1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/* eBPF simulator support code
Copyright (C) 2020 Free Software Foundation, Inc.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU_BPFBF
#define WANT_CPU bpfbf
#include "sim-main.h"
#include "sim-fpu.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
#include "cpuall.h"
#include "decode.h"
#include "defs-le.h" /* For SCACHE */
#include "bpf-helpers.h"
/* It is not possible to include both defs-le.h and defs-be.h due to
duplicated definitions, so we need a bunch of forward declarations
here. */
extern void bpfbf_ebpfle_init_idesc_table (SIM_CPU *);
extern void bpfbf_ebpfbe_init_idesc_table (SIM_CPU *);
uint64_t skb_data_offset;
IDESC *bpf_idesc_le;
IDESC *bpf_idesc_be;
int
bpfbf_fetch_register (SIM_CPU *current_cpu,
int rn,
unsigned char *buf,
int len)
{
if (rn == 11)
SETTDI (buf, CPU_PC_GET (current_cpu));
else if (0 <= rn && rn < 10)
SETTDI (buf, GET_H_GPR (rn));
else
return 0;
return len;
}
int
bpfbf_store_register (SIM_CPU *current_cpu,
int rn,
unsigned char *buf,
int len)
{
if (rn == 11)
CPU_PC_SET (current_cpu, GETTDI (buf));
else if (0 <= rn && rn < 10)
SET_H_GPR (rn, GETTDI (buf));
else
return 0;
return len;
}
void
bpfbf_model_insn_before (SIM_CPU *current_cpu, int first_p)
{
/* XXX */
}
void
bpfbf_model_insn_after (SIM_CPU *current_cpu, int first_p)
{
/* XXX */
}
/***** Instruction helpers. *****/
/* The semantic routines for most instructions are expressed in RTL in
the cpu/bpf.cpu file, and automatically translated to C in the
sem-*.c files in this directory.
However, some of the semantic routines make use of helper C
functions. This happens when the semantics of the instructions
can't be expressed in RTL alone in a satisfactory way, or not at
all.
The following functions implement these C helpers. */
DI
bpfbf_endle (SIM_CPU *current_cpu, DI value, UINT bitsize)
{
switch (bitsize)
{
case 16: return endian_h2le_2(endian_t2h_2(value));
case 32: return endian_h2le_4(endian_t2h_4(value));
case 64: return endian_h2le_8(endian_t2h_8(value));
default: assert(0);
}
return value;
}
DI
bpfbf_endbe (SIM_CPU *current_cpu, DI value, UINT bitsize)
{
switch (bitsize)
{
case 16: return endian_h2be_2(endian_t2h_2(value));
case 32: return endian_h2be_4(endian_t2h_4(value));
case 64: return endian_h2be_8(endian_t2h_8(value));
default: assert(0);
}
return value;
}
DI
bpfbf_skb_data_offset (SIM_CPU *current_cpu)
{
/* Simply return the user-configured value.
This will be 0 if it has not been set. */
return skb_data_offset;
}
VOID
bpfbf_call (SIM_CPU *current_cpu, INT disp32, UINT src)
{
/* eBPF supports two kind of CALL instructions: the so called pseudo
calls ("bpf to bpf") and external calls ("bpf to helper").
Both kind of calls use the same instruction (CALL). However,
external calls are constructed by passing a constant argument to
the instruction, that identifies the helper, whereas pseudo calls
result from expressions involving symbols.
We distinguish calls from pseudo-calls with the later having a 1
stored in the SRC field of the instruction. */
if (src == 1)
{
/* This is a pseudo-call. */
/* XXX allocate a new stack frame and transfer control. For
that we need to analyze the target function, like the kernel
verifier does. We better populate a cache
(function_start_address -> frame_size) so we avoid
calculating this more than once. */
/* XXX note that disp32 is PC-relative in number of 64-bit
words, _minus one_. */
}
else
{
/* This is a call to a helper.
DISP32 contains the helper number. Dispatch to the
corresponding helper emulator in bpf-helpers.c. */
switch (disp32) {
/* case TRACE_PRINTK: */
case 7:
bpf_trace_printk (current_cpu);
break;
default:;
}
}
}
VOID
bpfbf_exit (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
/* r0 holds "return code" */
DI r0 = GET_H_GPR (0);
printf ("exit %ld (0x%lx)\n", r0, r0);
sim_engine_halt (sd, current_cpu, NULL, CPU_PC_GET (current_cpu),
sim_exited, 0 /* sigrc */);
}
VOID
bpfbf_breakpoint (SIM_CPU *current_cpu)
{
SIM_DESC sd = CPU_STATE (current_cpu);
sim_engine_halt (sd, current_cpu, NULL, CPU_PC_GET (current_cpu),
sim_stopped, SIM_SIGTRAP);
}
/* We use the definitions below instead of the cgen-generated model.c,
because the later is not really able to work with cpus featuring
several ISAs. This should be fixed in CGEN. */
static void
bpf_def_model_init ()
{
/* Do nothing. */
}
static void
bpfbf_prepare_run (SIM_CPU *cpu)
{
/* Nothing. */
}
void
bpf_engine_run_full (SIM_CPU *cpu)
{
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
{
if (!bpf_idesc_le)
{
bpfbf_ebpfle_init_idesc_table (cpu);
bpf_idesc_le = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = bpf_idesc_le;
bpfbf_ebpfle_engine_run_full (cpu);
}
else
{
if (!bpf_idesc_be)
{
bpfbf_ebpfbe_init_idesc_table (cpu);
bpf_idesc_be = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = bpf_idesc_be;
bpfbf_ebpfbe_engine_run_full (cpu);
}
}
#if WITH_FAST
void
bpf_engine_run_fast (SIM_CPU *cpu)
{
if (current_target_byte_order == BFD_ENDIAN_LITTLE)
{
if (!bpf_idesc_le)
{
bpfbf_ebpfle_init_idesc_table (cpu);
bpf_idesc_le = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = bpf_idesc_le;
bpfbf_ebpfle_engine_run_fast (cpu);
}
else
{
if (!bpf_idesc_be)
{
bpfbf_ebpfbe_init_idesc_table (cpu);
bpf_idesc_be = CPU_IDESC (cpu);
}
else
CPU_IDESC (cpu) = bpf_idesc_be;
bpfbf_ebpfbe_engine_run_fast (cpu);
}
}
#endif /* WITH_FAST */
static const CGEN_INSN *
bpfbf_get_idata (SIM_CPU *cpu, int inum)
{
return CPU_IDESC (cpu) [inum].idata;
}
static void
bpf_init_cpu (SIM_CPU *cpu)
{
CPU_REG_FETCH (cpu) = bpfbf_fetch_register;
CPU_REG_STORE (cpu) = bpfbf_store_register;
CPU_PC_FETCH (cpu) = bpfbf_h_pc_get;
CPU_PC_STORE (cpu) = bpfbf_h_pc_set;
CPU_GET_IDATA (cpu) = bpfbf_get_idata;
/* Only used by profiling. 0 disables it. */
CPU_MAX_INSNS (cpu) = 0;
CPU_INSN_NAME (cpu) = cgen_insn_name;
CPU_FULL_ENGINE_FN (cpu) = bpf_engine_run_full;
#if WITH_FAST
CPU_FAST_ENGINE_FN (cpu) = bpf_engine_run_fast;
#else
CPU_FAST_ENGINE_FN (cpu) = bpf_engine_run_full;
#endif
}
static const SIM_MODEL bpf_models[] =
{
{ "bpf-def", & bpf_mach, MODEL_BPF_DEF, NULL, bpf_def_model_init },
{ 0 }
};
static const SIM_MACH_IMP_PROPERTIES bpfbf_imp_properties =
{
sizeof (SIM_CPU),
#if WITH_SCACHE
sizeof (SCACHE)
#else
0
#endif
};
const SIM_MACH bpf_mach =
{
"bpf", "bpf", MACH_BPF,
32, 32, & bpf_models[0], & bpfbf_imp_properties,
bpf_init_cpu,
bpfbf_prepare_run
};
|