1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
|
/* The common simulator framework for GDB, the GNU Debugger.
Copyright 2002-2014 Free Software Foundation, Inc.
Contributed by Andrew Cagney and Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef _SIM_ALU_H_
#define _SIM_ALU_H_
#include "symcat.h"
/* INTEGER ALU MODULE:
This module provides an implementation of 2's complement arithmetic
including the recording of carry and overflow status bits.
EXAMPLE:
Code using this module includes it into sim-main.h and then, as a
convention, defines macro's ALU*_END that records the result of any
arithmetic performed. Ex:
#include "sim-alu.h"
#define ALU32_END(RES) \
(RES) = ALU32_OVERFLOW_RESULT; \
carry = ALU32_HAD_CARRY_BORROW; \
overflow = ALU32_HAD_OVERFLOW
The macro's are then used vis:
{
ALU32_BEGIN (GPR[i]);
ALU32_ADDC (GPR[j]);
ALU32_END (GPR[k]);
}
NOTES:
Macros exist for efficiently computing 8, 16, 32 and 64 bit
arithmetic - ALU8_*, ALU16_*, .... In addition, according to
TARGET_WORD_BITSIZE a set of short-hand macros are defined - ALU_*
Initialization:
ALU*_BEGIN(ACC): Declare initialize the ALU accumulator with ACC.
Results:
The calculation of the final result may be computed a number
of different ways. Three different overflow macro's are
defined, the most efficient one to use depends on which other
outputs from the alu are being used.
ALU*_RESULT: Generic ALU result output.
ALU*_HAD_OVERFLOW: Returns a nonzero value if signed overflow
occurred.
ALU*_OVERFLOW_RESULT: If the macro ALU*_HAD_OVERFLOW is being
used this is the most efficient result available. Ex:
#define ALU16_END(RES) \
if (ALU16_HAD_OVERFLOW) \
sim_engine_halt (...); \
(RES) = ALU16_OVERFLOW_RESULT
ALU*_HAD_CARRY_BORROW: Returns a nonzero value if unsigned
overflow or underflow (also referred to as carry and borrow)
occurred.
ALU*_CARRY_BORROW_RESULT: If the macro ALU*_HAD_CARRY_BORROW is being
used this is the most efficient result available. Ex:
#define ALU64_END(RES) \
State.carry = ALU64_HAD_CARRY_BORROW; \
(RES) = ALU64_CARRY_BORROW_RESULT
Addition:
ALU*_ADD(VAL): Add VAL to the ALU accumulator. Record any
overflow as well as the final result.
ALU*_ADDC(VAL): Add VAL to the ALU accumulator. Record any
carry-out or overflow as well as the final result.
ALU*_ADDC_C(VAL,CI): Add VAL and CI (carry-in). Record any
carry-out or overflow as well as the final result.
Subtraction:
ALU*_SUB(VAL): Subtract VAL from the ALU accumulator. Record
any underflow as well as the final result.
ALU*_SUBC(VAL): Subtract VAL from the ALU accumulator using
negated addition. Record any underflow or carry-out as well
as the final result.
ALU*_SUBB(VAL): Subtract VAL from the ALU accumulator using
direct subtraction (ACC+~VAL+1). Record any underflow or
borrow-out as well as the final result.
ALU*_SUBC_X(VAL,CI): Subtract VAL and CI (carry-in) from the
ALU accumulator using extended negated addition (ACC+~VAL+CI).
Record any underflow or carry-out as well as the final result.
ALU*_SUBB_B(VAL,BI): Subtract VAL and BI (borrow-in) from the
ALU accumulator using direct subtraction. Record any
underflow or borrow-out as well as the final result.
*/
/* Twos complement arithmetic - addition/subtraction - carry/borrow
(or you thought you knew the answer to 0-0)
Notation and Properties:
Xn denotes the value X stored in N bits.
MSBn (X): The most significant (sign) bit of X treated as an N bit
value.
SEXTn (X): The infinite sign extension of X treated as an N bit
value.
MAXn, MINn: The upper and lower bound of a signed, two's
complement N bit value.
UMAXn: The upper bound of an unsigned N bit value (the lower
bound is always zero).
Un: UMAXn + 1. Unsigned arithmetic is computed `modulo (Un)'.
X[p]: Is bit P of X. X[0] denotes the least significant bit.
~X[p]: Is the inversion of bit X[p]. Also equal to 1-X[p],
(1+X[p])mod(2).
Addition - Overflow - Introduction:
Overflow/Overflow indicates an error in computation of signed
arithmetic. i.e. given X,Y in [MINn..MAXn]; overflow
indicates that the result X+Y > MAXn or X+Y < MIN_INTx.
Hardware traditionally implements overflow by computing the XOR of
carry-in/carry-out of the most significant bit of the ALU. Here
other methods need to be found.
Addition - Overflow - method 1:
Overflow occurs when the sign (most significant bit) of the two N
bit operands is identical but different to the sign of the result:
Rn = (Xn + Yn)
V = MSBn (~(Xn ^ Yn) & (Rn ^ Xn))
Addition - Overflow - method 2:
The two N bit operands are sign extended to M>N bits and then
added. Overflow occurs when SIGN_BIT<n> and SIGN_BIT<m> do not
match.
Rm = (SEXTn (Xn) + SEXTn (Yn))
V = MSBn ((Rm >> (M - N)) ^ Rm)
Addition - Overflow - method 3:
The two N bit operands are sign extended to M>N bits and then
added. Overflow occurs when the result is outside of the sign
extended range [MINn .. MAXn].
Addition - Overflow - method 4:
Given the Result and Carry-out bits, the oVerflow from the addition
of X, Y and carry-In can be computed using the equation:
Rn = (Xn + Yn)
V = (MSBn ((Xn ^ Yn) ^ Rn)) ^ C)
As shown in the table below:
I X Y R C | V | X^Y ^R ^C
---------------+---+-------------
0 0 0 0 0 | 0 | 0 0 0
0 0 1 1 0 | 0 | 1 0 0
0 1 0 1 0 | 0 | 1 0 0
0 1 1 0 1 | 1 | 0 0 1
1 0 0 1 0 | 1 | 0 1 1
1 0 1 0 1 | 0 | 1 1 0
1 1 0 0 1 | 0 | 1 1 0
1 1 1 1 1 | 0 | 0 1 0
Addition - Carry - Introduction:
Carry (poorly named) indicates that an overflow occurred for
unsigned N bit addition. i.e. given X, Y in [0..UMAXn] then
carry indicates X+Y > UMAXn or X+Y >= Un.
The following table lists the output for all given inputs into a
full-adder.
I X Y R | C
------------+---
0 0 0 0 | 0
0 0 1 1 | 0
0 1 0 1 | 0
0 1 1 0 | 1
1 0 0 1 | 0
1 0 1 0 | 1
1 1 0 0 | 1
1 1 1 1 | 1
(carry-In, X, Y, Result, Carry-out):
Addition - Carry - method 1:
Looking at the terms X, Y and R we want an equation for C.
XY\R 0 1
+-------
00 | 0 0
01 | 1 0
11 | 1 1
10 | 1 0
This giving us the sum-of-prod equation:
MSBn ((Xn & Yn) | (Xn & ~Rn) | (Yn & ~Rn))
Verifying:
I X Y R | C | X&Y X&~R Y&~R
------------+---+---------------
0 0 0 0 | 0 | 0 0 0
0 0 1 1 | 0 | 0 0 0
0 1 0 1 | 0 | 0 0 0
0 1 1 0 | 1 | 1 1 1
1 0 0 1 | 0 | 0 0 0
1 0 1 0 | 1 | 0 0 1
1 1 0 0 | 1 | 0 1 0
1 1 1 1 | 1 | 1 0 0
Addition - Carry - method 2:
Given two signed N bit numbers, a carry can be detected by treating
the numbers as N bit unsigned and adding them using M>N unsigned
arithmetic. Carry is indicated by bit (1 << N) being set (result
>= 2**N).
Addition - Carry - method 3:
Given the oVerflow bit. The carry can be computed from:
(~R&V) | (R&V)
Addition - Carry - method 4:
Given two signed numbers. Treating them as unsigned we have:
0 <= X < Un, 0 <= Y < Un
==> X + Y < 2 Un
Consider Y when carry occurs:
X + Y >= Un, Y < Un
==> (Un - X) <= Y < Un # rearrange
==> Un <= X + Y < Un + X < 2 Un # add Xn
==> 0 <= (X + Y) mod Un < X mod Un
or when carry as occurred:
(X + Y) mod Un < X mod Un
Consider Y when carry does not occur:
X + Y < Un
have X < Un, Y >= 0
==> X <= X + Y < Un
==> X mod Un <= (X + Y) mod Un
or when carry has not occurred:
! ( (X + Y) mod Un < X mod Un)
hence we get carry by computing in N bit unsigned arithmetic.
carry <- (Xn + Yn) < Xn
Subtraction - Introduction
There are two different ways of computing the signed two's
complement difference of two numbers. The first is based on
negative addition, the second on direct subtraction.
Subtraction - Carry - Introduction - Negated Addition
The equation X - Y can be computed using:
X + (-Y)
==> X + ~Y + 1 # -Y = ~Y + 1
In addition to the result, the equation produces Carry-out. For
succeeding extended precision calculations, the more general
equation can be used:
C[p]:R[p] = X[p] + ~Y[p] + C[p-1]
where C[0]:R[0] = X[0] + ~Y[0] + 1
Subtraction - Borrow - Introduction - Direct Subtraction
The alternative to negative addition is direct subtraction where
`X-Y is computed directly. In addition to the result of the
calculation, a Borrow bit is produced. In general terms:
B[p]:R[p] = X[p] - Y[p] - B[p-1]
where B[0]:R[0] = X[0] - Y[0]
The Borrow bit is the complement of the Carry bit produced by
Negated Addition above. A dodgy proof follows:
Case 0:
C[0]:R[0] = X[0] + ~Y[0] + 1
==> C[0]:R[0] = X[0] + 1 - Y[0] + 1 # ~Y[0] = (1 - Y[0])?
==> C[0]:R[0] = 2 + X[0] - Y[0]
==> C[0]:R[0] = 2 + B[0]:R[0]
==> C[0]:R[0] = (1 + B[0]):R[0]
==> C[0] = ~B[0] # (1 + B[0]) mod 2 = ~B[0]?
Case P:
C[p]:R[p] = X[p] + ~Y[p] + C[p-1]
==> C[p]:R[p] = X[p] + 1 - Y[0] + 1 - B[p-1]
==> C[p]:R[p] = 2 + X[p] - Y[0] - B[p-1]
==> C[p]:R[p] = 2 + B[p]:R[p]
==> C[p]:R[p] = (1 + B[p]):R[p]
==> C[p] = ~B[p]
The table below lists all possible inputs/outputs for a
full-subtractor:
X Y I | R B
0 0 0 | 0 0
0 0 1 | 1 1
0 1 0 | 1 1
0 1 1 | 0 1
1 0 0 | 1 0
1 0 1 | 0 0
1 1 0 | 0 0
1 1 1 | 1 1
Subtraction - Method 1
Treating Xn and Yn as unsigned values then a borrow (unsigned
underflow) occurs when:
B = Xn < Yn
==> C = Xn >= Yn
*/
/* 8 bit target expressions:
Since the host's natural bitsize > 8 bits, carry method 2 and
overflow method 2 are used. */
#define ALU8_BEGIN(VAL) \
unsigned alu8_cr = (unsigned8) (VAL); \
signed alu8_vr = (signed8) (alu8_cr)
#define ALU8_SET(VAL) \
alu8_cr = (unsigned8) (VAL); \
alu8_vr = (signed8) (alu8_cr)
#define ALU8_SET_CARRY_BORROW(CARRY) \
do { \
if (CARRY) \
alu8_cr |= ((signed)-1) << 8; \
else \
alu8_cr &= 0xff; \
} while (0)
#define ALU8_HAD_CARRY_BORROW (alu8_cr & LSBIT32(8))
#define ALU8_HAD_OVERFLOW (((alu8_vr >> 8) ^ alu8_vr) & LSBIT32 (8-1))
#define ALU8_RESULT ((unsigned8) alu8_cr)
#define ALU8_CARRY_BORROW_RESULT ((unsigned8) alu8_cr)
#define ALU8_OVERFLOW_RESULT ((unsigned8) alu8_vr)
/* #define ALU8_END ????? - target dependant */
/* 16 bit target expressions:
Since the host's natural bitsize > 16 bits, carry method 2 and
overflow method 2 are used. */
#define ALU16_BEGIN(VAL) \
signed alu16_cr = (unsigned16) (VAL); \
unsigned alu16_vr = (signed16) (alu16_cr)
#define ALU16_SET(VAL) \
alu16_cr = (unsigned16) (VAL); \
alu16_vr = (signed16) (alu16_cr)
#define ALU16_SET_CARRY_BORROW(CARRY) \
do { \
if (CARRY) \
alu16_cr |= ((signed)-1) << 16; \
else \
alu16_cr &= 0xffff; \
} while (0)
#define ALU16_HAD_CARRY_BORROW (alu16_cr & LSBIT32(16))
#define ALU16_HAD_OVERFLOW (((alu16_vr >> 16) ^ alu16_vr) & LSBIT32 (16-1))
#define ALU16_RESULT ((unsigned16) alu16_cr)
#define ALU16_CARRY_BORROW_RESULT ((unsigned16) alu16_cr)
#define ALU16_OVERFLOW_RESULT ((unsigned16) alu16_vr)
/* #define ALU16_END ????? - target dependant */
/* 32 bit target expressions:
Since most hosts do not support 64 (> 32) bit arithmetic, carry
method 4 and overflow method 4 are used. */
#define ALU32_BEGIN(VAL) \
unsigned32 alu32_r = (VAL); \
int alu32_c = 0; \
int alu32_v = 0
#define ALU32_SET(VAL) \
alu32_r = (VAL); \
alu32_c = 0; \
alu32_v = 0
#define ALU32_SET_CARRY_BORROW(CARRY) alu32_c = (CARRY)
#define ALU32_HAD_CARRY_BORROW (alu32_c)
#define ALU32_HAD_OVERFLOW (alu32_v)
#define ALU32_RESULT (alu32_r)
#define ALU32_CARRY_BORROW_RESULT (alu32_r)
#define ALU32_OVERFLOW_RESULT (alu32_r)
/* 64 bit target expressions:
Even though the host typically doesn't support native 64 bit
arithmetic, it is still used. */
#define ALU64_BEGIN(VAL) \
unsigned64 alu64_r = (VAL); \
int alu64_c = 0; \
int alu64_v = 0
#define ALU64_SET(VAL) \
alu64_r = (VAL); \
alu64_c = 0; \
alu64_v = 0
#define ALU64_SET_CARRY_BORROW(CARRY) alu64_c = (CARRY)
#define ALU64_HAD_CARRY_BORROW (alu64_c)
#define ALU64_HAD_OVERFLOW (alu64_v)
#define ALU64_RESULT (alu64_r)
#define ALU64_CARRY_BORROW_RESULT (alu64_r)
#define ALU64_OVERFLOW_RESULT (alu64_r)
/* Generic versions of above macros */
#define ALU_BEGIN XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_BEGIN)
#define ALU_SET XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SET)
#define ALU_SET_CARRY XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SET_CARRY)
#define ALU_HAD_OVERFLOW XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_HAD_OVERFLOW)
#define ALU_HAD_CARRY XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_HAD_CARRY)
#define ALU_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_RESULT)
#define ALU_OVERFLOW_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_OVERFLOW_RESULT)
#define ALU_CARRY_RESULT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_CARRY_RESULT)
/* Basic operation - add (overflowing) */
#define ALU8_ADD(VAL) \
do { \
unsigned8 alu8add_val = (VAL); \
ALU8_ADDC (alu8add_val); \
} while (0)
#define ALU16_ADD(VAL) \
do { \
unsigned16 alu16add_val = (VAL); \
ALU16_ADDC (alu8add_val); \
} while (0)
#define ALU32_ADD(VAL) \
do { \
unsigned32 alu32add_val = (VAL); \
ALU32_ADDC (alu32add_val); \
} while (0)
#define ALU64_ADD(VAL) \
do { \
unsigned64 alu64add_val = (unsigned64) (VAL); \
ALU64_ADDC (alu64add_val); \
} while (0)
#define ALU_ADD XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADD)
/* Basic operation - add carrying (and overflowing) */
#define ALU8_ADDC(VAL) \
do { \
unsigned8 alu8addc_val = (VAL); \
alu8_cr += (unsigned8)(alu8addc_val); \
alu8_vr += (signed8)(alu8addc_val); \
} while (0)
#define ALU16_ADDC(VAL) \
do { \
unsigned16 alu16addc_val = (VAL); \
alu16_cr += (unsigned16)(alu16addc_val); \
alu16_vr += (signed16)(alu16addc_val); \
} while (0)
#define ALU32_ADDC(VAL) \
do { \
unsigned32 alu32addc_val = (VAL); \
unsigned32 alu32addc_sign = alu32addc_val ^ alu32_r; \
alu32_r += (alu32addc_val); \
alu32_c = (alu32_r < alu32addc_val); \
alu32_v = ((alu32addc_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31; \
} while (0)
#define ALU64_ADDC(VAL) \
do { \
unsigned64 alu64addc_val = (unsigned64) (VAL); \
unsigned64 alu64addc_sign = alu64addc_val ^ alu64_r; \
alu64_r += (alu64addc_val); \
alu64_c = (alu64_r < alu64addc_val); \
alu64_v = ((alu64addc_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 63; \
} while (0)
#define ALU_ADDC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADDC)
/* Compound operation - add carrying (and overflowing) with carry-in */
#define ALU8_ADDC_C(VAL,C) \
do { \
unsigned8 alu8addcc_val = (VAL); \
unsigned8 alu8addcc_c = (C); \
alu8_cr += (unsigned)(unsigned8)alu8addcc_val + alu8addcc_c; \
alu8_vr += (signed)(signed8)(alu8addcc_val) + alu8addcc_c; \
} while (0)
#define ALU16_ADDC_C(VAL,C) \
do { \
unsigned16 alu16addcc_val = (VAL); \
unsigned16 alu16addcc_c = (C); \
alu16_cr += (unsigned)(unsigned16)alu16addcc_val + alu16addcc_c; \
alu16_vr += (signed)(signed16)(alu16addcc_val) + alu16addcc_c; \
} while (0)
#define ALU32_ADDC_C(VAL,C) \
do { \
unsigned32 alu32addcc_val = (VAL); \
unsigned32 alu32addcc_c = (C); \
unsigned32 alu32addcc_sign = (alu32addcc_val ^ alu32_r); \
alu32_r += (alu32addcc_val + alu32addcc_c); \
alu32_c = ((alu32_r < alu32addcc_val) \
|| (alu32addcc_c && alu32_r == alu32addcc_val)); \
alu32_v = ((alu32addcc_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31;\
} while (0)
#define ALU64_ADDC_C(VAL,C) \
do { \
unsigned64 alu64addcc_val = (VAL); \
unsigned64 alu64addcc_c = (C); \
unsigned64 alu64addcc_sign = (alu64addcc_val ^ alu64_r); \
alu64_r += (alu64addcc_val + alu64addcc_c); \
alu64_c = ((alu64_r < alu64addcc_val) \
|| (alu64addcc_c && alu64_r == alu64addcc_val)); \
alu64_v = ((alu64addcc_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 63;\
} while (0)
#define ALU_ADDC_C XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_ADDC_C)
/* Basic operation - subtract (overflowing) */
#define ALU8_SUB(VAL) \
do { \
unsigned8 alu8sub_val = (VAL); \
ALU8_ADDC_C (~alu8sub_val, 1); \
} while (0)
#define ALU16_SUB(VAL) \
do { \
unsigned16 alu16sub_val = (VAL); \
ALU16_ADDC_C (~alu16sub_val, 1); \
} while (0)
#define ALU32_SUB(VAL) \
do { \
unsigned32 alu32sub_val = (VAL); \
ALU32_ADDC_C (~alu32sub_val, 1); \
} while (0)
#define ALU64_SUB(VAL) \
do { \
unsigned64 alu64sub_val = (VAL); \
ALU64_ADDC_C (~alu64sub_val, 1); \
} while (0)
#define ALU_SUB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUB)
/* Basic operation - subtract carrying (and overflowing) */
#define ALU8_SUBC(VAL) \
do { \
unsigned8 alu8subc_val = (VAL); \
ALU8_ADDC_C (~alu8subc_val, 1); \
} while (0)
#define ALU16_SUBC(VAL) \
do { \
unsigned16 alu16subc_val = (VAL); \
ALU16_ADDC_C (~alu16subc_val, 1); \
} while (0)
#define ALU32_SUBC(VAL) \
do { \
unsigned32 alu32subc_val = (VAL); \
ALU32_ADDC_C (~alu32subc_val, 1); \
} while (0)
#define ALU64_SUBC(VAL) \
do { \
unsigned64 alu64subc_val = (VAL); \
ALU64_ADDC_C (~alu64subc_val, 1); \
} while (0)
#define ALU_SUBC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBC)
/* Compound operation - subtract carrying (and overflowing), extended */
#define ALU8_SUBC_X(VAL,C) \
do { \
unsigned8 alu8subcx_val = (VAL); \
unsigned8 alu8subcx_c = (C); \
ALU8_ADDC_C (~alu8subcx_val, alu8subcx_c); \
} while (0)
#define ALU16_SUBC_X(VAL,C) \
do { \
unsigned16 alu16subcx_val = (VAL); \
unsigned16 alu16subcx_c = (C); \
ALU16_ADDC_C (~alu16subcx_val, alu16subcx_c); \
} while (0)
#define ALU32_SUBC_X(VAL,C) \
do { \
unsigned32 alu32subcx_val = (VAL); \
unsigned32 alu32subcx_c = (C); \
ALU32_ADDC_C (~alu32subcx_val, alu32subcx_c); \
} while (0)
#define ALU64_SUBC_X(VAL,C) \
do { \
unsigned64 alu64subcx_val = (VAL); \
unsigned64 alu64subcx_c = (C); \
ALU64_ADDC_C (~alu64subcx_val, alu64subcx_c); \
} while (0)
#define ALU_SUBC_X XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBC_X)
/* Basic operation - subtract borrowing (and overflowing) */
#define ALU8_SUBB(VAL) \
do { \
unsigned8 alu8subb_val = (VAL); \
alu8_cr -= (unsigned)(unsigned8)alu8subb_val; \
alu8_vr -= (signed)(signed8)alu8subb_val; \
} while (0)
#define ALU16_SUBB(VAL) \
do { \
unsigned16 alu16subb_val = (VAL); \
alu16_cr -= (unsigned)(unsigned16)alu16subb_val; \
alu16_vr -= (signed)(signed16)alu16subb_val; \
} while (0)
#define ALU32_SUBB(VAL) \
do { \
unsigned32 alu32subb_val = (VAL); \
unsigned32 alu32subb_sign = alu32subb_val ^ alu32_r; \
alu32_c = (alu32_r < alu32subb_val); \
alu32_r -= (alu32subb_val); \
alu32_v = ((alu32subb_sign ^ - (unsigned32)alu32_c) ^ alu32_r) >> 31; \
} while (0)
#define ALU64_SUBB(VAL) \
do { \
unsigned64 alu64subb_val = (VAL); \
unsigned64 alu64subb_sign = alu64subb_val ^ alu64_r; \
alu64_c = (alu64_r < alu64subb_val); \
alu64_r -= (alu64subb_val); \
alu64_v = ((alu64subb_sign ^ - (unsigned64)alu64_c) ^ alu64_r) >> 31; \
} while (0)
#define ALU_SUBB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBB)
/* Compound operation - subtract borrowing (and overflowing) with borrow-in */
#define ALU8_SUBB_B(VAL,B) \
do { \
unsigned8 alu8subbb_val = (VAL); \
unsigned8 alu8subbb_b = (B); \
alu8_cr -= (unsigned)(unsigned8)alu8subbb_val; \
alu8_cr -= (unsigned)(unsigned8)alu8subbb_b; \
alu8_vr -= (signed)(signed8)alu8subbb_val + alu8subbb_b; \
} while (0)
#define ALU16_SUBB_B(VAL,B) \
do { \
unsigned16 alu16subbb_val = (VAL); \
unsigned16 alu16subbb_b = (B); \
alu16_cr -= (unsigned)(unsigned16)alu16subbb_val; \
alu16_cr -= (unsigned)(unsigned16)alu16subbb_b; \
alu16_vr -= (signed)(signed16)alu16subbb_val + alu16subbb_b; \
} while (0)
#define ALU32_SUBB_B(VAL,B) \
do { \
unsigned32 alu32subbb_val = (VAL); \
unsigned32 alu32subbb_b = (B); \
ALU32_ADDC_C (~alu32subbb_val, !alu32subbb_b); \
alu32_c = !alu32_c; \
} while (0)
#define ALU64_SUBB_B(VAL,B) \
do { \
unsigned64 alu64subbb_val = (VAL); \
unsigned64 alu64subbb_b = (B); \
ALU64_ADDC_C (~alu64subbb_val, !alu64subbb_b); \
alu64_c = !alu64_c; \
} while (0)
#define ALU_SUBB_B XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_SUBB_B)
/* Basic operation - negate (overflowing) */
#define ALU8_NEG() \
do { \
signed alu8neg_val = (ALU8_RESULT); \
ALU8_SET (1); \
ALU8_ADDC (~alu8neg_val); \
} while (0)
#define ALU16_NEG() \
do { \
signed alu16neg_val = (ALU16_RESULT); \
ALU16_SET (1); \
ALU16_ADDC (~alu16neg_val); \
} while (0)
#define ALU32_NEG() \
do { \
unsigned32 alu32neg_val = (ALU32_RESULT); \
ALU32_SET (1); \
ALU32_ADDC (~alu32neg_val); \
} while(0)
#define ALU64_NEG() \
do { \
unsigned64 alu64neg_val = (ALU64_RESULT); \
ALU64_SET (1); \
ALU64_ADDC (~alu64neg_val); \
} while (0)
#define ALU_NEG XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEG)
/* Basic operation - negate carrying (and overflowing) */
#define ALU8_NEGC() \
do { \
signed alu8negc_val = (ALU8_RESULT); \
ALU8_SET (1); \
ALU8_ADDC (~alu8negc_val); \
} while (0)
#define ALU16_NEGC() \
do { \
signed alu16negc_val = (ALU16_RESULT); \
ALU16_SET (1); \
ALU16_ADDC (~alu16negc_val); \
} while (0)
#define ALU32_NEGC() \
do { \
unsigned32 alu32negc_val = (ALU32_RESULT); \
ALU32_SET (1); \
ALU32_ADDC (~alu32negc_val); \
} while(0)
#define ALU64_NEGC() \
do { \
unsigned64 alu64negc_val = (ALU64_RESULT); \
ALU64_SET (1); \
ALU64_ADDC (~alu64negc_val); \
} while (0)
#define ALU_NEGC XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEGC)
/* Basic operation - negate borrowing (and overflowing) */
#define ALU8_NEGB() \
do { \
signed alu8negb_val = (ALU8_RESULT); \
ALU8_SET (0); \
ALU8_SUBB (alu8negb_val); \
} while (0)
#define ALU16_NEGB() \
do { \
signed alu16negb_val = (ALU16_RESULT); \
ALU16_SET (0); \
ALU16_SUBB (alu16negb_val); \
} while (0)
#define ALU32_NEGB() \
do { \
unsigned32 alu32negb_val = (ALU32_RESULT); \
ALU32_SET (0); \
ALU32_SUBB (alu32negb_val); \
} while(0)
#define ALU64_NEGB() \
do { \
unsigned64 alu64negb_val = (ALU64_RESULT); \
ALU64_SET (0); \
ALU64_SUBB (alu64negb_val); \
} while (0)
#define ALU_NEGB XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NEGB)
/* Other */
#define ALU8_OR(VAL) \
do { \
error("ALU16_OR"); \
} while (0)
#define ALU16_OR(VAL) \
do { \
error("ALU16_OR"); \
} while (0)
#define ALU32_OR(VAL) \
do { \
alu32_r |= (VAL); \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_OR(VAL) \
do { \
alu64_r |= (VAL); \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_OR(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_OR)(VAL)
#define ALU16_XOR(VAL) \
do { \
error("ALU16_XOR"); \
} while (0)
#define ALU32_XOR(VAL) \
do { \
alu32_r ^= (VAL); \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_XOR(VAL) \
do { \
alu64_r ^= (VAL); \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_XOR(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_XOR)(VAL)
#define ALU16_AND(VAL) \
do { \
error("ALU_AND16"); \
} while (0)
#define ALU32_AND(VAL) \
do { \
alu32_r &= (VAL); \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_AND(VAL) \
do { \
alu64_r &= (VAL); \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_AND(VAL) XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_AND)(VAL)
#define ALU16_NOT(VAL) \
do { \
error("ALU_NOT16"); \
} while (0)
#define ALU32_NOT \
do { \
alu32_r = ~alu32_r; \
alu32_c = 0; \
alu32_v = 0; \
} while (0)
#define ALU64_NOT \
do { \
alu64_r = ~alu64_r; \
alu64_c = 0; \
alu64_v = 0; \
} while (0)
#define ALU_NOT XCONCAT3(ALU,WITH_TARGET_WORD_BITSIZE,_NOT)
#endif
|