aboutsummaryrefslogtreecommitdiff
path: root/sim/common/sim-core.c
blob: df46def27573e34f91224d03b4d961eb7ff3a798 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/* The common simulator framework for GDB, the GNU Debugger.

   Copyright 2002-2020 Free Software Foundation, Inc.

   Contributed by Andrew Cagney and Red Hat.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#ifndef SIM_CORE_C
#define SIM_CORE_C

#include "sim-main.h"
#include "sim-assert.h"

#if (WITH_HW)
#include "sim-hw.h"
#endif

#include <stdlib.h>

/* "core" module install handler.

   This is called via sim_module_install to install the "core"
   subsystem into the simulator.  */

#if EXTERN_SIM_CORE_P
static MODULE_INIT_FN sim_core_init;
static MODULE_UNINSTALL_FN sim_core_uninstall;
#endif

#if EXTERN_SIM_CORE_P
SIM_RC
sim_core_install (SIM_DESC sd)
{
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* establish the other handlers */
  sim_module_add_uninstall_fn (sd, sim_core_uninstall);
  sim_module_add_init_fn (sd, sim_core_init);

  /* establish any initial data structures - none */
  return SIM_RC_OK;
}
#endif


/* Uninstall the "core" subsystem from the simulator.  */

#if EXTERN_SIM_CORE_P
static void
sim_core_uninstall (SIM_DESC sd)
{
  sim_core *core = STATE_CORE (sd);
  unsigned map;
  /* blow away any mappings */
  for (map = 0; map < nr_maps; map++) {
    sim_core_mapping *curr = core->common.map[map].first;
    while (curr != NULL) {
      sim_core_mapping *tbd = curr;
      curr = curr->next;
      if (tbd->free_buffer != NULL) {
	SIM_ASSERT (tbd->buffer != NULL);
	free (tbd->free_buffer);
      }
      free (tbd);
    }
    core->common.map[map].first = NULL;
  }
}
#endif


#if EXTERN_SIM_CORE_P
static SIM_RC
sim_core_init (SIM_DESC sd)
{
  /* Nothing to do */
  return SIM_RC_OK;
}
#endif



#ifndef SIM_CORE_SIGNAL
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
sim_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
#endif

#if EXTERN_SIM_CORE_P
void
sim_core_signal (SIM_DESC sd,
		 sim_cpu *cpu,
		 sim_cia cia,
		 unsigned map,
		 int nr_bytes,
		 address_word addr,
		 transfer_type transfer,
		 sim_core_signals sig)
{
  const char *copy = (transfer == read_transfer ? "read" : "write");
  address_word ip = CIA_ADDR (cia);
  switch (sig)
    {
    case sim_core_unmapped_signal:
      sim_io_eprintf (sd, "core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
		      nr_bytes, copy, (unsigned long) addr, (unsigned long) ip);
      sim_engine_halt (sd, cpu, NULL, cia, sim_stopped, SIM_SIGSEGV);
      break;
    case sim_core_unaligned_signal:
      sim_io_eprintf (sd, "core: %d byte misaligned %s to address 0x%lx at 0x%lx\n",
		      nr_bytes, copy, (unsigned long) addr, (unsigned long) ip);
      sim_engine_halt (sd, cpu, NULL, cia, sim_stopped, SIM_SIGBUS);
      break;
    default:
      sim_engine_abort (sd, cpu, cia,
			"sim_core_signal - internal error - bad switch");
    }
}
#endif


#if EXTERN_SIM_CORE_P
static sim_core_mapping *
new_sim_core_mapping (SIM_DESC sd,
		      int level,
		      int space,
		      address_word addr,
		      address_word nr_bytes,
		      unsigned modulo,
		      struct hw *device,
		      void *buffer,
		      void *free_buffer)
{
  sim_core_mapping *new_mapping = ZALLOC (sim_core_mapping);
  /* common */
  new_mapping->level = level;
  new_mapping->space = space;
  new_mapping->base = addr;
  new_mapping->nr_bytes = nr_bytes;
  new_mapping->bound = addr + (nr_bytes - 1);
  new_mapping->mask = modulo - 1;
  new_mapping->buffer = buffer;
  new_mapping->free_buffer = free_buffer;
  new_mapping->device = device;
  return new_mapping;
}
#endif


#if EXTERN_SIM_CORE_P
static void
sim_core_map_attach (SIM_DESC sd,
		     sim_core_map *access_map,
		     int level,
		     int space,
		     address_word addr,
		     address_word nr_bytes,
		     unsigned modulo,
		     struct hw *client, /*callback/default*/
		     void *buffer, /*raw_memory*/
		     void *free_buffer) /*raw_memory*/
{
  /* find the insertion point for this additional mapping and then
     insert */
  sim_core_mapping *next_mapping;
  sim_core_mapping **last_mapping;

  SIM_ASSERT ((client == NULL) != (buffer == NULL));
  SIM_ASSERT ((client == NULL) >= (free_buffer != NULL));

  /* actually do occasionally get a zero size map */
  if (nr_bytes == 0)
    {
#if (WITH_HW)
      sim_hw_abort (sd, client, "called on sim_core_map_attach with size zero");
#endif
      sim_io_error (sd, "called on sim_core_map_attach with size zero");
    }

  /* find the insertion point (between last/next) */
  next_mapping = access_map->first;
  last_mapping = &access_map->first;
  while (next_mapping != NULL
	&& (next_mapping->level < level
	    || (next_mapping->level == level
		&& next_mapping->bound < addr)))
    {
      /* provided levels are the same */
      /* assert: next_mapping->base > all bases before next_mapping */
      /* assert: next_mapping->bound >= all bounds before next_mapping */
      last_mapping = &next_mapping->next;
      next_mapping = next_mapping->next;
    }

  /* check insertion point correct */
  SIM_ASSERT (next_mapping == NULL || next_mapping->level >= level);
  if (next_mapping != NULL && next_mapping->level == level
      && next_mapping->base < (addr + (nr_bytes - 1)))
    {
#if WITH_HW
      sim_hw_abort (sd, client, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)",
		    space,
		    (long) addr,
		    (long) (addr + (nr_bytes - 1)),
		    (long) nr_bytes,
		    next_mapping->space,
		    (long) next_mapping->base,
		    (long) next_mapping->bound,
		    (long) next_mapping->nr_bytes);
#endif
      sim_io_error (sd, "memory map %d:0x%lx..0x%lx (%ld bytes) overlaps %d:0x%lx..0x%lx (%ld bytes)",
		    space,
		    (long) addr,
		    (long) (addr + (nr_bytes - 1)),
		    (long) nr_bytes,
		    next_mapping->space,
		    (long) next_mapping->base,
		    (long) next_mapping->bound,
		    (long) next_mapping->nr_bytes);
  }

  /* create/insert the new mapping */
  *last_mapping = new_sim_core_mapping (sd,
					level,
					space, addr, nr_bytes, modulo,
					client, buffer, free_buffer);
  (*last_mapping)->next = next_mapping;
}
#endif


/* Attach memory or a memory mapped device to the simulator.
   See sim-core.h for a full description.  */

#if EXTERN_SIM_CORE_P
void
sim_core_attach (SIM_DESC sd,
		 sim_cpu *cpu,
		 int level,
		 unsigned mapmask,
		 int space,
		 address_word addr,
		 address_word nr_bytes,
		 unsigned modulo,
		 struct hw *client,
		 void *optional_buffer)
{
  sim_core *memory = STATE_CORE (sd);
  unsigned map;
  void *buffer;
  void *free_buffer;

  /* check for for attempt to use unimplemented per-processor core map */
  if (cpu != NULL)
    sim_io_error (sd, "sim_core_map_attach - processor specific memory map not yet supported");

  if (client != NULL && modulo != 0)
    {
#if (WITH_HW)
      sim_hw_abort (sd, client, "sim_core_attach - internal error - modulo and callback memory conflict");
#endif
      sim_io_error (sd, "sim_core_attach - internal error - modulo and callback memory conflict");
    }
  if (modulo != 0)
    {
      unsigned mask = modulo - 1;
      /* any zero bits */
      while (mask >= sizeof (unsigned64)) /* minimum modulo */
	{
	  if ((mask & 1) == 0)
	    mask = 0;
	  else
	    mask >>= 1;
	}
      if (mask != sizeof (unsigned64) - 1)
	{
#if (WITH_HW)
	  sim_hw_abort (sd, client, "sim_core_attach - internal error - modulo %lx not power of two", (long) modulo);
#endif
	  sim_io_error (sd, "sim_core_attach - internal error - modulo %lx not power of two", (long) modulo);
	}
    }

  /* verify consistency between device and buffer */
  if (client != NULL && optional_buffer != NULL)
    {
#if (WITH_HW)
      sim_hw_abort (sd, client, "sim_core_attach - internal error - conflicting buffer and attach arguments");
#endif
      sim_io_error (sd, "sim_core_attach - internal error - conflicting buffer and attach arguments");
    }
  if (client == NULL)
    {
      if (optional_buffer == NULL)
	{
	  int padding = (addr % sizeof (unsigned64));
	  unsigned long bytes = (modulo == 0 ? nr_bytes : modulo) + padding;
	  free_buffer = zalloc (bytes);
	  buffer = (char*) free_buffer + padding;
	}
      else
	{
	  buffer = optional_buffer;
	  free_buffer = NULL;
	}
    }
  else
    {
      /* a device */
      buffer = NULL;
      free_buffer = NULL;
    }

  /* attach the region to all applicable access maps */
  for (map = 0;
       map < nr_maps;
       map++)
    {
      if (mapmask & (1 << map))
	{
	  sim_core_map_attach (sd, &memory->common.map[map],
			       level, space, addr, nr_bytes, modulo,
			       client, buffer, free_buffer);
	  free_buffer = NULL;
	}
    }

  /* Just copy this map to each of the processor specific data structures.
     FIXME - later this will be replaced by true processor specific
     maps. */
  {
    int i;
    for (i = 0; i < MAX_NR_PROCESSORS; i++)
      {
	CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common;
      }
  }
}
#endif


/* Remove any memory reference related to this address */
#if EXTERN_SIM_CORE_P
static void
sim_core_map_detach (SIM_DESC sd,
		     sim_core_map *access_map,
		     int level,
		     int space,
		     address_word addr)
{
  sim_core_mapping **entry;
  for (entry = &access_map->first;
       (*entry) != NULL;
       entry = &(*entry)->next)
    {
      if ((*entry)->base == addr
	  && (*entry)->level == level
	  && (*entry)->space == space)
	{
	  sim_core_mapping *dead = (*entry);
	  (*entry) = dead->next;
	  if (dead->free_buffer != NULL)
	    free (dead->free_buffer);
	  free (dead);
	  return;
	}
    }
}
#endif

#if EXTERN_SIM_CORE_P
void
sim_core_detach (SIM_DESC sd,
		 sim_cpu *cpu,
		 int level,
		 int address_space,
		 address_word addr)
{
  sim_core *memory = STATE_CORE (sd);
  unsigned map;
  for (map = 0; map < nr_maps; map++)
    {
      sim_core_map_detach (sd, &memory->common.map[map],
			   level, address_space, addr);
    }
  /* Just copy this update to each of the processor specific data
     structures.  FIXME - later this will be replaced by true
     processor specific maps. */
  {
    int i;
    for (i = 0; i < MAX_NR_PROCESSORS; i++)
      {
	CPU_CORE (STATE_CPU (sd, i))->common = STATE_CORE (sd)->common;
      }
  }
}
#endif


STATIC_INLINE_SIM_CORE\
(sim_core_mapping *)
sim_core_find_mapping (sim_core_common *core,
		       unsigned map,
		       address_word addr,
		       unsigned nr_bytes,
		       transfer_type transfer,
		       int abort, /*either 0 or 1 - hint to inline/-O */
		       sim_cpu *cpu, /* abort => cpu != NULL */
		       sim_cia cia)
{
  sim_core_mapping *mapping = core->map[map].first;
  ASSERT ((addr & (nr_bytes - 1)) == 0); /* must be aligned */
  ASSERT ((addr + (nr_bytes - 1)) >= addr); /* must not wrap */
  ASSERT (!abort || cpu != NULL); /* abort needs a non null CPU */
  while (mapping != NULL)
    {
      if (addr >= mapping->base
	  && (addr + (nr_bytes - 1)) <= mapping->bound)
	return mapping;
      mapping = mapping->next;
    }
  if (abort)
    {
      SIM_CORE_SIGNAL (CPU_STATE (cpu), cpu, cia, map, nr_bytes, addr, transfer,
		       sim_core_unmapped_signal);
    }
  return NULL;
}


STATIC_INLINE_SIM_CORE\
(void *)
sim_core_translate (sim_core_mapping *mapping,
		    address_word addr)
{
  return (void *)((unsigned8 *) mapping->buffer
		  + ((addr - mapping->base) & mapping->mask));
}


#if EXTERN_SIM_CORE_P
unsigned
sim_core_read_buffer (SIM_DESC sd,
		      sim_cpu *cpu,
		      unsigned map,
		      void *buffer,
		      address_word addr,
		      unsigned len)
{
  sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common);
  unsigned count = 0;
  while (count < len)
 {
    address_word raddr = addr + count;
    sim_core_mapping *mapping =
      sim_core_find_mapping (core, map,
			    raddr, /*nr-bytes*/1,
			    read_transfer,
			    0 /*dont-abort*/, NULL, NULL_CIA);
    if (mapping == NULL)
      break;
#if (WITH_HW)
    if (mapping->device != NULL)
      {
	int nr_bytes = len - count;
	if (raddr + nr_bytes - 1> mapping->bound)
	  nr_bytes = mapping->bound - raddr + 1;
	/* If the access was initiated by a cpu, pass it down so errors can
	   be propagated properly.  For other sources (e.g. GDB or DMA), we
	   can only signal errors via the return value.  */
	if (cpu)
	  {
	    sim_cia cia = cpu ? CPU_PC_GET (cpu) : NULL_CIA;
	    sim_cpu_hw_io_read_buffer (cpu, cia, mapping->device,
				       (unsigned_1*)buffer + count,
				       mapping->space,
				       raddr,
				       nr_bytes);
	  }
	else if (sim_hw_io_read_buffer (sd, mapping->device,
					(unsigned_1*)buffer + count,
					mapping->space,
					raddr,
					nr_bytes) != nr_bytes)
	  break;
	count += nr_bytes;
	continue;
      }
#endif
    ((unsigned_1*)buffer)[count] =
      *(unsigned_1*)sim_core_translate (mapping, raddr);
    count += 1;
 }
  return count;
}
#endif


#if EXTERN_SIM_CORE_P
unsigned
sim_core_write_buffer (SIM_DESC sd,
		       sim_cpu *cpu,
		       unsigned map,
		       const void *buffer,
		       address_word addr,
		       unsigned len)
{
  sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common);
  unsigned count = 0;
  while (count < len)
    {
      address_word raddr = addr + count;
      sim_core_mapping *mapping =
	sim_core_find_mapping (core, map,
			       raddr, /*nr-bytes*/1,
			       write_transfer,
			       0 /*dont-abort*/, NULL, NULL_CIA);
      if (mapping == NULL)
	break;
#if (WITH_HW)
      if (mapping->device != NULL)
	{
	  int nr_bytes = len - count;
	  if (raddr + nr_bytes - 1 > mapping->bound)
	    nr_bytes = mapping->bound - raddr + 1;
	  /* If the access was initiated by a cpu, pass it down so errors can
	     be propagated properly.  For other sources (e.g. GDB or DMA), we
	     can only signal errors via the return value.  */
	  if (cpu)
	    {
	      sim_cia cia = cpu ? CPU_PC_GET (cpu) : NULL_CIA;
	      sim_cpu_hw_io_write_buffer (cpu, cia, mapping->device,
					  (unsigned_1*)buffer + count,
					  mapping->space,
					  raddr,
					  nr_bytes);
	    }
	  else if (sim_hw_io_write_buffer (sd, mapping->device,
					  (unsigned_1*)buffer + count,
					  mapping->space,
					  raddr,
					  nr_bytes) != nr_bytes)
	    break;
	  count += nr_bytes;
	  continue;
	}
#endif
      *(unsigned_1*)sim_core_translate (mapping, raddr) =
	((unsigned_1*)buffer)[count];
      count += 1;
    }
  return count;
}
#endif


#if EXTERN_SIM_CORE_P
void
sim_core_set_xor (SIM_DESC sd,
		  sim_cpu *cpu,
		  int is_xor)
{
  /* set up the XOR map if required. */
  if (WITH_XOR_ENDIAN) {
    {
      sim_core *core = STATE_CORE (sd);
      sim_cpu_core *cpu_core = (cpu != NULL ? CPU_CORE (cpu) : NULL);
      if (cpu_core != NULL)
	{
	  int i = 1;
	  unsigned mask;
	  if (is_xor)
	    mask = WITH_XOR_ENDIAN - 1;
	  else
	    mask = 0;
	  while (i - 1 < WITH_XOR_ENDIAN)
	    {
	      cpu_core->byte_xor[i-1] = mask;
	      mask = (mask << 1) & (WITH_XOR_ENDIAN - 1);
	      i = (i << 1);
	    }
	}
      else
	{
	  if (is_xor)
	    core->byte_xor = WITH_XOR_ENDIAN - 1;
	  else
	    core->byte_xor = 0;
	}
    }
  }
  else {
    if (is_xor)
      sim_engine_abort (sd, NULL, NULL_CIA,
			"Attempted to enable xor-endian mode when permenantly disabled.");
  }
}
#endif


#if EXTERN_SIM_CORE_P
static void
reverse_n (unsigned_1 *dest,
	   const unsigned_1 *src,
	   int nr_bytes)
{
  int i;
  for (i = 0; i < nr_bytes; i++)
    {
      dest [nr_bytes - i - 1] = src [i];
    }
}
#endif


#if EXTERN_SIM_CORE_P
unsigned
sim_core_xor_read_buffer (SIM_DESC sd,
			  sim_cpu *cpu,
			  unsigned map,
			  void *buffer,
			  address_word addr,
			  unsigned nr_bytes)
{
  address_word byte_xor
    = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->byte_xor[0]);
  if (!WITH_XOR_ENDIAN || !byte_xor)
    return sim_core_read_buffer (sd, cpu, map, buffer, addr, nr_bytes);
  else
    /* only break up transfers when xor-endian is both selected and enabled */
    {
      unsigned_1 x[WITH_XOR_ENDIAN + 1]; /* +1 to avoid zero-sized array */
      unsigned nr_transfered = 0;
      address_word start = addr;
      unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1)));
      address_word stop;
      /* initial and intermediate transfers are broken when they cross
         an XOR endian boundary */
      while (nr_transfered + nr_this_transfer < nr_bytes)
	/* initial/intermediate transfers */
	{
	  /* since xor-endian is enabled stop^xor defines the start
             address of the transfer */
	  stop = start + nr_this_transfer - 1;
	  SIM_ASSERT (start <= stop);
	  SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor));
	  if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
	      != nr_this_transfer)
	    return nr_transfered;
	  reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer);
	  nr_transfered += nr_this_transfer;
	  nr_this_transfer = WITH_XOR_ENDIAN;
	  start = stop + 1;
	}
      /* final transfer */
      nr_this_transfer = nr_bytes - nr_transfered;
      stop = start + nr_this_transfer - 1;
      SIM_ASSERT (stop == (addr + nr_bytes - 1));
      if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
	  != nr_this_transfer)
	return nr_transfered;
      reverse_n (&((unsigned_1*)buffer)[nr_transfered], x, nr_this_transfer);
      return nr_bytes;
    }
}
#endif


#if EXTERN_SIM_CORE_P
unsigned
sim_core_xor_write_buffer (SIM_DESC sd,
			   sim_cpu *cpu,
			   unsigned map,
			   const void *buffer,
			   address_word addr,
			   unsigned nr_bytes)
{
  address_word byte_xor
    = (cpu == NULL ? STATE_CORE (sd)->byte_xor : CPU_CORE (cpu)->byte_xor[0]);
  if (!WITH_XOR_ENDIAN || !byte_xor)
    return sim_core_write_buffer (sd, cpu, map, buffer, addr, nr_bytes);
  else
    /* only break up transfers when xor-endian is both selected and enabled */
    {
      unsigned_1 x[WITH_XOR_ENDIAN + 1]; /* +1 to avoid zero sized array */
      unsigned nr_transfered = 0;
      address_word start = addr;
      unsigned nr_this_transfer = (WITH_XOR_ENDIAN - (addr & ~(WITH_XOR_ENDIAN - 1)));
      address_word stop;
      /* initial and intermediate transfers are broken when they cross
         an XOR endian boundary */
      while (nr_transfered + nr_this_transfer < nr_bytes)
	/* initial/intermediate transfers */
	{
	  /* since xor-endian is enabled stop^xor defines the start
             address of the transfer */
	  stop = start + nr_this_transfer - 1;
	  SIM_ASSERT (start <= stop);
	  SIM_ASSERT ((stop ^ byte_xor) <= (start ^ byte_xor));
	  reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer);
	  if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
	      != nr_this_transfer)
	    return nr_transfered;
	  nr_transfered += nr_this_transfer;
	  nr_this_transfer = WITH_XOR_ENDIAN;
	  start = stop + 1;
	}
      /* final transfer */
      nr_this_transfer = nr_bytes - nr_transfered;
      stop = start + nr_this_transfer - 1;
      SIM_ASSERT (stop == (addr + nr_bytes - 1));
      reverse_n (x, &((unsigned_1*)buffer)[nr_transfered], nr_this_transfer);
      if (sim_core_read_buffer (sd, cpu, map, x, stop ^ byte_xor, nr_this_transfer)
	  != nr_this_transfer)
	return nr_transfered;
      return nr_bytes;
    }
}
#endif

#if EXTERN_SIM_CORE_P
void *
sim_core_trans_addr (SIM_DESC sd,
                     sim_cpu *cpu,
                     unsigned map,
                     address_word addr)
{
  sim_core_common *core = (cpu == NULL ? &STATE_CORE (sd)->common : &CPU_CORE (cpu)->common);
  sim_core_mapping *mapping =
    sim_core_find_mapping (core, map,
                           addr, /*nr-bytes*/1,
                           write_transfer,
                           0 /*dont-abort*/, NULL, NULL_CIA);
  if (mapping == NULL)
    return NULL;
  return sim_core_translate (mapping, addr);
}
#endif



/* define the read/write 1/2/4/8/16/word functions */

#define N 16
#include "sim-n-core.h"

#define N 8
#include "sim-n-core.h"

#define N 7
#define M 8
#include "sim-n-core.h"

#define N 6
#define M 8
#include "sim-n-core.h"

#define N 5
#define M 8
#include "sim-n-core.h"

#define N 4
#include "sim-n-core.h"

#define N 3
#define M 4
#include "sim-n-core.h"

#define N 2
#include "sim-n-core.h"

#define N 1
#include "sim-n-core.h"

#endif