity --
   -----------------------------

   function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
   begin
      --  The following is a small optimization, and it also properly handles
      --  discriminals, which in task bodies might appear in expressions before
      --  the corresponding procedure has been created, and which therefore do
      --  not have an assigned scope.

      if Is_Formal (E) then
         return False;
      end if;

      --  Normal test is simply that the enclosing dynamic scope is Standard

      return Enclosing_Dynamic_Scope (E) = Standard_Standard;
   end Is_Library_Level_Entity;

   --------------------------------
   -- Is_Limited_Class_Wide_Type --
   --------------------------------

   function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
   begin
      return
        Is_Class_Wide_Type (Typ)
          and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
   end Is_Limited_Class_Wide_Type;

   ---------------------------------
   -- Is_Local_Variable_Reference --
   ---------------------------------

   function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
   begin
      if not Is_Entity_Name (Expr) then
         return False;

      else
         declare
            Ent : constant Entity_Id := Entity (Expr);
            Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
         begin
            if Ekind (Ent) not in E_Variable | E_In_Out_Parameter then
               return False;
            else
               return Present (Sub) and then Sub = Current_Subprogram;
            end if;
         end;
      end if;
   end Is_Local_Variable_Reference;

   -----------------------
   -- Is_Name_Reference --
   -----------------------

   function Is_Name_Reference (N : Node_Id) return Boolean is
   begin
      if Is_Entity_Name (N) then
         return Present (Entity (N)) and then Is_Object (Entity (N));
      end if;

      case Nkind (N) is
         when N_Indexed_Component
            | N_Slice
         =>
            return
              Is_Name_Reference (Prefix (N))
                or else Is_Access_Type (Etype (Prefix (N)));

         --  Attributes 'Input, 'Old and 'Result produce objects

         when N_Attribute_Reference =>
            return Attribute_Name (N) in Name_Input | Name_Old | Name_Result;

         when N_Selected_Component =>
            return
              Is_Name_Reference (Selector_Name (N))
                and then
                  (Is_Name_Reference (Prefix (N))
                    or else Is_Access_Type (Etype (Prefix (N))));

         when N_Explicit_Dereference =>
            return True;

         --  A view conversion of a tagged name is a name reference

         when N_Type_Conversion =>
            return
              Is_Tagged_Type (Etype (Subtype_Mark (N)))
                and then Is_Tagged_Type (Etype (Expression (N)))
                and then Is_Name_Reference (Expression (N));

         --  An unchecked type conversion is considered to be a name if the
         --  operand is a name (this construction arises only as a result of
         --  expansion activities).

         when N_Unchecked_Type_Conversion =>
            return Is_Name_Reference (Expression (N));

         when others =>
            return False;
      end case;
   end Is_Name_Reference;

   ------------------------------------
   -- Is_Non_Preelaborable_Construct --
   ------------------------------------

   function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean is

      --  NOTE: the routines within Is_Non_Preelaborable_Construct are
      --  intentionally unnested to avoid deep indentation of code.

      Non_Preelaborable : exception;
      --  This exception is raised when the construct violates preelaborability
      --  to terminate the recursion.

      procedure Visit (Nod : Node_Id);
      --  Semantically inspect construct Nod to determine whether it violates
      --  preelaborability. This routine raises Non_Preelaborable.

      procedure Visit_List (List : List_Id);
      pragma Inline (Visit_List);
      --  Invoke Visit on each element of list List. This routine raises
      --  Non_Preelaborable.

      procedure Visit_Pragma (Prag : Node_Id);
      pragma Inline (Visit_Pragma);
      --  Semantically inspect pragma Prag to determine whether it violates
      --  preelaborability. This routine raises Non_Preelaborable.

      procedure Visit_Subexpression (Expr : Node_Id);
      pragma Inline (Visit_Subexpression);
      --  Semantically inspect expression Expr to determine whether it violates
      --  preelaborability. This routine raises Non_Preelaborable.

      -----------
      -- Visit --
      -----------

      procedure Visit (Nod : Node_Id) is
      begin
         case Nkind (Nod) is

            --  Declarations

            when N_Component_Declaration =>

               --  Defining_Identifier is left out because it is not relevant
               --  for preelaborability.

               Visit (Component_Definition (Nod));
               Visit (Expression (Nod));

            when N_Derived_Type_Definition =>

               --  Interface_List is left out because it is not relevant for
               --  preelaborability.

               Visit (Record_Extension_Part (Nod));
               Visit (Subtype_Indication (Nod));

            when N_Entry_Declaration =>

               --  A protected type with at leat one entry is not preelaborable
               --  while task types are never preelaborable. This renders entry
               --  declarations non-preelaborable.

               raise Non_Preelaborable;

            when N_Full_Type_Declaration =>

               --  Defining_Identifier and Discriminant_Specifications are left
               --  out because they are not relevant for preelaborability.

               Visit (Type_Definition (Nod));

            when N_Function_Instantiation
               | N_Package_Instantiation
               | N_Procedure_Instantiation
            =>
               --  Defining_Unit_Name and Name are left out because they are
               --  not relevant for preelaborability.

               Visit_List (Generic_Associations (Nod));

            when N_Object_Declaration =>

               --  Defining_Identifier is left out because it is not relevant
               --  for preelaborability.

               Visit (Object_Definition (Nod));

               if Has_Init_Expression (Nod) then
                  Visit (Expression (Nod));

               elsif not Has_Preelaborable_Initialization
                           (Etype (Defining_Entity (Nod)))
               then
                  raise Non_Preelaborable;
               end if;

            when N_Private_Extension_Declaration
               | N_Subtype_Declaration
            =>
               --  Defining_Identifier, Discriminant_Specifications, and
               --  Interface_List are left out because they are not relevant
               --  for preelaborability.

               Visit (Subtype_Indication (Nod));

            when N_Protected_Type_Declaration
               | N_Single_Protected_Declaration
            =>
               --  Defining_Identifier, Discriminant_Specifications, and
               --  Interface_List are left out because they are not relevant
               --  for preelaborability.

               Visit (Protected_Definition (Nod));

            --  A [single] task type is never preelaborable

            when N_Single_Task_Declaration
               | N_Task_Type_Declaration
            =>
               raise Non_Preelaborable;

            --  Pragmas

            when N_Pragma =>
               Visit_Pragma (Nod);

            --  Statements

            when N_Statement_Other_Than_Procedure_Call =>
               if Nkind (Nod) /= N_Null_Statement then
                  raise Non_Preelaborable;
               end if;

            --  Subexpressions

            when N_Subexpr =>
               Visit_Subexpression (Nod);

            --  Special

            when N_Access_To_Object_Definition =>
               Visit (Subtype_Indication (Nod));

            when N_Case_Expression_Alternative =>
               Visit (Expression (Nod));
               Visit_List (Discrete_Choices (Nod));

            when N_Component_Definition =>
               Visit (Access_Definition (Nod));
               Visit (Subtype_Indication (Nod));

            when N_Component_List =>
               Visit_List (Component_Items (Nod));
               Visit (Variant_Part (Nod));

            when N_Constrained_Array_Definition =>
               Visit_List (Discrete_Subtype_Definitions (Nod));
               Visit (Component_Definition (Nod));

            when N_Delta_Constraint
               | N_Digits_Constraint
            =>
               --  Delta_Expression and Digits_Expression are left out because
               --  they are not relevant for preelaborability.

               Visit (Range_Constraint (Nod));

            when N_Discriminant_Specification =>

               --  Defining_Identifier and Expression are left out because they
               --  are not relevant for preelaborability.

               Visit (Discriminant_Type (Nod));

            when N_Generic_Association =>

               --  Selector_Name is left out because it is not relevant for
               --  preelaborability.

               Visit (Explicit_Generic_Actual_Parameter (Nod));

            when N_Index_Or_Discriminant_Constraint =>
               Visit_List (Constraints (Nod));

            when N_Iterator_Specification =>

               --  Defining_Identifier is left out because it is not relevant
               --  for preelaborability.

               Visit (Name (Nod));
               Visit (Subtype_Indication (Nod));

            when N_Loop_Parameter_Specification =>

               --  Defining_Identifier is left out because it is not relevant
               --  for preelaborability.

               Visit (Discrete_Subtype_Definition (Nod));

            when N_Parameter_Association =>
               Visit (Explicit_Actual_Parameter (N));

            when N_Protected_Definition =>

               --  End_Label is left out because it is not relevant for
               --  preelaborability.

               Visit_List (Private_Declarations (Nod));
               Visit_List (Visible_Declarations (Nod));

            when N_Range_Constraint =>
               Visit (Range_Expression (Nod));

            when N_Record_Definition
               | N_Variant
            =>
               --  End_Label, Discrete_Choices, and Interface_List are left out
               --  because they are not relevant for preelaborability.

               Visit (Component_List (Nod));

            when N_Subtype_Indication =>

               --  Subtype_Mark is left out because it is not relevant for
               --  preelaborability.

               Visit (Constraint (Nod));

            when N_Unconstrained_Array_Definition =>

               --  Subtype_Marks is left out because it is not relevant for
               --  preelaborability.

               Visit (Component_Definition (Nod));

            when N_Variant_Part =>

               --  Name is left out because it is not relevant for
               --  preelaborability.

               Visit_List (Variants (Nod));

            --  Default

            when others =>
               null;
         end case;
      end Visit;

      ----------------
      -- Visit_List --
      ----------------

      procedure Visit_List (List : List_Id) is
         Nod : Node_Id;

      begin
         if Present (List) then
            Nod := First (List);
            while Present (Nod) loop
               Visit (Nod);
               Next (Nod);
            end loop;
         end if;
      end Visit_List;

      ------------------
      -- Visit_Pragma --
      ------------------

      procedure Visit_Pragma (Prag : Node_Id) is
      begin
         case Get_Pragma_Id (Prag) is
            when Pragma_Assert
               | Pragma_Assert_And_Cut
               | Pragma_Assume
               | Pragma_Async_Readers
               | Pragma_Async_Writers
               | Pragma_Attribute_Definition
               | Pragma_Check
               | Pragma_Constant_After_Elaboration
               | Pragma_CPU
               | Pragma_Deadline_Floor
               | Pragma_Dispatching_Domain
               | Pragma_Effective_Reads
               | Pragma_Effective_Writes
               | Pragma_Extensions_Visible
               | Pragma_Ghost
               | Pragma_Secondary_Stack_Size
               | Pragma_Task_Name
               | Pragma_Volatile_Function
            =>
               Visit_List (Pragma_Argument_Associations (Prag));

            --  Default

            when others =>
               null;
         end case;
      end Visit_Pragma;

      -------------------------
      -- Visit_Subexpression --
      -------------------------

      procedure Visit_Subexpression (Expr : Node_Id) is
         procedure Visit_Aggregate (Aggr : Node_Id);
         pragma Inline (Visit_Aggregate);
         --  Semantically inspect aggregate Aggr to determine whether it
         --  violates preelaborability.

         ---------------------
         -- Visit_Aggregate --
         ---------------------

         procedure Visit_Aggregate (Aggr : Node_Id) is
         begin
            if not Is_Preelaborable_Aggregate (Aggr) then
               raise Non_Preelaborable;
            end if;
         end Visit_Aggregate;

      --  Start of processing for Visit_Subexpression

      begin
         case Nkind (Expr) is
            when N_Allocator
               | N_Qualified_Expression
               | N_Type_Conversion
               | N_Unchecked_Expression
               | N_Unchecked_Type_Conversion
            =>
               --  Subpool_Handle_Name and Subtype_Mark are left out because
               --  they are not relevant for preelaborability.

               Visit (Expression (Expr));

            when N_Aggregate
               | N_Extension_Aggregate
            =>
               Visit_Aggregate (Expr);

            when N_Attribute_Reference
               | N_Explicit_Dereference
               | N_Reference
            =>
               --  Attribute_Name and Expressions are left out because they are
               --  not relevant for preelaborability.

               Visit (Prefix (Expr));

            when N_Case_Expression =>

               --  End_Span is left out because it is not relevant for
               --  preelaborability.

               Visit_List (Alternatives (Expr));
               Visit (Expression (Expr));

            when N_Delta_Aggregate =>
               Visit_Aggregate (Expr);
               Visit (Expression (Expr));

            when N_Expression_With_Actions =>
               Visit_List (Actions (Expr));
               Visit (Expression (Expr));

            when N_Function_Call =>

               --  Ada 2020 (AI12-0175): Calls to certain functions that are
               --  essentially unchecked conversions are preelaborable.

               if Ada_Version >= Ada_2020
                 and then Nkind (Expr) = N_Function_Call
                 and then Is_Entity_Name (Name (Expr))
                 and then Is_Preelaborable_Function (Entity (Name (Expr)))
               then
                  Visit_List (Parameter_Associations (Expr));
               else
                  raise Non_Preelaborable;
               end if;

            when N_If_Expression =>
               Visit_List (Expressions (Expr));

            when N_Quantified_Expression =>
               Visit (Condition (Expr));
               Visit (Iterator_Specification (Expr));
               Visit (Loop_Parameter_Specification (Expr));

            when N_Range =>
               Visit (High_Bound (Expr));
               Visit (Low_Bound (Expr));

            when N_Slice =>
               Visit (Discrete_Range (Expr));
               Visit (Prefix (Expr));

            --  Default

            when others =>

               --  The evaluation of an object name is not preelaborable,
               --  unless the name is a static expression (checked further
               --  below), or statically denotes a discriminant.

               if Is_Entity_Name (Expr) then
                  Object_Name : declare
                     Id : constant Entity_Id := Entity (Expr);

                  begin
                     if Is_Object (Id) then
                        if Ekind (Id) = E_Discriminant then
                           null;

                        elsif Ekind (Id) in E_Constant | E_In_Parameter
                          and then Present (Discriminal_Link (Id))
                        then
                           null;

                        else
                           raise Non_Preelaborable;
                        end if;
                     end if;
                  end Object_Name;

               --  A non-static expression is not preelaborable

               elsif not Is_OK_Static_Expression (Expr) then
                  raise Non_Preelaborable;
               end if;
         end case;
      end Visit_Subexpression;

   --  Start of processing for Is_Non_Preelaborable_Construct

   begin
      Visit (N);

      --  At this point it is known that the construct is preelaborable

      return False;

   exception

      --  The elaboration of the construct performs an action which violates
      --  preelaborability.

      when Non_Preelaborable =>
         return True;
   end Is_Non_Preelaborable_Construct;

   ---------------------------------
   -- Is_Nontrivial_DIC_Procedure --
   ---------------------------------

   function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean is
      Body_Decl : Node_Id;
      Stmt      : Node_Id;

   begin
      if Ekind (Id) = E_Procedure and then Is_DIC_Procedure (Id) then
         Body_Decl :=
           Unit_Declaration_Node
             (Corresponding_Body (Unit_Declaration_Node (Id)));

         --  The body of the Default_Initial_Condition procedure must contain
         --  at least one statement, otherwise the generation of the subprogram
         --  body failed.

         pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));

         --  To qualify as nontrivial, the first statement of the procedure
         --  must be a check in the form of an if statement. If the original
         --  Default_Initial_Condition expression was folded, then the first
         --  statement is not a check.

         Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));

         return
           Nkind (Stmt) = N_If_Statement
             and then Nkind (Original_Node (Stmt)) = N_Pragma;
      end if;

      return False;
   end Is_Nontrivial_DIC_Procedure;

   -------------------------
   -- Is_Null_Record_Type --
   -------------------------

   function Is_Null_Record_Type (T : Entity_Id) return Boolean is
      Decl : constant Node_Id := Parent (T);
   begin
      return Nkind (Decl) = N_Full_Type_Declaration
        and then Nkind (Type_Definition (Decl)) = N_Record_Definition
        and then
          (No (Component_List (Type_Definition (Decl)))
            or else Null_Present (Component_List (Type_Definition (Decl))));
   end Is_Null_Record_Type;

   ---------------------
   -- Is_Object_Image --
   ---------------------

   function Is_Object_Image (Prefix : Node_Id) return Boolean is
   begin
      --  Here we test for the case that the prefix is not a type and assume
      --  if it is not then it must be a named value or an object reference.
      --  This is because the parser always checks that prefixes of attributes
      --  are named.

      return not (Is_Entity_Name (Prefix) and then Is_Type (Entity (Prefix)));
   end Is_Object_Image;

   -------------------------
   -- Is_Object_Reference --
   -------------------------

   function Is_Object_Reference (N : Node_Id) return Boolean is
   begin
      --  AI12-0068: Note that a current instance reference in a type or
      --  subtype's aspect_specification is considered a value, not an object
      --  (see RM 8.6(18/5)).

      if Is_Entity_Name (N) then
         return Present (Entity (N)) and then Is_Object (Entity (N))
           and then not Is_Current_Instance_Reference_In_Type_Aspect (N);

      else
         case Nkind (N) is
            when N_Indexed_Component
               | N_Slice
            =>
               return
                 Is_Object_Reference (Prefix (N))
                   or else Is_Access_Type (Etype (Prefix (N)));

            --  In Ada 95, a function call is a constant object; a procedure
            --  call is not.

            --  Note that predefined operators are functions as well, and so
            --  are attributes that are (can be renamed as) functions.

            when N_Function_Call
               | N_Op
            =>
               return Etype (N) /= Standard_Void_Type;

            --  Attributes references 'Loop_Entry, 'Old, 'Priority and 'Result
            --  yield objects, even though they are not functions.

            when N_Attribute_Reference =>
               return
                 Attribute_Name (N) in Name_Loop_Entry
                                     | Name_Old
                                     | Name_Priority
                                     | Name_Result
                   or else Is_Function_Attribute_Name (Attribute_Name (N));

            when N_Selected_Component =>
               return
                 Is_Object_Reference (Selector_Name (N))
                   and then
                     (Is_Object_Reference (Prefix (N))
                       or else Is_Access_Type (Etype (Prefix (N))));

            --  An explicit dereference denotes an object, except that a
            --  conditional expression gets turned into an explicit dereference
            --  in some cases, and conditional expressions are not object
            --  names.

            when N_Explicit_Dereference =>
               return Nkind (Original_Node (N)) not in
                        N_Case_Expression | N_If_Expression;

            --  A view conversion of a tagged object is an object reference

            when N_Type_Conversion =>
               if Ada_Version <= Ada_2012 then
                  --  A view conversion of a tagged object is an object
                  --  reference.
                  return Is_Tagged_Type (Etype (Subtype_Mark (N)))
                    and then Is_Tagged_Type (Etype (Expression (N)))
                    and then Is_Object_Reference (Expression (N));

               else
                  --  AI12-0226: In Ada 202x a value conversion of an object is
                  --  an object.

                  return Is_Object_Reference (Expression (N));
               end if;

            --  An unchecked type conversion is considered to be an object if
            --  the operand is an object (this construction arises only as a
            --  result of expansion activities).

            when N_Unchecked_Type_Conversion =>
               return True;

            --  AI05-0003: In Ada 2012 a qualified expression is a name.
            --  This allows disambiguation of function calls and the use
            --  of aggregates in more contexts.

            when N_Qualified_Expression =>
               return Ada_Version >= Ada_2012
                 and then Is_Object_Reference (Expression (N));

            --  In Ada 95 an aggregate is an object reference

            when N_Aggregate =>
               return Ada_Version >= Ada_95;

            --  A string literal is not an object reference, but it might come
            --  from rewriting of an object reference, e.g. from folding of an
            --  aggregate.

            when N_String_Literal =>
               return Is_Rewrite_Substitution (N)
                 and then Is_Object_Reference (Original_Node (N));

            --  AI12-0125: Target name represents a constant object

            when N_Target_Name =>
               return True;

            when others =>
               return False;
         end case;
      end if;
   end Is_Object_Reference;

   -----------------------------------
   -- Is_OK_Variable_For_Out_Formal --
   -----------------------------------

   function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
   begin
      Note_Possible_Modification (AV, Sure => True);

      --  We must reject parenthesized variable names. Comes_From_Source is
      --  checked because there are currently cases where the compiler violates
      --  this rule (e.g. passing a task object to its controlled Initialize
      --  routine). This should be properly documented in sinfo???

      if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
         return False;

      --  A variable is always allowed

      elsif Is_Variable (AV) then
         return True;

      --  Generalized indexing operations are rewritten as explicit
      --  dereferences, and it is only during resolution that we can
      --  check whether the context requires an access_to_variable type.

      elsif Nkind (AV) = N_Explicit_Dereference
        and then Present (Etype (Original_Node (AV)))
        and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
        and then Ada_Version >= Ada_2012
      then
         return not Is_Access_Constant (Etype (Prefix (AV)));

      --  Unchecked conversions are allowed only if they come from the
      --  generated code, which sometimes uses unchecked conversions for out
      --  parameters in cases where code generation is unaffected. We tell
      --  source unchecked conversions by seeing if they are rewrites of
      --  an original Unchecked_Conversion function call, or of an explicit
      --  conversion of a function call or an aggregate (as may happen in the
      --  expansion of a packed array aggregate).

      elsif Nkind (AV) = N_Unchecked_Type_Conversion then
         if Nkind (Original_Node (AV)) in N_Function_Call | N_Aggregate then
            return False;

         elsif Comes_From_Source (AV)
           and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
         then
            return False;

         elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
            return Is_OK_Variable_For_Out_Formal (Expression (AV));

         else
            return True;
         end if;

      --  Normal type conversions are allowed if argument is a variable

      elsif Nkind (AV) = N_Type_Conversion then
         if Is_Variable (Expression (AV))
           and then Paren_Count (Expression (AV)) = 0
         then
            Note_Possible_Modification (Expression (AV), Sure => True);
            return True;

         --  We also allow a non-parenthesized expression that raises
         --  constraint error if it rewrites what used to be a variable

         elsif Raises_Constraint_Error (Expression (AV))
            and then Paren_Count (Expression (AV)) = 0
            and then Is_Variable (Original_Node (Expression (AV)))
         then
            return True;

         --  Type conversion of something other than a variable

         else
            return False;
         end if;

      --  If this node is rewritten, then test the original form, if that is
      --  OK, then we consider the rewritten node OK (for example, if the
      --  original node is a conversion, then Is_Variable will not be true
      --  but we still want to allow the conversion if it converts a variable).

      elsif Is_Rewrite_Substitution (AV) then
         return Is_OK_Variable_For_Out_Formal (Original_Node (AV));

      --  All other non-variables are rejected

      else
         return False;
      end if;
   end Is_OK_Variable_For_Out_Formal;

   ----------------------------
   -- Is_OK_Volatile_Context --
   ----------------------------

   function Is_OK_Volatile_Context
     (Context : Node_Id;
      Obj_Ref : Node_Id) return Boolean
   is
      function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean;
      --  Determine whether an arbitrary node denotes a call to a protected
      --  entry, function, or procedure in prefixed form where the prefix is
      --  Obj_Ref.

      function Within_Check (Nod : Node_Id) return Boolean;
      --  Determine whether an arbitrary node appears in a check node

      function Within_Volatile_Function (Id : Entity_Id) return Boolean;
      --  Determine whether an arbitrary entity appears in a volatile function

      ---------------------------------
      -- Is_Protected_Operation_Call --
      ---------------------------------

      function Is_Protected_Operation_Call (Nod : Node_Id) return Boolean is
         Pref : Node_Id;
         Subp : Node_Id;

      begin
         --  A call to a protected operations retains its selected component
         --  form as opposed to other prefixed calls that are transformed in
         --  expanded names.

         if Nkind (Nod) = N_Selected_Component then
            Pref := Prefix (Nod);
            Subp := Selector_Name (Nod);

            return
              Pref = Obj_Ref
                and then Present (Etype (Pref))
                and then Is_Protected_Type (Etype (Pref))
                and then Is_Entity_Name (Subp)
                and then Present (Entity (Subp))
                and then Ekind (Entity (Subp)) in
                           E_Entry | E_Entry_Family | E_Function | E_Procedure;
         else
            return False;
         end if;
      end Is_Protected_Operation_Call;

      ------------------
      -- Within_Check --
      ------------------

      function Within_Check (Nod : Node_Id) return Boolean is
         Par : Node_Id;

      begin
         --  Climb the parent chain looking for a check node

         Par := Nod;
         while Present (Par) loop
            if Nkind (Par) in N_Raise_xxx_Error then
               return True;

            --  Prevent the search from going too far

            elsif Is_Body_Or_Package_Declaration (Par) then
               exit;
            end if;

            Par := Parent (Par);
         end loop;

         return False;
      end Within_Check;

      ------------------------------
      -- Within_Volatile_Function --
      ------------------------------

      function Within_Volatile_Function (Id : Entity_Id) return Boolean is
         Func_Id : Entity_Id;

      begin
         --  Traverse the scope stack looking for a [generic] function

         Func_Id := Id;
         while Present (Func_Id) and then Func_Id /= Standard_Standard loop
            if Ekind (Func_Id) in E_Function | E_Generic_Function then
               return Is_Volatile_Function (Func_Id);
            end if;

            Func_Id := Scope (Func_Id);
         end loop;

         return False;
      end Within_Volatile_Function;

      --  Local variables

      Obj_Id : Entity_Id;

   --  Start of processing for Is_OK_Volatile_Context

   begin
      --  The volatile object appears on either side of an assignment

      if Nkind (Context) = N_Assignment_Statement then
         return True;

      --  The volatile object is part of the initialization expression of
      --  another object.

      elsif Nkind (Context) = N_Object_Declaration
        and then Present (Expression (Context))
        and then Expression (Context) = Obj_Ref
        and then Nkind (Parent (Context)) /= N_Expression_With_Actions
      then
         Obj_Id := Defining_Entity (Context);

         --  The volatile object acts as the initialization expression of an
         --  extended return statement. This is valid context as long as the
         --  function is volatile.

         if Is_Return_Object (Obj_Id) then
            return Within_Volatile_Function (Obj_Id);

         --  Otherwise this is a normal object initialization

         else
            return True;
         end if;

      --  The volatile object acts as the name of a renaming declaration

      elsif Nkind (Context) = N_Object_Renaming_Declaration
        and then Name (Context) = Obj_Ref
      then
         return True;

      --  The volatile object appears as an actual parameter in a call to an
      --  instance of Unchecked_Conversion whose result is renamed.

      elsif Nkind (Context) = N_Function_Call
        and then Is_Entity_Name (Name (Context))
        and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
        and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
      then
         return True;

      --  The volatile object is actually the prefix in a protected entry,
      --  function, or procedure call.

      elsif Is_Protected_Operation_Call (Context) then
         return True;

      --  The volatile object appears as the expression of a simple return
      --  statement that applies to a volatile function.

      elsif Nkind (Context) = N_Simple_Return_Statement
        and then Expression (Context) = Obj_Ref
      then
         return
           Within_Volatile_Function (Return_Statement_Entity (Context));

      --  The volatile object appears as the prefix of a name occurring in a
      --  non-interfering context.

      elsif Nkind (Context) in
              N_Attribute_Reference  |
              N_Explicit_Dereference |
              N_Indexed_Component    |
              N_Selected_Component   |
              N_Slice
        and then Prefix (Context) = Obj_Ref
        and then Is_OK_Volatile_Context
                   (Context => Parent (Context),
                    Obj_Ref => Context)
      then
         return True;

      --  The volatile object appears as the prefix of attributes Address,
      --  Alignment, Component_Size, First, First_Bit, Last, Last_Bit, Length,
      --  Position, Size, Storage_Size.

      elsif Nkind (Context) = N_Attribute_Reference
        and then Prefix (Context) = Obj_Ref
        and then Attribute_Name (Context) in Name_Address
                                           | Name_Alignment
                                           | Name_Component_Size
                                           | Name_First
                                           | Name_First_Bit
                                           | Name_Last
                                           | Name_Last_Bit
                                           | Name_Length
                                           | Name_Position
                                           | Name_Size
                                           | Name_Storage_Size
      then
         return True;

      --  The volatile object appears as the expression of a type conversion
      --  occurring in a non-interfering context.

      elsif Nkind (Context) in N_Qualified_Expression
                             | N_Type_Conversion
                             | N_Unchecked_Type_Conversion
        and then Expression (Context) = Obj_Ref
        and then Is_OK_Volatile_Context
                   (Context => Parent (Context),
                    Obj_Ref => Context)
      then
         return True;

      --  The volatile object appears as the expression in a delay statement

      elsif Nkind (Context) in N_Delay_Statement then
         return True;

      --  Allow references to volatile objects in various checks. This is not a
      --  direct SPARK 2014 requirement.

      elsif Within_Check (Context) then
         return True;

      --  Assume that references to effectively volatile objects that appear
      --  as actual parameters in a subprogram call are always legal. A full
      --  legality check is done when the actuals are resolved (see routine
      --  Resolve_Actuals).

      elsif Within_Subprogram_Call (Context) then
         return True;

      --  Otherwise the context is not suitable for an effectively volatile
      --  object.

      else
         return False;
      end if;
   end Is_OK_Volatile_Context;

   ------------------------------------
   -- Is_Package_Contract_Annotation --
   ------------------------------------

   function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
      Nam : Name_Id;

   begin
      if Nkind (Item) = N_Aspect_Specification then
         Nam := Chars (Identifier (Item));

      else pragma Assert (Nkind (Item) = N_Pragma);
         Nam := Pragma_Name (Item);
      end if;

      return    Nam = Name_Abstract_State
        or else Nam = Name_Initial_Condition
        or else Nam = Name_Initializes
        or else Nam = Name_Refined_State;
   end Is_Package_Contract_Annotation;

   -----------------------------------
   -- Is_Partially_Initialized_Type --
   -----------------------------------

   function Is_Partially_Initialized_Type
     (Typ              : Entity_Id;
      Include_Implicit : Boolean := True) return Boolean
   is
   begin
      if Is_Scalar_Type (Typ) then
         return Has_Default_Aspect (Base_Type (Typ));

      elsif Is_Access_Type (Typ) then
         return Include_Implicit;

      elsif Is_Array_Type (Typ) then

         --  If component type is partially initialized, so is array type

         if Has_Default_Aspect (Base_Type (Typ))
           or else Is_Partially_Initialized_Type
                     (Component_Type (Typ), Include_Implicit)
         then
            return True;

         --  Otherwise we are only partially initialized if we are fully
         --  initialized (this is the empty array case, no point in us
         --  duplicating that code here).

         else
            return Is_Fully_Initialized_Type (Typ);
         end if;

      elsif Is_Record_Type (Typ) then

         --  A discriminated type is always partially initialized if in
         --  all mode

         if Has_Discriminants (Typ) and then Include_Implicit then
            return True;

         --  A tagged type is always partially initialized

         elsif Is_Tagged_Type (Typ) then
            return True;

         --  Case of non-discriminated record

         else
            declare
               Comp : Entity_Id;

               Component_Present : Boolean := False;
               --  Set True if at least one component is present. If no
               --  components are present, then record type is fully
               --  initialized (another odd case, like the null array).

            begin
               --  Loop through components

               Comp := First_Component (Typ);
               while Present (Comp) loop
                  Component_Present := True;

                  --  If a component has an initialization expression then the
                  --  enclosing record type is partially initialized

                  if Present (Parent (Comp))
                    and then Present (Expression (Parent (Comp)))
                  then
                     return True;

                  --  If a component is of a type which is itself partially
                  --  initialized, then the enclosing record type is also.

                  elsif Is_Partially_Initialized_Type
                          (Etype (Comp), Include_Implicit)
                  then
                     return True;
                  end if;

                  Next_Component (Comp);
               end loop;

               --  No initialized components found. If we found any components
               --  they were all uninitialized so the result is false.

               if Component_Present then
                  return False;

               --  But if we found no components, then all the components are
               --  initialized so we consider the type to be initialized.

               else
                  return True;
               end if;
            end;
         end if;

      --  Concurrent types are always fully initialized

      elsif Is_Concurrent_Type (Typ) then
         return True;

      --  For a private type, go to underlying type. If there is no underlying
      --  type then just assume this partially initialized. Not clear if this
      --  can happen in a non-error case, but no harm in testing for this.

      elsif Is_Private_Type (Typ) then
         declare
            U : constant Entity_Id := Underlying_Type (Typ);
         begin
            if No (U) then
               return True;
            else
               return Is_Partially_Initialized_Type (U, Include_Implicit);
            end if;
         end;

      --  For any other type (are there any?) assume partially initialized

      else
         return True;
      end if;
   end Is_Partially_Initialized_Type;

   ------------------------------------
   -- Is_Potentially_Persistent_Type --
   ------------------------------------

   function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
      Comp : Entity_Id;
      Indx : Node_Id;

   begin
      --  For private type, test corresponding full type

      if Is_Private_Type (T) then
         return Is_Potentially_Persistent_Type (Full_View (T));

      --  Scalar types are potentially persistent

      elsif Is_Scalar_Type (T) then
         return True;

      --  Record type is potentially persistent if not tagged and the types of
      --  all it components are potentially persistent, and no component has
      --  an initialization expression.

      elsif Is_Record_Type (T)
        and then not Is_Tagged_Type (T)
        and then not Is_Partially_Initialized_Type (T)
      then
         Comp := First_Component (T);
         while Present (Comp) loop
            if not Is_Potentially_Persistent_Type (Etype (Comp)) then
               return False;
            else
               Next_Entity (Comp);
            end if;
         end loop;

         return True;

      --  Array type is potentially persistent if its component type is
      --  potentially persistent and if all its constraints are static.

      elsif Is_Array_Type (T) then
         if not Is_Potentially_Persistent_Type (Component_Type (T)) then
            return False;
         end if;

         Indx := First_Index (T);
         while Present (Indx) loop
            if not Is_OK_Static_Subtype (Etype (Indx)) then
               return False;
            else
               Next_Index (Indx);
            end if;
         end loop;

         return True;

      --  All other types are not potentially persistent

      else
         return False;
      end if;
   end Is_Potentially_Persistent_Type;

   --------------------------------
   -- Is_Potentially_Unevaluated --
   --------------------------------

   function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
      function Has_Null_Others_Choice (Aggr : Node_Id) return Boolean;
      --  Aggr is an array aggregate with static bounds and an others clause;
      --  return True if the others choice of the given array aggregate does
      --  not cover any component (i.e. is null).

      function Immediate_Context_Implies_Is_Potentially_Unevaluated
        (Expr : Node_Id) return Boolean;
      --  Return True if the *immediate* context of this expression tells us
      --  that it is potentially unevaluated; return False if the *immediate*
      --  context doesn't provide an answer to this question and we need to
      --  keep looking.

      function Non_Static_Or_Null_Range (N : Node_Id) return Boolean;
      --  Return True if the given range is nonstatic or null

      ----------------------------
      -- Has_Null_Others_Choice --
      ----------------------------

      function Has_Null_Others_Choice (Aggr : Node_Id) return Boolean is
         Idx : constant Node_Id := First_Index (Etype (Aggr));
         Hiv : constant Uint := Expr_Value (Type_High_Bound (Etype (Idx)));
         Lov : constant Uint := Expr_Value (Type_Low_Bound (Etype (Idx)));

      begin
         declare
            Intervals : constant Interval_Lists.Discrete_Interval_List :=
              Interval_Lists.Aggregate_Intervals (Aggr);

         begin
            --  The others choice is null if, after normalization, we
            --  have a single interval covering the whole aggregate.

            return Intervals'Length = 1
              and then
                Intervals (Intervals'First).Low = Lov
              and then
                Intervals (Intervals'First).High = Hiv;
         end;

      --  If the aggregate is malformed (that is, indexes are not disjoint)
      --  then no action is needed at this stage; the error will be reported
      --  later by the frontend.

      exception
         when Interval_Lists.Intervals_Error =>
            return False;
      end Has_Null_Others_Choice;

      ----------------------------------------------------------
      -- Immediate_Context_Implies_Is_Potentially_Unevaluated --
      ----------------------------------------------------------

      function Immediate_Context_Implies_Is_Potentially_Unevaluated
        (Expr : Node_Id) return Boolean
      is
         Par : constant Node_Id := Parent (Expr);

      begin
         if Nkind (Par) = N_If_Expression then
            return Is_Elsif (Par) or else Expr /= First (Expressions (Par));

         elsif Nkind (Par) = N_Case_Expression then
            return Expr /= Expression (Par);

         elsif Nkind (Par) in N_And_Then | N_Or_Else then
            return Expr = Right_Opnd (Par);

         elsif Nkind (Par) in N_In | N_Not_In then

            --  If the membership includes several alternatives, only the first
            --  is definitely evaluated.

            if Present (Alternatives (Par)) then
               return Expr /= First (Alternatives (Par));

            --  If this is a range membership both bounds are evaluated

            else
               return False;
            end if;

         elsif Nkind (Par) = N_Quantified_Expression then
            return Expr = Condition (Par);

         elsif Nkind (Par) = N_Aggregate
           and then Present (Etype (Par))
           and then Etype (Par) /= Any_Composite
           and then Is_Array_Type (Etype (Par))
           and then Nkind (Expr) = N_Component_Association
         then
            declare
               Choice           : Node_Id;
               In_Others_Choice : Boolean := False;

            begin
               --  The expression of an array_component_association is
               --  potentially unevaluated if the associated choice is a
               --  subtype_indication or range that defines a nonstatic or
               --  null range.

               Choice := First (Choices (Expr));
               while Present (Choice) loop
                  if Nkind (Choice) = N_Range
                    and then Non_Static_Or_Null_Range (Choice)
                  then
                     return True;

                  elsif Nkind (Choice) = N_Identifier
                    and then Present (Scalar_Range (Etype (Choice)))
                    and then
                      Non_Static_Or_Null_Range (Scalar_Range (Etype (Choice)))
                  then
                     return True;

                  elsif Nkind (Choice) = N_Others_Choice then
                     In_Others_Choice := True;
                  end if;

                  Next (Choice);
               end loop;

               --  It is also potentially unevaluated if the associated choice
               --  is an others choice and the applicable index constraint is
               --  nonstatic or null.

               if In_Others_Choice then
                  if not Compile_Time_Known_Bounds (Etype (Par)) then
                     return True;
                  else
                     return Has_Null_Others_Choice (Par);
                  end if;
               end if;
            end;

            return False;

         else
            return False;
         end if;
      end Immediate_Context_Implies_Is_Potentially_Unevaluated;

      ------------------------------
      -- Non_Static_Or_Null_Range --
      ------------------------------

      function Non_Static_Or_Null_Range (N : Node_Id) return Boolean is
         Low, High : Node_Id;

      begin
         Get_Index_Bounds (N, Low, High);

         --  Check static bounds

         if not Compile_Time_Known_Value (Low)
           or else not Compile_Time_Known_Value (High)
         then
            return True;

         --  Check null range

         elsif Expr_Value (High) < Expr_Value (Low) then
            return True;
         end if;

         return False;
      end Non_Static_Or_Null_Range;

      --  Local variables

      Par  : Node_Id;
      Expr : Node_Id;

   --  Start of processing for Is_Potentially_Unevaluated

   begin
      Expr := N;
      Par  := N;

      --  A postcondition whose expression is a short-circuit is broken down
      --  into individual aspects for better exception reporting. The original
      --  short-circuit expression is rewritten as the second operand, and an
      --  occurrence of 'Old in that operand is potentially unevaluated.
      --  See sem_ch13.adb for details of this transformation. The reference
      --  to 'Old may appear within an expression, so we must look for the
      --  enclosing pragma argument in the tree that contains the reference.

      while Present (Par)
        and then Nkind (Par) /= N_Pragma_Argument_Association
      loop
         if Is_Rewrite_Substitution (Par)
           and then Nkind (Original_Node (Par)) = N_And_Then
         then
            return True;
         end if;

         Par := Parent (Par);
      end loop;

      --  Other cases; 'Old appears within other expression (not the top-level
      --  conjunct in a postcondition) with a potentially unevaluated operand.

      Par := Parent (Expr);

      while Present (Par)
        and then Nkind (Par) /= N_Pragma_Argument_Association
      loop
         if Comes_From_Source (Par)
           and then
             Immediate_Context_Implies_Is_Potentially_Unevaluated (Expr)
         then
            return True;

         --  For component associations continue climbing; it may be part of
         --  an array aggregate.

         elsif Nkind (Par) = N_Component_Association then
            null;

         --  If the context is not an expression, or if is the result of
         --  expansion of an enclosing construct (such as another attribute)
         --  the predicate does not apply.

         elsif Nkind (Par) = N_Case_Expression_Alternative then
            null;

         elsif Nkind (Par) not in N_Subexpr
           or else not Comes_From_Source (Par)
         then
            return False;
         end if;

         Expr := Par;
         Par  := Parent (Par);
      end loop;

      return False;
   end Is_Potentially_Unevaluated;

   -----------------------------------------
   -- Is_Predefined_Dispatching_Operation --
   -----------------------------------------

   function Is_Predefined_Dispatching_Operation
     (E : Entity_Id) return Boolean
   is
      TSS_Name : TSS_Name_Type;

   begin
      if not Is_Dispatching_Operation (E) then
         return False;
      end if;

      Get_Name_String (Chars (E));

      --  Most predefined primitives have internally generated names. Equality
      --  must be treated differently; the predefined operation is recognized
      --  as a homogeneous binary operator that returns Boolean.

      if Name_Len > TSS_Name_Type'Last then
         TSS_Name :=
           TSS_Name_Type
             (Name_Buffer (Name_Len - TSS_Name'Length + 1 .. Name_Len));

         if Chars (E) in Name_uAssign | Name_uSize
           or else
             (Chars (E) = Name_Op_Eq
               and then Etype (First_Formal (E)) = Etype (Last_Formal (E)))
           or else TSS_Name = TSS_Deep_Adjust
           or else TSS_Name = TSS_Deep_Finalize
           or else TSS_Name = TSS_Stream_Input
           or else TSS_Name = TSS_Stream_Output
           or else TSS_Name = TSS_Stream_Read
           or else TSS_Name = TSS_Stream_Write
           or else TSS_Name = TSS_Put_Image
           or else Is_Predefined_Interface_Primitive (E)
         then
            return True;
         end if;
      end if;

      return False;
   end Is_Predefined_Dispatching_Operation;

   ---------------------------------------
   -- Is_Predefined_Interface_Primitive --
   ---------------------------------------

   function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean is
   begin
      --  In VM targets we don't restrict the functionality of this test to
      --  compiling in Ada 2005 mode since in VM targets any tagged type has
      --  these primitives.

      return (Ada_Version >= Ada_2005 or else not Tagged_Type_Expansion)
        and then Chars (E) in Name_uDisp_Asynchronous_Select
                            | Name_uDisp_Conditional_Select
                            | Name_uDisp_Get_Prim_Op_Kind
                            | Name_uDisp_Get_Task_Id
                            | Name_uDisp_Requeue
                            | Name_uDisp_Timed_Select;
   end Is_Predefined_Interface_Primitive;

   ---------------------------------------
   -- Is_Predefined_Internal_Operation  --
   ---------------------------------------

   function Is_Predefined_Internal_Operation
     (E : Entity_Id) return Boolean
   is
      TSS_Name : TSS_Name_Type;

   begin
      if not Is_Dispatching_Operation (E) then
         return False;
      end if;

      Get_Name_String (Chars (E));

      --  Most predefined primitives have internally generated names. Equality
      --  must be treated differently; the predefined operation is recognized
      --  as a homogeneous binary operator that returns Boolean.

      if Name_Len > TSS_Name_Type'Last then
         TSS_Name :=
           TSS_Name_Type
             (Name_Buffer (Name_Len - TSS_Name'Length + 1 .. Name_Len));

         if Chars (E) in Name_uSize | Name_uAssign
           or else
             (Chars (E) = Name_Op_Eq
               and then Etype (First_Formal (E)) = Etype (Last_Formal (E)))
           or else TSS_Name = TSS_Deep_Adjust
           or else TSS_Name = TSS_Deep_Finalize
           or else Is_Predefined_Interface_Primitive (E)
         then
            return True;
         end if;
      end if;

      return False;
   end Is_Predefined_Internal_Operation;

   --------------------------------
   -- Is_Preelaborable_Aggregate --
   --------------------------------

   function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean is
      Aggr_Typ   : constant Entity_Id := Etype (Aggr);
      Array_Aggr : constant Boolean   := Is_Array_Type (Aggr_Typ);

      Anc_Part : Node_Id;
      Assoc    : Node_Id;
      Choice   : Node_Id;
      Comp_Typ : Entity_Id := Empty; -- init to avoid warning
      Expr     : Node_Id;

   begin
      if Array_Aggr then
         Comp_Typ := Component_Type (Aggr_Typ);
      end if;

      --  Inspect the ancestor part

      if Nkind (Aggr) = N_Extension_Aggregate then
         Anc_Part := Ancestor_Part (Aggr);

         --  The ancestor denotes a subtype mark

         if Is_Entity_Name (Anc_Part)
           and then Is_Type (Entity (Anc_Part))
         then
            if not Has_Preelaborable_Initialization (Entity (Anc_Part)) then
               return False;
            end if;

         --  Otherwise the ancestor denotes an expression

         elsif not Is_Preelaborable_Construct (Anc_Part) then
            return False;
         end if;
      end if;

      --  Inspect the positional associations

      Expr := First (Expressions (Aggr));
      while Present (Expr) loop
         if not Is_Preelaborable_Construct (Expr) then
            return False;
         end if;

         Next (Expr);
      end loop;

      --  Inspect the named associations

      Assoc := First (Component_Associations (Aggr));
      while Present (Assoc) loop

         --  Inspect the choices of the current named association

         Choice := First (Choices (Assoc));
         while Present (Choice) loop
            if Array_Aggr then

               --  For a choice to be preelaborable, it must denote either a
               --  static range or a static expression.

               if Nkind (Choice) = N_Others_Choice then
                  null;

               elsif Nkind (Choice) = N_Range then
                  if not Is_OK_Static_Range (Choice) then
                     return False;
                  end if;

               elsif not Is_OK_Static_Expression (Choice) then
                  return False;
               end if;

            else
               Comp_Typ := Etype (Choice);
            end if;

            Next (Choice);
         end loop;

         --  The type of the choice must have preelaborable initialization if
         --  the association carries a <>.

         pragma Assert (Present (Comp_Typ));
         if Box_Present (Assoc) then
            if not Has_Preelaborable_Initialization (Comp_Typ) then
               return False;
            end if;

         --  The type of the expression must have preelaborable initialization

         elsif not Is_Preelaborable_Construct (Expression (Assoc)) then
            return False;
         end if;

         Next (Assoc);
      end loop;

      --  At this point the aggregate is preelaborable

      return True;
   end Is_Preelaborable_Aggregate;

   --------------------------------
   -- Is_Preelaborable_Construct --
   --------------------------------

   function Is_Preelaborable_Construct (N : Node_Id) return Boolean is
   begin
      --  Aggregates

      if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
         return Is_Preelaborable_Aggregate (N);

      --  Attributes are allowed in general, even if their prefix is a formal
      --  type. It seems that certain attributes known not to be static might
      --  not be allowed, but there are no rules to prevent them.

      elsif Nkind (N) = N_Attribute_Reference then
         return True;

      --  Expressions

      elsif Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
         return True;

      elsif Nkind (N) = N_Qualified_Expression then
         return Is_Preelaborable_Construct (Expression (N));

      --  Names are preelaborable when they denote a discriminant of an
      --  enclosing type. Discriminals are also considered for this check.

      elsif Is_Entity_Name (N)
        and then Present (Entity (N))
        and then
          (Ekind (Entity (N)) = E_Discriminant
            or else (Ekind (Entity (N)) in E_Constant | E_In_Parameter
                      and then Present (Discriminal_Link (Entity (N)))))
      then
         return True;

      --  Statements

      elsif Nkind (N) = N_Null then
         return True;

      --  Ada 2020 (AI12-0175): Calls to certain functions that are essentially
      --  unchecked conversions are preelaborable.

      elsif Ada_Version >= Ada_2020
        and then Nkind (N) = N_Function_Call
        and then Is_Entity_Name (Name (N))
        and then Is_Preelaborable_Function (Entity (Name (N)))
      then
         declare
            A : Node_Id;
         begin
            A := First_Actual (N);

            while Present (A) loop
               if not Is_Preelaborable_Construct (A) then
                  return False;
               end if;

               Next_Actual (A);
            end loop;
         end;

         return True;

      --  Otherwise the construct is not preelaborable

      else
         return False;
      end if;
   end Is_Preelaborable_Construct;

   -------------------------------
   -- Is_Preelaborable_Function --
   -------------------------------

   function Is_Preelaborable_Function (Id : Entity_Id) return Boolean is
      SATAC : constant Rtsfind.RTU_Id := System_Address_To_Access_Conversions;
      Scop  : constant Entity_Id := Scope (Id);

   begin
      --  Small optimization: every allowed function has convention Intrinsic
      --  (see Analyze_Subprogram_Instantiation for the subtlety in the test).

      if not Is_Intrinsic_Subprogram (Id)
        and then Convention (Id) /= Convention_Intrinsic
      then
         return False;
      end if;

      --  An instance of Unchecked_Conversion

      if Is_Unchecked_Conversion_Instance (Id) then
         return True;
      end if;

      --  A function declared in System.Storage_Elements

      if Is_RTU (Scop, System_Storage_Elements) then
         return True;
      end if;

      --  The functions To_Pointer and To_Address declared in an instance of
      --  System.Address_To_Access_Conversions (they are the only ones).

      if Ekind (Scop) = E_Package
        and then Nkind (Parent (Scop)) = N_Package_Specification
        and then Present (Generic_Parent (Parent (Scop)))
        and then Is_RTU (Generic_Parent (Parent (Scop)), SATAC)
      then
         return True;
      end if;

      return False;
   end Is_Preelaborable_Function;

   ---------------------------------
   -- Is_Protected_Self_Reference --
   ---------------------------------

   function Is_Protected_Self_Reference (N : Node_Id) return Boolean is

      function In_Access_Definition (N : Node_Id) return Boolean;
      --  Returns true if N belongs to an access definition

      --------------------------
      -- In_Access_Definition --
      --------------------------

      function In_Access_Definition (N : Node_Id) return Boolean is
         P : Node_Id;

      begin
         P := Parent (N);
         while Present (P) loop
            if Nkind (P) = N_Access_Definition then
               return True;
            end if;

            P := Parent (P);
         end loop;

         return False;
      end In_Access_Definition;

   --  Start of processing for Is_Protected_Self_Reference

   begin
      --  Verify that prefix is analyzed and has the proper form. Note that
      --  the attributes Elab_Spec, Elab_Body, and Elab_Subp_Body, which also
      --  produce the address of an entity, do not analyze their prefix
      --  because they denote entities that are not necessarily visible.
      --  Neither of them can apply to a protected type.

      return Ada_Version >= Ada_2005
        and then Is_Entity_Name (N)
        and then Present (Entity (N))
        and then Is_Protected_Type (Entity (N))
        and then In_Open_Scopes (Entity (N))
        and then not In_Access_Definition (N);
   end Is_Protected_Self_Reference;

   -----------------------------
   -- Is_RCI_Pkg_Spec_Or_Body --
   -----------------------------

   function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is

      function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
      --  Return True if the unit of Cunit is an RCI package declaration

      ---------------------------
      -- Is_RCI_Pkg_Decl_Cunit --
      ---------------------------

      function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
         The_Unit : constant Node_Id := Unit (Cunit);

      begin
         if Nkind (The_Unit) /= N_Package_Declaration then
            return False;
         end if;

         return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
      end Is_RCI_Pkg_Decl_Cunit;

   --  Start of processing for Is_RCI_Pkg_Spec_Or_Body

   begin
      return Is_RCI_Pkg_Decl_Cunit (Cunit)
        or else
         (Nkind (Unit (Cunit)) = N_Package_Body
           and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
   end Is_RCI_Pkg_Spec_Or_Body;

   -----------------------------------------
   -- Is_Remote_Access_To_Class_Wide_Type --
   -----------------------------------------

   function Is_Remote_Access_To_Class_Wide_Type
     (E : Entity_Id) return Boolean
   is
   begin
      --  A remote access to class-wide type is a general access to object type
      --  declared in the visible part of a Remote_Types or Remote_Call_
      --  Interface unit.

      return Ekind (E) = E_General_Access_Type
        and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
   end Is_Remote_Access_To_Class_Wide_Type;

   -----------------------------------------
   -- Is_Remote_Access_To_Subprogram_Type --
   -----------------------------------------

   function Is_Remote_Access_To_Subprogram_Type
     (E : Entity_Id) return Boolean
   is
   begin
      return (Ekind (E) = E_Access_Subprogram_Type
                or else (Ekind (E) = E_Record_Type
                          and then Present (Corresponding_Remote_Type (E))))
        and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
   end Is_Remote_Access_To_Subprogram_Type;

   --------------------
   -- Is_Remote_Call --
   --------------------

   function Is_Remote_Call (N : Node_Id) return Boolean is
   begin
      if Nkind (N) not in N_Subprogram_Call then

         --  An entry call cannot be remote

         return False;

      elsif Nkind (Name (N)) in N_Has_Entity
        and then Is_Remote_Call_Interface (Entity (Name (N)))
      then
         --  A subprogram declared in the spec of a RCI package is remote

         return True;

      elsif Nkind (Name (N)) = N_Explicit_Dereference
        and then Is_Remote_Access_To_Subprogram_Type
                   (Etype (Prefix (Name (N))))
      then
         --  The dereference of a RAS is a remote call

         return True;

      elsif Present (Controlling_Argument (N))
        and then Is_Remote_Access_To_Class_Wide_Type
                   (Etype (Controlling_Argument (N)))
      then
         --  Any primitive operation call with a controlling argument of
         --  a RACW type is a remote call.

         return True;
      end if;

      --  All other calls are local calls

      return False;
   end Is_Remote_Call;

   ----------------------
   -- Is_Renamed_Entry --
   ----------------------

   function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
      Orig_Node : Node_Id := Empty;
      Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));

      function Is_Entry (Nam : Node_Id) return Boolean;
      --  Determine whether Nam is an entry. Traverse selectors if there are
      --  nested selected components.

      --------------
      -- Is_Entry --
      --------------

      function Is_Entry (Nam : Node_Id) return Boolean is
      begin
         if Nkind (Nam) = N_Selected_Component then
            return Is_Entry (Selector_Name (Nam));
         end if;

         return Ekind (Entity (Nam)) = E_Entry;
      end Is_Entry;

   --  Start of processing for Is_Renamed_Entry

   begin
      if Present (Alias (Proc_Nam)) then
         Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
      end if;

      --  Look for a rewritten subprogram renaming declaration

      if Nkind (Subp_Decl) = N_Subprogram_Declaration
        and then Present (Original_Node (Subp_Decl))
      then
         Orig_Node := Original_Node (Subp_Decl);
      end if;

      --  The rewritten subprogram is actually an entry

      if Present (Orig_Node)
        and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
        and then Is_Entry (Name (Orig_Node))
      then
         return True;
      end if;

      return False;
   end Is_Renamed_Entry;

   ----------------------------
   -- Is_Reversible_Iterator --
   ----------------------------

   function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
      Ifaces_List : Elist_Id;
      Iface_Elmt  : Elmt_Id;
      Iface       : Entity_Id;

   begin
      if Is_Class_Wide_Type (Typ)
        and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
        and then In_Predefined_Unit (Root_Type (Typ))
      then
         return True;

      elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
         return False;

      else
         Collect_Interfaces (Typ, Ifaces_List);

         Iface_Elmt := First_Elmt (Ifaces_List);
         while Present (Iface_Elmt) loop
            Iface := Node (Iface_Elmt);
            if Chars (Iface) = Name_Reversible_Iterator
              and then In_Predefined_Unit (Iface)
            then
               return True;
            end if;

            Next_Elmt (Iface_Elmt);
         end loop;
      end if;

      return False;
   end Is_Reversible_Iterator;

   ----------------------
   -- Is_Selector_Name --
   ----------------------

   function Is_Selector_Name (N : Node_Id) return Boolean is
   begin
      if not Is_List_Member (N) then
         declare
            P : constant Node_Id := Parent (N);
         begin
            return Nkind (P) in N_Expanded_Name
                              | N_Generic_Association
                              | N_Parameter_Association
                              | N_Selected_Component
              and then Selector_Name (P) = N;
         end;

      else
         declare
            L : constant List_Id := List_Containing (N);
            P : constant Node_Id := Parent (L);
         begin
            return (Nkind (P) = N_Discriminant_Association
                     and then Selector_Names (P) = L)
              or else
                   (Nkind (P) = N_Component_Association
                     and then Choices (P) = L);
         end;
      end if;
   end Is_Selector_Name;

   ---------------------------------
   -- Is_Single_Concurrent_Object --
   ---------------------------------

   function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
   begin
      return
        Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
   end Is_Single_Concurrent_Object;

   -------------------------------
   -- Is_Single_Concurrent_Type --
   -------------------------------

   function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
   begin
      return
        Ekind (Id) in E_Protected_Type | E_Task_Type
          and then Is_Single_Concurrent_Type_Declaration
                     (Declaration_Node (Id));
   end Is_Single_Concurrent_Type;

   -------------------------------------------
   -- Is_Single_Concurrent_Type_Declaration --
   -------------------------------------------

   function Is_Single_Concurrent_Type_Declaration
     (N : Node_Id) return Boolean
   is
   begin
      return Nkind (Original_Node (N)) in
               N_Single_Protected_Declaration | N_Single_Task_Declaration;
   end Is_Single_Concurrent_Type_Declaration;

   ---------------------------------------------
   -- Is_Single_Precision_Floating_Point_Type --
   ---------------------------------------------

   function Is_Single_Precision_Floating_Point_Type
     (E : Entity_Id) return Boolean is
   begin
      return Is_Floating_Point_Type (E)
        and then Machine_Radix_Value (E) = Uint_2
        and then Machine_Mantissa_Value (E) = Uint_24
        and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
        and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
   end Is_Single_Precision_Floating_Point_Type;

   --------------------------------
   -- Is_Single_Protected_Object --
   --------------------------------

   function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
   begin
      return
        Ekind (Id) = E_Variable
          and then Ekind (Etype (Id)) = E_Protected_Type
          and then Is_Single_Concurrent_Type (Etype (Id));
   end Is_Single_Protected_Object;

   ---------------------------
   -- Is_Single_Task_Object --
   ---------------------------

   function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
   begin
      return
        Ekind (Id) = E_Variable
          and then Ekind (Etype (Id)) = E_Task_Type
          and then Is_Single_Concurrent_Type (Etype (Id));
   end Is_Single_Task_Object;

   --------------------------------------
   -- Is_Special_Aliased_Formal_Access --
   --------------------------------------

   function Is_Special_Aliased_Formal_Access
     (Exp  : Node_Id;
      Scop : Entity_Id) return Boolean is
   begin
      --  Verify the expression is an access reference to 'Access within a
      --  return statement as this is the only time an explicitly aliased
      --  formal has different semantics.

      if Nkind (Exp) /= N_Attribute_Reference
        or else Get_Attribute_Id (Attribute_Name (Exp)) /= Attribute_Access
        or else Nkind (Parent (Exp)) /= N_Simple_Return_Statement
      then
         return False;
      end if;

      --  Check if the prefix of the reference is indeed an explicitly aliased
      --  formal parameter for the function Scop. Additionally, we must check
      --  that Scop returns an anonymous access type, otherwise the special
      --  rules dictating a need for a dynamic check are not in effect.

      declare
         P_Ult : constant Node_Id := Ultimate_Prefix (Prefix (Exp));
      begin
         return Is_Entity_Name (P_Ult)
           and then Is_Aliased (Entity (P_Ult))
           and then Is_Formal  (Entity (P_Ult))
           and then Scope (Entity (P_Ult)) = Scop
           and then Ekind (Scop) in
                      E_Function | E_Operator | E_Subprogram_Type
           and then Needs_Result_Accessibility_Level (Scop);
      end;
   end Is_Special_Aliased_Formal_Access;

   -----------------------------
   -- Is_Specific_Tagged_Type --
   -----------------------------

   function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
      Full_Typ : Entity_Id;

   begin
      --  Handle private types

      if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
         Full_Typ := Full_View (Typ);
      else
         Full_Typ := Typ;
      end if;

      --  A specific tagged type is a non-class-wide tagged type

      return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
   end Is_Specific_Tagged_Type;

   ------------------
   -- Is_Statement --
   ------------------

   function Is_Statement (N : Node_Id) return Boolean is
   begin
      return
        Nkind (N) in N_Statement_Other_Than_Procedure_Call
          or else Nkind (N) = N_Procedure_Call_Statement;
   end Is_Statement;

   ------------------------
   -- Is_Static_Function --
   ------------------------

   function Is_Static_Function (Subp : Entity_Id) return Boolean is
   begin
      --  Always return False for pre Ada 2020 to e.g. ignore the Static
      --  aspect in package Interfaces for Ada_Version < 2020 and also
      --  for efficiency.

      return Ada_Version >= Ada_2020
        and then Has_Aspect (Subp, Aspect_Static)
        and then
          (No (Find_Value_Of_Aspect (Subp, Aspect_Static))
            or else Is_True (Static_Boolean
                               (Find_Value_Of_Aspect (Subp, Aspect_Static))));
   end Is_Static_Function;

   -----------------------------
   -- Is_Static_Function_Call --
   -----------------------------

   function Is_Static_Function_Call (Call : Node_Id) return Boolean is
      function Has_All_Static_Actuals (Call : Node_Id) return Boolean;
      --  Return whether all actual parameters of Call are static expressions

      ----------------------------
      -- Has_All_Static_Actuals --
      ----------------------------

      function Has_All_Static_Actuals (Call : Node_Id) return Boolean is
         Actual        : Node_Id := First_Actual (Call);
         String_Result : constant Boolean :=
                           Is_String_Type (Etype (Entity (Name (Call))));

      begin
         while Present (Actual) loop
            if not Is_Static_Expression (Actual) then

               --  ??? In the string-returning case we want to avoid a call
               --  being made to Establish_Transient_Scope in Resolve_Call,
               --  but at the point where that's tested for (which now includes
               --  a call to test Is_Static_Function_Call), the actuals of the
               --  call haven't been resolved, so expressions of the actuals
               --  may not have been marked Is_Static_Expression yet, so we
               --  force them to be resolved here, so we can tell if they're
               --  static. Calling Resolve here is admittedly a kludge, and we
               --  limit this call to string-returning cases.

               if String_Result then
                  Resolve (Actual);
               end if;

               --  Test flag again in case it's now True due to above Resolve

               if not Is_Static_Expression (Actual) then
                  return False;
               end if;
            end if;

            Next_Actual (Actual);
         end loop;

         return True;
      end Has_All_Static_Actuals;

   begin
      return Nkind (Call) = N_Function_Call
        and then Is_Entity_Name (Name (Call))
        and then Is_Static_Function (Entity (Name (Call)))
        and then Has_All_Static_Actuals (Call);
   end Is_Static_Function_Call;

   ----------------------------------------
   --  Is_Subcomponent_Of_Atomic_Object  --
   ----------------------------------------

   function Is_Subcomponent_Of_Atomic_Object (N : Node_Id) return Boolean is
      R : Node_Id;

   begin
      R := Get_Referenced_Object (N);

      while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice
      loop
         R := Get_Referenced_Object (Prefix (R));

         --  If the prefix is an access value, only the designated type matters

         if Is_Access_Type (Etype (R)) then
            if Is_Atomic (Designated_Type (Etype (R))) then
               return True;
            end if;

         else
            if Is_Atomic_Object (R) then
               return True;
            end if;
         end if;
      end loop;

      return False;
   end Is_Subcomponent_Of_Atomic_Object;

   ---------------------------------------
   -- Is_Subprogram_Contract_Annotation --
   ---------------------------------------

   function Is_Subprogram_Contract_Annotation
     (Item : Node_Id) return Boolean
   is
      Nam : Name_Id;

   begin
      if Nkind (Item) = N_Aspect_Specification then
         Nam := Chars (Identifier (Item));

      else pragma Assert (Nkind (Item) = N_Pragma);
         Nam := Pragma_Name (Item);
      end if;

      return    Nam = Name_Contract_Cases
        or else Nam = Name_Depends
        or else Nam = Name_Extensions_Visible
        or else Nam = Name_Global
        or else Nam = Name_Post
        or else Nam = Name_Post_Class
        or else Nam = Name_Postcondition
        or else Nam = Name_Pre
        or else Nam = Name_Pre_Class
        or else Nam = Name_Precondition
        or else Nam = Name_Refined_Depends
        or else Nam = Name_Refined_Global
        or else Nam = Name_Refined_Post
        or else Nam = Name_Subprogram_Variant
        or else Nam = Name_Test_Case;
   end Is_Subprogram_Contract_Annotation;

   --------------------------------------------------
   -- Is_Subprogram_Stub_Without_Prior_Declaration --
   --------------------------------------------------

   function Is_Subprogram_Stub_Without_Prior_Declaration
     (N : Node_Id) return Boolean
   is
   begin
      pragma Assert (Nkind (N) = N_Subprogram_Body_Stub);

      case Ekind (Defining_Entity (N)) is

         --  A subprogram stub without prior declaration serves as declaration
         --  for the actual subprogram body. As such, it has an attached
         --  defining entity of E_Function or E_Procedure.

         when E_Function
            | E_Procedure
         =>
            return True;

         --  Otherwise, it is completes a [generic] subprogram declaration

         when E_Generic_Function
            | E_Generic_Procedure
            | E_Subprogram_Body
         =>
            return False;

         when others =>
            raise Program_Error;
      end case;
   end Is_Subprogram_Stub_Without_Prior_Declaration;

   ---------------------------
   -- Is_Suitable_Primitive --
   ---------------------------

   function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean is
   begin
      --  The Default_Initial_Condition and invariant procedures must not be
      --  treated as primitive operations even when they apply to a tagged
      --  type. These routines must not act as targets of dispatching calls
      --  because they already utilize class-wide-precondition semantics to
      --  handle inheritance and overriding.

      if Ekind (Subp_Id) = E_Procedure
        and then (Is_DIC_Procedure (Subp_Id)
                    or else
                  Is_Invariant_Procedure (Subp_Id))
      then
         return False;
      end if;

      return True;
   end Is_Suitable_Primitive;

   --------------------------
   -- Is_Suspension_Object --
   --------------------------

   function Is_Suspension_Object (Id : Entity_Id) return Boolean is
   begin
      --  This approach does an exact name match rather than to rely on
      --  RTSfind. Routine Is_Effectively_Volatile is used by clients of the
      --  front end at point where all auxiliary tables are locked and any
      --  modifications to them are treated as violations. Do not tamper with
      --  the tables, instead examine the Chars fields of all the scopes of Id.

      return
        Chars (Id) = Name_Suspension_Object
          and then Present (Scope (Id))
          and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
          and then Present (Scope (Scope (Id)))
          and then Chars (Scope (Scope (Id))) = Name_Ada
          and then Present (Scope (Scope (Scope (Id))))
          and then Scope (Scope (Scope (Id))) = Standard_Standard;
   end Is_Suspension_Object;

   ----------------------------
   -- Is_Synchronized_Object --
   ----------------------------

   function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
      Prag : Node_Id;

   begin
      if Is_Object (Id) then

         --  The object is synchronized if it is of a type that yields a
         --  synchronized object.

         if Yields_Synchronized_Object (Etype (Id)) then
            return True;

         --  The object is synchronized if it is atomic and Async_Writers is
         --  enabled.

         elsif Is_Atomic_Object_Entity (Id)
           and then Async_Writers_Enabled (Id)
         then
            return True;

         --  A constant is a synchronized object by default, unless its type is
         --  access-to-variable type.

         elsif Ekind (Id) = E_Constant
           and then not Is_Access_Variable (Etype (Id))
         then
            return True;

         --  A variable is a synchronized object if it is subject to pragma
         --  Constant_After_Elaboration.

         elsif Ekind (Id) = E_Variable then
            Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);

            return Present (Prag) and then Is_Enabled_Pragma (Prag);
         end if;
      end if;

      --  Otherwise the input is not an object or it does not qualify as a
      --  synchronized object.

      return False;
   end Is_Synchronized_Object;

   ---------------------------------
   -- Is_Synchronized_Tagged_Type --
   ---------------------------------

   function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
      Kind : constant Entity_Kind := Ekind (Base_Type (E));

   begin
      --  A task or protected type derived from an interface is a tagged type.
      --  Such a tagged type is called a synchronized tagged type, as are
      --  synchronized interfaces and private extensions whose declaration
      --  includes the reserved word synchronized.

      return (Is_Tagged_Type (E)
                and then (Kind = E_Task_Type
                            or else
                          Kind = E_Protected_Type))
            or else
             (Is_Interface (E)
                and then Is_Synchronized_Interface (E))
            or else
             (Ekind (E) = E_Record_Type_With_Private
                and then Nkind (Parent (E)) = N_Private_Extension_Declaration
                and then (Synchronized_Present (Parent (E))
                           or else Is_Synchronized_Interface (Etype (E))));
   end Is_Synchronized_Tagged_Type;

   -----------------
   -- Is_Transfer --
   -----------------

   function Is_Transfer (N : Node_Id) return Boolean is
      Kind : constant Node_Kind := Nkind (N);

   begin
      if Kind = N_Simple_Return_Statement
           or else
         Kind = N_Extended_Return_Statement
           or else
         Kind = N_Goto_Statement
           or else
         Kind = N_Raise_Statement
           or else
         Kind = N_Requeue_Statement
      then
         return True;

      elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
        and then No (Condition (N))
      then
         return True;

      elsif Kind = N_Procedure_Call_Statement
        and then Is_Entity_Name (Name (N))
        and then Present (Entity (Name (N)))
        and then No_Return (Entity (Name (N)))
      then
         return True;

      elsif Nkind (Original_Node (N)) = N_Raise_Statement then
         return True;

      else
         return False;
      end if;
   end Is_Transfer;

   -------------
   -- Is_True --
   -------------

   function Is_True (U : Uint) return Boolean is
   begin
      return U /= 0;
   end Is_True;

   --------------------------------------
   -- Is_Unchecked_Conversion_Instance --
   --------------------------------------

   function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
      Par : Node_Id;

   begin
      --  Look for a function whose generic parent is the predefined intrinsic
      --  function Unchecked_Conversion, or for one that renames such an
      --  instance.

      if Ekind (Id) = E_Function then
         Par := Parent (Id);

         if Nkind (Par) = N_Function_Specification then
            Par := Generic_Parent (Par);

            if Present (Par) then
               return
                 Chars (Par) = Name_Unchecked_Conversion
                   and then Is_Intrinsic_Subprogram (Par)
                   and then In_Predefined_Unit (Par);
            else
               return
                 Present (Alias (Id))
                   and then Is_Unchecked_Conversion_Instance (Alias (Id));
            end if;
         end if;
      end if;

      return False;
   end Is_Unchecked_Conversion_Instance;

   -------------------------------
   -- Is_Universal_Numeric_Type --
   -------------------------------

   function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
   begin
      return T = Universal_Integer or else T = Universal_Real;
   end Is_Universal_Numeric_Type;

   ------------------------------
   -- Is_User_Defined_Equality --
   ------------------------------

   function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
   begin
      return Ekind (Id) = E_Function
        and then Chars (Id) = Name_Op_Eq
        and then Comes_From_Source (Id)

        --  Internally generated equalities have a full type declaration
        --  as their parent.

        and then Nkind (Parent (Id)) = N_Function_Specification;
   end Is_User_Defined_Equality;

   --------------------------------------
   -- Is_Validation_Variable_Reference --
   --------------------------------------

   function Is_Validation_Variable_Reference (N : Node_Id) return Boolean is
      Var    : constant Node_Id := Unqual_Conv (N);
      Var_Id : Entity_Id;

   begin
      Var_Id := Empty;

      if Is_Entity_Name (Var) then
         Var_Id := Entity (Var);
      end if;

      return
        Present (Var_Id)
          and then Ekind (Var_Id) = E_Variable
          and then Present (Validated_Object (Var_Id));
   end Is_Validation_Variable_Reference;

   ----------------------------
   -- Is_Variable_Size_Array --
   ----------------------------

   function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
      Idx : Node_Id;

   begin
      pragma Assert (Is_Array_Type (E));

      --  Check if some index is initialized with a non-constant value

      Idx := First_Index (E);
      while Present (Idx) loop
         if Nkind (Idx) = N_Range then
            if not Is_Constant_Bound (Low_Bound (Idx))
              or else not Is_Constant_Bound (High_Bound (Idx))
            then
               return True;
            end if;
         end if;

         Next_Index (Idx);
      end loop;

      return False;
   end Is_Variable_Size_Array;

   -----------------------------
   -- Is_Variable_Size_Record --
   -----------------------------

   function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
      Comp     : Entity_Id;
      Comp_Typ : Entity_Id;

   begin
      pragma Assert (Is_Record_Type (E));

      Comp := First_Component (E);
      while Present (Comp) loop
         Comp_Typ := Underlying_Type (Etype (Comp));

         --  Recursive call if the record type has discriminants

         if Is_Record_Type (Comp_Typ)
           and then Has_Discriminants (Comp_Typ)
           and then Is_Variable_Size_Record (Comp_Typ)
         then
            return True;

         elsif Is_Array_Type (Comp_Typ)
           and then Is_Variable_Size_Array (Comp_Typ)
         then
            return True;
         end if;

         Next_Component (Comp);
      end loop;

      return False;
   end Is_Variable_Size_Record;

   -----------------
   -- Is_Variable --
   -----------------

   function Is_Variable
     (N                 : Node_Id;
      Use_Original_Node : Boolean := True) return Boolean
   is
      Orig_Node : Node_Id;

      function In_Protected_Function (E : Entity_Id) return Boolean;
      --  Within a protected function, the private components of the enclosing
      --  protected type are constants. A function nested within a (protected)
      --  procedure is not itself protected. Within the body of a protected
      --  function the current instance of the protected type is a constant.

      function Is_Variable_Prefix (P : Node_Id) return Boolean;
      --  Prefixes can involve implicit dereferences, in which case we must
      --  test for the case of a reference of a constant access type, which can
      --  can never be a variable.

      ---------------------------
      -- In_Protected_Function --
      ---------------------------

      function In_Protected_Function (E : Entity_Id) return Boolean is
         Prot : Entity_Id;
         S    : Entity_Id;

      begin
         --  E is the current instance of a type

         if Is_Type (E) then
            Prot := E;

         --  E is an object

         else
            Prot := Scope (E);
         end if;

         if not Is_Protected_Type (Prot) then
            return False;

         else
            S := Current_Scope;
            while Present (S) and then S /= Prot loop
               if Ekind (S) = E_Function and then Scope (S) = Prot then
                  return True;
               end if;

               S := Scope (S);
            end loop;

            return False;
         end if;
      end In_Protected_Function;

      ------------------------
      -- Is_Variable_Prefix --
      ------------------------

      function Is_Variable_Prefix (P : Node_Id) return Boolean is
      begin
         if Is_Access_Type (Etype (P)) then
            return not Is_Access_Constant (Root_Type (Etype (P)));

         --  For the case of an indexed component whose prefix has a packed
         --  array type, the prefix has been rewritten into a type conversion.
         --  Determine variable-ness from the converted expression.

         elsif Nkind (P) = N_Type_Conversion
           and then not Comes_From_Source (P)
           and then Is_Array_Type (Etype (P))
           and then Is_Packed (Etype (P))
         then
            return Is_Variable (Expression (P));

         else
            return Is_Variable (P);
         end if;
      end Is_Variable_Prefix;

   --  Start of processing for Is_Variable

   begin
      --  Special check, allow x'Deref(expr) as a variable

      if Nkind (N) = N_Attribute_Reference
        and then Attribute_Name (N) = Name_Deref
      then
         return True;
      end if;

      --  Check if we perform the test on the original node since this may be a
      --  test of syntactic categories which must not be disturbed by whatever
      --  rewriting might have occurred. For example, an aggregate, which is
      --  certainly NOT a variable, could be turned into a variable by
      --  expansion.

      if Use_Original_Node then
         Orig_Node := Original_Node (N);
      else
         Orig_Node := N;
      end if;

      --  Definitely OK if Assignment_OK is set. Since this is something that
      --  only gets set for expanded nodes, the test is on N, not Orig_Node.

      if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
         return True;

      --  Normally we go to the original node, but there is one exception where
      --  we use the rewritten node, namely when it is an explicit dereference.
      --  The generated code may rewrite a prefix which is an access type with
      --  an explicit dereference. The dereference is a variable, even though
      --  the original node may not be (since it could be a constant of the
      --  access type).

      --  In Ada 2005 we have a further case to consider: the prefix may be a
      --  function call given in prefix notation. The original node appears to
      --  be a selected component, but we need to examine the call.

      elsif Nkind (N) = N_Explicit_Dereference
        and then Nkind (Orig_Node) /= N_Explicit_Dereference
        and then Present (Etype (Orig_Node))
        and then Is_Access_Type (Etype (Orig_Node))
      then
         --  Note that if the prefix is an explicit dereference that does not
         --  come from source, we must check for a rewritten function call in
         --  prefixed notation before other forms of rewriting, to prevent a
         --  compiler crash.

         return
           (Nkind (Orig_Node) = N_Function_Call
             and then not Is_Access_Constant (Etype (Prefix (N))))
           or else
             Is_Variable_Prefix (Original_Node (Prefix (N)));

      --  Generalized indexing operations are rewritten as explicit
      --  dereferences, and it is only during resolution that we can
      --  check whether the context requires an access_to_variable type.

      elsif Nkind (N) = N_Explicit_Dereference
        and then Present (Etype (Orig_Node))
        and then Has_Implicit_Dereference (Etype (Orig_Node))
        and then Ada_Version >= Ada_2012
      then
         return not Is_Access_Constant (Etype (Prefix (N)));

      --  A function call is never a variable

      elsif Nkind (N) = N_Function_Call then
         return False;

      --  All remaining checks use the original node

      elsif Is_Entity_Name (Orig_Node)
        and then Present (Entity (Orig_Node))
      then
         declare
            E : constant Entity_Id := Entity (Orig_Node);
            K : constant Entity_Kind := Ekind (E);

         begin
            if Is_Loop_Parameter (E) then
               return False;
            end if;

            return    (K = E_Variable
                        and then Nkind (Parent (E)) /= N_Exception_Handler)
              or else (K = E_Component
                        and then not In_Protected_Function (E))
              or else K = E_Out_Parameter
              or else K = E_In_Out_Parameter
              or else K = E_Generic_In_Out_Parameter

              --  Current instance of type. If this is a protected type, check
              --  we are not within the body of one of its protected functions.

              or else (Is_Type (E)
                        and then In_Open_Scopes (E)
                        and then not In_Protected_Function (E))

              or else (Is_Incomplete_Or_Private_Type (E)
                        and then In_Open_Scopes (Full_View (E)));
         end;

      else
         case Nkind (Orig_Node) is
            when N_Indexed_Component
               | N_Slice
            =>
               return Is_Variable_Prefix (Prefix (Orig_Node));

            when N_Selected_Component =>
               return (Is_Variable (Selector_Name (Orig_Node))
                        and then Is_Variable_Prefix (Prefix (Orig_Node)))
                 or else
                   (Nkind (N) = N_Expanded_Name
                     and then Scope (Entity (N)) = Entity (Prefix (N)));

            --  For an explicit dereference, the type of the prefix cannot
            --  be an access to constant or an access to subprogram.

            when N_Explicit_Dereference =>
               declare
                  Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
               begin
                  return Is_Access_Type (Typ)
                    and then not Is_Access_Constant (Root_Type (Typ))
                    and then Ekind (Typ) /= E_Access_Subprogram_Type;
               end;

            --  The type conversion is the case where we do not deal with the
            --  context dependent special case of an actual parameter. Thus
            --  the type conversion is only considered a variable for the
            --  purposes of this routine if the target type is tagged. However,
            --  a type conversion is considered to be a variable if it does not
            --  come from source (this deals for example with the conversions
            --  of expressions to their actual subtypes).

            when N_Type_Conversion =>
               return Is_Variable (Expression (Orig_Node))
                 and then
                   (not Comes_From_Source (Orig_Node)
                     or else
                       (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
                         and then
                        Is_Tagged_Type (Etype (Expression (Orig_Node)))));

            --  GNAT allows an unchecked type conversion as a variable. This
            --  only affects the generation of internal expanded code, since
            --  calls to instantiations of Unchecked_Conversion are never
            --  considered variables (since they are function calls).

            when N_Unchecked_Type_Conversion =>
               return Is_Variable (Expression (Orig_Node));

            when others =>
               return False;
         end case;
      end if;
   end Is_Variable;

   ------------------------
   -- Is_View_Conversion --
   ------------------------

   function Is_View_Conversion (N : Node_Id) return Boolean is
   begin
      if Nkind (N) = N_Type_Conversion
        and then Nkind (Unqual_Conv (N)) in N_Expanded_Name | N_Identifier
      then
         if Is_Tagged_Type (Etype (N))
           and then Is_Tagged_Type (Etype (Unqual_Conv (N)))
         then
            return True;

         elsif Is_Actual_Parameter (N)
           and then (Is_Actual_Out_Parameter (N)
                       or else Is_Actual_In_Out_Parameter (N))
         then
            return True;
         end if;
      end if;

      return False;
   end Is_View_Conversion;

   ---------------------------
   -- Is_Visibly_Controlled --
   ---------------------------

   function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
      Root : constant Entity_Id := Root_Type (T);
   begin
      return Chars (Scope (Root)) = Name_Finalization
        and then Chars (Scope (Scope (Root))) = Name_Ada
        and then Scope (Scope (Scope (Root))) = Standard_Standard;
   end Is_Visibly_Controlled;

   --------------------------------------
   --  Is_Volatile_Full_Access_Object  --
   --------------------------------------

   function Is_Volatile_Full_Access_Object (N : Node_Id) return Boolean is
      function Is_VFA_Object_Entity (Id : Entity_Id) return Boolean;
      --  Determine whether arbitrary entity Id denotes an object that is
      --  Volatile_Full_Access.

      ----------------------------
      --  Is_VFA_Object_Entity  --
      ----------------------------

      function Is_VFA_Object_Entity (Id : Entity_Id) return Boolean is
      begin
         return
           Is_Object (Id)
             and then (Is_Volatile_Full_Access (Id)
                         or else
                       Is_Volatile_Full_Access (Etype (Id)));
      end Is_VFA_Object_Entity;

   --  Start of processing for Is_Volatile_Full_Access_Object

   begin
      if Is_Entity_Name (N) then
         return Is_VFA_Object_Entity (Entity (N));

      elsif Is_Volatile_Full_Access (Etype (N)) then
         return True;

      elsif Nkind (N) = N_Selected_Component then
         return Is_Volatile_Full_Access (Entity (Selector_Name (N)));

      else
         return False;
      end if;
   end Is_Volatile_Full_Access_Object;

   --------------------------
   -- Is_Volatile_Function --
   --------------------------

   function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
   begin
      pragma Assert (Ekind (Func_Id) in E_Function | E_Generic_Function);

      --  A function declared within a protected type is volatile

      if Is_Protected_Type (Scope (Func_Id)) then
         return True;

      --  An instance of Ada.Unchecked_Conversion is a volatile function if
      --  either the source or the target are effectively volatile.

      elsif Is_Unchecked_Conversion_Instance (Func_Id)
        and then Has_Effectively_Volatile_Profile (Func_Id)
      then
         return True;

      --  Otherwise the function is treated as volatile if it is subject to
      --  enabled pragma Volatile_Function.

      else
         return
           Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
      end if;
   end Is_Volatile_Function;

   ------------------------
   -- Is_Volatile_Object --
   ------------------------

   function Is_Volatile_Object (N : Node_Id) return Boolean is
      function Is_Volatile_Object_Entity (Id : Entity_Id) return Boolean;
      --  Determine whether arbitrary entity Id denotes an object that is
      --  Volatile.

      function Prefix_Has_Volatile_Components (P : Node_Id) return Boolean;
      --  Determine whether prefix P has volatile components. This requires
      --  the presence of a Volatile_Components aspect/pragma or that P be
      --  itself a volatile object as per RM C.6(8).

      ---------------------------------
      --  Is_Volatile_Object_Entity  --
      ---------------------------------

      function Is_Volatile_Object_Entity (Id : Entity_Id) return Boolean is
      begin
         return
           Is_Object (Id)
             and then (Is_Volatile (Id) or else Is_Volatile (Etype (Id)));
      end Is_Volatile_Object_Entity;

      ------------------------------------
      -- Prefix_Has_Volatile_Components --
      ------------------------------------

      function Prefix_Has_Volatile_Components (P : Node_Id) return Boolean is
         Typ  : constant Entity_Id := Etype (P);

      begin
         if Is_Access_Type (Typ) then
            declare
               Dtyp : constant Entity_Id := Designated_Type (Typ);

            begin
               return Has_Volatile_Components (Dtyp)
                 or else Is_Volatile (Dtyp);
            end;

         elsif Has_Volatile_Components (Typ) then
            return True;

         elsif Is_Entity_Name (P)
           and then Has_Volatile_Component (Entity (P))
         then
            return True;

         elsif Is_Volatile_Object (P) then
            return True;

         else
            return False;
         end if;
      end Prefix_Has_Volatile_Components;

   --  Start of processing for Is_Volatile_Object

   begin
      if Is_Entity_Name (N) then
         return Is_Volatile_Object_Entity (Entity (N));

      elsif Is_Volatile (Etype (N)) then
         return True;

      elsif Nkind (N) = N_Indexed_Component then
         return Prefix_Has_Volatile_Components (Prefix (N));

      elsif Nkind (N) = N_Selected_Component then
         return Prefix_Has_Volatile_Components (Prefix (N))
           or else Is_Volatile (Entity (Selector_Name (N)));

      else
         return False;
      end if;
   end Is_Volatile_Object;

   -----------------------------
   -- Iterate_Call_Parameters --
   -----------------------------

   procedure Iterate_Call_Parameters (Call : Node_Id) is
      Actual : Node_Id   := First_Actual (Call);
      Formal : Entity_Id := First_Formal (Get_Called_Entity (Call));

   begin
      while Present (Formal) and then Present (Actual) loop
         Handle_Parameter (Formal, Actual);

         Next_Formal (Formal);
         Next_Actual (Actual);
      end loop;

      pragma Assert (No (Formal));
      pragma Assert (No (Actual));
   end Iterate_Call_Parameters;

   ---------------------------
   -- Itype_Has_Declaration --
   ---------------------------

   function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
   begin
      pragma Assert (Is_Itype (Id));
      return Present (Parent (Id))
        and then Nkind (Parent (Id)) in
                   N_Full_Type_Declaration | N_Subtype_Declaration
        and then Defining_Entity (Parent (Id)) = Id;
   end Itype_Has_Declaration;

   -------------------------
   -- Kill_Current_Values --
   -------------------------

   procedure Kill_Current_Values
     (Ent                  : Entity_Id;
      Last_Assignment_Only : Boolean := False)
   is
   begin
      if Is_Assignable (Ent) then
         Set_Last_Assignment (Ent, Empty);
      end if;

      if Is_Object (Ent) then
         if not Last_Assignment_Only then
            Kill_Checks (Ent);
            Set_Current_Value (Ent, Empty);

            --  Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
            --  for a constant. Once the constant is elaborated, its value is
            --  not changed, therefore the associated flags that describe the
            --  value should not be modified either.

            if Ekind (Ent) = E_Constant then
               null;

            --  Non-constant entities

            else
               if not Can_Never_Be_Null (Ent) then
                  Set_Is_Known_Non_Null (Ent, False);
               end if;

               Set_Is_Known_Null (Ent, False);

               --  Reset the Is_Known_Valid flag unless the type is always
               --  valid. This does not apply to a loop parameter because its
               --  bounds are defined by the loop header and therefore always
               --  valid.

               if not Is_Known_Valid (Etype (Ent))
                 and then Ekind (Ent) /= E_Loop_Parameter
               then
                  Set_Is_Known_Valid (Ent, False);
               end if;
            end if;
         end if;
      end if;
   end Kill_Current_Values;

   procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
      S : Entity_Id;

      procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
      --  Clear current value for entity E and all entities chained to E

      ------------------------------------------
      -- Kill_Current_Values_For_Entity_Chain --
      ------------------------------------------

      procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
         Ent : Entity_Id;
      begin
         Ent := E;
         while Present (Ent) loop
            Kill_Current_Values (Ent, Last_Assignment_Only);
            Next_Entity (Ent);
         end loop;
      end Kill_Current_Values_For_Entity_Chain;

   --  Start of processing for Kill_Current_Values

   begin
      --  Kill all saved checks, a special case of killing saved values

      if not Last_Assignment_Only then
         Kill_All_Checks;
      end if;

      --  Loop through relevant scopes, which includes the current scope and
      --  any parent scopes if the current scope is a block or a package.

      S := Current_Scope;
      Scope_Loop : loop

         --  Clear current values of all entities in current scope

         Kill_Current_Values_For_Entity_Chain (First_Entity (S));

         --  If scope is a package, also clear current values of all private
         --  entities in the scope.

         if Is_Package_Or_Generic_Package (S)
           or else Is_Concurrent_Type (S)
         then
            Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
         end if;

         --  If this is a not a subprogram, deal with parents

         if not Is_Subprogram (S) then
            S := Scope (S);
            exit Scope_Loop when S = Standard_Standard;
         else
            exit Scope_Loop;
         end if;
      end loop Scope_Loop;
   end Kill_Current_Values;

   --------------------------
   -- Kill_Size_Check_Code --
   --------------------------

   procedure Kill_Size_Check_Code (E : Entity_Id) is
   begin
      if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
        and then Present (Size_Check_Code (E))
      then
         Remove (Size_Check_Code (E));
         Set_Size_Check_Code (E, Empty);
      end if;
   end Kill_Size_Check_Code;

   --------------------
   -- Known_Non_Null --
   --------------------

   function Known_Non_Null (N : Node_Id) return Boolean is
      Status : constant Null_Status_Kind := Null_Status (N);

      Id  : Entity_Id;
      Op  : Node_Kind;
      Val : Node_Id;

   begin
      --  The expression yields a non-null value ignoring simple flow analysis

      if Status = Is_Non_Null then
         return True;

      --  Otherwise check whether N is a reference to an entity that appears
      --  within a conditional construct.

      elsif Is_Entity_Name (N) and then Present (Entity (N)) then

         --  First check if we are in decisive conditional

         Get_Current_Value_Condition (N, Op, Val);

         if Known_Null (Val) then
            if Op = N_Op_Eq then
               return False;
            elsif Op = N_Op_Ne then
               return True;
            end if;
         end if;

         --  If OK to do replacement, test Is_Known_Non_Null flag

         Id := Entity (N);

         if OK_To_Do_Constant_Replacement (Id) then
            return Is_Known_Non_Null (Id);
         end if;
      end if;

      --  Otherwise it is not possible to determine whether N yields a non-null
      --  value.

      return False;
   end Known_Non_Null;

   ----------------
   -- Known_Null --
   ----------------

   function Known_Null (N : Node_Id) return Boolean is
      Status : constant Null_Status_Kind := Null_Status (N);

      Id  : Entity_Id;
      Op  : Node_Kind;
      Val : Node_Id;

   begin
      --  The expression yields a null value ignoring simple flow analysis

      if Status = Is_Null then
         return True;

      --  Otherwise check whether N is a reference to an entity that appears
      --  within a conditional construct.

      elsif Is_Entity_Name (N) and then Present (Entity (N)) then

         --  First check if we are in decisive conditional

         Get_Current_Value_Condition (N, Op, Val);

         if Known_Null (Val) then
            if Op = N_Op_Eq then
               return True;
            elsif Op = N_Op_Ne then
               return False;
            end if;
         end if;

         --  If OK to do replacement, test Is_Known_Null flag

         Id := Entity (N);

         if OK_To_Do_Constant_Replacement (Id) then
            return Is_Known_Null (Id);
         end if;
      end if;

      --  Otherwise it is not possible to determine whether N yields a null
      --  value.

      return False;
   end Known_Null;

   --------------------------
   -- Known_To_Be_Assigned --
   --------------------------

   function Known_To_Be_Assigned (N : Node_Id) return Boolean is
      P : constant Node_Id := Parent (N);

   begin
      case Nkind (P) is

         --  Test left side of assignment

         when N_Assignment_Statement =>
            return N = Name (P);

         --  Function call arguments are never lvalues

         when N_Function_Call =>
            return False;

         --  Positional parameter for procedure or accept call

         when N_Accept_Statement
            | N_Procedure_Call_Statement
         =>
            declare
               Proc : Entity_Id;
               Form : Entity_Id;
               Act  : Node_Id;

            begin
               Proc := Get_Subprogram_Entity (P);

               if No (Proc) then
                  return False;
               end if;

               --  If we are not a list member, something is strange, so
               --  be conservative and return False.

               if not Is_List_Member (N) then
                  return False;
               end if;

               --  We are going to find the right formal by stepping forward
               --  through the formals, as we step backwards in the actuals.

               Form := First_Formal (Proc);
               Act  := N;
               loop
                  --  If no formal, something is weird, so be conservative
                  --  and return False.

                  if No (Form) then
                     return False;
                  end if;

                  Prev (Act);
                  exit when No (Act);
                  Next_Formal (Form);
               end loop;

               return Ekind (Form) /= E_In_Parameter;
            end;

         --  Named parameter for procedure or accept call

         when N_Parameter_Association =>
            declare
               Proc : Entity_Id;
               Form : Entity_Id;

            begin
               Proc := Get_Subprogram_Entity (Parent (P));

               if No (Proc) then
                  return False;
               end if;

               --  Loop through formals to find the one that matches

               Form := First_Formal (Proc);
               loop
                  --  If no matching formal, that's peculiar, some kind of
                  --  previous error, so return False to be conservative.
                  --  Actually this also happens in legal code in the case
                  --  where P is a parameter association for an Extra_Formal???

                  if No (Form) then
                     return False;
                  end if;

                  --  Else test for match

                  if Chars (Form) = Chars (Selector_Name (P)) then
                     return Ekind (Form) /= E_In_Parameter;
                  end if;

                  Next_Formal (Form);
               end loop;
            end;

         --  Test for appearing in a conversion that itself appears
         --  in an lvalue context, since this should be an lvalue.

         when N_Type_Conversion =>
            return Known_To_Be_Assigned (P);

         --  All other references are definitely not known to be modifications

         when others =>
            return False;
      end case;
   end Known_To_Be_Assigned;

   ---------------------------
   -- Last_Source_Statement --
   ---------------------------

   function Last_Source_Statement (HSS : Node_Id) return Node_Id is
      N : Node_Id;

   begin
      N := Last (Statements (HSS));
      while Present (N) loop
         exit when Comes_From_Source (N);
         Prev (N);
      end loop;

      return N;
   end Last_Source_Statement;

   -----------------------
   -- Mark_Coextensions --
   -----------------------

   procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
      Is_Dynamic : Boolean;
      --  Indicates whether the context causes nested coextensions to be
      --  dynamic or static

      function Mark_Allocator (N : Node_Id) return Traverse_Result;
      --  Recognize an allocator node and label it as a dynamic coextension

      --------------------
      -- Mark_Allocator --
      --------------------

      function Mark_Allocator (N : Node_Id) return Traverse_Result is
      begin
         if Nkind (N) = N_Allocator then
            if Is_Dynamic then
               Set_Is_Static_Coextension (N, False);
               Set_Is_Dynamic_Coextension (N);

            --  If the allocator expression is potentially dynamic, it may
            --  be expanded out of order and require dynamic allocation
            --  anyway, so we treat the coextension itself as dynamic.
            --  Potential optimization ???

            elsif Nkind (Expression (N)) = N_Qualified_Expression
              and then Nkind (Expression (Expression (N))) = N_Op_Concat
            then
               Set_Is_Static_Coextension (N, False);
               Set_Is_Dynamic_Coextension (N);
            else
               Set_Is_Dynamic_Coextension (N, False);
               Set_Is_Static_Coextension (N);
            end if;
         end if;

         return OK;
      end Mark_Allocator;

      procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);

   --  Start of processing for Mark_Coextensions

   begin
      --  An allocator that appears on the right-hand side of an assignment is
      --  treated as a potentially dynamic coextension when the right-hand side
      --  is an allocator or a qualified expression.

      --    Obj := new ...'(new Coextension ...);

      if Nkind (Context_Nod) = N_Assignment_Statement then
         Is_Dynamic := Nkind (Expression (Context_Nod)) in
                         N_Allocator | N_Qualified_Expression;

      --  An allocator that appears within the expression of a simple return
      --  statement is treated as a potentially dynamic coextension when the
      --  expression is either aggregate, allocator, or qualified expression.

      --    return (new Coextension ...);
      --    return new ...'(new Coextension ...);

      elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
         Is_Dynamic := Nkind (Expression (Context_Nod)) in
                         N_Aggregate | N_Allocator | N_Qualified_Expression;

      --  An alloctor that appears within the initialization expression of an
      --  object declaration is considered a potentially dynamic coextension
      --  when the initialization expression is an allocator or a qualified
      --  expression.

      --    Obj : ... := new ...'(new Coextension ...);

      --  A similar case arises when the object declaration is part of an
      --  extended return statement.

      --    return Obj : ... := new ...'(new Coextension ...);
      --    return Obj : ... := (new Coextension ...);

      elsif Nkind (Context_Nod) = N_Object_Declaration then
         Is_Dynamic := Nkind (Root_Nod) in N_Allocator | N_Qualified_Expression
           or else Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;

      --  This routine should not be called with constructs that cannot contain
      --  coextensions.

      else
         raise Program_Error;
      end if;

      Mark_Allocators (Root_Nod);
   end Mark_Coextensions;

   ---------------------------------
   -- Mark_Elaboration_Attributes --
   ---------------------------------

   procedure Mark_Elaboration_Attributes
     (N_Id     : Node_Or_Entity_Id;
      Checks   : Boolean := False;
      Level    : Boolean := False;
      Modes    : Boolean := False;
      Warnings : Boolean := False)
   is
      function Elaboration_Checks_OK
        (Target_Id  : Entity_Id;
         Context_Id : Entity_Id) return Boolean;
      --  Determine whether elaboration checks are enabled for target Target_Id
      --  which resides within context Context_Id.

      procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id);
      --  Preserve relevant attributes of the context in arbitrary entity Id

      procedure Mark_Elaboration_Attributes_Node (N : Node_Id);
      --  Preserve relevant attributes of the context in arbitrary node N

      ---------------------------
      -- Elaboration_Checks_OK --
      ---------------------------

      function Elaboration_Checks_OK
        (Target_Id  : Entity_Id;
         Context_Id : Entity_Id) return Boolean
      is
         Encl_Scop : Entity_Id;

      begin
         --  Elaboration checks are suppressed for the target

         if Elaboration_Checks_Suppressed (Target_Id) then
            return False;
         end if;

         --  Otherwise elaboration checks are OK for the target, but may be
         --  suppressed for the context where the target is declared.

         Encl_Scop := Context_Id;
         while Present (Encl_Scop) and then Encl_Scop /= Standard_Standard loop
            if Elaboration_Checks_Suppressed (Encl_Scop) then
               return False;
            end if;

            Encl_Scop := Scope (Encl_Scop);
         end loop;

         --  Neither the target nor its declarative context have elaboration
         --  checks suppressed.

         return True;
      end Elaboration_Checks_OK;

      ------------------------------------
      -- Mark_Elaboration_Attributes_Id --
      ------------------------------------

      procedure Mark_Elaboration_Attributes_Id (Id : Entity_Id) is
      begin
         --  Mark the status of elaboration checks in effect. Do not reset the
         --  status in case the entity is reanalyzed with checks suppressed.

         if Checks and then not Is_Elaboration_Checks_OK_Id (Id) then
            Set_Is_Elaboration_Checks_OK_Id (Id,
              Elaboration_Checks_OK
                (Target_Id  => Id,
                 Context_Id => Scope (Id)));
         end if;

         --  Mark the status of elaboration warnings in effect. Do not reset
         --  the status in case the entity is reanalyzed with warnings off.

         if Warnings and then not Is_Elaboration_Warnings_OK_Id (Id) then
            Set_Is_Elaboration_Warnings_OK_Id (Id, Elab_Warnings);
         end if;
      end Mark_Elaboration_Attributes_Id;

      --------------------------------------
      -- Mark_Elaboration_Attributes_Node --
      --------------------------------------

      procedure Mark_Elaboration_Attributes_Node (N : Node_Id) is
         function Extract_Name (N : Node_Id) return Node_Id;
         --  Obtain the Name attribute of call or instantiation N

         ------------------
         -- Extract_Name --
         ------------------

         function Extract_Name (N : Node_Id) return Node_Id is
            Nam : Node_Id;

         begin
            Nam := Name (N);

            --  A call to an entry family appears in indexed form

            if Nkind (Nam) = N_Indexed_Component then
               Nam := Prefix (Nam);
            end if;

            --  The name may also appear in qualified form

            if Nkind (Nam) = N_Selected_Component then
               Nam := Selector_Name (Nam);
            end if;

            return Nam;
         end Extract_Name;

         --  Local variables

         Context_Id : Entity_Id;
         Nam        : Node_Id;

      --  Start of processing for Mark_Elaboration_Attributes_Node

      begin
         --  Mark the status of elaboration checks in effect. Do not reset the
         --  status in case the node is reanalyzed with checks suppressed.

         if Checks and then not Is_Elaboration_Checks_OK_Node (N) then

            --  Assignments, attribute references, and variable references do
            --  not have a "declarative" context.

            Context_Id := Empty;

            --  The status of elaboration checks for calls and instantiations
            --  depends on the most recent pragma Suppress/Unsuppress, as well
            --  as the suppression status of the context where the target is
            --  defined.

            --    package Pack is
            --       function Func ...;
            --    end Pack;

            --    with Pack;
            --    procedure Main is
            --       pragma Suppress (Elaboration_Checks, Pack);
            --       X : ... := Pack.Func;
            --    ...

            --  In the example above, the call to Func has elaboration checks
            --  enabled because there is no active general purpose suppression
            --  pragma, however the elaboration checks of Pack are explicitly
            --  suppressed. As a result the elaboration checks of the call must
            --  be disabled in order to preserve this dependency.

            if Nkind (N) in N_Entry_Call_Statement
                          | N_Function_Call
                          | N_Function_Instantiation
                          | N_Package_Instantiation
                          | N_Procedure_Call_Statement
                          | N_Procedure_Instantiation
            then
               Nam := Extract_Name (N);

               if Is_Entity_Name (Nam) and then Present (Entity (Nam)) then
                  Context_Id := Scope (Entity (Nam));
               end if;
            end if;

            Set_Is_Elaboration_Checks_OK_Node (N,
              Elaboration_Checks_OK
                (Target_Id  => Empty,
                 Context_Id => Context_Id));
         end if;

         --  Mark the enclosing level of the node. Do not reset the status in
         --  case the node is relocated and reanalyzed.

         if Level and then not Is_Declaration_Level_Node (N) then
            Set_Is_Declaration_Level_Node (N,
              Find_Enclosing_Level (N) = Declaration_Level);
         end if;

         --  Mark the Ghost and SPARK mode in effect

         if Modes then
            if Ghost_Mode = Ignore then
               Set_Is_Ignored_Ghost_Node (N);
            end if;

            if SPARK_Mode = On then
               Set_Is_SPARK_Mode_On_Node (N);
            end if;
         end if;

         --  Mark the status of elaboration warnings in effect. Do not reset
         --  the status in case the node is reanalyzed with warnings off.

         if Warnings and then not Is_Elaboration_Warnings_OK_Node (N) then
            Set_Is_Elaboration_Warnings_OK_Node (N, Elab_Warnings);
         end if;
      end Mark_Elaboration_Attributes_Node;

   --  Start of processing for Mark_Elaboration_Attributes

   begin
      --  Do not capture any elaboration-related attributes when switch -gnatH
      --  (legacy elaboration checking mode enabled) is in effect because the
      --  attributes are useless to the legacy model.

      if Legacy_Elaboration_Checks then
         return;
      end if;

      if Nkind (N_Id) in N_Entity then
         Mark_Elaboration_Attributes_Id (N_Id);
      else
         Mark_Elaboration_Attributes_Node (N_Id);
      end if;
   end Mark_Elaboration_Attributes;

   ----------------------------------------
   -- Mark_Save_Invocation_Graph_Of_Body --
   ----------------------------------------

   procedure Mark_Save_Invocation_Graph_Of_Body is
      Main      : constant Node_Id := Cunit (Main_Unit);
      Main_Unit : constant Node_Id := Unit (Main);
      Aux_Id    : Entity_Id;

   begin
      Set_Save_Invocation_Graph_Of_Body (Main);

      --  Assume that the main unit does not have a complimentary unit

      Aux_Id := Empty;

      --  Obtain the complimentary unit of the main unit

      if Nkind (Main_Unit) in N_Generic_Package_Declaration
                            | N_Generic_Subprogram_Declaration
                            | N_Package_Declaration
                            | N_Subprogram_Declaration
      then
         Aux_Id := Corresponding_Body (Main_Unit);

      elsif Nkind (Main_Unit) in N_Package_Body
                               | N_Subprogram_Body
                               | N_Subprogram_Renaming_Declaration
      then
         Aux_Id := Corresponding_Spec (Main_Unit);
      end if;

      if Present (Aux_Id) then
         Set_Save_Invocation_Graph_Of_Body
           (Parent (Unit_Declaration_Node (Aux_Id)));
      end if;
   end Mark_Save_Invocation_Graph_Of_Body;

   ----------------------------------
   -- Matching_Static_Array_Bounds --
   ----------------------------------

   function Matching_Static_Array_Bounds
     (L_Typ : Node_Id;