aboutsummaryrefslogtreecommitdiff
path: root/sim/sh/interp.c
blob: 2bae4484e349ae37e2498cefb9a550ef4228e61b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
/* Simulator for the Renesas (formerly Hitachi) / SuperH Inc. SH architecture.

   Written by Steve Chamberlain of Cygnus Support.
   sac@cygnus.com

   This file is part of SH sim


		THIS SOFTWARE IS NOT COPYRIGHTED

   Cygnus offers the following for use in the public domain.  Cygnus
   makes no warranty with regard to the software or it's performance
   and the user accepts the software "AS IS" with all faults.

   CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO
   THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*/

/* This must come before any other includes.  */
#include "defs.h"

#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_MMAP
#include <sys/mman.h>
# ifndef MAP_FAILED
#  define MAP_FAILED -1
# endif
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
#  define MAP_ANONYMOUS MAP_ANON
# endif
#endif

#include <string.h>
#include <stdlib.h>
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include <time.h>
#include <sys/time.h>
#ifndef _WIN32
#include <utime.h>
#include <sys/wait.h>
#endif

#include "bfd.h"
#include "sim/callback.h"
#include "sim/sim.h"
#include "gdb/sim-sh.h"

#include "sim-main.h"
#include "sim-base.h"
#include "sim-options.h"

#include "targ-vals.h"

#include <math.h>

#ifdef _WIN32
#include <float.h>		/* Needed for _isnan() */
#define isnan _isnan
#endif

#ifndef SIGBUS
#define SIGBUS SIGSEGV
#endif

#ifndef SIGQUIT
#define SIGQUIT SIGTERM
#endif

#ifndef SIGTRAP
#define SIGTRAP 5
#endif

/* TODO: Stop using these names.  */
#undef SEXT
#undef SEXT32

extern unsigned short sh_jump_table[], sh_dsp_table[0x1000], ppi_table[];

#define O_RECOMPILE 85
#define DEFINE_TABLE
#define DISASSEMBLER_TABLE

/* Define the rate at which the simulator should poll the host
   for a quit. */
#define POLL_QUIT_INTERVAL 0x60000

/* TODO: Move into sim_cpu.  */
saved_state_type saved_state;

struct loop_bounds { unsigned char *start, *end; };

/* These variables are at file scope so that functions other than
   sim_resume can use the fetch/store macros */

#define target_little_endian (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
static int global_endianw, endianb;
static int target_dsp;
#define host_little_endian (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE)

static int maskw = 0;
static int maskl = 0;

/* Short hand definitions of the registers */

#define SBIT(x) ((x)&sbit)
#define R0 	saved_state.asregs.regs[0]
#define Rn 	saved_state.asregs.regs[n]
#define Rm 	saved_state.asregs.regs[m]
#define UR0 	(unsigned int) (saved_state.asregs.regs[0])
#define UR 	(unsigned int) R
#define UR 	(unsigned int) R
#define SR0 	saved_state.asregs.regs[0]
#define CREG(n)	(saved_state.asregs.cregs[(n)])
#define GBR 	saved_state.asregs.gbr
#define VBR 	saved_state.asregs.vbr
#define DBR 	saved_state.asregs.dbr
#define TBR 	saved_state.asregs.tbr
#define IBCR	saved_state.asregs.ibcr
#define IBNR	saved_state.asregs.ibnr
#define BANKN	(saved_state.asregs.ibnr & 0x1ff)
#define ME	((saved_state.asregs.ibnr >> 14) & 0x3)
#define SSR	saved_state.asregs.ssr
#define SPC	saved_state.asregs.spc
#define SGR 	saved_state.asregs.sgr
#define SREG(n)	(saved_state.asregs.sregs[(n)])
#define MACH 	saved_state.asregs.mach
#define MACL 	saved_state.asregs.macl
#define PR	saved_state.asregs.pr
#define FPUL	saved_state.asregs.fpul

#define PC insn_ptr



/* Alternate bank of registers r0-r7 */

/* Note: code controling SR handles flips between BANK0 and BANK1 */
#define Rn_BANK(n) (saved_state.asregs.bank[(n)])
#define SET_Rn_BANK(n, EXP) do { saved_state.asregs.bank[(n)] = (EXP); } while (0)


/* Manipulate SR */

#define SR_MASK_BO  (1 << 14)
#define SR_MASK_CS  (1 << 13)
#define SR_MASK_DMY (1 << 11)
#define SR_MASK_DMX (1 << 10)
#define SR_MASK_M (1 << 9)
#define SR_MASK_Q (1 << 8)
#define SR_MASK_I (0xf << 4)
#define SR_MASK_S (1 << 1)
#define SR_MASK_T (1 << 0)

#define SR_MASK_BL (1 << 28)
#define SR_MASK_RB (1 << 29)
#define SR_MASK_MD (1 << 30)
#define SR_MASK_RC 0x0fff0000
#define SR_RC_INCREMENT -0x00010000

#define BO	((saved_state.asregs.sr & SR_MASK_BO) != 0)
#define CS	((saved_state.asregs.sr & SR_MASK_CS) != 0)
#define M 	((saved_state.asregs.sr & SR_MASK_M) != 0)
#define Q 	((saved_state.asregs.sr & SR_MASK_Q) != 0)
#define S 	((saved_state.asregs.sr & SR_MASK_S) != 0)
#define T 	((saved_state.asregs.sr & SR_MASK_T) != 0)
#define LDST	((saved_state.asregs.ldst) != 0)

#define SR_BL ((saved_state.asregs.sr & SR_MASK_BL) != 0)
#define SR_RB ((saved_state.asregs.sr & SR_MASK_RB) != 0)
#define SR_MD ((saved_state.asregs.sr & SR_MASK_MD) != 0)
#define SR_DMY ((saved_state.asregs.sr & SR_MASK_DMY) != 0)
#define SR_DMX ((saved_state.asregs.sr & SR_MASK_DMX) != 0)
#define SR_RC ((saved_state.asregs.sr & SR_MASK_RC))

/* Note: don't use this for privileged bits */
#define SET_SR_BIT(EXP, BIT) \
do { \
  if ((EXP) & 1) \
    saved_state.asregs.sr |= (BIT); \
  else \
    saved_state.asregs.sr &= ~(BIT); \
} while (0)

#define SET_SR_BO(EXP) SET_SR_BIT ((EXP), SR_MASK_BO)
#define SET_SR_CS(EXP) SET_SR_BIT ((EXP), SR_MASK_CS)
#define SET_BANKN(EXP) \
do { \
  IBNR = (IBNR & 0xfe00) | ((EXP) & 0x1f); \
} while (0)
#define SET_ME(EXP) \
do { \
  IBNR = (IBNR & 0x3fff) | (((EXP) & 0x3) << 14); \
} while (0)
#define SET_SR_M(EXP) SET_SR_BIT ((EXP), SR_MASK_M)
#define SET_SR_Q(EXP) SET_SR_BIT ((EXP), SR_MASK_Q)
#define SET_SR_S(EXP) SET_SR_BIT ((EXP), SR_MASK_S)
#define SET_SR_T(EXP) SET_SR_BIT ((EXP), SR_MASK_T)
#define SET_LDST(EXP) (saved_state.asregs.ldst = ((EXP) != 0))

/* stc currently relies on being able to read SR without modifications.  */
#define GET_SR() (saved_state.asregs.sr - 0)

#define SET_SR(x) set_sr (x)

#define SET_RC(x) \
  (saved_state.asregs.sr \
   = (saved_state.asregs.sr & 0xf000ffff) | ((x) & 0xfff) << 16)

/* Manipulate FPSCR */

#define FPSCR_MASK_FR (1 << 21)
#define FPSCR_MASK_SZ (1 << 20)
#define FPSCR_MASK_PR (1 << 19)

#define FPSCR_FR  ((GET_FPSCR () & FPSCR_MASK_FR) != 0)
#define FPSCR_SZ  ((GET_FPSCR () & FPSCR_MASK_SZ) != 0)
#define FPSCR_PR  ((GET_FPSCR () & FPSCR_MASK_PR) != 0)

static void
set_fpscr1 (int x)
{
  int old = saved_state.asregs.fpscr;
  saved_state.asregs.fpscr = (x);
  /* swap the floating point register banks */
  if ((saved_state.asregs.fpscr ^ old) & FPSCR_MASK_FR
      /* Ignore bit change if simulating sh-dsp.  */
      && ! target_dsp)
    {
      union fregs_u tmpf = saved_state.asregs.fregs[0];
      saved_state.asregs.fregs[0] = saved_state.asregs.fregs[1];
      saved_state.asregs.fregs[1] = tmpf;
    }
}

/* sts relies on being able to read fpscr directly.  */
#define GET_FPSCR()  (saved_state.asregs.fpscr)
#define SET_FPSCR(x) \
do { \
  set_fpscr1 (x); \
} while (0)

#define DSR  (saved_state.asregs.fpscr)

#define RAISE_EXCEPTION(x) \
  (saved_state.asregs.exception = x, saved_state.asregs.insn_end = 0)

#define RAISE_EXCEPTION_IF_IN_DELAY_SLOT() \
  if (in_delay_slot) RAISE_EXCEPTION (SIGILL)

/* This function exists mainly for the purpose of setting a breakpoint to
   catch simulated bus errors when running the simulator under GDB.  */

static void
raise_exception (int x)
{
  RAISE_EXCEPTION (x);
}

static void
raise_buserror (void)
{
  raise_exception (SIGBUS);
}

#define PROCESS_SPECIAL_ADDRESS(addr, endian, ptr, bits_written, \
				forbidden_addr_bits, data, retval) \
do { \
  if (addr & forbidden_addr_bits) \
    { \
      raise_buserror (); \
      return retval; \
    } \
  else if ((addr & saved_state.asregs.xyram_select) \
	   == saved_state.asregs.xram_start) \
    ptr = (void *) &saved_state.asregs.xmem_offset[addr ^ endian]; \
  else if ((addr & saved_state.asregs.xyram_select) \
	   == saved_state.asregs.yram_start) \
    ptr = (void *) &saved_state.asregs.ymem_offset[addr ^ endian]; \
  else if ((unsigned) addr >> 24 == 0xf0 \
	   && bits_written == 32 && (data & 1) == 0) \
    /* This invalidates (if not associative) or might invalidate \
       (if associative) an instruction cache line.  This is used for \
       trampolines.  Since we don't simulate the cache, this is a no-op \
       as far as the simulator is concerned.  */ \
    return retval; \
  else \
    { \
      if (bits_written == 8 && addr > 0x5000000) \
	IOMEM (addr, 1, data); \
      /* We can't do anything useful with the other stuff, so fail.  */ \
      raise_buserror (); \
      return retval; \
    } \
} while (0)

/* FIXME: sim_resume should be renamed to sim_engine_run.  sim_resume
   being implemented by ../common/sim_resume.c and the below should
   make a call to sim_engine_halt */

#define BUSERROR(addr, mask) ((addr) & (mask))

#define WRITE_BUSERROR(addr, mask, data, addr_func) \
  do \
    { \
      if (addr & mask) \
	{ \
	  addr_func (addr, data); \
	  return; \
	} \
    } \
  while (0)

#define READ_BUSERROR(addr, mask, addr_func) \
  do \
    { \
      if (addr & mask) \
	return addr_func (addr); \
    } \
  while (0)

/* Define this to enable register lifetime checking.
   The compiler generates "add #0,rn" insns to mark registers as invalid,
   the simulator uses this info to call fail if it finds a ref to an invalid
   register before a def

   #define PARANOID
*/

#ifdef PARANOID
int valid[16];
#define CREF(x)  if (!valid[x]) fail ();
#define CDEF(x)  valid[x] = 1;
#define UNDEF(x) valid[x] = 0;
#else
#define CREF(x)
#define CDEF(x)
#define UNDEF(x)
#endif

static void parse_and_set_memory_size (SIM_DESC sd, const char *str);
static int IOMEM (int addr, int write, int value);
static struct loop_bounds get_loop_bounds (int, int, unsigned char *,
					   unsigned char *, int, int);
static void process_wlat_addr (int, int);
static void process_wwat_addr (int, int);
static void process_wbat_addr (int, int);
static int process_rlat_addr (int);
static int process_rwat_addr (int);
static int process_rbat_addr (int);

/* Floating point registers */

#define DR(n) (get_dr (n))
static double
get_dr (int n)
{
  n = (n & ~1);
  if (host_little_endian)
    {
      union
      {
	int i[2];
	double d;
      } dr;
      dr.i[1] = saved_state.asregs.fregs[0].i[n + 0];
      dr.i[0] = saved_state.asregs.fregs[0].i[n + 1];
      return dr.d;
    }
  else
    return (saved_state.asregs.fregs[0].d[n >> 1]);
}

#define SET_DR(n, EXP) set_dr ((n), (EXP))
static void
set_dr (int n, double exp)
{
  n = (n & ~1);
  if (host_little_endian)
    {
      union
      {
	int i[2];
	double d;
      } dr;
      dr.d = exp;
      saved_state.asregs.fregs[0].i[n + 0] = dr.i[1];
      saved_state.asregs.fregs[0].i[n + 1] = dr.i[0];
    }
  else
    saved_state.asregs.fregs[0].d[n >> 1] = exp;
}

#define SET_FI(n,EXP) (saved_state.asregs.fregs[0].i[(n)] = (EXP))
#define FI(n) (saved_state.asregs.fregs[0].i[(n)])

#define FR(n) (saved_state.asregs.fregs[0].f[(n)])
#define SET_FR(n,EXP) (saved_state.asregs.fregs[0].f[(n)] = (EXP))

#define XD_TO_XF(n) ((((n) & 1) << 5) | ((n) & 0x1e))
#define XF(n) (saved_state.asregs.fregs[(n) >> 5].i[(n) & 0x1f])
#define SET_XF(n,EXP) (saved_state.asregs.fregs[(n) >> 5].i[(n) & 0x1f] = (EXP))

#define RS saved_state.asregs.rs
#define RE saved_state.asregs.re
#define MOD (saved_state.asregs.mod)
#define SET_MOD(i) \
(MOD = (i), \
 MOD_ME = (unsigned) MOD >> 16 | (SR_DMY ? ~0xffff : (SR_DMX ? 0 : 0x10000)), \
 MOD_DELTA = (MOD & 0xffff) - ((unsigned) MOD >> 16))

#define DSP_R(n) saved_state.asregs.sregs[(n)]
#define DSP_GRD(n) DSP_R ((n) + 8)
#define GET_DSP_GRD(n) ((n | 2) == 7 ? SEXT (DSP_GRD (n)) : SIGN32 (DSP_R (n)))
#define A1 DSP_R (5)
#define A0 DSP_R (7)
#define X0 DSP_R (8)
#define X1 DSP_R (9)
#define Y0 DSP_R (10)
#define Y1 DSP_R (11)
#define M0 DSP_R (12)
#define A1G DSP_R (13)
#define M1 DSP_R (14)
#define A0G DSP_R (15)
/* DSP_R (16) / DSP_GRD (16) are used as a fake destination for pcmp.  */
#define MOD_ME DSP_GRD (17)
#define MOD_DELTA DSP_GRD (18)

#define FP_OP(n, OP, m) \
{ \
  if (FPSCR_PR) \
    { \
      if (((n) & 1) || ((m) & 1)) \
	RAISE_EXCEPTION (SIGILL); \
      else \
	SET_DR (n, (DR (n) OP DR (m))); \
    } \
  else \
    SET_FR (n, (FR (n) OP FR (m))); \
} while (0)

#define FP_UNARY(n, OP) \
{ \
  if (FPSCR_PR) \
    { \
      if ((n) & 1) \
	RAISE_EXCEPTION (SIGILL); \
      else \
	SET_DR (n, (OP (DR (n)))); \
    } \
  else \
    SET_FR (n, (OP (FR (n)))); \
} while (0)

#define FP_CMP(n, OP, m) \
{ \
  if (FPSCR_PR) \
    { \
      if (((n) & 1) || ((m) & 1)) \
	RAISE_EXCEPTION (SIGILL); \
      else \
	SET_SR_T (DR (n) OP DR (m)); \
    } \
  else \
    SET_SR_T (FR (n) OP FR (m)); \
} while (0)

static void
set_sr (int new_sr)
{
  /* do we need to swap banks */
  int old_gpr = SR_MD && SR_RB;
  int new_gpr = (new_sr & SR_MASK_MD) && (new_sr & SR_MASK_RB);
  if (old_gpr != new_gpr)
    {
      int i, tmp;
      for (i = 0; i < 8; i++)
	{
	  tmp = saved_state.asregs.bank[i];
	  saved_state.asregs.bank[i] = saved_state.asregs.regs[i];
	  saved_state.asregs.regs[i] = tmp;
	}
    }
  saved_state.asregs.sr = new_sr;
  SET_MOD (MOD);
}

static INLINE void
wlat_fast (unsigned char *memory, int x, int value, int maskl)
{
  int v = value;
  unsigned int *p = (unsigned int *) (memory + x);
  WRITE_BUSERROR (x, maskl, v, process_wlat_addr);
  *p = v;
}

static INLINE void
wwat_fast (unsigned char *memory, int x, int value, int maskw, int endianw)
{
  int v = value;
  unsigned short *p = (unsigned short *) (memory + (x ^ endianw));
  WRITE_BUSERROR (x, maskw, v, process_wwat_addr);
  *p = v;
}

static INLINE void
wbat_fast (unsigned char *memory, int x, int value, int maskb)
{
  unsigned char *p = memory + (x ^ endianb);
  WRITE_BUSERROR (x, maskb, value, process_wbat_addr);

  p[0] = value;
}

/* Read functions */

static INLINE int
rlat_fast (unsigned char *memory, int x, int maskl)
{
  unsigned int *p = (unsigned int *) (memory + x);
  READ_BUSERROR (x, maskl, process_rlat_addr);

  return *p;
}

static INLINE int
rwat_fast (unsigned char *memory, int x, int maskw, int endianw)
{
  unsigned short *p = (unsigned short *) (memory + (x ^ endianw));
  READ_BUSERROR (x, maskw, process_rwat_addr);

  return *p;
}

static INLINE int
riat_fast (unsigned char *insn_ptr, int endianw)
{
  unsigned short *p = (unsigned short *) ((uintptr_t) insn_ptr ^ endianw);

  return *p;
}

static INLINE int
rbat_fast (unsigned char *memory, int x, int maskb)
{
  unsigned char *p = memory + (x ^ endianb);
  READ_BUSERROR (x, maskb, process_rbat_addr);

  return *p;
}

#define RWAT(x) 	(rwat_fast (memory, x, maskw, endianw))
#define RLAT(x) 	(rlat_fast (memory, x, maskl))
#define RBAT(x)         (rbat_fast (memory, x, maskb))
#define RIAT(p)		(riat_fast ((p), endianw))
#define WWAT(x,v) 	(wwat_fast (memory, x, v, maskw, endianw))
#define WLAT(x,v) 	(wlat_fast (memory, x, v, maskl))
#define WBAT(x,v)       (wbat_fast (memory, x, v, maskb))

#define RUWAT(x)  (RWAT (x) & 0xffff)
#define RSWAT(x)  ((short) (RWAT (x)))
#define RSLAT(x)  ((long) (RLAT (x)))
#define RSBAT(x)  (SEXT (RBAT (x)))

#define RDAT(x, n) (do_rdat (memory, (x), (n), (maskl)))
static int
do_rdat (unsigned char *memory, int x, int n, int maskl)
{
  int f0;
  int f1;
  int i = (n & 1);
  int j = (n & ~1);
  f0 = rlat_fast (memory, x + 0, maskl);
  f1 = rlat_fast (memory, x + 4, maskl);
  saved_state.asregs.fregs[i].i[(j + 0)] = f0;
  saved_state.asregs.fregs[i].i[(j + 1)] = f1;
  return 0;
}

#define WDAT(x, n) (do_wdat (memory, (x), (n), (maskl)))
static int
do_wdat (unsigned char *memory, int x, int n, int maskl)
{
  int f0;
  int f1;
  int i = (n & 1);
  int j = (n & ~1);
  f0 = saved_state.asregs.fregs[i].i[(j + 0)];
  f1 = saved_state.asregs.fregs[i].i[(j + 1)];
  wlat_fast (memory, (x + 0), f0, maskl);
  wlat_fast (memory, (x + 4), f1, maskl);
  return 0;
}

static void
process_wlat_addr (int addr, int value)
{
  unsigned int *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 32, 3, value, );
  *ptr = value;
}

static void
process_wwat_addr (int addr, int value)
{
  unsigned short *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 16, 1, value, );
  *ptr = value;
}

static void
process_wbat_addr (int addr, int value)
{
  unsigned char *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, 8, 0, value, );
  *ptr = value;
}

static int
process_rlat_addr (int addr)
{
  unsigned char *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -32, 3, -1, 0);
  return *ptr;
}

static int
process_rwat_addr (int addr)
{
  unsigned char *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -16, 1, -1, 0);
  return *ptr;
}

static int
process_rbat_addr (int addr)
{
  unsigned char *ptr;

  PROCESS_SPECIAL_ADDRESS (addr, endianb, ptr, -8, 0, -1, 0);
  return *ptr;
}

#define SEXT(x)     	(((x &  0xff) ^ (~0x7f))+0x80)
#define SEXT12(x)	(((x & 0xfff) ^ 0x800) - 0x800)
#define SEXTW(y)    	((int) ((short) y))
#if 0
#define SEXT32(x)	((int) ((x & 0xffffffff) ^ 0x80000000U) - 0x7fffffff - 1)
#else
#define SEXT32(x)	((int) (x))
#endif
#define SIGN32(x)	(SEXT32 (x) >> 31)

/* convert pointer from target to host value.  */
#define PT2H(x) ((x) + memory)
/* convert pointer from host to target value.  */
#define PH2T(x) ((x) - memory)

#define SKIP_INSN(p) ((p) += ((RIAT (p) & 0xfc00) == 0xf800 ? 4 : 2))

#define SET_NIP(x) nip = (x); CHECK_INSN_PTR (nip);

static int in_delay_slot = 0;
#define Delay_Slot(TEMPPC)  	iword = RIAT (TEMPPC); in_delay_slot = 1; goto top;

#define CHECK_INSN_PTR(p) \
do { \
  if (saved_state.asregs.exception || PH2T (p) & maskw) \
    saved_state.asregs.insn_end = 0; \
  else if (p < loop.end) \
    saved_state.asregs.insn_end = loop.end; \
  else \
    saved_state.asregs.insn_end = mem_end; \
} while (0)

#ifdef ACE_FAST

#define MA(n)
#define L(x)
#define TL(x)
#define TB(x)

#else

#define MA(n) \
  do { memstalls += ((((long) PC & 3) != 0) ? (n) : ((n) - 1)); } while (0)

#define L(x)   thislock = x;
#define TL(x)  if ((x) == prevlock) stalls++;
#define TB(x,y)  if ((x) == prevlock || (y) == prevlock) stalls++;

#endif

#if defined(__GO32__)
int sim_memory_size = 19;
#else
int sim_memory_size = 30;
#endif

static int sim_profile_size = 17;
static int nsamples;

#undef TB
#define TB(x,y)

#define SMR1 (0x05FFFEC8)	/* Channel 1  serial mode register */
#define BRR1 (0x05FFFEC9)	/* Channel 1  bit rate register */
#define SCR1 (0x05FFFECA)	/* Channel 1  serial control register */
#define TDR1 (0x05FFFECB)	/* Channel 1  transmit data register */
#define SSR1 (0x05FFFECC)	/* Channel 1  serial status register */
#define RDR1 (0x05FFFECD)	/* Channel 1  receive data register */

#define SCI_RDRF  	 0x40	/* Recieve data register full */
#define SCI_TDRE	0x80	/* Transmit data register empty */

static int
IOMEM (int addr, int write, int value)
{
  if (write)
    {
      switch (addr)
	{
	case TDR1:
	  if (value != '\r')
	    {
	      putchar (value);
	      fflush (stdout);
	    }
	  break;
	}
    }
  else
    {
      switch (addr)
	{
	case RDR1:
	  return getchar ();
	}
    }
  return 0;
}

static int
get_now (void)
{
  return time ((long *) 0);
}

static int
now_persec (void)
{
  return 1;
}

static FILE *profile_file;

static INLINE unsigned
swap (unsigned n)
{
  if (endianb)
    n = (n << 24 | (n & 0xff00) << 8
	 | (n & 0xff0000) >> 8 | (n & 0xff000000) >> 24);
  return n;
}

static INLINE unsigned short
swap16 (unsigned short n)
{
  if (endianb)
    n = n << 8 | (n & 0xff00) >> 8;
  return n;
}

static void
swapout (int n)
{
  if (profile_file)
    {
      union { char b[4]; int n; } u;
      u.n = swap (n);
      fwrite (u.b, 4, 1, profile_file);
    }
}

static void
swapout16 (int n)
{
  union { char b[4]; int n; } u;
  u.n = swap16 (n);
  fwrite (u.b, 2, 1, profile_file);
}

/* Turn a pointer in a register into a pointer into real memory. */

static char *
ptr (int x)
{
  return (char *) (x + saved_state.asregs.memory);
}

/* STR points to a zero-terminated string in target byte order.  Return
   the number of bytes that need to be converted to host byte order in order
   to use this string as a zero-terminated string on the host.
   (Not counting the rounding up needed to operate on entire words.)  */
static int
strswaplen (int str)
{
  unsigned char *memory = saved_state.asregs.memory;
  int start, end;
  int endian = endianb;

  if (! endian)
    return 0;
  end = str;
  for (end = str; memory[end ^ endian]; end++) ;
  return end - str + 1;
}

static void
strnswap (int str, int len)
{
  int *start, *end;

  if (! endianb || ! len)
    return;
  start = (int *) ptr (str & ~3);
  end = (int *) ptr (str + len);
  do
    {
      int old = *start;
      *start = (old << 24 | (old & 0xff00) << 8
		| (old & 0xff0000) >> 8 | (old & 0xff000000) >> 24);
      start++;
    }
  while (start < end);
}

/* Simulate a monitor trap, put the result into r0 and errno into r1
   return offset by which to adjust pc.  */

static int
trap (SIM_DESC sd, int i, int *regs, unsigned char *insn_ptr,
      unsigned char *memory, int maskl, int maskw, int endianw)
{
  host_callback *callback = STATE_CALLBACK (sd);
  char **prog_argv = STATE_PROG_ARGV (sd);

  switch (i)
    {
    case 1:
      printf ("%c", regs[0]);
      break;
    case 2:
      raise_exception (SIGQUIT);
      break;
    case 3:			/* FIXME: for backwards compat, should be removed */
    case 33:
      {
	unsigned int countp = * (unsigned int *) (insn_ptr + 4);

	WLAT (countp, RLAT (countp) + 1);
	return 6;
      }
    case 34:
      {
	extern int errno;
	int perrno = errno;
	errno = 0;

	switch (regs[4])
	  {

#if !defined(__GO32__) && !defined(_WIN32)
	  case TARGET_SYS_fork:
	    regs[0] = fork ();
	    break;
/* This would work only if endianness matched between host and target.
   Besides, it's quite dangerous.  */
#if 0
	  case TARGET_SYS_execve:
	    regs[0] = execve (ptr (regs[5]), (char **) ptr (regs[6]), 
			      (char **) ptr (regs[7]));
	    break;
	  case TARGET_SYS_execv:
	    regs[0] = execve (ptr (regs[5]), (char **) ptr (regs[6]), 0);
	    break;
#endif
	  case TARGET_SYS_pipe:
	    {
	      regs[0] = (BUSERROR (regs[5], maskl)
			 ? -EINVAL
			 : pipe ((int *) ptr (regs[5])));
	    }
	    break;

	  case TARGET_SYS_wait:
	    regs[0] = wait ((int *) ptr (regs[5]));
	    break;
#endif /* !defined(__GO32__) && !defined(_WIN32) */

	  case TARGET_SYS_read:
	    strnswap (regs[6], regs[7]);
	    regs[0]
	      = callback->read (callback, regs[5], ptr (regs[6]), regs[7]);
	    strnswap (regs[6], regs[7]);
	    break;
	  case TARGET_SYS_write:
	    strnswap (regs[6], regs[7]);
	    if (regs[5] == 1)
	      regs[0] = (int) callback->write_stdout (callback, 
						      ptr (regs[6]), regs[7]);
	    else
	      regs[0] = (int) callback->write (callback, regs[5], 
					       ptr (regs[6]), regs[7]);
	    strnswap (regs[6], regs[7]);
	    break;
	  case TARGET_SYS_lseek:
	    regs[0] = callback->lseek (callback,regs[5], regs[6], regs[7]);
	    break;
	  case TARGET_SYS_close:
	    regs[0] = callback->close (callback,regs[5]);
	    break;
	  case TARGET_SYS_open:
	    {
	      int len = strswaplen (regs[5]);
	      strnswap (regs[5], len);
	      regs[0] = callback->open (callback, ptr (regs[5]), regs[6]);
	      strnswap (regs[5], len);
	      break;
	    }
	  case TARGET_SYS_exit:
	    /* EXIT - caller can look in r5 to work out the reason */
	    raise_exception (SIGQUIT);
	    regs[0] = regs[5];
	    break;

	  case TARGET_SYS_stat:	/* added at hmsi */
	    /* stat system call */
	    {
	      struct stat host_stat;
	      int buf;
	      int len = strswaplen (regs[5]);

	      strnswap (regs[5], len);
	      regs[0] = stat (ptr (regs[5]), &host_stat);
	      strnswap (regs[5], len);

	      buf = regs[6];

	      WWAT (buf, host_stat.st_dev);
	      buf += 2;
	      WWAT (buf, host_stat.st_ino);
	      buf += 2;
	      WLAT (buf, host_stat.st_mode);
	      buf += 4;
	      WWAT (buf, host_stat.st_nlink);
	      buf += 2;
	      WWAT (buf, host_stat.st_uid);
	      buf += 2;
	      WWAT (buf, host_stat.st_gid);
	      buf += 2;
	      WWAT (buf, host_stat.st_rdev);
	      buf += 2;
	      WLAT (buf, host_stat.st_size);
	      buf += 4;
	      WLAT (buf, host_stat.st_atime);
	      buf += 4;
	      WLAT (buf, 0);
	      buf += 4;
	      WLAT (buf, host_stat.st_mtime);
	      buf += 4;
	      WLAT (buf, 0);
	      buf += 4;
	      WLAT (buf, host_stat.st_ctime);
	      buf += 4;
	      WLAT (buf, 0);
	      buf += 4;
	      WLAT (buf, 0);
	      buf += 4;
	      WLAT (buf, 0);
	      buf += 4;
	    }
	    break;

#ifndef _WIN32
	  case TARGET_SYS_chown:
	    {
	      int len = strswaplen (regs[5]);

	      strnswap (regs[5], len);
	      regs[0] = chown (ptr (regs[5]), regs[6], regs[7]);
	      strnswap (regs[5], len);
	      break;
	    }
#endif /* _WIN32 */
	  case TARGET_SYS_chmod:
	    {
	      int len = strswaplen (regs[5]);

	      strnswap (regs[5], len);
	      regs[0] = chmod (ptr (regs[5]), regs[6]);
	      strnswap (regs[5], len);
	      break;
	    }
	  case TARGET_SYS_utime:
	    {
	      /* Cast the second argument to void *, to avoid type mismatch
		 if a prototype is present.  */
	      int len = strswaplen (regs[5]);

	      strnswap (regs[5], len);
	      regs[0] = utime (ptr (regs[5]), (void *) ptr (regs[6]));
	      strnswap (regs[5], len);
	      break;
	    }
	  case TARGET_SYS_argc:
	    regs[0] = countargv (prog_argv);
	    break;
	  case TARGET_SYS_argnlen:
	    if (regs[5] < countargv (prog_argv))
	      regs[0] = strlen (prog_argv[regs[5]]);
	    else
	      regs[0] = -1;
	    break;
	  case TARGET_SYS_argn:
	    if (regs[5] < countargv (prog_argv))
	      {
		/* Include the termination byte.  */
		int i = strlen (prog_argv[regs[5]]) + 1;
		regs[0] = sim_write (0, regs[6], (void *) prog_argv[regs[5]], i);
	      }
	    else
	      regs[0] = -1;
	    break;
	  case TARGET_SYS_time:
	    regs[0] = get_now ();
	    break;
	  case TARGET_SYS_ftruncate:
	    regs[0] = callback->ftruncate (callback, regs[5], regs[6]);
	    break;
	  case TARGET_SYS_truncate:
	    {
	      int len = strswaplen (regs[5]);
	      strnswap (regs[5], len);
	      regs[0] = callback->truncate (callback, ptr (regs[5]), regs[6]);
	      strnswap (regs[5], len);
	      break;
	    }
	  default:
	    regs[0] = -1;
	    break;
	  }
	regs[1] = callback->get_errno (callback);
	errno = perrno;
      }
      break;

    case 13:	/* Set IBNR */
      IBNR = regs[0] & 0xffff;
      break;
    case 14:	/* Set IBCR */
      IBCR = regs[0] & 0xffff;
      break;
    case 0xc3:
    case 255:
      raise_exception (SIGTRAP);
      if (i == 0xc3)
	return -2;
      break;
    }
  return 0;
}

static void
div1 (int *R, int iRn2, int iRn1/*, int T*/)
{
  unsigned long tmp0;
  unsigned char old_q, tmp1;

  old_q = Q;
  SET_SR_Q ((unsigned char) ((0x80000000 & R[iRn1]) != 0));
  R[iRn1] <<= 1;
  R[iRn1] |= (unsigned long) T;

  switch (old_q)
    {
    case 0:
      switch (M)
	{
	case 0:
	  tmp0 = R[iRn1];
	  R[iRn1] -= R[iRn2];
	  tmp1 = (R[iRn1] > tmp0);
	  switch (Q)
	    {
	    case 0:
	      SET_SR_Q (tmp1);
	      break;
	    case 1:
	      SET_SR_Q ((unsigned char) (tmp1 == 0));
	      break;
	    }
	  break;
	case 1:
	  tmp0 = R[iRn1];
	  R[iRn1] += R[iRn2];
	  tmp1 = (R[iRn1] < tmp0);
	  switch (Q)
	    {
	    case 0:
	      SET_SR_Q ((unsigned char) (tmp1 == 0));
	      break;
	    case 1:
	      SET_SR_Q (tmp1);
	      break;
	    }
	  break;
	}
      break;
    case 1:
      switch (M)
	{
	case 0:
	  tmp0 = R[iRn1];
	  R[iRn1] += R[iRn2];
	  tmp1 = (R[iRn1] < tmp0);
	  switch (Q)
	    {
	    case 0:
	      SET_SR_Q (tmp1);
	      break;
	    case 1:
	      SET_SR_Q ((unsigned char) (tmp1 == 0));
	      break;
	    }
	  break;
	case 1:
	  tmp0 = R[iRn1];
	  R[iRn1] -= R[iRn2];
	  tmp1 = (R[iRn1] > tmp0);
	  switch (Q)
	    {
	    case 0:
	      SET_SR_Q ((unsigned char) (tmp1 == 0));
	      break;
	    case 1:
	      SET_SR_Q (tmp1);
	      break;
	    }
	  break;
	}
      break;
    }
  /*T = (Q == M);*/
  SET_SR_T (Q == M);
  /*return T;*/
}

static void
dmul_s (uint32_t rm, uint32_t rn)
{
  int64_t res = (int64_t)(int32_t)rm * (int64_t)(int32_t)rn;
  MACH = (uint32_t)((uint64_t)res >> 32);
  MACL = (uint32_t)res;
}

static void
dmul_u (uint32_t rm, uint32_t rn)
{
  uint64_t res = (uint64_t)(uint32_t)rm * (uint64_t)(uint32_t)rn;
  MACH = (uint32_t)(res >> 32);
  MACL = (uint32_t)res;
}

static void
macw (int *regs, unsigned char *memory, int n, int m, int endianw)
{
  long tempm, tempn;
  long prod, macl, sum;

  tempm=RSWAT (regs[m]); regs[m]+=2;
  tempn=RSWAT (regs[n]); regs[n]+=2;

  macl = MACL;
  prod = (long) (short) tempm * (long) (short) tempn;
  sum = prod + macl;
  if (S)
    {
      if ((~(prod ^ macl) & (sum ^ prod)) < 0)
	{
	  /* MACH's lsb is a sticky overflow bit.  */
	  MACH |= 1;
	  /* Store the smallest negative number in MACL if prod is
	     negative, and the largest positive number otherwise.  */
	  sum = 0x7fffffff + (prod < 0);
	}
    }
  else
    {
      long mach;
      /* Add to MACH the sign extended product, and carry from low sum.  */
      mach = MACH + (-(prod < 0)) + ((unsigned long) sum < prod);
      /* Sign extend at 10:th bit in MACH.  */
      MACH = (mach & 0x1ff) | -(mach & 0x200);
    }
  MACL = sum;
}

static void
macl (int *regs, unsigned char *memory, int n, int m)
{
  long tempm, tempn;
  long macl, mach;
  long long ans;
  long long mac64;

  tempm = RSLAT (regs[m]);
  regs[m] += 4;

  tempn = RSLAT (regs[n]);
  regs[n] += 4;

  mach = MACH;
  macl = MACL;

  mac64 = ((long long) macl & 0xffffffff) |
          ((long long) mach & 0xffffffff) << 32;

  ans = (long long) tempm * (long long) tempn; /* Multiply 32bit * 32bit */

  mac64 += ans; /* Accumulate 64bit + 64 bit */

  macl = (long) (mac64 & 0xffffffff);
  mach = (long) ((mac64 >> 32) & 0xffffffff);

  if (S)  /* Store only 48 bits of the result */
    {
      if (mach < 0) /* Result is negative */
        {
          mach = mach & 0x0000ffff; /* Mask higher 16 bits */
          mach |= 0xffff8000; /* Sign extend higher 16 bits */
        }
      else
        mach = mach & 0x00007fff; /* Postive Result */
    }

  MACL = macl;
  MACH = mach;
}

enum {
  B_BCLR = 0,
  B_BSET = 1,
  B_BST  = 2,
  B_BLD  = 3,
  B_BAND = 4,
  B_BOR  = 5,
  B_BXOR = 6,
  B_BLDNOT = 11,
  B_BANDNOT = 12,
  B_BORNOT = 13,
  
  MOVB_RM = 0x0000,
  MOVW_RM = 0x1000,
  MOVL_RM = 0x2000,
  FMOV_RM = 0x3000,
  MOVB_MR = 0x4000,
  MOVW_MR = 0x5000,
  MOVL_MR = 0x6000,
  FMOV_MR = 0x7000,
  MOVU_BMR = 0x8000,
  MOVU_WMR = 0x9000,
};

/* Do extended displacement move instructions.  */
static void
do_long_move_insn (int op, int disp12, int m, int n, int *thatlock)
{
  int memstalls = 0;
  int thislock = *thatlock;
  int endianw = global_endianw;
  int *R = &(saved_state.asregs.regs[0]);
  unsigned char *memory = saved_state.asregs.memory;
  int maskb = ~((saved_state.asregs.msize - 1) & ~0);
  unsigned char *insn_ptr = PT2H (saved_state.asregs.pc);

  switch (op) {
  case MOVB_RM:		/* signed */
    WBAT (disp12 * 1 + R[n], R[m]); 
    break;
  case MOVW_RM:
    WWAT (disp12 * 2 + R[n], R[m]); 
    break;
  case MOVL_RM:
    WLAT (disp12 * 4 + R[n], R[m]); 
    break;
  case FMOV_RM:		/* floating point */
    if (FPSCR_SZ) 
      {
        MA (1);
        WDAT (R[n] + 8 * disp12, m);
      }
    else 
      WLAT (R[n] + 4 * disp12, FI (m));
    break;
  case MOVB_MR:
    R[n] = RSBAT (disp12 * 1 + R[m]);
    L (n); 
    break;
  case MOVW_MR:
    R[n] = RSWAT (disp12 * 2 + R[m]);
    L (n); 
    break;
  case MOVL_MR:
    R[n] = RLAT (disp12 * 4 + R[m]);
    L (n); 
    break;
  case FMOV_MR:
    if (FPSCR_SZ) {
      MA (1);
      RDAT (R[m] + 8 * disp12, n);
    }
    else 
      SET_FI (n, RLAT (R[m] + 4 * disp12));
    break;
  case MOVU_BMR:	/* unsigned */
    R[n] = RBAT (disp12 * 1 + R[m]);
    L (n);
    break;
  case MOVU_WMR:
    R[n] = RWAT (disp12 * 2 + R[m]);
    L (n);
    break;
  default:
    RAISE_EXCEPTION (SIGINT);
    exit (1);
  }
  saved_state.asregs.memstalls += memstalls;
  *thatlock = thislock;
}

/* Do binary logical bit-manipulation insns.  */
static void
do_blog_insn (int imm, int addr, int binop, 
	      unsigned char *memory, int maskb)
{
  int oldval = RBAT (addr);

  switch (binop) {
  case B_BCLR:	/* bclr.b */
    WBAT (addr, oldval & ~imm);
    break;
  case B_BSET:	/* bset.b */
    WBAT (addr, oldval | imm);
    break;
  case B_BST:	/* bst.b */
    if (T)
      WBAT (addr, oldval | imm);
    else
      WBAT (addr, oldval & ~imm);
    break;
  case B_BLD:	/* bld.b */
    SET_SR_T ((oldval & imm) != 0);
    break;
  case B_BAND:	/* band.b */
    SET_SR_T (T && ((oldval & imm) != 0));
    break;
  case B_BOR:	/* bor.b */
    SET_SR_T (T || ((oldval & imm) != 0));
    break;
  case B_BXOR:	/* bxor.b */
    SET_SR_T (T ^ ((oldval & imm) != 0));
    break;
  case B_BLDNOT:	/* bldnot.b */
    SET_SR_T ((oldval & imm) == 0);
    break;
  case B_BANDNOT:	/* bandnot.b */
    SET_SR_T (T && ((oldval & imm) == 0));
    break;
  case B_BORNOT:	/* bornot.b */
    SET_SR_T (T || ((oldval & imm) == 0));
    break;
  }
}

static float
fsca_s (int in, double (*f) (double))
{
  double rad = ldexp ((in & 0xffff), -15) * 3.141592653589793238462643383;
  double result = (*f) (rad);
  double error, upper, lower, frac;
  int exp;

  /* Search the value with the maximum error that is still within the
     architectural spec.  */
  error = ldexp (1., -21);
  /* compensate for calculation inaccuracy by reducing error.  */
  error = error - ldexp (1., -50);
  upper = result + error;
  frac = frexp (upper, &exp);
  upper = ldexp (floor (ldexp (frac, 24)), exp - 24);
  lower = result - error;
  frac = frexp (lower, &exp);
  lower = ldexp (ceil (ldexp (frac, 24)), exp - 24);
  return abs (upper - result) >= abs (lower - result) ? upper : lower;
}

static float
fsrra_s (float in)
{
  double result = 1. / sqrt (in);
  int exp;
  double frac, upper, lower, error, eps;

  /* refine result */
  result = result - (result * result * in - 1) * 0.5 * result;
  /* Search the value with the maximum error that is still within the
     architectural spec.  */
  frac = frexp (result, &exp);
  frac = ldexp (frac, 24);
  error = 4.0; /* 1 << 24-1-21 */
  /* use eps to compensate for possible 1 ulp error in our 'exact' result.  */
  eps = ldexp (1., -29);
  upper = floor (frac + error - eps);
  if (upper > 16777216.)
    upper = floor ((frac + error - eps) * 0.5) * 2.;
  lower = ceil ((frac - error + eps) * 2) * .5;
  if (lower > 8388608.)
    lower = ceil (frac - error + eps);
  upper = ldexp (upper, exp - 24);
  lower = ldexp (lower, exp - 24);
  return upper - result >= result - lower ? upper : lower;
}


/* GET_LOOP_BOUNDS {EXTENDED}
   These two functions compute the actual starting and ending point
   of the repeat loop, based on the RS and RE registers (repeat start, 
   repeat stop).  The extended version is called for LDRC, and the
   regular version is called for SETRC.  The difference is that for
   LDRC, the loop start and end instructions are literally the ones
   pointed to by RS and RE -- for SETRC, they're not (see docs).  */

static struct loop_bounds
get_loop_bounds_ext (int rs, int re, unsigned char *memory,
		     unsigned char *mem_end, int maskw, int endianw)
{
  struct loop_bounds loop;

  /* FIXME: should I verify RS < RE?  */
  loop.start = PT2H (RS);	/* FIXME not using the params?  */
  loop.end   = PT2H (RE & ~1);	/* Ignore bit 0 of RE.  */
  SKIP_INSN (loop.end);
  if (loop.end >= mem_end)
    loop.end = PT2H (0);
  return loop;
}

static struct loop_bounds
get_loop_bounds (int rs, int re, unsigned char *memory, unsigned char *mem_end,
		 int maskw, int endianw)
{
  struct loop_bounds loop;

  if (SR_RC)
    {
      if (RS >= RE)
	{
	  loop.start = PT2H (RE - 4);
	  SKIP_INSN (loop.start);
	  loop.end = loop.start;
	  if (RS - RE == 0)
	    SKIP_INSN (loop.end);
	  if (RS - RE <= 2)
	    SKIP_INSN (loop.end);
	  SKIP_INSN (loop.end);
	}
      else
	{
	  loop.start = PT2H (RS);
	  loop.end = PT2H (RE - 4);
	  SKIP_INSN (loop.end);
	  SKIP_INSN (loop.end);
	  SKIP_INSN (loop.end);
	  SKIP_INSN (loop.end);
	}
      if (loop.end >= mem_end)
	loop.end = PT2H (0);
    }
  else
    loop.end = PT2H (0);

  return loop;
}

static void ppi_insn ();

#include "ppi.c"

/* Provide calloc / free versions that use an anonymous mmap.  This can
   significantly cut the start-up time when a large simulator memory is
   required, because pages are only zeroed on demand.  */
#ifdef MAP_ANONYMOUS
static void *
mcalloc (size_t nmemb, size_t size)
{
  void *page;

  if (nmemb != 1)
    size *= nmemb;
  return mmap (0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
	       -1, 0);
}

#define mfree(start,length) munmap ((start), (length))
#else
#define mcalloc calloc
#define mfree(start,length) free(start)
#endif

/* Set the memory size to the power of two provided. */

static void
sim_size (int power)
{
  sim_memory_size = power;

  if (saved_state.asregs.memory)
    {
      mfree (saved_state.asregs.memory, saved_state.asregs.msize);
    }

  saved_state.asregs.msize = 1 << power;

  saved_state.asregs.memory =
    (unsigned char *) mcalloc (1, saved_state.asregs.msize);

  if (!saved_state.asregs.memory)
    {
      fprintf (stderr,
	       "Not enough VM for simulation of %d bytes of RAM\n",
	       saved_state.asregs.msize);

      saved_state.asregs.msize = 1;
      saved_state.asregs.memory = (unsigned char *) mcalloc (1, 1);
    }
}

static void
init_dsp (struct bfd *abfd)
{
  int was_dsp = target_dsp;
  unsigned long mach = bfd_get_mach (abfd);

  if (mach == bfd_mach_sh_dsp  || 
      mach == bfd_mach_sh4al_dsp ||
      mach == bfd_mach_sh3_dsp)
    {
      int ram_area_size, xram_start, yram_start;
      int new_select;

      target_dsp = 1;
      if (mach == bfd_mach_sh_dsp)
	{
	  /* SH7410 (orig. sh-sdp):
	     4KB each for X & Y memory;
	     On-chip X RAM 0x0800f000-0x0800ffff
	     On-chip Y RAM 0x0801f000-0x0801ffff  */
	  xram_start = 0x0800f000;
	  ram_area_size = 0x1000;
	}
      if (mach == bfd_mach_sh3_dsp || mach == bfd_mach_sh4al_dsp)
	{
	  /* SH7612:
	     8KB each for X & Y memory;
	     On-chip X RAM 0x1000e000-0x1000ffff
	     On-chip Y RAM 0x1001e000-0x1001ffff  */
	  xram_start = 0x1000e000;
	  ram_area_size = 0x2000;
	}
      yram_start = xram_start + 0x10000;
      new_select = ~(ram_area_size - 1);
      if (saved_state.asregs.xyram_select != new_select)
	{
	  saved_state.asregs.xyram_select = new_select;
	  free (saved_state.asregs.xmem);
	  free (saved_state.asregs.ymem);
	  saved_state.asregs.xmem = 
	    (unsigned char *) calloc (1, ram_area_size);
	  saved_state.asregs.ymem = 
	    (unsigned char *) calloc (1, ram_area_size);

	  /* Disable use of X / Y mmeory if not allocated.  */
	  if (! saved_state.asregs.xmem || ! saved_state.asregs.ymem)
	    {
	      saved_state.asregs.xyram_select = 0;
	      if (saved_state.asregs.xmem)
		free (saved_state.asregs.xmem);
	      if (saved_state.asregs.ymem)
		free (saved_state.asregs.ymem);
	    }
	}
      saved_state.asregs.xram_start = xram_start;
      saved_state.asregs.yram_start = yram_start;
      saved_state.asregs.xmem_offset = saved_state.asregs.xmem - xram_start;
      saved_state.asregs.ymem_offset = saved_state.asregs.ymem - yram_start;
    }
  else
    {
      target_dsp = 0;
      if (saved_state.asregs.xyram_select)
	{
	  saved_state.asregs.xyram_select = 0;
	  free (saved_state.asregs.xmem);
	  free (saved_state.asregs.ymem);
	}
    }

  if (! saved_state.asregs.xyram_select)
    {
      saved_state.asregs.xram_start = 1;
      saved_state.asregs.yram_start = 1;
    }

  if (saved_state.asregs.regstack == NULL)
    saved_state.asregs.regstack = 
      calloc (512, sizeof *saved_state.asregs.regstack);

  if (target_dsp != was_dsp)
    {
      int i, tmp;

      for (i = ARRAY_SIZE (sh_dsp_table) - 1; i >= 0; i--)
	{
	  tmp = sh_jump_table[0xf000 + i];
	  sh_jump_table[0xf000 + i] = sh_dsp_table[i];
	  sh_dsp_table[i] = tmp;
	}
    }
}

static void
init_pointers (void)
{
  if (saved_state.asregs.msize != 1 << sim_memory_size)
    {
      sim_size (sim_memory_size);
    }

  if (saved_state.asregs.profile && !profile_file)
    {
      profile_file = fopen ("gmon.out", "wb");
      /* Seek to where to put the call arc data */
      nsamples = (1 << sim_profile_size);

      fseek (profile_file, nsamples * 2 + 12, 0);

      if (!profile_file)
	{
	  fprintf (stderr, "Can't open gmon.out\n");
	}
      else
	{
	  saved_state.asregs.profile_hist =
	    (unsigned short *) calloc (64, (nsamples * sizeof (short) / 64));
	}
    }
}

static void
dump_profile (void)
{
  unsigned int minpc;
  unsigned int maxpc;
  unsigned short *p;
  int i;

  p = saved_state.asregs.profile_hist;
  minpc = 0;
  maxpc = (1 << sim_profile_size);

  fseek (profile_file, 0L, 0);
  swapout (minpc << PROFILE_SHIFT);
  swapout (maxpc << PROFILE_SHIFT);
  swapout (nsamples * 2 + 12);
  for (i = 0; i < nsamples; i++)
    swapout16 (saved_state.asregs.profile_hist[i]);

}

static void
gotcall (int from, int to)
{
  swapout (from);
  swapout (to);
  swapout (1);
}

#define MMASKB ((saved_state.asregs.msize -1) & ~0)

void
sim_resume (SIM_DESC sd, int step, int siggnal)
{
  register unsigned char *insn_ptr;
  unsigned char *mem_end;
  struct loop_bounds loop;
  register int cycles = 0;
  register int stalls = 0;
  register int memstalls = 0;
  register int insts = 0;
  register int prevlock;
#if 1
  int thislock;
#else
  register int thislock;
#endif
  register unsigned int doprofile;
  register int pollcount = 0;
  /* endianw is used for every insn fetch, hence it makes sense to cache it.
     endianb is used less often.  */
  register int endianw = global_endianw;

  int tick_start = get_now ();
  void (*prev_fpe) ();

  register unsigned short *jump_table = sh_jump_table;

  register int *R = &(saved_state.asregs.regs[0]);
  /*register int T;*/
#ifndef PR
  register int PR;
#endif

  register int maskb = ~((saved_state.asregs.msize - 1) & ~0);
  register int maskw = ~((saved_state.asregs.msize - 1) & ~1);
  register int maskl = ~((saved_state.asregs.msize - 1) & ~3);
  register unsigned char *memory;
  register unsigned int sbit = ((unsigned int) 1 << 31);

  prev_fpe = signal (SIGFPE, SIG_IGN);

  init_pointers ();
  saved_state.asregs.exception = 0;

  memory = saved_state.asregs.memory;
  mem_end = memory + saved_state.asregs.msize;

  if (RE & 1)
    loop = get_loop_bounds_ext (RS, RE, memory, mem_end, maskw, endianw);
  else
    loop = get_loop_bounds     (RS, RE, memory, mem_end, maskw, endianw);

  insn_ptr = PT2H (saved_state.asregs.pc);
  CHECK_INSN_PTR (insn_ptr);

#ifndef PR
  PR = saved_state.asregs.pr;
#endif
  /*T = GET_SR () & SR_MASK_T;*/
  prevlock = saved_state.asregs.prevlock;
  thislock = saved_state.asregs.thislock;
  doprofile = saved_state.asregs.profile;

  /* If profiling not enabled, disable it by asking for
     profiles infrequently. */
  if (doprofile == 0)
    doprofile = ~0;

 loop:
  if (step && insn_ptr < saved_state.asregs.insn_end)
    {
      if (saved_state.asregs.exception)
	/* This can happen if we've already been single-stepping and
	   encountered a loop end.  */
	saved_state.asregs.insn_end = insn_ptr;
      else
	{
	  saved_state.asregs.exception = SIGTRAP;
	  saved_state.asregs.insn_end = insn_ptr + 2;
	}
    }

  while (insn_ptr < saved_state.asregs.insn_end)
    {
      register unsigned int iword = RIAT (insn_ptr);
      register unsigned int ult;
      register unsigned char *nip = insn_ptr + 2;

#ifndef ACE_FAST
      insts++;
#endif
    top:

#include "code.c"


      in_delay_slot = 0;
      insn_ptr = nip;

      if (--pollcount < 0)
	{
	  host_callback *callback = STATE_CALLBACK (sd);

	  pollcount = POLL_QUIT_INTERVAL;
	  if ((*callback->poll_quit) != NULL
	      && (*callback->poll_quit) (callback))
	    {
	      sim_stop (sd);
	    }	    
	}

#ifndef ACE_FAST
      prevlock = thislock;
      thislock = 30;
      cycles++;

      if (cycles >= doprofile)
	{

	  saved_state.asregs.cycles += doprofile;
	  cycles -= doprofile;
	  if (saved_state.asregs.profile_hist)
	    {
	      int n = PH2T (insn_ptr) >> PROFILE_SHIFT;
	      if (n < nsamples)
		{
		  int i = saved_state.asregs.profile_hist[n];
		  if (i < 65000)
		    saved_state.asregs.profile_hist[n] = i + 1;
		}

	    }
	}
#endif
    }
  if (saved_state.asregs.insn_end == loop.end)
    {
      saved_state.asregs.sr += SR_RC_INCREMENT;
      if (SR_RC)
	insn_ptr = loop.start;
      else
	{
	  saved_state.asregs.insn_end = mem_end;
	  loop.end = PT2H (0);
	}
      goto loop;
    }

  if (saved_state.asregs.exception == SIGILL
      || saved_state.asregs.exception == SIGBUS)
    {
      insn_ptr -= 2;
    }
  /* Check for SIGBUS due to insn fetch.  */
  else if (! saved_state.asregs.exception)
    saved_state.asregs.exception = SIGBUS;

  saved_state.asregs.ticks += get_now () - tick_start;
  saved_state.asregs.cycles += cycles;
  saved_state.asregs.stalls += stalls;
  saved_state.asregs.memstalls += memstalls;
  saved_state.asregs.insts += insts;
  saved_state.asregs.pc = PH2T (insn_ptr);
#ifndef PR
  saved_state.asregs.pr = PR;
#endif

  saved_state.asregs.prevlock = prevlock;
  saved_state.asregs.thislock = thislock;

  if (profile_file)
    {
      dump_profile ();
    }

  signal (SIGFPE, prev_fpe);
}

int
sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
{
  int i;

  init_pointers ();

  for (i = 0; i < size; i++)
    {
      saved_state.asregs.memory[(MMASKB & (addr + i)) ^ endianb] = buffer[i];
    }
  return size;
}

int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
  int i;

  init_pointers ();

  for (i = 0; i < size; i++)
    {
      buffer[i] = saved_state.asregs.memory[(MMASKB & (addr + i)) ^ endianb];
    }
  return size;
}

static int gdb_bank_number;
enum {
  REGBANK_MACH = 15,
  REGBANK_IVN  = 16,
  REGBANK_PR   = 17,
  REGBANK_GBR  = 18,
  REGBANK_MACL = 19
};

static int
sh_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  unsigned val;

  init_pointers ();
  val = swap (* (int *) memory);
  switch (rn)
    {
    case SIM_SH_R0_REGNUM: case SIM_SH_R1_REGNUM: case SIM_SH_R2_REGNUM:
    case SIM_SH_R3_REGNUM: case SIM_SH_R4_REGNUM: case SIM_SH_R5_REGNUM:
    case SIM_SH_R6_REGNUM: case SIM_SH_R7_REGNUM: case SIM_SH_R8_REGNUM:
    case SIM_SH_R9_REGNUM: case SIM_SH_R10_REGNUM: case SIM_SH_R11_REGNUM:
    case SIM_SH_R12_REGNUM: case SIM_SH_R13_REGNUM: case SIM_SH_R14_REGNUM:
    case SIM_SH_R15_REGNUM:
      saved_state.asregs.regs[rn] = val;
      break;
    case SIM_SH_PC_REGNUM:
      saved_state.asregs.pc = val;
      break;
    case SIM_SH_PR_REGNUM:
      PR = val;
      break;
    case SIM_SH_GBR_REGNUM:
      GBR = val;
      break;
    case SIM_SH_VBR_REGNUM:
      VBR = val;
      break;
    case SIM_SH_MACH_REGNUM:
      MACH = val;
      break;
    case SIM_SH_MACL_REGNUM:
      MACL = val;
      break;
    case SIM_SH_SR_REGNUM:
      SET_SR (val);
      break;
    case SIM_SH_FPUL_REGNUM:
      FPUL = val;
      break;
    case SIM_SH_FPSCR_REGNUM:
      SET_FPSCR (val);
      break;
    case SIM_SH_FR0_REGNUM: case SIM_SH_FR1_REGNUM: case SIM_SH_FR2_REGNUM:
    case SIM_SH_FR3_REGNUM: case SIM_SH_FR4_REGNUM: case SIM_SH_FR5_REGNUM:
    case SIM_SH_FR6_REGNUM: case SIM_SH_FR7_REGNUM: case SIM_SH_FR8_REGNUM:
    case SIM_SH_FR9_REGNUM: case SIM_SH_FR10_REGNUM: case SIM_SH_FR11_REGNUM:
    case SIM_SH_FR12_REGNUM: case SIM_SH_FR13_REGNUM: case SIM_SH_FR14_REGNUM:
    case SIM_SH_FR15_REGNUM:
      SET_FI (rn - SIM_SH_FR0_REGNUM, val);
      break;
    case SIM_SH_DSR_REGNUM:
      DSR = val;
      break;
    case SIM_SH_A0G_REGNUM:
      A0G = val;
      break;
    case SIM_SH_A0_REGNUM:
      A0 = val;
      break;
    case SIM_SH_A1G_REGNUM:
      A1G = val;
      break;
    case SIM_SH_A1_REGNUM:
      A1 = val;
      break;
    case SIM_SH_M0_REGNUM:
      M0 = val;
      break;
    case SIM_SH_M1_REGNUM:
      M1 = val;
      break;
    case SIM_SH_X0_REGNUM:
      X0 = val;
      break;
    case SIM_SH_X1_REGNUM:
      X1 = val;
      break;
    case SIM_SH_Y0_REGNUM:
      Y0 = val;
      break;
    case SIM_SH_Y1_REGNUM:
      Y1 = val;
      break;
    case SIM_SH_MOD_REGNUM:
      SET_MOD (val);
      break;
    case SIM_SH_RS_REGNUM:
      RS = val;
      break;
    case SIM_SH_RE_REGNUM:
      RE = val;
      break;
    case SIM_SH_SSR_REGNUM:
      SSR = val;
      break;
    case SIM_SH_SPC_REGNUM:
      SPC = val;
      break;
    /* The rn_bank idiosyncracies are not due to hardware differences, but to
       a weird aliasing naming scheme for sh3 / sh3e / sh4.  */
    case SIM_SH_R0_BANK0_REGNUM: case SIM_SH_R1_BANK0_REGNUM:
    case SIM_SH_R2_BANK0_REGNUM: case SIM_SH_R3_BANK0_REGNUM:
    case SIM_SH_R4_BANK0_REGNUM: case SIM_SH_R5_BANK0_REGNUM:
    case SIM_SH_R6_BANK0_REGNUM: case SIM_SH_R7_BANK0_REGNUM:
      if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
	{
	  rn -= SIM_SH_R0_BANK0_REGNUM;
	  saved_state.asregs.regstack[gdb_bank_number].regs[rn] = val;
	}
      else
      if (SR_MD && SR_RB)
	Rn_BANK (rn - SIM_SH_R0_BANK0_REGNUM) = val;
      else
	saved_state.asregs.regs[rn - SIM_SH_R0_BANK0_REGNUM] = val;
      break;
    case SIM_SH_R0_BANK1_REGNUM: case SIM_SH_R1_BANK1_REGNUM:
    case SIM_SH_R2_BANK1_REGNUM: case SIM_SH_R3_BANK1_REGNUM:
    case SIM_SH_R4_BANK1_REGNUM: case SIM_SH_R5_BANK1_REGNUM:
    case SIM_SH_R6_BANK1_REGNUM: case SIM_SH_R7_BANK1_REGNUM:
      if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
	{
	  rn -= SIM_SH_R0_BANK1_REGNUM;
	  saved_state.asregs.regstack[gdb_bank_number].regs[rn + 8] = val;
	}
      else
      if (SR_MD && SR_RB)
	saved_state.asregs.regs[rn - SIM_SH_R0_BANK1_REGNUM] = val;
      else
	Rn_BANK (rn - SIM_SH_R0_BANK1_REGNUM) = val;
      break;
    case SIM_SH_R0_BANK_REGNUM: case SIM_SH_R1_BANK_REGNUM:
    case SIM_SH_R2_BANK_REGNUM: case SIM_SH_R3_BANK_REGNUM:
    case SIM_SH_R4_BANK_REGNUM: case SIM_SH_R5_BANK_REGNUM:
    case SIM_SH_R6_BANK_REGNUM: case SIM_SH_R7_BANK_REGNUM:
      SET_Rn_BANK (rn - SIM_SH_R0_BANK_REGNUM, val);
      break;
    case SIM_SH_TBR_REGNUM:
      TBR = val;
      break;
    case SIM_SH_IBNR_REGNUM:
      IBNR = val;
      break;
    case SIM_SH_IBCR_REGNUM:
      IBCR = val;
      break;
    case SIM_SH_BANK_REGNUM:
      /* This is a pseudo-register maintained just for gdb.
	 It tells us what register bank gdb would like to read/write.  */
      gdb_bank_number = val;
      break;
    case SIM_SH_BANK_MACL_REGNUM:
      saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACL] = val;
      break;
    case SIM_SH_BANK_GBR_REGNUM:
      saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_GBR] = val;
      break;
    case SIM_SH_BANK_PR_REGNUM:
      saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_PR] = val;
      break;
    case SIM_SH_BANK_IVN_REGNUM:
      saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_IVN] = val;
      break;
    case SIM_SH_BANK_MACH_REGNUM:
      saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACH] = val;
      break;
    default:
      return 0;
    }
  return length;
}

static int
sh_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
{
  int val;

  init_pointers ();
  switch (rn)
    {
    case SIM_SH_R0_REGNUM: case SIM_SH_R1_REGNUM: case SIM_SH_R2_REGNUM:
    case SIM_SH_R3_REGNUM: case SIM_SH_R4_REGNUM: case SIM_SH_R5_REGNUM:
    case SIM_SH_R6_REGNUM: case SIM_SH_R7_REGNUM: case SIM_SH_R8_REGNUM:
    case SIM_SH_R9_REGNUM: case SIM_SH_R10_REGNUM: case SIM_SH_R11_REGNUM:
    case SIM_SH_R12_REGNUM: case SIM_SH_R13_REGNUM: case SIM_SH_R14_REGNUM:
    case SIM_SH_R15_REGNUM:
      val = saved_state.asregs.regs[rn];
      break;
    case SIM_SH_PC_REGNUM:
      val = saved_state.asregs.pc;
      break;
    case SIM_SH_PR_REGNUM:
      val = PR;
      break;
    case SIM_SH_GBR_REGNUM:
      val = GBR;
      break;
    case SIM_SH_VBR_REGNUM:
      val = VBR;
      break;
    case SIM_SH_MACH_REGNUM:
      val = MACH;
      break;
    case SIM_SH_MACL_REGNUM:
      val = MACL;
      break;
    case SIM_SH_SR_REGNUM:
      val = GET_SR ();
      break;
    case SIM_SH_FPUL_REGNUM:
      val = FPUL;
      break;
    case SIM_SH_FPSCR_REGNUM:
      val = GET_FPSCR ();
      break;
    case SIM_SH_FR0_REGNUM: case SIM_SH_FR1_REGNUM: case SIM_SH_FR2_REGNUM:
    case SIM_SH_FR3_REGNUM: case SIM_SH_FR4_REGNUM: case SIM_SH_FR5_REGNUM:
    case SIM_SH_FR6_REGNUM: case SIM_SH_FR7_REGNUM: case SIM_SH_FR8_REGNUM:
    case SIM_SH_FR9_REGNUM: case SIM_SH_FR10_REGNUM: case SIM_SH_FR11_REGNUM:
    case SIM_SH_FR12_REGNUM: case SIM_SH_FR13_REGNUM: case SIM_SH_FR14_REGNUM:
    case SIM_SH_FR15_REGNUM:
      val = FI (rn - SIM_SH_FR0_REGNUM);
      break;
    case SIM_SH_DSR_REGNUM:
      val = DSR;
      break;
    case SIM_SH_A0G_REGNUM:
      val = SEXT (A0G);
      break;
    case SIM_SH_A0_REGNUM:
      val = A0;
      break;
    case SIM_SH_A1G_REGNUM:
      val = SEXT (A1G);
      break;
    case SIM_SH_A1_REGNUM:
      val = A1;
      break;
    case SIM_SH_M0_REGNUM:
      val = M0;
      break;
    case SIM_SH_M1_REGNUM:
      val = M1;
      break;
    case SIM_SH_X0_REGNUM:
      val = X0;
      break;
    case SIM_SH_X1_REGNUM:
      val = X1;
      break;
    case SIM_SH_Y0_REGNUM:
      val = Y0;
      break;
    case SIM_SH_Y1_REGNUM:
      val = Y1;
      break;
    case SIM_SH_MOD_REGNUM:
      val = MOD;
      break;
    case SIM_SH_RS_REGNUM:
      val = RS;
      break;
    case SIM_SH_RE_REGNUM:
      val = RE;
      break;
    case SIM_SH_SSR_REGNUM:
      val = SSR;
      break;
    case SIM_SH_SPC_REGNUM:
      val = SPC;
      break;
    /* The rn_bank idiosyncracies are not due to hardware differences, but to
       a weird aliasing naming scheme for sh3 / sh3e / sh4.  */
    case SIM_SH_R0_BANK0_REGNUM: case SIM_SH_R1_BANK0_REGNUM:
    case SIM_SH_R2_BANK0_REGNUM: case SIM_SH_R3_BANK0_REGNUM:
    case SIM_SH_R4_BANK0_REGNUM: case SIM_SH_R5_BANK0_REGNUM:
    case SIM_SH_R6_BANK0_REGNUM: case SIM_SH_R7_BANK0_REGNUM:
      if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
	{
	  rn -= SIM_SH_R0_BANK0_REGNUM;
	  val = saved_state.asregs.regstack[gdb_bank_number].regs[rn];
	}
      else
      val = (SR_MD && SR_RB
	     ? Rn_BANK (rn - SIM_SH_R0_BANK0_REGNUM)
	     : saved_state.asregs.regs[rn - SIM_SH_R0_BANK0_REGNUM]);
      break;
    case SIM_SH_R0_BANK1_REGNUM: case SIM_SH_R1_BANK1_REGNUM:
    case SIM_SH_R2_BANK1_REGNUM: case SIM_SH_R3_BANK1_REGNUM:
    case SIM_SH_R4_BANK1_REGNUM: case SIM_SH_R5_BANK1_REGNUM:
    case SIM_SH_R6_BANK1_REGNUM: case SIM_SH_R7_BANK1_REGNUM:
      if (saved_state.asregs.bfd_mach == bfd_mach_sh2a)
	{
	  rn -= SIM_SH_R0_BANK1_REGNUM;
	  val = saved_state.asregs.regstack[gdb_bank_number].regs[rn + 8];
	}
      else
      val = (! SR_MD || ! SR_RB
	     ? Rn_BANK (rn - SIM_SH_R0_BANK1_REGNUM)
	     : saved_state.asregs.regs[rn - SIM_SH_R0_BANK1_REGNUM]);
      break;
    case SIM_SH_R0_BANK_REGNUM: case SIM_SH_R1_BANK_REGNUM:
    case SIM_SH_R2_BANK_REGNUM: case SIM_SH_R3_BANK_REGNUM:
    case SIM_SH_R4_BANK_REGNUM: case SIM_SH_R5_BANK_REGNUM:
    case SIM_SH_R6_BANK_REGNUM: case SIM_SH_R7_BANK_REGNUM:
      val = Rn_BANK (rn - SIM_SH_R0_BANK_REGNUM);
      break;
    case SIM_SH_TBR_REGNUM:
      val = TBR;
      break;
    case SIM_SH_IBNR_REGNUM:
      val = IBNR;
      break;
    case SIM_SH_IBCR_REGNUM:
      val = IBCR;
      break;
    case SIM_SH_BANK_REGNUM:
      /* This is a pseudo-register maintained just for gdb.
	 It tells us what register bank gdb would like to read/write.  */
      val = gdb_bank_number;
      break;
    case SIM_SH_BANK_MACL_REGNUM:
      val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACL];
      break;
    case SIM_SH_BANK_GBR_REGNUM:
      val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_GBR];
      break;
    case SIM_SH_BANK_PR_REGNUM:
      val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_PR];
      break;
    case SIM_SH_BANK_IVN_REGNUM:
      val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_IVN];
      break;
    case SIM_SH_BANK_MACH_REGNUM:
      val = saved_state.asregs.regstack[gdb_bank_number].regs[REGBANK_MACH];
      break;
    default:
      return 0;
    }
  * (int *) memory = swap (val);
  return length;
}

void
sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
{
  /* The SH simulator uses SIGQUIT to indicate that the program has
     exited, so we must check for it here and translate it to exit.  */
  if (saved_state.asregs.exception == SIGQUIT)
    {
      *reason = sim_exited;
      *sigrc = saved_state.asregs.regs[5];
    }
  else
    {
      *reason = sim_stopped;
      *sigrc = saved_state.asregs.exception;
    }
}

void
sim_info (SIM_DESC sd, int verbose)
{
  double timetaken = 
    (double) saved_state.asregs.ticks / (double) now_persec ();
  double virttime = saved_state.asregs.cycles / 36.0e6;

  sim_io_printf (sd, "\n\n# instructions executed  %10d\n",
		 saved_state.asregs.insts);
  sim_io_printf (sd, "# cycles                 %10d\n",
		 saved_state.asregs.cycles);
  sim_io_printf (sd, "# pipeline stalls        %10d\n",
		 saved_state.asregs.stalls);
  sim_io_printf (sd, "# misaligned load/store  %10d\n",
		 saved_state.asregs.memstalls);
  sim_io_printf (sd, "# real time taken        %10.4f\n", timetaken);
  sim_io_printf (sd, "# virtual time taken     %10.4f\n", virttime);
  sim_io_printf (sd, "# profiling size         %10d\n", sim_profile_size);
  sim_io_printf (sd, "# profiling frequency    %10d\n",
		 saved_state.asregs.profile);
  sim_io_printf (sd, "# profile maxpc          %10x\n",
		 (1 << sim_profile_size) << PROFILE_SHIFT);

  if (timetaken != 0)
    {
      sim_io_printf (sd, "# cycles/second          %10d\n",
		     (int) (saved_state.asregs.cycles / timetaken));
      sim_io_printf (sd, "# simulation ratio       %10.4f\n",
		     virttime / timetaken);
    }
}

static sim_cia
sh_pc_get (sim_cpu *cpu)
{
  return saved_state.asregs.pc;
}

static void
sh_pc_set (sim_cpu *cpu, sim_cia pc)
{
  saved_state.asregs.pc = pc;
}

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb,
	  struct bfd *abfd, char * const *argv)
{
  char * const *p;
  int i;
  union
    {
      int i;
      short s[2];
      char c[4];
    }
  mem_word;

  SIM_DESC sd = sim_state_alloc (kind, cb);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* Set default options before parsing user options.  */
  current_alignment = STRICT_ALIGNMENT;

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_REG_FETCH (cpu) = sh_reg_fetch;
      CPU_REG_STORE (cpu) = sh_reg_store;
      CPU_PC_FETCH (cpu) = sh_pc_get;
      CPU_PC_STORE (cpu) = sh_pc_set;
    }

  for (p = argv + 1; *p != NULL; ++p)
    {
      if (isdigit (**p))
	parse_and_set_memory_size (sd, *p);
    }

  if (abfd)
    init_dsp (abfd);

  for (i = 4; (i -= 2) >= 0; )
    mem_word.s[i >> 1] = i;
  global_endianw = mem_word.i >> (target_little_endian ? 0 : 16) & 0xffff;

  for (i = 4; --i >= 0; )
    mem_word.c[i] = i;
  endianb = mem_word.i >> (target_little_endian ? 0 : 24) & 0xff;

  return sd;
}

static void
parse_and_set_memory_size (SIM_DESC sd, const char *str)
{
  int n;

  n = strtol (str, NULL, 10);
  if (n > 0 && n <= 31)
    sim_memory_size = n;
  else
    sim_io_printf (sd, "Bad memory size %d; must be 1 to 31, inclusive\n", n);
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd,
		     char * const *argv, char * const *env)
{
  /* Clear the registers. */
  memset (&saved_state, 0,
	  (char*) &saved_state.asregs.end_of_registers - (char*) &saved_state);

  /* Set the PC.  */
  if (prog_bfd != NULL)
    saved_state.asregs.pc = bfd_get_start_address (prog_bfd);

  /* Set the bfd machine type.  */
  if (prog_bfd != NULL)
    saved_state.asregs.bfd_mach = bfd_get_mach (prog_bfd);

  if (prog_bfd != NULL)
    init_dsp (prog_bfd);

  return SIM_RC_OK;
}

void
sim_do_command (SIM_DESC sd, const char *cmd)
{
  const char *sms_cmd = "set-memory-size";
  int cmdsize;

  if (cmd == NULL || *cmd == '\0')
    {
      cmd = "help";
    }

  cmdsize = strlen (sms_cmd);
  if (strncmp (cmd, sms_cmd, cmdsize) == 0 
      && strchr (" \t", cmd[cmdsize]) != NULL)
    {
      parse_and_set_memory_size (sd, cmd + cmdsize + 1);
    }
  else if (strcmp (cmd, "help") == 0)
    {
      sim_io_printf (sd, "List of SH simulator commands:\n\n");
      sim_io_printf (sd, "set-memory-size <n> -- Set the number of address bits to use\n");
      sim_io_printf (sd, "\n");
    }
  else
    {
      sim_io_printf (sd, "Error: \"%s\" is not a valid SH simulator command.\n", cmd);
    }
}