aboutsummaryrefslogtreecommitdiff
path: root/sim/d10v/interp.c
blob: 330fbbcbfb785e7ef1e27109edb05022dff27ceb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
#include "config.h"
#include <inttypes.h>
#include <signal.h>
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"

#include "sim-main.h"
#include "sim-options.h"

#include "gdb/sim-d10v.h"
#include "gdb/signals.h"

#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif /* HAVE_STRING_H */
#endif /* HAVE_STRINGS_H */

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

enum _leftright { LEFT_FIRST, RIGHT_FIRST };

int d10v_debug;

/* Set this to true to get the previous segment layout. */

int old_segment_mapping;

unsigned long ins_type_counters[ (int)INS_MAX ];

uint16 OP[4];

static long hash (long insn, int format);
static struct hash_entry *lookup_hash (SIM_DESC, SIM_CPU *, uint32 ins, int size);
static void get_operands (struct simops *s, uint32 ins);
static void do_long (SIM_DESC, SIM_CPU *, uint32 ins);
static void do_2_short (SIM_DESC, SIM_CPU *, uint16 ins1, uint16 ins2, enum _leftright leftright);
static void do_parallel (SIM_DESC, SIM_CPU *, uint16 ins1, uint16 ins2);
static char *add_commas (char *buf, int sizeof_buf, unsigned long value);
static INLINE uint8 *map_memory (SIM_DESC, SIM_CPU *, unsigned phys_addr);

#define MAX_HASH  63
struct hash_entry
{
  struct hash_entry *next;
  uint32 opcode;
  uint32 mask;
  int size;
  struct simops *ops;
};

struct hash_entry hash_table[MAX_HASH+1];

INLINE static long 
hash (long insn, int format)
{
  if (format & LONG_OPCODE)
    return ((insn & 0x3F000000) >> 24);
  else
    return((insn & 0x7E00) >> 9);
}

INLINE static struct hash_entry *
lookup_hash (SIM_DESC sd, SIM_CPU *cpu, uint32 ins, int size)
{
  struct hash_entry *h;

  if (size)
    h = &hash_table[(ins & 0x3F000000) >> 24];
  else
    h = &hash_table[(ins & 0x7E00) >> 9];

  while ((ins & h->mask) != h->opcode || h->size != size)
    {
      if (h->next == NULL)
	sim_engine_halt (sd, cpu, NULL, PC, sim_stopped, SIM_SIGILL);
      h = h->next;
    }
  return (h);
}

INLINE static void
get_operands (struct simops *s, uint32 ins)
{
  int i, shift, bits, flags;
  uint32 mask;
  for (i=0; i < s->numops; i++)
    {
      shift = s->operands[3*i];
      bits = s->operands[3*i+1];
      flags = s->operands[3*i+2];
      mask = 0x7FFFFFFF >> (31 - bits);
      OP[i] = (ins >> shift) & mask;
    }
  /* FIXME: for tracing, update values that need to be updated each
     instruction decode cycle */
  State.trace.psw = PSW;
}

static void
do_long (SIM_DESC sd, SIM_CPU *cpu, uint32 ins)
{
  struct hash_entry *h;
#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    sim_io_printf (sd, "do_long 0x%x\n", ins);
#endif
  h = lookup_hash (sd, cpu, ins, 1);
  if (h == NULL)
    return;
  get_operands (h->ops, ins);
  State.ins_type = INS_LONG;
  ins_type_counters[ (int)State.ins_type ]++;
  (h->ops->func) (sd, cpu);
}

static void
do_2_short (SIM_DESC sd, SIM_CPU *cpu, uint16 ins1, uint16 ins2, enum _leftright leftright)
{
  struct hash_entry *h;
  enum _ins_type first, second;

#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    sim_io_printf (sd, "do_2_short 0x%x (%s) -> 0x%x\n", ins1,
		   leftright ? "left" : "right", ins2);
#endif

  if (leftright == LEFT_FIRST)
    {
      first = INS_LEFT;
      second = INS_RIGHT;
      ins_type_counters[ (int)INS_LEFTRIGHT ]++;
    }
  else
    {
      first = INS_RIGHT;
      second = INS_LEFT;
      ins_type_counters[ (int)INS_RIGHTLEFT ]++;
    }

  /* Issue the first instruction */
  h = lookup_hash (sd, cpu, ins1, 0);
  if (h == NULL)
    return;
  get_operands (h->ops, ins1);
  State.ins_type = first;
  ins_type_counters[ (int)State.ins_type ]++;
  (h->ops->func) (sd, cpu);

  /* Issue the second instruction (if the PC hasn't changed) */
  if (!State.pc_changed)
    {
      /* finish any existing instructions */
      SLOT_FLUSH ();
      h = lookup_hash (sd, cpu, ins2, 0);
      if (h == NULL)
	return;
      get_operands (h->ops, ins2);
      State.ins_type = second;
      ins_type_counters[ (int)State.ins_type ]++;
      ins_type_counters[ (int)INS_CYCLES ]++;
      (h->ops->func) (sd, cpu);
    }
  else
    ins_type_counters[ (int)INS_COND_JUMP ]++;
}

static void
do_parallel (SIM_DESC sd, SIM_CPU *cpu, uint16 ins1, uint16 ins2)
{
  struct hash_entry *h1, *h2;
#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    sim_io_printf (sd, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
#endif
  ins_type_counters[ (int)INS_PARALLEL ]++;
  h1 = lookup_hash (sd, cpu, ins1, 0);
  if (h1 == NULL)
    return;
  h2 = lookup_hash (sd, cpu, ins2, 0);
  if (h2 == NULL)
    return;

  if (h1->ops->exec_type == PARONLY)
    {
      get_operands (h1->ops, ins1);
      State.ins_type = INS_LEFT_COND_TEST;
      ins_type_counters[ (int)State.ins_type ]++;
      (h1->ops->func) (sd, cpu);
      if (State.exe)
	{
	  ins_type_counters[ (int)INS_COND_TRUE ]++;
	  get_operands (h2->ops, ins2);
	  State.ins_type = INS_RIGHT_COND_EXE;
	  ins_type_counters[ (int)State.ins_type ]++;
	  (h2->ops->func) (sd, cpu);
	}
      else
	ins_type_counters[ (int)INS_COND_FALSE ]++;
    }
  else if (h2->ops->exec_type == PARONLY)
    {
      get_operands (h2->ops, ins2);
      State.ins_type = INS_RIGHT_COND_TEST;
      ins_type_counters[ (int)State.ins_type ]++;
      (h2->ops->func) (sd, cpu);
      if (State.exe)
	{
	  ins_type_counters[ (int)INS_COND_TRUE ]++;
	  get_operands (h1->ops, ins1);
	  State.ins_type = INS_LEFT_COND_EXE;
	  ins_type_counters[ (int)State.ins_type ]++;
	  (h1->ops->func) (sd, cpu);
	}
      else
	ins_type_counters[ (int)INS_COND_FALSE ]++;
    }
  else
    {
      get_operands (h1->ops, ins1);
      State.ins_type = INS_LEFT_PARALLEL;
      ins_type_counters[ (int)State.ins_type ]++;
      (h1->ops->func) (sd, cpu);
      get_operands (h2->ops, ins2);
      State.ins_type = INS_RIGHT_PARALLEL;
      ins_type_counters[ (int)State.ins_type ]++;
      (h2->ops->func) (sd, cpu);
    }
}
 
static char *
add_commas (char *buf, int sizeof_buf, unsigned long value)
{
  int comma = 3;
  char *endbuf = buf + sizeof_buf - 1;

  *--endbuf = '\0';
  do {
    if (comma-- == 0)
      {
	*--endbuf = ',';
	comma = 2;
      }

    *--endbuf = (value % 10) + '0';
  } while ((value /= 10) != 0);

  return endbuf;
}

static void
sim_size (int power)
{
  int i;
  for (i = 0; i < IMEM_SEGMENTS; i++)
    {
      if (State.mem.insn[i])
	free (State.mem.insn[i]);
    }
  for (i = 0; i < DMEM_SEGMENTS; i++)
    {
      if (State.mem.data[i])
	free (State.mem.data[i]);
    }
  for (i = 0; i < UMEM_SEGMENTS; i++)
    {
      if (State.mem.unif[i])
	free (State.mem.unif[i]);
    }
  /* Always allocate dmem segment 0.  This contains the IMAP and DMAP
     registers. */
  State.mem.data[0] = calloc (1, SEGMENT_SIZE);
}

/* For tracing - leave info on last access around. */
static char *last_segname = "invalid";
static char *last_from = "invalid";
static char *last_to = "invalid";

enum
  {
    IMAP0_OFFSET = 0xff00,
    DMAP0_OFFSET = 0xff08,
    DMAP2_SHADDOW = 0xff04,
    DMAP2_OFFSET = 0xff0c
  };

static void
set_dmap_register (SIM_DESC sd, int reg_nr, unsigned long value)
{
  uint8 *raw = map_memory (sd, NULL, SIM_D10V_MEMORY_DATA
			   + DMAP0_OFFSET + 2 * reg_nr);
  WRITE_16 (raw, value);
#ifdef DEBUG
  if ((d10v_debug & DEBUG_MEMORY))
    {
      sim_io_printf (sd, "mem: dmap%d=0x%04lx\n", reg_nr, value);
    }
#endif
}

static unsigned long
dmap_register (SIM_DESC sd, SIM_CPU *cpu, void *regcache, int reg_nr)
{
  uint8 *raw = map_memory (sd, cpu, SIM_D10V_MEMORY_DATA
			   + DMAP0_OFFSET + 2 * reg_nr);
  return READ_16 (raw);
}

static void
set_imap_register (SIM_DESC sd, int reg_nr, unsigned long value)
{
  uint8 *raw = map_memory (sd, NULL, SIM_D10V_MEMORY_DATA
			   + IMAP0_OFFSET + 2 * reg_nr);
  WRITE_16 (raw, value);
#ifdef DEBUG
  if ((d10v_debug & DEBUG_MEMORY))
    {
      sim_io_printf (sd, "mem: imap%d=0x%04lx\n", reg_nr, value);
    }
#endif
}

static unsigned long
imap_register (SIM_DESC sd, SIM_CPU *cpu, void *regcache, int reg_nr)
{
  uint8 *raw = map_memory (sd, cpu, SIM_D10V_MEMORY_DATA
			   + IMAP0_OFFSET + 2 * reg_nr);
  return READ_16 (raw);
}

enum
  {
    HELD_SPI_IDX = 0,
    HELD_SPU_IDX = 1
  };

static unsigned long
spu_register (void)
{
  if (PSW_SM)
    return GPR (SP_IDX);
  else
    return HELD_SP (HELD_SPU_IDX);
}

static unsigned long
spi_register (void)
{
  if (!PSW_SM)
    return GPR (SP_IDX);
  else
    return HELD_SP (HELD_SPI_IDX);
}

static void
set_spi_register (unsigned long value)
{
  if (!PSW_SM)
    SET_GPR (SP_IDX, value);
  SET_HELD_SP (HELD_SPI_IDX, value);
}

static void
set_spu_register  (unsigned long value)
{
  if (PSW_SM)
    SET_GPR (SP_IDX, value);
  SET_HELD_SP (HELD_SPU_IDX, value);
}

/* Given a virtual address in the DMAP address space, translate it
   into a physical address. */

static unsigned long
sim_d10v_translate_dmap_addr (SIM_DESC sd,
			      SIM_CPU *cpu,
			      unsigned long offset,
			      int nr_bytes,
			      unsigned long *phys,
			      void *regcache,
			      unsigned long (*dmap_register) (SIM_DESC,
							      SIM_CPU *,
							      void *regcache,
							      int reg_nr))
{
  short map;
  int regno;
  last_from = "logical-data";
  if (offset >= DMAP_BLOCK_SIZE * SIM_D10V_NR_DMAP_REGS)
    {
      /* Logical address out side of data segments, not supported */
      return 0;
    }
  regno = (offset / DMAP_BLOCK_SIZE);
  offset = (offset % DMAP_BLOCK_SIZE);
  if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE)
    {
      /* Don't cross a BLOCK boundary */
      nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE);
    }
  map = dmap_register (sd, cpu, regcache, regno);
  if (regno == 3)
    {
      /* Always maps to data memory */
      int iospi = (offset / 0x1000) % 4;
      int iosp = (map >> (4 * (3 - iospi))) % 0x10;
      last_to = "io-space";
      *phys = (SIM_D10V_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset);
    }
  else
    {
      int sp = ((map & 0x3000) >> 12);
      int segno = (map & 0x3ff);
      switch (sp)
	{
	case 0: /* 00: Unified memory */
	  *phys = SIM_D10V_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset;
	  last_to = "unified";
	  break;
	case 1: /* 01: Instruction Memory */
	  *phys = SIM_D10V_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset;
	  last_to = "chip-insn";
	  break;
	case 2: /* 10: Internal data memory */
	  *phys = SIM_D10V_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset;
	  last_to = "chip-data";
	  break;
	case 3: /* 11: Reserved */
	  return 0;
	}
    }
  return nr_bytes;
}

/* Given a virtual address in the IMAP address space, translate it
   into a physical address. */

static unsigned long
sim_d10v_translate_imap_addr (SIM_DESC sd,
			      SIM_CPU *cpu,
			      unsigned long offset,
			      int nr_bytes,
			      unsigned long *phys,
			      void *regcache,
			      unsigned long (*imap_register) (SIM_DESC,
							      SIM_CPU *,
							      void *regcache,
							      int reg_nr))
{
  short map;
  int regno;
  int sp;
  int segno;
  last_from = "logical-insn";
  if (offset >= (IMAP_BLOCK_SIZE * SIM_D10V_NR_IMAP_REGS))
    {
      /* Logical address outside of IMAP segments, not supported */
      return 0;
    }
  regno = (offset / IMAP_BLOCK_SIZE);
  offset = (offset % IMAP_BLOCK_SIZE);
  if (offset + nr_bytes > IMAP_BLOCK_SIZE)
    {
      /* Don't cross a BLOCK boundary */
      nr_bytes = IMAP_BLOCK_SIZE - offset;
    }
  map = imap_register (sd, cpu, regcache, regno);
  sp = (map & 0x3000) >> 12;
  segno = (map & 0x007f);
  switch (sp)
    {
    case 0: /* 00: unified memory */
      *phys = SIM_D10V_MEMORY_UNIFIED + (segno << 17) + offset;
      last_to = "unified";
      break;
    case 1: /* 01: instruction memory */
      *phys = SIM_D10V_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset;
      last_to = "chip-insn";
      break;
    case 2: /*10*/
      /* Reserved. */
      return 0;
    case 3: /* 11: for testing  - instruction memory */
      offset = (offset % 0x800);
      *phys = SIM_D10V_MEMORY_INSN + offset;
      if (offset + nr_bytes > 0x800)
	/* don't cross VM boundary */
	nr_bytes = 0x800 - offset;
      last_to = "test-insn";
      break;
    }
  return nr_bytes;
}

static unsigned long
sim_d10v_translate_addr (SIM_DESC sd,
			 SIM_CPU *cpu,
			 unsigned long memaddr,
			 int nr_bytes,
			 unsigned long *targ_addr,
			 void *regcache,
			 unsigned long (*dmap_register) (SIM_DESC,
							 SIM_CPU *,
							 void *regcache,
							 int reg_nr),
			 unsigned long (*imap_register) (SIM_DESC,
							 SIM_CPU *,
							 void *regcache,
							 int reg_nr))
{
  unsigned long phys;
  unsigned long seg;
  unsigned long off;

  last_from = "unknown";
  last_to = "unknown";

  seg = (memaddr >> 24);
  off = (memaddr & 0xffffffL);

  /* However, if we've asked to use the previous generation of segment
     mapping, rearrange the segments as follows. */

  if (old_segment_mapping)
    {
      switch (seg)
	{
	case 0x00: /* DMAP translated memory */
	  seg = 0x10;
	  break;
	case 0x01: /* IMAP translated memory */
	  seg = 0x11;
	  break;
	case 0x10: /* On-chip data memory */
	  seg = 0x02;
	  break;
	case 0x11: /* On-chip insn memory */
	  seg = 0x01;
	  break;
	case 0x12: /* Unified memory */
	  seg = 0x00;
	  break;
	}
    }

  switch (seg)
    {
    case 0x00:			/* Physical unified memory */
      last_from = "phys-unified";
      last_to = "unified";
      phys = SIM_D10V_MEMORY_UNIFIED + off;
      if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
	nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
      break;

    case 0x01:			/* Physical instruction memory */
      last_from = "phys-insn";
      last_to = "chip-insn";
      phys = SIM_D10V_MEMORY_INSN + off;
      if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
	nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
      break;

    case 0x02:			/* Physical data memory segment */
      last_from = "phys-data";
      last_to = "chip-data";
      phys = SIM_D10V_MEMORY_DATA + off;
      if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
	nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
      break;

    case 0x10:			/* in logical data address segment */
      nr_bytes = sim_d10v_translate_dmap_addr (sd, cpu, off, nr_bytes, &phys,
					       regcache, dmap_register);
      break;

    case 0x11:			/* in logical instruction address segment */
      nr_bytes = sim_d10v_translate_imap_addr (sd, cpu, off, nr_bytes, &phys,
					       regcache, imap_register);
      break;

    default:
      return 0;
    }

  *targ_addr = phys;
  return nr_bytes;
}

/* Return a pointer into the raw buffer designated by phys_addr.  It
   is assumed that the client has already ensured that the access
   isn't going to cross a segment boundary. */

uint8 *
map_memory (SIM_DESC sd, SIM_CPU *cpu, unsigned phys_addr)
{
  uint8 **memory;
  uint8 *raw;
  unsigned offset;
  int segment = ((phys_addr >> 24) & 0xff);
  
  switch (segment)
    {
      
    case 0x00: /* Unified memory */
      {
	memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS];
	last_segname = "umem";
	break;
      }
    
    case 0x01: /* On-chip insn memory */
      {
	memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS];
	last_segname = "imem";
	break;
      }
    
    case 0x02: /* On-chip data memory */
      {
	if ((phys_addr & 0xff00) == 0xff00)
	  {
	    phys_addr = (phys_addr & 0xffff);
	    if (phys_addr == DMAP2_SHADDOW)
	      {
		phys_addr = DMAP2_OFFSET;
		last_segname = "dmap";
	      }
	    else
	      last_segname = "reg";
	  }
	else
	  last_segname = "dmem";
	memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS];
	break;
      }
    
    default:
      /* OOPS! */
      last_segname = "scrap";
      sim_engine_halt (sd, cpu, NULL, PC, sim_stopped, SIM_SIGBUS);
    }
  
  if (*memory == NULL)
    *memory = xcalloc (1, SEGMENT_SIZE);
  
  offset = (phys_addr % SEGMENT_SIZE);
  raw = *memory + offset;
  return raw;
}
  
/* Transfer data to/from simulated memory.  Since a bug in either the
   simulated program or in gdb or the simulator itself may cause a
   bogus address to be passed in, we need to do some sanity checking
   on addresses to make sure they are within bounds.  When an address
   fails the bounds check, treat it as a zero length read/write rather
   than aborting the entire run. */

static int
xfer_mem (SIM_DESC sd,
	  SIM_ADDR virt,
	  unsigned char *buffer,
	  int size,
	  int write_p)
{
  uint8 *memory;
  unsigned long phys;
  int phys_size;
  phys_size = sim_d10v_translate_addr (sd, NULL, virt, size, &phys, NULL,
				       dmap_register, imap_register);
  if (phys_size == 0)
    return 0;

  memory = map_memory (sd, NULL, phys);

#ifdef DEBUG
  if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
    {
      sim_io_printf
	(sd,
	 "sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n",
	 write_p ? "write" : "read",
	 phys_size, virt, last_from,
	 phys, last_to,
	 (long) memory, last_segname);
    }
#endif

  if (write_p)
    {
      memcpy (memory, buffer, phys_size);
    }
  else
    {
      memcpy (buffer, memory, phys_size);
    }
  
  return phys_size;
}


int
sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
{
  /* FIXME: this should be performing a virtual transfer */
  return xfer_mem (sd, addr, buffer, size, 1);
}

int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
  /* FIXME: this should be performing a virtual transfer */
  return xfer_mem (sd, addr, buffer, size, 0);
}

static sim_cia
d10v_pc_get (sim_cpu *cpu)
{
  return PC;
}

static void
d10v_pc_set (sim_cpu *cpu, sim_cia pc)
{
  SIM_DESC sd = CPU_STATE (cpu);
  SET_PC (pc);
}

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
{
  struct simops *s;
  struct hash_entry *h;
  static int init_p = 0;
  char **p;
  int i;
  SIM_DESC sd = sim_state_alloc (kind, cb);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* The cpu data is kept in a separately allocated chunk of memory.  */
  if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* getopt will print the error message so we just have to exit if this fails.
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      sim_module_uninstall (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
	 file descriptor leaks, etc.  */
      sim_module_uninstall (sd);
      return 0;
    }

  /* CPU specific initialization.  */
  for (i = 0; i < MAX_NR_PROCESSORS; ++i)
    {
      SIM_CPU *cpu = STATE_CPU (sd, i);

      CPU_PC_FETCH (cpu) = d10v_pc_get;
      CPU_PC_STORE (cpu) = d10v_pc_set;
    }

  old_segment_mapping = 0;

  /* NOTE: This argument parsing is only effective when this function
     is called by GDB. Standalone argument parsing is handled by
     sim/common/run.c. */
  for (p = argv + 1; *p; ++p)
    {
      if (strcmp (*p, "-oldseg") == 0)
	old_segment_mapping = 1;
#ifdef DEBUG
      else if (strcmp (*p, "-t") == 0)
	d10v_debug = DEBUG;
      else if (strncmp (*p, "-t", 2) == 0)
	d10v_debug = atoi (*p + 2);
#endif
    }
  
  /* put all the opcodes in the hash table */
  if (!init_p++)
    {
      for (s = Simops; s->func; s++)
	{
	  h = &hash_table[hash(s->opcode,s->format)];
      
	  /* go to the last entry in the chain */
	  while (h->next)
	    h = h->next;

	  if (h->ops)
	    {
	      h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
	      if (!h->next)
		perror ("malloc failure");

	      h = h->next;
	    }
	  h->ops = s;
	  h->mask = s->mask;
	  h->opcode = s->opcode;
	  h->size = s->is_long;
	}
    }

  /* reset the processor state */
  if (!State.mem.data[0])
    sim_size (1);

  return sd;
}

uint8 *
dmem_addr (SIM_DESC sd, SIM_CPU *cpu, uint16 offset)
{
  unsigned long phys;
  uint8 *mem;
  int phys_size;

  /* Note: DMEM address range is 0..0x10000. Calling code can compute
     things like ``0xfffe + 0x0e60 == 0x10e5d''.  Since offset's type
     is uint16 this is modulo'ed onto 0x0e5d. */

  phys_size = sim_d10v_translate_dmap_addr (sd, cpu, offset, 1, &phys, NULL,
					    dmap_register);
  if (phys_size == 0)
    sim_engine_halt (sd, cpu, NULL, PC, sim_stopped, SIM_SIGBUS);
  mem = map_memory (sd, cpu, phys);
#ifdef DEBUG
  if ((d10v_debug & DEBUG_MEMORY))
    {
      sim_io_printf
	(sd,
	 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
	 offset, last_from,
	 phys, phys_size, last_to,
	 (long) mem, last_segname);
    }
#endif
  return mem;
}

uint8 *
imem_addr (SIM_DESC sd, SIM_CPU *cpu, uint32 offset)
{
  unsigned long phys;
  uint8 *mem;
  int phys_size = sim_d10v_translate_imap_addr (sd, cpu, offset, 1, &phys, NULL,
						imap_register);
  if (phys_size == 0)
    sim_engine_halt (sd, cpu, NULL, PC, sim_stopped, SIM_SIGBUS);
  mem = map_memory (sd, cpu, phys);
#ifdef DEBUG
  if ((d10v_debug & DEBUG_MEMORY))
    {
      sim_io_printf
	(sd,
	 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
	 offset, last_from,
	 phys, phys_size, last_to,
	 (long) mem, last_segname);
    }
#endif
  return mem;
}

static void
step_once (SIM_DESC sd, SIM_CPU *cpu)
{
  uint32 inst;
  uint8 *iaddr;

  /* TODO: Unindent this block.  */
    {
      iaddr = imem_addr (sd, cpu, (uint32)PC << 2);
 
      inst = get_longword( iaddr ); 
 
      State.pc_changed = 0;
      ins_type_counters[ (int)INS_CYCLES ]++;
      
      switch (inst & 0xC0000000)
	{
	case 0xC0000000:
	  /* long instruction */
	  do_long (sd, cpu, inst & 0x3FFFFFFF);
	  break;
	case 0x80000000:
	  /* R -> L */
	  do_2_short (sd, cpu, inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
	  break;
	case 0x40000000:
	  /* L -> R */
	  do_2_short (sd, cpu, (inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
	  break;
	case 0:
	  do_parallel (sd, cpu, (inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
	  break;
	}
      
      /* If the PC of the current instruction matches RPT_E then
	 schedule a branch to the loop start.  If one of those
	 instructions happens to be a branch, than that instruction
	 will be ignored */
      if (!State.pc_changed)
	{
	  if (PSW_RP && PC == RPT_E)
	    {
	      /* Note: The behavour of a branch instruction at RPT_E
		 is implementation dependant, this simulator takes the
		 branch.  Branching to RPT_E is valid, the instruction
		 must be executed before the loop is taken.  */
	      if (RPT_C == 1)
		{
		  SET_PSW_RP (0);
		  SET_RPT_C (0);
		  SET_PC (PC + 1);
		}
	      else
		{
		  SET_RPT_C (RPT_C - 1);
		  SET_PC (RPT_S);
		}
	    }
	  else
	    SET_PC (PC + 1);
	}	  
      
      /* Check for a breakpoint trap on this instruction.  This
	 overrides any pending branches or loops */
      if (PSW_DB && PC == IBA)
	{
	  SET_BPC (PC);
	  SET_BPSW (PSW);
	  SET_PSW (PSW & PSW_SM_BIT);
	  SET_PC (SDBT_VECTOR_START);
	}

      /* Writeback all the DATA / PC changes */
      SLOT_FLUSH ();
    }
}

void
sim_engine_run (SIM_DESC sd,
		int next_cpu_nr,  /* ignore  */
		int nr_cpus,      /* ignore  */
		int siggnal)
{
  sim_cpu *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  cpu = STATE_CPU (sd, 0);

  switch (siggnal)
    {
    case 0:
      break;
    case GDB_SIGNAL_BUS:
      SET_BPC (PC);
      SET_BPSW (PSW);
      SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
      JMP (AE_VECTOR_START);
      SLOT_FLUSH ();
      break;
    case GDB_SIGNAL_ILL:
      SET_BPC (PC);
      SET_BPSW (PSW);
      SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
      JMP (RIE_VECTOR_START);
      SLOT_FLUSH ();
      break;
    default:
      /* just ignore it */
      break;
    }

  while (1)
    {
      step_once (sd, cpu);
      if (sim_events_tick (sd))
	sim_events_process (sd);
    }
}

void
sim_info (SIM_DESC sd, int verbose)
{
  char buf1[40];
  char buf2[40];
  char buf3[40];
  char buf4[40];
  char buf5[40];
  unsigned long left		= ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
  unsigned long left_nops	= ins_type_counters[ (int)INS_LEFT_NOPS ];
  unsigned long left_parallel	= ins_type_counters[ (int)INS_LEFT_PARALLEL ];
  unsigned long left_cond	= ins_type_counters[ (int)INS_LEFT_COND_TEST ];
  unsigned long left_total	= left + left_parallel + left_cond + left_nops;

  unsigned long right		= ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
  unsigned long right_nops	= ins_type_counters[ (int)INS_RIGHT_NOPS ];
  unsigned long right_parallel	= ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
  unsigned long right_cond	= ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
  unsigned long right_total	= right + right_parallel + right_cond + right_nops;

  unsigned long unknown		= ins_type_counters[ (int)INS_UNKNOWN ];
  unsigned long ins_long	= ins_type_counters[ (int)INS_LONG ];
  unsigned long parallel	= ins_type_counters[ (int)INS_PARALLEL ];
  unsigned long leftright	= ins_type_counters[ (int)INS_LEFTRIGHT ];
  unsigned long rightleft	= ins_type_counters[ (int)INS_RIGHTLEFT ];
  unsigned long cond_true	= ins_type_counters[ (int)INS_COND_TRUE ];
  unsigned long cond_false	= ins_type_counters[ (int)INS_COND_FALSE ];
  unsigned long cond_jump	= ins_type_counters[ (int)INS_COND_JUMP ];
  unsigned long cycles		= ins_type_counters[ (int)INS_CYCLES ];
  unsigned long total		= (unknown + left_total + right_total + ins_long);

  int size			= strlen (add_commas (buf1, sizeof (buf1), total));
  int parallel_size		= strlen (add_commas (buf1, sizeof (buf1),
						      (left_parallel > right_parallel) ? left_parallel : right_parallel));
  int cond_size			= strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
  int nop_size			= strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
  int normal_size		= strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));

  sim_io_printf (sd,
		 "executed %*s left  instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
		 size, add_commas (buf1, sizeof (buf1), left_total),
		 normal_size, add_commas (buf2, sizeof (buf2), left),
		 parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
		 cond_size, add_commas (buf4, sizeof (buf4), left_cond),
		 nop_size, add_commas (buf5, sizeof (buf5), left_nops));

  sim_io_printf (sd,
		 "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
		 size, add_commas (buf1, sizeof (buf1), right_total),
		 normal_size, add_commas (buf2, sizeof (buf2), right),
		 parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
		 cond_size, add_commas (buf4, sizeof (buf4), right_cond),
		 nop_size, add_commas (buf5, sizeof (buf5), right_nops));

  if (ins_long)
    sim_io_printf (sd,
		   "executed %*s long instruction(s)\n",
		   size, add_commas (buf1, sizeof (buf1), ins_long));

  if (parallel)
    sim_io_printf (sd,
		   "executed %*s parallel instruction(s)\n",
		   size, add_commas (buf1, sizeof (buf1), parallel));

  if (leftright)
    sim_io_printf (sd,
		   "executed %*s instruction(s) encoded L->R\n",
		   size, add_commas (buf1, sizeof (buf1), leftright));

  if (rightleft)
    sim_io_printf (sd,
		   "executed %*s instruction(s) encoded R->L\n",
		   size, add_commas (buf1, sizeof (buf1), rightleft));

  if (unknown)
    sim_io_printf (sd,
		   "executed %*s unknown instruction(s)\n",
		   size, add_commas (buf1, sizeof (buf1), unknown));

  if (cond_true)
    sim_io_printf (sd,
		   "executed %*s instruction(s) due to EXExxx condition being true\n",
		   size, add_commas (buf1, sizeof (buf1), cond_true));

  if (cond_false)
    sim_io_printf (sd,
		   "skipped  %*s instruction(s) due to EXExxx condition being false\n",
		   size, add_commas (buf1, sizeof (buf1), cond_false));

  if (cond_jump)
    sim_io_printf (sd,
		   "skipped  %*s instruction(s) due to conditional branch succeeding\n",
		   size, add_commas (buf1, sizeof (buf1), cond_jump));

  sim_io_printf (sd,
		 "executed %*s cycle(s)\n",
		 size, add_commas (buf1, sizeof (buf1), cycles));

  sim_io_printf (sd,
		 "executed %*s total instructions\n",
		 size, add_commas (buf1, sizeof (buf1), total));
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
  bfd_vma start_address;

  /* reset all state information */
  memset (&State.regs, 0, (uintptr_t)&State.mem - (uintptr_t)&State.regs);

  /* There was a hack here to copy the values of argc and argv into r0
     and r1.  The values were also saved into some high memory that
     won't be overwritten by the stack (0x7C00).  The reason for doing
     this was to allow the 'run' program to accept arguments.  Without
     the hack, this is not possible anymore.  If the simulator is run
     from the debugger, arguments cannot be passed in, so this makes
     no difference.  */

  /* set PC */
  if (abfd != NULL)
    start_address = bfd_get_start_address (abfd);
  else
    start_address = 0xffc0 << 2;
#ifdef DEBUG
  if (d10v_debug)
    sim_io_printf (sd, "sim_create_inferior:  PC=0x%lx\n", (long) start_address);
#endif
  {
    SIM_CPU *cpu = STATE_CPU (sd, 0);
    SET_CREG (PC_CR, start_address >> 2);
  }

  /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board
     initializes imap0 and imap1 to 0x1000 as part of its ROM
     initialization. */
  if (old_segment_mapping)
    {
      /* External memory startup.  This is the HARD reset state. */
      set_imap_register (sd, 0, 0x0000);
      set_imap_register (sd, 1, 0x007f);
      set_dmap_register (sd, 0, 0x2000);
      set_dmap_register (sd, 1, 0x2000);
      set_dmap_register (sd, 2, 0x0000); /* Old DMAP */
      set_dmap_register (sd, 3, 0x0000);
    }
  else
    {
      /* Internal memory startup. This is the ROM intialized state. */
      set_imap_register (sd, 0, 0x1000);
      set_imap_register (sd, 1, 0x1000);
      set_dmap_register (sd, 0, 0x2000);
      set_dmap_register (sd, 1, 0x2000);
      set_dmap_register (sd, 2, 0x2000); /* DMAP2 initial internal value is
					    0x2000 on the new board. */
      set_dmap_register (sd, 3, 0x0000);
    }

  SLOT_FLUSH ();
  return SIM_RC_OK;
}

int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  int size;
  switch ((enum sim_d10v_regs) rn)
    {
    case SIM_D10V_R0_REGNUM:
    case SIM_D10V_R1_REGNUM:
    case SIM_D10V_R2_REGNUM:
    case SIM_D10V_R3_REGNUM:
    case SIM_D10V_R4_REGNUM:
    case SIM_D10V_R5_REGNUM:
    case SIM_D10V_R6_REGNUM:
    case SIM_D10V_R7_REGNUM:
    case SIM_D10V_R8_REGNUM:
    case SIM_D10V_R9_REGNUM:
    case SIM_D10V_R10_REGNUM:
    case SIM_D10V_R11_REGNUM:
    case SIM_D10V_R12_REGNUM:
    case SIM_D10V_R13_REGNUM:
    case SIM_D10V_R14_REGNUM:
    case SIM_D10V_R15_REGNUM:
      WRITE_16 (memory, GPR (rn - SIM_D10V_R0_REGNUM));
      size = 2;
      break;
    case SIM_D10V_CR0_REGNUM:
    case SIM_D10V_CR1_REGNUM:
    case SIM_D10V_CR2_REGNUM:
    case SIM_D10V_CR3_REGNUM:
    case SIM_D10V_CR4_REGNUM:
    case SIM_D10V_CR5_REGNUM:
    case SIM_D10V_CR6_REGNUM:
    case SIM_D10V_CR7_REGNUM:
    case SIM_D10V_CR8_REGNUM:
    case SIM_D10V_CR9_REGNUM:
    case SIM_D10V_CR10_REGNUM:
    case SIM_D10V_CR11_REGNUM:
    case SIM_D10V_CR12_REGNUM:
    case SIM_D10V_CR13_REGNUM:
    case SIM_D10V_CR14_REGNUM:
    case SIM_D10V_CR15_REGNUM:
      WRITE_16 (memory, CREG (rn - SIM_D10V_CR0_REGNUM));
      size = 2;
      break;
    case SIM_D10V_A0_REGNUM:
    case SIM_D10V_A1_REGNUM:
      WRITE_64 (memory, ACC (rn - SIM_D10V_A0_REGNUM));
      size = 8;
      break;
    case SIM_D10V_SPI_REGNUM:
      /* PSW_SM indicates that the current SP is the USER
         stack-pointer. */
      WRITE_16 (memory, spi_register ());
      size = 2;
      break;
    case SIM_D10V_SPU_REGNUM:
      /* PSW_SM indicates that the current SP is the USER
         stack-pointer. */
      WRITE_16 (memory, spu_register ());
      size = 2;
      break;
    case SIM_D10V_IMAP0_REGNUM:
    case SIM_D10V_IMAP1_REGNUM:
      WRITE_16 (memory, imap_register (sd, cpu, NULL, rn - SIM_D10V_IMAP0_REGNUM));
      size = 2;
      break;
    case SIM_D10V_DMAP0_REGNUM:
    case SIM_D10V_DMAP1_REGNUM:
    case SIM_D10V_DMAP2_REGNUM:
    case SIM_D10V_DMAP3_REGNUM:
      WRITE_16 (memory, dmap_register (sd, cpu, NULL, rn - SIM_D10V_DMAP0_REGNUM));
      size = 2;
      break;
    case SIM_D10V_TS2_DMAP_REGNUM:
      size = 0;
      break;
    default:
      size = 0;
      break;
    }
  return size;
}
 
int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  int size;
  switch ((enum sim_d10v_regs) rn)
    {
    case SIM_D10V_R0_REGNUM:
    case SIM_D10V_R1_REGNUM:
    case SIM_D10V_R2_REGNUM:
    case SIM_D10V_R3_REGNUM:
    case SIM_D10V_R4_REGNUM:
    case SIM_D10V_R5_REGNUM:
    case SIM_D10V_R6_REGNUM:
    case SIM_D10V_R7_REGNUM:
    case SIM_D10V_R8_REGNUM:
    case SIM_D10V_R9_REGNUM:
    case SIM_D10V_R10_REGNUM:
    case SIM_D10V_R11_REGNUM:
    case SIM_D10V_R12_REGNUM:
    case SIM_D10V_R13_REGNUM:
    case SIM_D10V_R14_REGNUM:
    case SIM_D10V_R15_REGNUM:
      SET_GPR (rn - SIM_D10V_R0_REGNUM, READ_16 (memory));
      size = 2;
      break;
    case SIM_D10V_CR0_REGNUM:
    case SIM_D10V_CR1_REGNUM:
    case SIM_D10V_CR2_REGNUM:
    case SIM_D10V_CR3_REGNUM:
    case SIM_D10V_CR4_REGNUM:
    case SIM_D10V_CR5_REGNUM:
    case SIM_D10V_CR6_REGNUM:
    case SIM_D10V_CR7_REGNUM:
    case SIM_D10V_CR8_REGNUM:
    case SIM_D10V_CR9_REGNUM:
    case SIM_D10V_CR10_REGNUM:
    case SIM_D10V_CR11_REGNUM:
    case SIM_D10V_CR12_REGNUM:
    case SIM_D10V_CR13_REGNUM:
    case SIM_D10V_CR14_REGNUM:
    case SIM_D10V_CR15_REGNUM:
      SET_CREG (rn - SIM_D10V_CR0_REGNUM, READ_16 (memory));
      size = 2;
      break;
    case SIM_D10V_A0_REGNUM:
    case SIM_D10V_A1_REGNUM:
      SET_ACC (rn - SIM_D10V_A0_REGNUM, READ_64 (memory) & MASK40);
      size = 8;
      break;
    case SIM_D10V_SPI_REGNUM:
      /* PSW_SM indicates that the current SP is the USER
         stack-pointer. */
      set_spi_register (READ_16 (memory));
      size = 2;
      break;
    case SIM_D10V_SPU_REGNUM:
      set_spu_register (READ_16 (memory));
      size = 2;
      break;
    case SIM_D10V_IMAP0_REGNUM:
    case SIM_D10V_IMAP1_REGNUM:
      set_imap_register (sd, rn - SIM_D10V_IMAP0_REGNUM, READ_16(memory));
      size = 2;
      break;
    case SIM_D10V_DMAP0_REGNUM:
    case SIM_D10V_DMAP1_REGNUM:
    case SIM_D10V_DMAP2_REGNUM:
    case SIM_D10V_DMAP3_REGNUM:
      set_dmap_register (sd, rn - SIM_D10V_DMAP0_REGNUM, READ_16(memory));
      size = 2;
      break;
    case SIM_D10V_TS2_DMAP_REGNUM:
      size = 0;
      break;
    default:
      size = 0;
      break;
    }
  SLOT_FLUSH ();
  return size;
}