aboutsummaryrefslogtreecommitdiff
path: root/sim/ppc/hw_init.c
blob: 0e7403bb6c563bccf319af113bac259a43b48f06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*  This file is part of the program psim.
    
    Copyright 1994, 1997, 2003, 2004 Andrew Cagney
    
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
    
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    
    You should have received a copy of the GNU General Public License
    along with this program; if not, see <http://www.gnu.org/licenses/>.
    
    */


#ifndef _HW_INIT_C_
#define _HW_INIT_C_

#include "device_table.h"
#include "bfd.h"
#include "psim.h"


/* DMA a file into memory */
static int
dma_file(device *me,
	 const char *file_name,
	 unsigned_word addr)
{
  int count;
  int inc;
  FILE *image;
  char buf[1024];

  /* get it open */
  image = fopen(file_name, "r");
  if (image == NULL)
    return -1;

  /* read it in slowly */
  count = 0;
  while (1) {
    inc = fread(buf, 1, sizeof(buf), image);
    if (inc <= 0)
      break;
    if (device_dma_write_buffer(device_parent(me),
				buf,
				0 /*address-space*/,
				addr+count,
				inc /*nr-bytes*/,
				1 /*violate ro*/) != inc) {
      fclose(image);
      return -1;
    }
    count += inc;
  }

  /* close down again */
  fclose(image);

  return count;
}


/* DEVICE

   file - load a file into memory

   DESCRIPTION

   Loads the entire contents of <file-name> into memory at starting at
   <<real-address>>.  Assumes that memory exists for the load.

   PROPERTIES

   file-name = <string>

   Name of the file to be loaded into memory

   real-address = <integer>

   Real address at which the file is to be loaded */

static void
hw_file_init_data_callback(device *me)
{
  int count;
  const char *file_name = device_find_string_property(me, "file-name");
  unsigned_word addr = device_find_integer_property(me, "real-address");
  /* load the file */
  count = dma_file(me, file_name, addr);
  if (count < 0)
    device_error(me, "Problem loading file %s\n", file_name);
}


static device_callbacks const hw_file_callbacks = {
  { NULL, hw_file_init_data_callback, },
  { NULL, }, /* address */
  { NULL, }, /* IO */
  { NULL, }, /* DMA */
  { NULL, }, /* interrupt */
  { NULL, }, /* unit */
};


/* DEVICE


   data - initialize a memory location with specified data


   DESCRIPTION


   The pseudo device <<data>> provides a mechanism specifying the
   initialization of a small section of memory.

   Normally, the data would be written using a dma operation.
   However, for some addresses this will not result in the desired
   result.  For instance, to initialize an address in an eeprom,
   instead of a simple dma of the data, a sequence of writes (and then
   real delays) that program the eeprom would be required.

   For dma write initialization, the data device will write the
   specified <<data>> to <<real-address>> using a normal dma.

   For instance write initialization, the specified <<instance>> is
   opened.  Then a seek to the <<real-address>> is performed followed
   by a write of the data.


   Integer properties are stored using the target's endian mode.


   PROPERTIES


   data = <any-valid-property> (required)

   Data to be loaded into memory.  The property type determines how it
   is loaded.


   real-address = <integer> (required)

   Start address at which the data is to be stored.


   instance = <string> (optional)

   Instance specification of the device that is to be opened so that
   the specified data can be written to it.


   EXAMPLES


   The examples below illustrate the two alternative mechanisms that
   can be used to store the value 0x12345678 at address 0xfff00c00,
   which is normally part of the 512k system eeprom.


   If the eeprom is being modeled by ram (<<memory>> device) then the
   standard dma initialization can be used.  By convention: the data
   devices are uniquely identified by argumenting them with the
   destinations real address; and all data devices are put under the
   node <</openprom/init>>.

   | /openprom/memory@0xfff00000/reg 0xfff00000 0x80000
   | /openprom/init/data@0x1000/data 0x12345678
   | /openprom/init/data@0x1000/real-address 0x1000


   If instead a real eeprom was being used the instance write method
   would instead need to be used (storing just a single byte in an
   eeprom requires a complex sequence of accesses).  The
   <<real-address>> is specified as <<0x0c00>> which is the offset
   into the eeprom.  For brevity, most of the eeprom properties have
   been omited.

   | /iobus/eeprom@0xfff00000/reg 0xfff00000 0x80000
   | /openprom/init/data@0xfff00c00/real-address 0x0c00
   | /openprom/init/data@0xfff00c00/data 0x12345667
   | /openprom/init/data@0xfff00c00/instance /iobus/eeprom@0xfff00000/reg


   BUGS


   At present, only <<integer>> properties can be specified for an
   initial data value.

   */


static void
hw_data_init_data_callback(device *me)
{
  unsigned_word addr = device_find_integer_property(me, "real-address");
  const device_property *data = device_find_property(me, "data");
  const char *instance_spec = (device_find_property(me, "instance") != NULL
			       ? device_find_string_property(me, "instance")
			       : NULL);
  device_instance *instance = NULL;
  if (data == NULL)
    device_error(me, "missing property <data>\n");
  if (instance_spec != NULL)
    instance = tree_instance(me, instance_spec);
  switch (data->type) {
  case integer_property:
    {
      unsigned_cell buf = device_find_integer_property(me, "data");
      H2T(buf);
      if (instance == NULL) {
	if (device_dma_write_buffer(device_parent(me),
				    &buf,
				    0 /*address-space*/,
				    addr,
				    sizeof(buf), /*nr-bytes*/
				    1 /*violate ro*/) != sizeof(buf))
	  device_error(me, "Problem storing integer 0x%x at 0x%lx\n",
		       (unsigned)buf, (unsigned long)addr);
      }
      else {
	if (device_instance_seek(instance, 0, addr) < 0
	    || device_instance_write(instance, &buf, sizeof(buf)) != sizeof(buf))
	  device_error(me, "Problem storing integer 0x%x at 0x%lx of instance %s\n",
		       (unsigned)buf, (unsigned long)addr, instance_spec);
      }
    }
    break;
  default:
    device_error(me, "Write of this data is not yet implemented\n");
    break;
  }
  if (instance != NULL)
    device_instance_delete(instance);
}


static device_callbacks const hw_data_callbacks = {
  { NULL, hw_data_init_data_callback, },
  { NULL, }, /* address */
  { NULL, }, /* IO */
  { NULL, }, /* DMA */
  { NULL, }, /* interrupt */
  { NULL, }, /* unit */
};


/* DEVICE


   load-binary - load binary segments into memory


   DESCRIPTION

   Each loadable segment of the specified binary is loaded into memory
   at its required address.  It is assumed that the memory at those
   addresses already exists.

   This device is normally used to load an executable into memory as
   part of real mode simulation.


   PROPERTIES


   file-name = <string>

   Name of the binary to be loaded.


   claim = <anything> (optional)

   If this property is present, the real memory that is to be used by
   the image being loaded will be claimed from the memory node
   (specified by the ihandle <</chosen/memory>>).


   BUGS

   
   When loading the binary the bfd virtual-address is used.  It should
   be using the bfd load-address.

   */

/* DEVICE

   map-binary - map the binary into the users address space

   DESCRIPTION
   
   Similar to load-binary except that memory for each segment is
   created before the corresponding data for the segment is loaded.

   This device is normally used to load an executable into a user mode
   simulation.

   PROPERTIES

   file-name = <string>

   Name of the binary to be loaded.

   */

static void
update_for_binary_section(bfd *abfd,
			  asection *the_section,
			  PTR obj)
{
  unsigned_word section_vma;
  unsigned_word section_size;
  access_type access;
  device *me = (device*)obj;

  /* skip the section if no memory to allocate */
  if (! (bfd_get_section_flags(abfd, the_section) & SEC_ALLOC))
    return;

  /* check/ignore any sections of size zero */
  section_size = bfd_get_section_size (the_section);
  if (section_size == 0)
    return;

  /* find where it is to go */
  section_vma = bfd_get_section_vma(abfd, the_section);

  DTRACE(binary,
	 ("name=%-7s, vma=0x%.8lx, size=%6ld, flags=%3lx(%s%s%s%s%s )\n",
	  bfd_get_section_name(abfd, the_section),
	  (long)section_vma,
	  (long)section_size,
	  (long)bfd_get_section_flags(abfd, the_section),
	  bfd_get_section_flags(abfd, the_section) & SEC_LOAD ? " LOAD" : "",
	  bfd_get_section_flags(abfd, the_section) & SEC_CODE ? " CODE" : "",
	  bfd_get_section_flags(abfd, the_section) & SEC_DATA ? " DATA" : "",
	  bfd_get_section_flags(abfd, the_section) & SEC_ALLOC ? " ALLOC" : "",
	  bfd_get_section_flags(abfd, the_section) & SEC_READONLY ? " READONLY" : ""
	  ));

  /* If there is an .interp section, it means it needs a shared library interpreter.  */
  if (strcmp(".interp", bfd_get_section_name(abfd, the_section)) == 0)
    error("Shared libraries are not yet supported.\n");

  /* determine the devices access */
  access = access_read;
  if (bfd_get_section_flags(abfd, the_section) & SEC_CODE)
    access |= access_exec;
  if (!(bfd_get_section_flags(abfd, the_section) & SEC_READONLY))
    access |= access_write;

  /* if claim specified, allocate region from the memory device */
  if (device_find_property(me, "claim") != NULL) {
    device_instance *memory = tree_find_ihandle_property(me, "/chosen/memory");
    unsigned_cell mem_in[3];
    unsigned_cell mem_out[1];
    mem_in[0] = 0; /*alignment - top-of-stack*/
    mem_in[1] = section_size;
    mem_in[2] = section_vma;
    if (device_instance_call_method(memory, "claim", 3, mem_in, 1, mem_out) < 0)
      device_error(me, "failed to claim memory for section at 0x%lx (0x%lx",
		   section_vma,
		   section_size);
    if (mem_out[0] != section_vma)
      device_error(me, "section address not as requested");
  }

  /* if a map, pass up a request to create the memory in core */
  if (strncmp(device_name(me), "map-binary", strlen("map-binary")) == 0)
    device_attach_address(device_parent(me),
			  attach_raw_memory,
			  0 /*address space*/,
			  section_vma,
			  section_size,
			  access,
			  me);

  /* if a load dma in the required data */
  if (bfd_get_section_flags(abfd, the_section) & SEC_LOAD) {
    void *section_init = zalloc(section_size);
    if (!bfd_get_section_contents(abfd,
				  the_section,
				  section_init, 0,
				  section_size)) {
      bfd_perror("binary");
      device_error(me, "load of data failed");
      return;
    }
    if (device_dma_write_buffer(device_parent(me),
				section_init,
				0 /*space*/,
				section_vma,
				section_size,
				1 /*violate_read_only*/)
	!= section_size)
      device_error(me, "broken transfer\n");
    free(section_init); /* only free if load */
  }
}

static void
hw_binary_init_data_callback(device *me)
{
  /* get the file name */
  const char *file_name = device_find_string_property(me, "file-name");
  bfd *image;

  /* open the file */
  image = bfd_openr(file_name, NULL);
  if (image == NULL) {
    bfd_perror("binary");
    device_error(me, "Failed to open file %s\n", file_name);
  }

  /* check it is valid */
  if (!bfd_check_format(image, bfd_object)) {
    bfd_close(image);
    device_error(me, "The file %s has an invalid binary format\n", file_name);
  }

  /* and the data sections */
  bfd_map_over_sections(image,
			update_for_binary_section,
			(PTR)me);

  bfd_close(image);
}


static device_callbacks const hw_binary_callbacks = {
  { NULL, hw_binary_init_data_callback, },
  { NULL, }, /* address */
  { NULL, }, /* IO */
  { NULL, }, /* DMA */
  { NULL, }, /* interrupt */
  { NULL, }, /* unit */
};


/* DEVICE

   stack - create an initial stack frame in memory

   DESCRIPTION

   Creates a stack frame of the specified type in memory.

   Due to the startup sequence gdb uses when commencing a simulation,
   it is not possible for the data to be placed on the stack to be
   specified as part of the device tree.  Instead the arguments to be
   pushed onto the stack are specified using an IOCTL call.

   The IOCTL takes the additional arguments:

   | unsigned_word stack_end -- where the stack should come down from
   | char **argv -- ...
   | char **envp -- ...

   PROPERTIES

   stack-type = <string>

   The form of the stack frame that is to be created.

   */

static int
sizeof_argument_strings(char **arg)
{
  int sizeof_strings = 0;

  /* robust */
  if (arg == NULL)
    return 0;

  /* add up all the string sizes (padding as we go) */
  for (; *arg != NULL; arg++) {
    int len = strlen(*arg) + 1;
    sizeof_strings += ALIGN_8(len);
  }

  return sizeof_strings;
}

static int
number_of_arguments(char **arg)
{
  int nr;
  if (arg == NULL)
    return 0;
  for (nr = 0; *arg != NULL; arg++, nr++);
  return nr;
}

static int
sizeof_arguments(char **arg)
{
  return ALIGN_8((number_of_arguments(arg) + 1) * sizeof(unsigned_word));
}

static void
write_stack_arguments(device *me,
		      char **arg,
		      unsigned_word start_block,
		      unsigned_word end_block,
		      unsigned_word start_arg,
		      unsigned_word end_arg)
{
  DTRACE(stack,
	("write_stack_arguments(device=%s, arg=0x%lx, start_block=0x%lx, end_block=0x%lx, start_arg=0x%lx, end_arg=0x%lx)\n",
	 device_name(me), (long)arg, (long)start_block, (long)end_block, (long)start_arg, (long)end_arg));
  if (arg == NULL)
    device_error(me, "Attempt to write a null array onto the stack\n");
  /* only copy in arguments, memory is already zero */
  for (; *arg != NULL; arg++) {
    int len = strlen(*arg)+1;
    unsigned_word target_start_block;
    DTRACE(stack,
	  ("write_stack_arguments() write %s=%s at %s=0x%lx %s=0x%lx %s=0x%lx\n",
	   "**arg", *arg, "start_block", (long)start_block,
	   "len", (long)len, "start_arg", (long)start_arg));
    if (psim_write_memory(device_system(me), 0, *arg,
			  start_block, len,
			  0/*violate_readonly*/) != len)
      device_error(me, "Write of **arg (%s) at 0x%lx of stack failed\n",
		   *arg, (unsigned long)start_block);
    target_start_block = H2T_word(start_block);
    if (psim_write_memory(device_system(me), 0, &target_start_block,
			  start_arg, sizeof(target_start_block),
			  0) != sizeof(target_start_block))
      device_error(me, "Write of *arg onto stack failed\n");
    start_block += ALIGN_8(len);
    start_arg += sizeof(start_block);
  }
  start_arg += sizeof(start_block); /*the null at the end*/
  if (start_block != end_block
      || ALIGN_8(start_arg) != end_arg)
    device_error(me, "Probable corrpution of stack arguments\n");
  DTRACE(stack, ("write_stack_arguments() = void\n"));
}

static void
create_ppc_elf_stack_frame(device *me,
			   unsigned_word bottom_of_stack,
			   char **argv,
			   char **envp)
{
  /* fixme - this is over aligned */

  /* information block */
  const unsigned sizeof_envp_block = sizeof_argument_strings(envp);
  const unsigned_word start_envp_block = bottom_of_stack - sizeof_envp_block;
  const unsigned sizeof_argv_block = sizeof_argument_strings(argv);
  const unsigned_word start_argv_block = start_envp_block - sizeof_argv_block;

  /* auxiliary vector - contains only one entry */
  const unsigned sizeof_aux_entry = 2*sizeof(unsigned_word); /* magic */
  const unsigned_word start_aux = start_argv_block - ALIGN_8(sizeof_aux_entry);

  /* environment points (including null sentinal) */
  const unsigned sizeof_envp = sizeof_arguments(envp);
  const unsigned_word start_envp = start_aux - sizeof_envp;

  /* argument pointers (including null sentinal) */
  const int argc = number_of_arguments(argv);
  const unsigned sizeof_argv = sizeof_arguments(argv);
  const unsigned_word start_argv = start_envp - sizeof_argv;

  /* link register save address - alligned to a 16byte boundary */
  const unsigned_word top_of_stack = ((start_argv
				       - 2 * sizeof(unsigned_word))
				      & ~0xf);

  /* install arguments on stack */
  write_stack_arguments(me, envp,
			start_envp_block, bottom_of_stack,
			start_envp, start_aux);
  write_stack_arguments(me, argv,
			start_argv_block, start_envp_block,
			start_argv, start_envp);

  /* set up the registers */
  ASSERT (psim_write_register(device_system(me), -1,
			      &top_of_stack, "sp", cooked_transfer) > 0);
  ASSERT (psim_write_register(device_system(me), -1,
			      &argc, "r3", cooked_transfer) > 0);
  ASSERT (psim_write_register(device_system(me), -1,
			      &start_argv, "r4", cooked_transfer) > 0);
  ASSERT (psim_write_register(device_system(me), -1,
			      &start_envp, "r5", cooked_transfer) > 0);
  ASSERT (psim_write_register(device_system(me), -1,
			      &start_aux, "r6", cooked_transfer) > 0);
}

static void
create_ppc_aix_stack_frame(device *me,
			   unsigned_word bottom_of_stack,
			   char **argv,
			   char **envp)
{
  unsigned_word core_envp;
  unsigned_word core_argv;
  unsigned_word core_argc;
  unsigned_word core_aux;
  unsigned_word top_of_stack;

  /* cheat - create an elf stack frame */
  create_ppc_elf_stack_frame(me, bottom_of_stack, argv, envp);
  
  /* extract argument addresses from registers */
  ASSERT (psim_read_register(device_system(me), 0,
			     &top_of_stack, "r1", cooked_transfer) > 0);
  ASSERT (psim_read_register(device_system(me), 0,
			     &core_argc, "r3", cooked_transfer) > 0);
  ASSERT (psim_read_register(device_system(me), 0,
			     &core_argv, "r4", cooked_transfer) > 0);
  ASSERT (psim_read_register(device_system(me), 0,
			     &core_envp, "r5", cooked_transfer) > 0);
  ASSERT (psim_read_register(device_system(me), 0,
			     &core_aux, "r6", cooked_transfer) > 0);

  /* extract arguments from registers */
  device_error(me, "Unfinished procedure create_ppc_aix_stack_frame\n");
}


static void
create_ppc_chirp_bootargs(device *me,
			  char **argv)
{
  /* concat the arguments */
  char args[1024];
  char **chp = argv + 1;
  args[0] = '\0';
  while (*chp != NULL) {
    if (strlen(args) > 0)
      strcat(args, " ");
    if (strlen(args) + strlen(*chp) >= sizeof(args))
      device_error(me, "buffer overflow");
    strcat(args, *chp);
    chp++;
  }

  /* set the arguments property */
  tree_parse(me, "/chosen/bootargs \"%s", args);
}


static int
hw_stack_ioctl(device *me,
	       cpu *processor,
	       unsigned_word cia,
	       device_ioctl_request request,
	       va_list ap)
{
  switch (request) {
  case device_ioctl_create_stack:
    {
      unsigned_word stack_pointer = va_arg(ap, unsigned_word);
      char **argv = va_arg(ap, char **);
      char **envp = va_arg(ap, char **);
      const char *stack_type;
      DTRACE(stack,
	     ("stack_ioctl_callback(me=0x%lx:%s processor=0x%lx cia=0x%lx argv=0x%lx envp=0x%lx)\n",
	      (long)me, device_name(me),
	      (long)processor,
	      (long)cia,
	      (long)argv,
	      (long)envp));
      stack_type = device_find_string_property(me, "stack-type");
      if (strcmp(stack_type, "ppc-elf") == 0)
	create_ppc_elf_stack_frame(me, stack_pointer, argv, envp);
      else if (strcmp(stack_type, "ppc-xcoff") == 0)
	create_ppc_aix_stack_frame(me, stack_pointer, argv, envp);
      else if (strcmp(stack_type, "chirp") == 0)
	create_ppc_chirp_bootargs(me, argv);
      else if (strcmp(stack_type, "none") != 0)
	device_error(me, "Unknown initial stack frame type %s", stack_type);
      DTRACE(stack, 
	     ("stack_ioctl_callback() = void\n"));
      break;
    }
  default:
    device_error(me, "Unsupported ioctl requested");
    break;
  }
  return 0;
}

static device_callbacks const hw_stack_callbacks = {
  { NULL, },
  { NULL, }, /* address */
  { NULL, }, /* IO */
  { NULL, }, /* DMA */
  { NULL, }, /* interrupt */
  { NULL, }, /* unit */
  NULL, /* instance */
  hw_stack_ioctl,
};

const device_descriptor hw_init_device_descriptor[] = {
  { "file", NULL, &hw_file_callbacks },
  { "data", NULL, &hw_data_callbacks },
  { "load-binary", NULL, &hw_binary_callbacks },
  { "map-binary", NULL, &hw_binary_callbacks },
  { "stack", NULL, &hw_stack_callbacks },
  { NULL },
};

#endif /* _HW_INIT_C_ */