aboutsummaryrefslogtreecommitdiff
path: root/sim/sh64/mloop-compact.c
blob: fb6b55202cf63e528ce0163a8577a70cb06093b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/* This file is generated by the genmloop script.  DO NOT EDIT! */

/* Enable switch() support in cgen headers.  */
#define SEM_IN_SWITCH

#define WANT_CPU sh64
#define WANT_CPU_SH64

#include "sim-main.h"
#include "bfd.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
#include "sim-assert.h"

/* Fill in the administrative ARGBUF fields required by all insns,
   virtual and real.  */

static INLINE void
sh64_compact_fill_argbuf (const SIM_CPU *cpu, ARGBUF *abuf, const IDESC *idesc,
		    PCADDR pc, int fast_p)
{
#if WITH_SCACHE
  SEM_SET_CODE (abuf, idesc, fast_p);
  ARGBUF_ADDR (abuf) = pc;
#endif
  ARGBUF_IDESC (abuf) = idesc;
}

/* Fill in tracing/profiling fields of an ARGBUF.  */

static INLINE void
sh64_compact_fill_argbuf_tp (const SIM_CPU *cpu, ARGBUF *abuf,
		       int trace_p, int profile_p)
{
  ARGBUF_TRACE_P (abuf) = trace_p;
  ARGBUF_PROFILE_P (abuf) = profile_p;
}

#if WITH_SCACHE_PBB

/* Emit the "x-before" handler.
   x-before is emitted before each insn (serial or parallel).
   This is as opposed to x-after which is only emitted at the end of a group
   of parallel insns.  */

static INLINE void
sh64_compact_emit_before (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc, int first_p)
{
  ARGBUF *abuf = &sc[0].argbuf;
  const IDESC *id = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_BEFORE];

  abuf->fields.before.first_p = first_p;
  sh64_compact_fill_argbuf (current_cpu, abuf, id, pc, 0);
  /* no need to set trace_p,profile_p */
}

/* Emit the "x-after" handler.
   x-after is emitted after a serial insn or at the end of a group of
   parallel insns.  */

static INLINE void
sh64_compact_emit_after (SIM_CPU *current_cpu, SCACHE *sc, PCADDR pc)
{
  ARGBUF *abuf = &sc[0].argbuf;
  const IDESC *id = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_AFTER];

  sh64_compact_fill_argbuf (current_cpu, abuf, id, pc, 0);
  /* no need to set trace_p,profile_p */
}

#endif /* WITH_SCACHE_PBB */


static INLINE const IDESC *
extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
         int fast_p)
{
  const IDESC *id = sh64_compact_decode (current_cpu, pc, insn, insn, abuf);

  sh64_compact_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
  if (! fast_p)
    {
      int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
      int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
      sh64_compact_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
    }
  return id;
}

static INLINE SEM_PC
execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
{
  SEM_PC vpc;

  if (fast_p)
    {
#if ! WITH_SEM_SWITCH_FAST
#if WITH_SCACHE
      vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
#else
      vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, &sc->argbuf);
#endif
#else
      abort ();
#endif /* WITH_SEM_SWITCH_FAST */
    }
  else
    {
#if ! WITH_SEM_SWITCH_FULL
      ARGBUF *abuf = &sc->argbuf;
      const IDESC *idesc = abuf->idesc;
#if WITH_SCACHE_PBB
      int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
#else
      int virtual_p = 0;
#endif

      if (! virtual_p)
	{
	  /* FIXME: call x-before */
	  if (ARGBUF_PROFILE_P (abuf))
	    PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
	  /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}.  */
	  if (PROFILE_MODEL_P (current_cpu)
	      && ARGBUF_PROFILE_P (abuf))
	    sh64_compact_model_insn_before (current_cpu, 1 /*first_p*/);
	  TRACE_INSN_INIT (current_cpu, abuf, 1);
	  TRACE_INSN (current_cpu, idesc->idata,
		      (const struct argbuf *) abuf, abuf->addr);
	}
#if WITH_SCACHE
      vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
#else
      vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
#endif
      if (! virtual_p)
	{
	  /* FIXME: call x-after */
	  if (PROFILE_MODEL_P (current_cpu)
	      && ARGBUF_PROFILE_P (abuf))
	    {
	      int cycles;

	      cycles = (*idesc->timing->model_fn) (current_cpu, sc);
	      sh64_compact_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
	    }
	  TRACE_INSN_FINI (current_cpu, abuf, 1);
	}
#else
      abort ();
#endif /* WITH_SEM_SWITCH_FULL */
    }

  return vpc;
}


/* Record address of cti terminating a pbb.  */
#define SET_CTI_VPC(sc) do { _cti_sc = (sc); } while (0)
/* Record number of [real] insns in pbb.  */
#define SET_INSN_COUNT(n) do { _insn_count = (n); } while (0)

/* Fetch and extract a pseudo-basic-block.
   FAST_P is non-zero if no tracing/profiling/etc. is wanted.  */

INLINE SEM_PC
sh64_compact_pbb_begin (SIM_CPU *current_cpu, int FAST_P)
{
  SEM_PC new_vpc;
  PCADDR pc;
  SCACHE *sc;
  int max_insns = CPU_SCACHE_MAX_CHAIN_LENGTH (current_cpu);

  pc = GET_H_PC ();

  new_vpc = scache_lookup_or_alloc (current_cpu, pc, max_insns, &sc);
  if (! new_vpc)
    {
      /* Leading '_' to avoid collision with mainloop.in.  */
      int _insn_count = 0;
      SCACHE *orig_sc = sc;
      SCACHE *_cti_sc = NULL;
      int slice_insns = CPU_MAX_SLICE_INSNS (current_cpu);

      /* First figure out how many instructions to compile.
	 MAX_INSNS is the size of the allocated buffer, which includes space
	 for before/after handlers if they're being used.
	 SLICE_INSNS is the maxinum number of real insns that can be
	 executed.  Zero means "as many as we want".  */
      /* ??? max_insns is serving two incompatible roles.
	 1) Number of slots available in scache buffer.
	 2) Number of real insns to execute.
	 They're incompatible because there are virtual insns emitted too
	 (chain,cti-chain,before,after handlers).  */

      if (slice_insns == 1)
	{
	  /* No need to worry about extra slots required for virtual insns
	     and parallel exec support because MAX_CHAIN_LENGTH is
	     guaranteed to be big enough to execute at least 1 insn!  */
	  max_insns = 1;
	}
      else
	{
	  /* Allow enough slop so that while compiling insns, if max_insns > 0
	     then there's guaranteed to be enough space to emit one real insn.
	     MAX_CHAIN_LENGTH is typically much longer than
	     the normal number of insns between cti's anyway.  */
	  max_insns -= (1 /* one for the trailing chain insn */
			+ (FAST_P
			   ? 0
			   : (1 + MAX_PARALLEL_INSNS) /* before+after */)
			+ (MAX_PARALLEL_INSNS > 1
			   ? (MAX_PARALLEL_INSNS * 2)
			   : 0));

	  /* Account for before/after handlers.  */
	  if (! FAST_P)
	    slice_insns *= 3;

	  if (slice_insns > 0
	      && slice_insns < max_insns)
	    max_insns = slice_insns;
	}

      new_vpc = sc;

      /* SC,PC must be updated to point passed the last entry used.
	 SET_CTI_VPC must be called if pbb is terminated by a cti.
	 SET_INSN_COUNT must be called to record number of real insns in
	 pbb [could be computed by us of course, extra cpu but perhaps
	 negligible enough].  */

/* begin extract-pbb */
{
  const IDESC *idesc;
  int icount = 0;

 while (max_insns > 0)
    {
      UHI insn = GETIMEMUHI (current_cpu, pc);
      
      idesc = extract (current_cpu, pc, insn, &sc->argbuf, FAST_P);
      SEM_SKIP_COMPILE (current_cpu, sc, 1);
      ++sc;
      --max_insns;
      ++icount;
      pc += idesc->length;

      if (IDESC_CTI_P (idesc))
        {
          SET_CTI_VPC (sc - 1);

          if (CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_DELAY_SLOT))
            {
              USI insn = GETIMEMUHI (current_cpu, pc);
	      idesc = extract (current_cpu, pc, insn, &sc->argbuf, FAST_P);

              if (IDESC_CTI_P (idesc) ||
	          CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_ILLSLOT))
	        {
		  SIM_DESC sd = CPU_STATE (current_cpu);
                  sim_io_eprintf (CPU_STATE (current_cpu),
		    "malformed program, `%s' insn in delay slot\n",
                    CGEN_INSN_NAME (idesc->idata));    
		  sim_engine_halt (sd, current_cpu, NULL, pc,
  				   sim_stopped, SIM_SIGILL);
                }
	      else
                { 
                  ++sc;
	          --max_insns;
	          ++icount;
	          pc += idesc->length;
                }
            }
	  break;
      }
    }

 Finish:
  SET_INSN_COUNT (icount);
}
/* end extract-pbb */

      /* The last one is a pseudo-insn to link to the next chain.
	 It is also used to record the insn count for this chain.  */
      {
	const IDESC *id;

	/* Was pbb terminated by a cti?  */
	if (_cti_sc)
	  {
	    id = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_CTI_CHAIN];
	  }
	else
	  {
	    id = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_CHAIN];
	  }
	SEM_SET_CODE (&sc->argbuf, id, FAST_P);
	sc->argbuf.idesc = id;
	sc->argbuf.addr = pc;
	sc->argbuf.fields.chain.insn_count = _insn_count;
	sc->argbuf.fields.chain.next = 0;
	sc->argbuf.fields.chain.branch_target = 0;
	++sc;
      }

      /* Update the pointer to the next free entry, may not have used as
	 many entries as was asked for.  */
      CPU_SCACHE_NEXT_FREE (current_cpu) = sc;
      /* Record length of chain if profiling.
	 This includes virtual insns since they count against
	 max_insns too.  */
      if (! FAST_P)
	PROFILE_COUNT_SCACHE_CHAIN_LENGTH (current_cpu, sc - orig_sc);
    }

  return new_vpc;
}

/* Chain to the next block from a non-cti terminated previous block.  */

INLINE SEM_PC
sh64_compact_pbb_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg)
{
  ARGBUF *abuf = SEM_ARGBUF (sem_arg);

  PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);

  SET_H_PC (abuf->addr);


  /* If not running forever, exit back to main loop.  */
  if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
      /* Also exit back to main loop if there's an event.
         Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
	 at the "right" time, but then that was what was asked for.
	 There is no silver bullet for simulator engines.
         ??? Clearly this needs a cleaner interface.
	 At present it's just so Ctrl-C works.  */
      || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
    CPU_RUNNING_P (current_cpu) = 0;

  /* If chained to next block, go straight to it.  */
  if (abuf->fields.chain.next)
    return abuf->fields.chain.next;
  /* See if next block has already been compiled.  */
  abuf->fields.chain.next = scache_lookup (current_cpu, abuf->addr);
  if (abuf->fields.chain.next)
    return abuf->fields.chain.next;
  /* Nope, so next insn is a virtual insn to invoke the compiler
     (begin a pbb).  */
  return CPU_SCACHE_PBB_BEGIN (current_cpu);
}

/* Chain to the next block from a cti terminated previous block.
   BR_TYPE indicates whether the branch was taken and whether we can cache
   the vpc of the branch target.
   NEW_PC is the target's branch address, and is only valid if
   BR_TYPE != SEM_BRANCH_UNTAKEN.  */

INLINE SEM_PC
sh64_compact_pbb_cti_chain (SIM_CPU *current_cpu, SEM_ARG sem_arg,
		     SEM_BRANCH_TYPE br_type, PCADDR new_pc)
{
  SEM_PC *new_vpc_ptr;

  PBB_UPDATE_INSN_COUNT (current_cpu, sem_arg);

  /* If we have switched ISAs, exit back to main loop.
     Set idesc to 0 to cause the engine to point to the right insn table.  */
  if (new_pc & 1)
  {
    /* Switch to SHmedia.  */
    CPU_IDESC_SEM_INIT_P (current_cpu) = 0;
    CPU_RUNNING_P (current_cpu) = 0;
  }

  /* If not running forever, exit back to main loop.  */
  if (CPU_MAX_SLICE_INSNS (current_cpu) != 0
      /* Also exit back to main loop if there's an event.
         Note that if CPU_MAX_SLICE_INSNS != 1, events won't get processed
	 at the "right" time, but then that was what was asked for.
	 There is no silver bullet for simulator engines.
         ??? Clearly this needs a cleaner interface.
	 At present it's just so Ctrl-C works.  */
      || STATE_EVENTS (CPU_STATE (current_cpu))->work_pending)
    CPU_RUNNING_P (current_cpu) = 0;

  /* Restart compiler if we branched to an uncacheable address
     (e.g. "j reg").  */
  if (br_type == SEM_BRANCH_UNCACHEABLE)
    {
      SET_H_PC (new_pc);
      return CPU_SCACHE_PBB_BEGIN (current_cpu);
    }

  /* If branch wasn't taken, update the pc and set BR_ADDR_PTR to our
     next chain ptr.  */
  if (br_type == SEM_BRANCH_UNTAKEN)
    {
      ARGBUF *abuf = SEM_ARGBUF (sem_arg);
      new_pc = abuf->addr;
      SET_H_PC (new_pc);
      new_vpc_ptr = &abuf->fields.chain.next;
    }
  else
    {
      ARGBUF *abuf = SEM_ARGBUF (sem_arg);
      SET_H_PC (new_pc);
      new_vpc_ptr = &abuf->fields.chain.branch_target;
    }

  /* If chained to next block, go straight to it.  */
  if (*new_vpc_ptr)
    return *new_vpc_ptr;
  /* See if next block has already been compiled.  */
  *new_vpc_ptr = scache_lookup (current_cpu, new_pc);
  if (*new_vpc_ptr)
    return *new_vpc_ptr;
  /* Nope, so next insn is a virtual insn to invoke the compiler
     (begin a pbb).  */
  return CPU_SCACHE_PBB_BEGIN (current_cpu);
}

/* x-before handler.
   This is called before each insn.  */

void
sh64_compact_pbb_before (SIM_CPU *current_cpu, SCACHE *sc)
{
  SEM_ARG sem_arg = sc;
  const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
  int first_p = abuf->fields.before.first_p;
  const ARGBUF *cur_abuf = SEM_ARGBUF (sc + 1);
  const IDESC *cur_idesc = cur_abuf->idesc;
  PCADDR pc = cur_abuf->addr;

  if (ARGBUF_PROFILE_P (cur_abuf))
    PROFILE_COUNT_INSN (current_cpu, pc, cur_idesc->num);

  /* If this isn't the first insn, finish up the previous one.  */

  if (! first_p)
    {
      if (PROFILE_MODEL_P (current_cpu))
	{
	  const SEM_ARG prev_sem_arg = sc - 1;
	  const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);
	  const IDESC *prev_idesc = prev_abuf->idesc;
	  int cycles;

	  /* ??? May want to measure all insns if doing insn tracing.  */
	  if (ARGBUF_PROFILE_P (prev_abuf))
	    {
	      cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
	      sh64_compact_model_insn_after (current_cpu, 0 /*last_p*/, cycles);
	    }
	}

      TRACE_INSN_FINI (current_cpu, cur_abuf, 0 /*last_p*/);
    }

  /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}.  */
  if (PROFILE_MODEL_P (current_cpu)
      && ARGBUF_PROFILE_P (cur_abuf))
    sh64_compact_model_insn_before (current_cpu, first_p);

  TRACE_INSN_INIT (current_cpu, cur_abuf, first_p);
  TRACE_INSN (current_cpu, cur_idesc->idata, cur_abuf, pc);
}

/* x-after handler.
   This is called after a serial insn or at the end of a group of parallel
   insns.  */

void
sh64_compact_pbb_after (SIM_CPU *current_cpu, SCACHE *sc)
{
  SEM_ARG sem_arg = sc;
  const ARGBUF *abuf = SEM_ARGBUF (sem_arg);
  const SEM_ARG prev_sem_arg = sc - 1;
  const ARGBUF *prev_abuf = SEM_ARGBUF (prev_sem_arg);

  /* ??? May want to measure all insns if doing insn tracing.  */
  if (PROFILE_MODEL_P (current_cpu)
      && ARGBUF_PROFILE_P (prev_abuf))
    {
      const IDESC *prev_idesc = prev_abuf->idesc;
      int cycles;

      cycles = (*prev_idesc->timing->model_fn) (current_cpu, prev_sem_arg);
      sh64_compact_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
    }
  TRACE_INSN_FINI (current_cpu, prev_abuf, 1 /*last_p*/);
}

#define FAST_P 0

void
sh64_compact_engine_run_full (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  /* virtual program counter */
  SEM_PC vpc;
#if WITH_SEM_SWITCH_FULL
  /* For communication between cti's and cti-chain.  */
  SEM_BRANCH_TYPE pbb_br_type;
  PCADDR pbb_br_npc;
#endif


  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
      /* ??? 'twould be nice to move this up a level and only call it once.
	 On the other hand, in the "let's go fast" case the test is only done
	 once per pbb (since we only return to the main loop at the end of
	 a pbb).  And in the "let's run until we're done" case we don't return
	 until the program exits.  */

#if WITH_SEM_SWITCH_FULL
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "sem-compact-switch.c"
#endif
#else
      sh64_compact_sem_init_idesc_table (current_cpu);
#endif

      /* Initialize the "begin (compile) a pbb" virtual insn.  */
      vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
      SEM_SET_FULL_CODE (SEM_ARGBUF (vpc),
			 & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_BEGIN]);
      vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_BEGIN];

      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  CPU_RUNNING_P (current_cpu) = 1;
  /* ??? In the case where we're returning to the main loop after every
     pbb we don't want to call pbb_begin each time (which hashes on the pc
     and does a table lookup).  A way to speed this up is to save vpc
     between calls.  */
  vpc = sh64_compact_pbb_begin (current_cpu, FAST_P);

  do
    {
/* begin full-exec-pbb */
{
#if (! FAST_P && WITH_SEM_SWITCH_FULL) || (FAST_P && WITH_SEM_SWITCH_FAST)
#define DEFINE_SWITCH
#include "sem-compact-switch.c"
#else
  vpc = execute (current_cpu, vpc, FAST_P);
#endif
}
/* end full-exec-pbb */
    }
  while (CPU_RUNNING_P (current_cpu));
}

#undef FAST_P


#define FAST_P 1

void
sh64_compact_engine_run_fast (SIM_CPU *current_cpu)
{
  SIM_DESC current_state = CPU_STATE (current_cpu);
  SCACHE *scache = CPU_SCACHE_CACHE (current_cpu);
  /* virtual program counter */
  SEM_PC vpc;
#if WITH_SEM_SWITCH_FAST
  /* For communication between cti's and cti-chain.  */
  SEM_BRANCH_TYPE pbb_br_type;
  PCADDR pbb_br_npc;
#endif


  if (! CPU_IDESC_SEM_INIT_P (current_cpu))
    {
      /* ??? 'twould be nice to move this up a level and only call it once.
	 On the other hand, in the "let's go fast" case the test is only done
	 once per pbb (since we only return to the main loop at the end of
	 a pbb).  And in the "let's run until we're done" case we don't return
	 until the program exits.  */

#if WITH_SEM_SWITCH_FAST
#if defined (__GNUC__)
/* ??? Later maybe paste sem-switch.c in when building mainloop.c.  */
#define DEFINE_LABELS
#include "sem-compact-switch.c"
#endif
#else
      sh64_compact_semf_init_idesc_table (current_cpu);
#endif

      /* Initialize the "begin (compile) a pbb" virtual insn.  */
      vpc = CPU_SCACHE_PBB_BEGIN (current_cpu);
      SEM_SET_FAST_CODE (SEM_ARGBUF (vpc),
			 & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_BEGIN]);
      vpc->argbuf.idesc = & CPU_IDESC (current_cpu) [SH64_COMPACT_INSN_X_BEGIN];

      CPU_IDESC_SEM_INIT_P (current_cpu) = 1;
    }

  CPU_RUNNING_P (current_cpu) = 1;
  /* ??? In the case where we're returning to the main loop after every
     pbb we don't want to call pbb_begin each time (which hashes on the pc
     and does a table lookup).  A way to speed this up is to save vpc
     between calls.  */
  vpc = sh64_compact_pbb_begin (current_cpu, FAST_P);

  do
    {
/* begin fast-exec-pbb */
{
#if (! FAST_P && WITH_SEM_SWITCH_FULL) || (FAST_P && WITH_SEM_SWITCH_FAST)
#define DEFINE_SWITCH
#include "sem-compact-switch.c"
#else
  vpc = execute (current_cpu, vpc, FAST_P);
#endif
}
/* end fast-exec-pbb */
    }
  while (CPU_RUNNING_P (current_cpu));
}

#undef FAST_P