aboutsummaryrefslogtreecommitdiff
path: root/sim/bpf/bpf-sim.c
blob: a4af22b2308bfc272e09848a4b17350face0a36f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
/* Simulator for BPF.
   Copyright (C) 2020-2023 Free Software Foundation, Inc.

   Contributed by Oracle Inc.

   This file is part of GDB, the GNU debugger.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* This must come before any other includes.  */
#include "defs.h"
#include "libiberty.h"

#include "bfd.h"
#include "opcode/bpf.h"
#include "sim/sim.h"
#include "sim-main.h"
#include "sim-core.h"
#include "sim-base.h"
#include "sim-options.h"
#include "sim-signal.h"
#include "bpf-sim.h"

#include <assert.h>
#include <stdlib.h>


/***** Emulated hardware.  *****/

/* Registers are 64-bit long.
   11 general purpose registers, indexed by register number.
   1 program counter.  */

typedef uint64_t bpf_reg;

bpf_reg bpf_pc;
bpf_reg bpf_regs[11];

#define BPF_R0 0
#define BPF_R1 1
#define BPF_R2 2
#define BPF_R3 3
#define BPF_R4 4
#define BPF_R5 5
#define BPF_R6 6
#define BPF_R7 7
#define BPF_R8 8
#define BPF_R9 9
#define BPF_R10 10
#define BPF_FP 10


/***** Emulated memory accessors.  *****/

static uint8_t
bpf_read_u8 (SIM_CPU *cpu, bfd_vma address)
{
  return sim_core_read_unaligned_1 (cpu, 0, read_map, address);
}

static void
bpf_write_u8 (SIM_CPU *cpu, bfd_vma address, uint8_t value)
{
  sim_core_write_unaligned_1 (cpu, 0, write_map, address, value);
}

static uint16_t ATTRIBUTE_UNUSED
bpf_read_u16 (SIM_CPU *cpu, bfd_vma address)
{
  uint16_t val = sim_core_read_unaligned_2 (cpu, 0, read_map, address);

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    return endian_le2h_2 (val);
  else
    return endian_le2h_2 (val);
}

static void
bpf_write_u16 (SIM_CPU *cpu, bfd_vma address, uint16_t value)
{
  sim_core_write_unaligned_2 (cpu, 0, write_map, address, endian_h2le_2 (value));
}

static uint32_t ATTRIBUTE_UNUSED
bpf_read_u32 (SIM_CPU *cpu, bfd_vma address)
{
  uint32_t val = sim_core_read_unaligned_4 (cpu, 0, read_map, address);

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    return endian_le2h_4 (val);
  else
    return endian_le2h_4 (val);
}

static void
bpf_write_u32 (SIM_CPU *cpu, bfd_vma address, uint32_t value)
{
  sim_core_write_unaligned_4 (cpu, 0, write_map, address, endian_h2le_4 (value));
}

static uint64_t ATTRIBUTE_UNUSED
bpf_read_u64 (SIM_CPU *cpu, bfd_vma address)
{
  uint64_t val = sim_core_read_unaligned_8 (cpu, 0, read_map, address);

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    return endian_le2h_8 (val);
  else
    return endian_le2h_8 (val);
}

static void
bpf_write_u64 (SIM_CPU *cpu, bfd_vma address, uint64_t value)
{
  sim_core_write_unaligned_8 (cpu, 0, write_map, address, endian_h2le_8 (value));
}


/***** Emulation of the BPF kernel helpers.  *****/

/* BPF programs rely on the existence of several helper functions,
   which are provided by the kernel.  This simulator provides an
   implementation of the helpers, which can be customized by the
   user.  */

/* bpf_trace_printk is a printk-like facility for debugging.

   In the kernel, it appends a line to the Linux's tracing debugging
   interface.

   In this simulator, it uses the simulator's tracing interface
   instead.

   The format tags recognized by this helper are:
   %d, %i, %u, %x, %ld, %li, %lu, %lx, %lld, %lli, %llu, %llx,
   %p, %s

   A maximum of three tags are supported.

   This helper returns the number of bytes written, or a negative
   value in case of failure.  */

static int
bpf_trace_printk (SIM_CPU *cpu)
{
  va_list ap;
  SIM_DESC sd = CPU_STATE (cpu);

  bfd_vma fmt_address;
  uint32_t size, tags_processed;
  size_t i, bytes_written = 0;

  /* The first argument is the format string, which is passed as a
     pointer in %r1.  */
  fmt_address = bpf_regs[BPF_R1];

  /* The second argument is the length of the format string, as an
     unsigned 32-bit number in %r2.  */
  size = bpf_regs[BPF_R2];

  /* Read the format string from the memory pointed by %r2, printing
     out the stuff as we go.  There is a maximum of three format tags
     supported, which are read from %r3, %r4 and %r5 respectively.  */
  for (i = 0, tags_processed = 0; i < size;)
    {
      uint64_t value;
      uint8_t c = bpf_read_u8 (cpu, fmt_address + i);

      switch (c)
        {
        case '%':
          /* Check we are not exceeding the limit of three format
             tags.  */
          if (tags_processed > 2)
            return -1; /* XXX look for kernel error code.  */

          /* Depending on the kind of tag, extract the value from the
             proper argument.  */
          if (i++ >= size)
            return -1; /* XXX look for kernel error code.  */

          value = bpf_regs[BPF_R3 + tags_processed];

          switch ((bpf_read_u8 (cpu, fmt_address + i)))
            {
            case 'd':
              trace_printf (sd, cpu, "%d", (int) value);
              break;
            case 'i':
              trace_printf (sd, cpu, "%i", (int) value);
              break;
            case 'u':
              trace_printf (sd, cpu, "%u", (unsigned int) value);
              break;
            case 'x':
              trace_printf (sd, cpu, "%x", (unsigned int) value);
              break;
            case 'l':
              {
                if (i++ >= size)
                  return -1;
                switch (bpf_read_u8 (cpu, fmt_address + i))
                  {
                  case 'd':
                    trace_printf (sd, cpu, "%ld", (long) value);
                    break;
                  case 'i':
                    trace_printf (sd, cpu, "%li", (long) value);
                    break;
                  case 'u':
                    trace_printf (sd, cpu, "%lu", (unsigned long) value);
                    break;
                  case 'x':
                    trace_printf (sd, cpu, "%lx", (unsigned long) value);
                    break;
                  case 'l':
                    {
                      if (i++ >= size)
                        return -1;
                      switch (bpf_read_u8 (cpu, fmt_address + i))
                        {
                        case 'd':
                          trace_printf (sd, cpu, "%lld", (long long) value);
                          break;
                        case 'i':
                          trace_printf (sd, cpu, "%lli", (long long) value);
                          break;
                        case 'u':
                          trace_printf (sd, cpu, "%llu", (unsigned long long) value);
                          break;
                        case 'x':
                          trace_printf (sd, cpu, "%llx", (unsigned long long) value);
                          break;
                        default:
                          assert (0);
                          break;
                      }
                      break;
                    }
                  default:
                    assert (0);
                    break;
                }
                break;
              }
            default:
              /* XXX completeme */
              assert (0);
              break;
            }

          tags_processed++;
          i++;
          break;
        case '\0':
          i = size;
          break;
        default:
          trace_printf (sd, cpu, "%c", c);
          bytes_written++;
          i++;
          break;
        }
    }

  return bytes_written;
}


/****** Accessors to install in the CPU description.  ******/

static int
bpf_reg_get (SIM_CPU *cpu, int rn, void *buf, int length)
{
  bpf_reg val;
  unsigned char *memory = buf;

  if (length != 8 || rn >= 11)
    return 0;

  val = bpf_regs[rn];

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    {
      memory[7] = (val >> 56) & 0xff;
      memory[6] = (val >> 48) & 0xff;
      memory[5] = (val >> 40) & 0xff;
      memory[4] = (val >> 32) & 0xff;
      memory[3] = (val >> 24) & 0xff;
      memory[2] = (val >> 16) & 0xff;
      memory[1] = (val >> 8) & 0xff;
      memory[0] = val & 0xff;
    }
  else
    {
      memory[0] = (val >> 56) & 0xff;
      memory[1] = (val >> 48) & 0xff;
      memory[2] = (val >> 40) & 0xff;
      memory[3] = (val >> 32) & 0xff;
      memory[4] = (val >> 24) & 0xff;
      memory[5] = (val >> 16) & 0xff;
      memory[6] = (val >> 8) & 0xff;
      memory[7] = val & 0xff;
    }

  return 8;
}

static int
bpf_reg_set (SIM_CPU *cpu, int rn, const void *buf, int length)
{
  const unsigned char *memory = buf;

  if (length != 8 || rn >= 11)
    return 0;

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    bpf_regs[rn] = (((uint64_t) memory[7] << 56)
                    | ((uint64_t) memory[6] << 48)
                    | ((uint64_t) memory[5] << 40)
                    | ((uint64_t) memory[4] << 32)
                    | ((uint64_t) memory[3] << 24)
                    | ((uint64_t) memory[2] << 16)
                    | ((uint64_t) memory[1] << 8)
                    | ((uint64_t) memory[0]));
  else
    bpf_regs[rn] = (((uint64_t) memory[0] << 56)
                    | ((uint64_t) memory[1] << 48)
                    | ((uint64_t) memory[2] << 40)
                    | ((uint64_t) memory[3] << 32)
                    | ((uint64_t) memory[4] << 24)
                    | ((uint64_t) memory[5] << 16)
                    | ((uint64_t) memory[6] << 8)
                    | ((uint64_t) memory[7]));
  return 8;
}

static sim_cia
bpf_pc_get (sim_cpu *cpu)
{
  return bpf_pc;
}

static void
bpf_pc_set (sim_cpu *cpu, sim_cia pc)
{
  bpf_pc = pc;
}


/***** Other global state.  ******/

static int64_t skb_data_offset;

/* String with the name of the section containing the BPF program to
   run.  */
static char *bpf_program_section = NULL;


/***** Handle BPF-specific command line options.  *****/

static SIM_RC bpf_option_handler (SIM_DESC, sim_cpu *, int, char *, int);

typedef enum
{
 OPTION_BPF_SET_PROGRAM = OPTION_START,
 OPTION_BPF_LIST_PROGRAMS,
 OPTION_BPF_VERIFY_PROGRAM,
 OPTION_BPF_SKB_DATA_OFFSET,
} BPF_OPTION;

static const OPTION bpf_options[] =
{
 { {"bpf-set-program", required_argument, NULL, OPTION_BPF_SET_PROGRAM},
   '\0', "SECTION_NAME", "Set the entry point",
   bpf_option_handler },
 { {"bpf-list-programs", no_argument, NULL, OPTION_BPF_LIST_PROGRAMS},
   '\0', "", "List loaded bpf programs",
   bpf_option_handler },
 { {"bpf-verify-program", required_argument, NULL, OPTION_BPF_VERIFY_PROGRAM},
   '\0', "PROGRAM", "Run the verifier on the given BPF program",
   bpf_option_handler },
 { {"skb-data-offset", required_argument, NULL, OPTION_BPF_SKB_DATA_OFFSET},
   '\0', "OFFSET", "Configure offsetof(struct sk_buff, data)",
   bpf_option_handler },

 { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
};

static SIM_RC
bpf_option_handler (SIM_DESC sd, sim_cpu *cpu ATTRIBUTE_UNUSED, int opt,
                    char *arg, int is_command ATTRIBUTE_UNUSED)
{
  switch ((BPF_OPTION) opt)
    {
    case OPTION_BPF_VERIFY_PROGRAM:
      /* XXX call the verifier. */
      sim_io_printf (sd, "Verifying BPF program %s...\n", arg);
      break;

    case OPTION_BPF_LIST_PROGRAMS:
      /* XXX list programs.  */
      sim_io_printf (sd, "BPF programs available:\n");
      break;

    case OPTION_BPF_SET_PROGRAM:
      /* XXX: check that the section exists and tell the user about a
         new start_address.  */
      bpf_program_section = xstrdup (arg);
      break;

    case OPTION_BPF_SKB_DATA_OFFSET:
      skb_data_offset = strtoul (arg, NULL, 0);
      break;

    default:
      sim_io_eprintf (sd, "Unknown option `%s'\n", arg);
      return SIM_RC_FAIL;
    }

  return SIM_RC_OK;
}


/***** Instruction decoding.  *****/

/* Decoded BPF instruction.   */

struct bpf_insn
{
  enum bpf_insn_id id;
  int size; /*  Instruction size in bytes.  */
  bpf_reg dst;
  bpf_reg src;
  int16_t offset16;
  int32_t imm32;
  int64_t imm64;
};

/* Read an instruction word at the given PC.  Note that we need to
   return a big-endian word.  */

static bpf_insn_word
bpf_read_insn_word (SIM_CPU *cpu, uint64_t pc)
{
  bpf_insn_word word = sim_core_read_unaligned_8 (cpu, 0, read_map, pc);

  if (current_target_byte_order == BFD_ENDIAN_LITTLE)
    word = endian_le2h_8 (word);
  else
    word = endian_be2h_8 (word);

  return endian_h2be_8 (word);
}

/* Decode and return a BPF instruction at the given PC.  Return 0 if
   no valid instruction is found, 1 otherwise.  */

static int ATTRIBUTE_UNUSED
decode (SIM_CPU *cpu, uint64_t pc, struct bpf_insn *insn)
{
  const struct bpf_opcode *opcode;
  bpf_insn_word word;
  const char *p;
  enum bpf_endian endian
    = (current_target_byte_order == BFD_ENDIAN_LITTLE
       ? BPF_ENDIAN_LITTLE : BPF_ENDIAN_BIG);

  /* Initialize the insn struct.  */
  memset (insn, 0, sizeof (struct bpf_insn));

  /* Read a 64-bit instruction word at PC.  */
  word = bpf_read_insn_word (cpu, pc);

  /* See if it is a valid instruction and get the opcodes.  */
  opcode = bpf_match_insn (word, endian, BPF_V4);
  if (!opcode)
    return 0;

  insn->id = opcode->id;
  insn->size = 8;

  /* Extract operands using the instruction as a guide.  */
  for (p = opcode->normal; *p != '\0';)
    {
      if (*p == '%')
        {
          if (*(p + 1) == '%')
            p += 2;
          else if (strncmp (p, "%dr", 3) == 0)
            {
              insn->dst = bpf_extract_dst (word, endian);
              p += 3;
            }
          else if (strncmp (p, "%sr", 3) == 0)
            {
              insn->src = bpf_extract_src (word, endian);
              p += 3;
            }
          else if (strncmp (p, "%dw", 3) == 0)
            {
              insn->dst = bpf_extract_dst (word, endian);
              p += 3;
            }
          else if (strncmp (p, "%sw", 3) == 0)
            {
              insn->src = bpf_extract_src (word, endian);
              p += 3;
            }
          else if (strncmp (p, "%i32", 4) == 0
                   || strncmp (p, "%d32", 4) == 0)

            {
              insn->imm32 = bpf_extract_imm32 (word, endian);
              p += 4;
            }
          else if (strncmp (p, "%o16", 4) == 0
                   || strncmp (p, "%d16", 4) == 0)
            {
              insn->offset16 = bpf_extract_offset16 (word, endian);
              p += 4;
            }
          else if (strncmp (p, "%i64", 4) == 0)
            {
              bpf_insn_word word2;
              /* XXX PC + 8 */
              word2 = bpf_read_insn_word (cpu, pc + 8);
              insn->imm64 = bpf_extract_imm64 (word, word2, endian);
              insn->size = 16;
              p += 4;
            }
          else if (strncmp (p, "%w", 2) == 0
                   || strncmp (p, "%W", 2) == 0)
            {
              /* Ignore these templates.  */
              p += 2;
            }
          else
            /* Malformed opcode template.  */
            /* XXX ignore unknown tags? */
            assert (0);
        }
      else
        p += 1;
    }

  return 1;
}


/***** Instruction semantics.  *****/

static void
bpf_call (SIM_CPU *cpu, int32_t disp32, uint8_t src)
{
  /* eBPF supports two kind of CALL instructions: the so called pseudo
     calls ("bpf to bpf") and external calls ("bpf to helper").

     Both kind of calls use the same instruction (CALL).  However,
     external calls are constructed by passing a constant argument to
     the instruction, that identifies the helper, whereas pseudo calls
     result from expressions involving symbols.

     We distinguish calls from pseudo-calls with the later having a 1
     stored in the SRC field of the instruction.  */

  if (src == 1)
    {
      /* This is a pseudo-call.  */

      /* XXX allocate a new stack frame and transfer control.  For
         that we need to analyze the target function, like the kernel
         verifier does.  We better populate a cache
         (function_start_address -> frame_size) so we avoid
         calculating this more than once.  But it is easier to just
         allocate the maximum stack size per stack frame? */
      /* XXX note that disp32 is PC-relative in number of 64-bit
         words, _minus one_.  */
    }
  else
    {
      /* This is a call to a helper.
         DISP32 contains the helper number.  */

      switch (disp32) {
        /* case TRACE_PRINTK: */
        case 7:
          bpf_trace_printk (cpu);
          break;
        default:;
      }
    }
}

static int
execute (SIM_CPU *cpu, struct bpf_insn *insn)
{
  uint64_t next_pc = bpf_pc + insn->size;

/* Displacements in instructions are encoded in number of 64-bit
   words _minus one_, and not in bytes.  */
#define DISP(OFFSET) (((OFFSET) + 1) * 8)

/* For debugging.  */
#define BPF_TRACE(STR)                          \
  do                                            \
    {                                           \
    if (0)                                      \
      printf ("%s", (STR));                     \
    }                                           \
  while (0)
  
  switch (insn->id)
    {
      /* Instruction to trap to GDB.  */
    case BPF_INSN_BRKPT:
      BPF_TRACE ("BPF_INSN_BRKPT\n");
      sim_engine_halt (CPU_STATE (cpu), cpu,
                       NULL, bpf_pc, sim_stopped, SIM_SIGTRAP);
      break;
      /* ALU instructions.  */
    case BPF_INSN_ADDR:
      BPF_TRACE ("BPF_INSN_ADDR\n");
      bpf_regs[insn->dst] += bpf_regs[insn->src];
      break;
    case BPF_INSN_ADDI:
      BPF_TRACE ("BPF_INSN_ADDI\n");
      bpf_regs[insn->dst] += insn->imm32;
      break;
    case BPF_INSN_SUBR:
      BPF_TRACE ("BPF_INSN_SUBR\n");
      bpf_regs[insn->dst] -= bpf_regs[insn->src];
      break;
    case BPF_INSN_SUBI:
      BPF_TRACE ("BPF_INSN_SUBI\n");
      bpf_regs[insn->dst] -= insn->imm32;
      break;
    case BPF_INSN_MULR:
      BPF_TRACE ("BPF_INSN_MULR\n");
      bpf_regs[insn->dst] *= bpf_regs[insn->src];
      break;
    case BPF_INSN_MULI:
      BPF_TRACE ("BPF_INSN_MULI\n");
      bpf_regs[insn->dst] *= insn->imm32;
      break;
    case BPF_INSN_DIVR:
      BPF_TRACE ("BPF_INSN_DIVR\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] /= bpf_regs[insn->src];
      break;
    case BPF_INSN_DIVI:
      BPF_TRACE ("BPF_INSN_DIVI\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] /= insn->imm32;
      break;
    case BPF_INSN_MODR:
      BPF_TRACE ("BPF_INSN_MODR\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] %= bpf_regs[insn->src];
      break;
    case BPF_INSN_MODI:
      BPF_TRACE ("BPF_INSN_MODI\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] %= insn->imm32;
      break;
    case BPF_INSN_ORR:
      BPF_TRACE ("BPF_INSN_ORR\n");
      bpf_regs[insn->dst] |= bpf_regs[insn->src];
      break;
    case BPF_INSN_ORI:
      BPF_TRACE ("BPF_INSN_ORI\n");
      bpf_regs[insn->dst] |= insn->imm32;
      break;
    case BPF_INSN_ANDR:
      BPF_TRACE ("BPF_INSN_ANDR\n");
      bpf_regs[insn->dst] &= bpf_regs[insn->src];
      break;
    case BPF_INSN_ANDI:
      BPF_TRACE ("BPF_INSN_ANDI\n");
      bpf_regs[insn->dst] &= insn->imm32;
      break;
    case BPF_INSN_XORR:
      BPF_TRACE ("BPF_INSN_XORR\n");
      bpf_regs[insn->dst] ^= bpf_regs[insn->src];
      break;
    case BPF_INSN_XORI:
      BPF_TRACE ("BPF_INSN_XORI\n");
      bpf_regs[insn->dst] ^= insn->imm32;
      break;
    case BPF_INSN_SDIVR:
      BPF_TRACE ("BPF_INSN_SDIVR\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] / (int64_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_SDIVI:
      BPF_TRACE ("BPF_INSN_SDIVI\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] / (int64_t) insn->imm32;
      break;
    case BPF_INSN_SMODR:
      BPF_TRACE ("BPF_INSN_SMODR\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] % (int64_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_SMODI:
      BPF_TRACE ("BPF_INSN_SMODI\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] % (int64_t) insn->imm32;
      break;
    case BPF_INSN_NEGR:
      BPF_TRACE ("BPF_INSN_NEGR\n");
      bpf_regs[insn->dst] = - (int64_t) bpf_regs[insn->dst];
      break;
    case BPF_INSN_LSHR:
      BPF_TRACE ("BPF_INSN_LSHR\n");
      bpf_regs[insn->dst] <<= bpf_regs[insn->src];
      break;
    case BPF_INSN_LSHI:
      BPF_TRACE ("BPF_INSN_LSHI\n");
      bpf_regs[insn->dst] <<= insn->imm32;
      break;
    case BPF_INSN_RSHR:
      BPF_TRACE ("BPF_INSN_RSHR\n");
      bpf_regs[insn->dst] >>= bpf_regs[insn->src];
      break;
    case BPF_INSN_RSHI:
      BPF_TRACE ("BPF_INSN_RSHI\n");
      bpf_regs[insn->dst] >>= insn->imm32;
      break;
    case BPF_INSN_ARSHR:
      BPF_TRACE ("BPF_INSN_ARSHR\n");
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] >> bpf_regs[insn->src];
      break;
    case BPF_INSN_ARSHI:
      BPF_TRACE ("BPF_INSN_ARSHI\n");
      bpf_regs[insn->dst] = (int64_t) bpf_regs[insn->dst] >> insn->imm32;
      break;
    case BPF_INSN_MOVR:
      BPF_TRACE ("BPF_INSN_MOVR\n");
      bpf_regs[insn->dst] = bpf_regs[insn->src];
      break;
    case BPF_INSN_MOVI:
      BPF_TRACE ("BPF_INSN_MOVI\n");
      bpf_regs[insn->dst] = insn->imm32;
      break;
      /* ALU32 instructions.  */
    case BPF_INSN_ADD32R:
      BPF_TRACE ("BPF_INSN_ADD32R\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] + (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_ADD32I:
      BPF_TRACE ("BPF_INSN_ADD32I\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] + insn->imm32;
      break;
    case BPF_INSN_SUB32R:
      BPF_TRACE ("BPF_INSN_SUB32R\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] - (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_SUB32I:
      BPF_TRACE ("BPF_INSN_SUB32I\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] - insn->imm32;
      break;
    case BPF_INSN_MUL32R:
      BPF_TRACE ("BPF_INSN_MUL32R\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] * (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_MUL32I:
      BPF_TRACE ("BPF_INSN_MUL32I\n");
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] * (int32_t) insn->imm32;
      break;
    case BPF_INSN_DIV32R:
      BPF_TRACE ("BPF_INSN_DIV32R\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] / (uint32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_DIV32I:
      BPF_TRACE ("BPF_INSN_DIV32I\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] / (uint32_t) insn->imm32;
      break;
    case BPF_INSN_MOD32R:
      BPF_TRACE ("BPF_INSN_MOD32R\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] % (uint32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_MOD32I:
      BPF_TRACE ("BPF_INSN_MOD32I\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] % (uint32_t) insn->imm32;
      break;
    case BPF_INSN_OR32R:
      BPF_TRACE ("BPF_INSN_OR32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] | (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_OR32I:
      BPF_TRACE ("BPF_INSN_OR32I\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] | (int32_t) insn->imm32;
      break;
    case BPF_INSN_AND32R:
      BPF_TRACE ("BPF_INSN_AND32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] & (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_AND32I:
      BPF_TRACE ("BPF_INSN_AND32I\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] & (int32_t) insn->imm32;
      break;
    case BPF_INSN_XOR32R:
      BPF_TRACE ("BPF_INSN_XOR32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] ^ (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_XOR32I:
      BPF_TRACE ("BPF_INSN_XOR32I\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] ^ (int32_t) insn->imm32;
      break;
    case BPF_INSN_SDIV32R:
      BPF_TRACE ("BPF_INSN_SDIV32R\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] / (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_SDIV32I:
      BPF_TRACE ("BPF_INSN_SDIV32I\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] / (int32_t) insn->imm32;
      break;
    case BPF_INSN_SMOD32R:
      BPF_TRACE ("BPF_INSN_SMOD32R\n");
      if (bpf_regs[insn->src] == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] % (int32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_SMOD32I:
      BPF_TRACE ("BPF_INSN_SMOD32I\n");
      if (insn->imm32 == 0)
        sim_engine_halt (CPU_STATE (cpu), cpu, NULL, bpf_pc, sim_signalled, SIM_SIGFPE);
      bpf_regs[insn->dst] = (int32_t) bpf_regs[insn->dst] % (int32_t) insn->imm32;
      break;
    case BPF_INSN_NEG32R:
      BPF_TRACE ("BPF_INSN_NEG32R\n");
      bpf_regs[insn->dst] = (uint32_t) (- (int32_t) bpf_regs[insn->dst]);
      break;
    case BPF_INSN_LSH32R:
      BPF_TRACE ("BPF_INSN_LSH32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] << bpf_regs[insn->src];
      break;
    case BPF_INSN_LSH32I:
      BPF_TRACE ("BPF_INSN_LSH32I\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] << insn->imm32;
      break;
    case BPF_INSN_RSH32R:
      BPF_TRACE ("BPF_INSN_RSH32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] >> bpf_regs[insn->src];
      break;
    case BPF_INSN_RSH32I:
      BPF_TRACE ("BPF_INSN_RSH32I\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->dst] >> insn->imm32;
      break;
    case BPF_INSN_ARSH32R:
      BPF_TRACE ("BPF_INSN_ARSH32R\n");
      bpf_regs[insn->dst] = (uint32_t)((int32_t)(uint32_t) bpf_regs[insn->dst] >> bpf_regs[insn->src]);
      break;
    case BPF_INSN_ARSH32I:
      BPF_TRACE ("BPF_INSN_ARSH32I\n");
      bpf_regs[insn->dst] = (uint32_t)((int32_t)(uint32_t) bpf_regs[insn->dst] >> insn->imm32);
      break;
    case BPF_INSN_MOV32R:
      BPF_TRACE ("BPF_INSN_MOV32R\n");
      bpf_regs[insn->dst] = (uint32_t) bpf_regs[insn->src];
      break;
    case BPF_INSN_MOV32I:
      BPF_TRACE ("BPF_INSN_MOV32I\n");
      bpf_regs[insn->dst] = (uint32_t) insn->imm32;
      break;
      /* Endianness conversion instructions.  */
    case BPF_INSN_ENDLE16:
      BPF_TRACE ("BPF_INSN_ENDLE16\n");
      bpf_regs[insn->dst] = endian_h2le_2 (endian_t2h_2 (bpf_regs[insn->dst]));
      break;
    case BPF_INSN_ENDLE32:
      BPF_TRACE ("BPF_INSN_ENDLE32\n");
      bpf_regs[insn->dst] = endian_h2le_4 (endian_t2h_4 (bpf_regs[insn->dst]));
      break;
    case BPF_INSN_ENDLE64:
      BPF_TRACE ("BPF_INSN_ENDLE64\n");
      bpf_regs[insn->dst] = endian_h2le_8 (endian_t2h_8 (bpf_regs[insn->dst]));
      break;
    case BPF_INSN_ENDBE16:
      BPF_TRACE ("BPF_INSN_ENDBE16\n");
      bpf_regs[insn->dst] = endian_h2be_2 (endian_t2h_2 (bpf_regs[insn->dst]));
      break;
    case BPF_INSN_ENDBE32:
      BPF_TRACE ("BPF_INSN_ENDBE32\n");
      bpf_regs[insn->dst] = endian_h2be_4 (endian_t2h_4 (bpf_regs[insn->dst]));
      break;
    case BPF_INSN_ENDBE64:
      BPF_TRACE ("BPF_INSN_ENDBE64\n");
      bpf_regs[insn->dst] = endian_h2be_8 (endian_t2h_8 (bpf_regs[insn->dst]));
      break;
      /* 64-bit load instruction.  */
    case BPF_INSN_LDDW:
      BPF_TRACE ("BPF_INSN_LDDW\n");
      bpf_regs[insn->dst] = insn->imm64;
      break;
      /* Indirect load instructions.  */
    case BPF_INSN_LDINDB:
      BPF_TRACE ("BPF_INSN_LDINDB\n");
      bpf_regs[BPF_R0] = bpf_read_u8 (cpu,
                                      bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                      + bpf_regs[insn->src] + insn->imm32);
      break;
    case BPF_INSN_LDINDH:
      BPF_TRACE ("BPF_INSN_LDINDH\n");
      bpf_regs[BPF_R0] = bpf_read_u16 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + bpf_regs[insn->src] + insn->imm32);
      break;
    case BPF_INSN_LDINDW:
      BPF_TRACE ("BPF_INSN_LDINDW\n");
      bpf_regs[BPF_R0] = bpf_read_u32 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + bpf_regs[insn->src] + insn->imm32);
      break;
    case BPF_INSN_LDINDDW:
      BPF_TRACE ("BPF_INSN_LDINDDW\n");
      bpf_regs[BPF_R0] = bpf_read_u64 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + bpf_regs[insn->src] + insn->imm32);
      break;
      /* Absolute load instructions.  */
    case BPF_INSN_LDABSB:
      BPF_TRACE ("BPF_INSN_LDABSB\n");
      bpf_regs[BPF_R0] = bpf_read_u8 (cpu,
                                      bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                      + insn->imm32);
      break;
    case BPF_INSN_LDABSH:
      BPF_TRACE ("BPF_INSN_LDABSH\n");
      bpf_regs[BPF_R0] = bpf_read_u16 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + insn->imm32);
      break;
    case BPF_INSN_LDABSW:
      BPF_TRACE ("BPF_INSN_LDABSW\n");
      bpf_regs[BPF_R0] = bpf_read_u32 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + insn->imm32);
      break;
    case BPF_INSN_LDABSDW:
      BPF_TRACE ("BPF_INSN_LDABSDW\n");
      bpf_regs[BPF_R0] = bpf_read_u64 (cpu,
                                       bpf_read_u64 (cpu, bpf_regs[BPF_R6] + skb_data_offset)
                                       + insn->imm32);
      break;
      /* Generic load instructions (to register.)  */
    case BPF_INSN_LDXB:
      BPF_TRACE ("BPF_INSN_LDXB\n");
      bpf_regs[insn->dst] = (int8_t) bpf_read_u8 (cpu,
                                                  bpf_regs[insn->src] + insn->offset16);
      break;
    case BPF_INSN_LDXH:
      BPF_TRACE ("BPF_INSN_LDXH\n");
      bpf_regs[insn->dst] = (int16_t) bpf_read_u16 (cpu,
                                                    bpf_regs[insn->src] + insn->offset16);
      break;
    case BPF_INSN_LDXW:
      BPF_TRACE ("BPF_INSN_LDXW\n");
      bpf_regs[insn->dst] = (int32_t) bpf_read_u32 (cpu,
                                                    bpf_regs[insn->src] + insn->offset16);
      break;
    case BPF_INSN_LDXDW:
      BPF_TRACE ("BPF_INSN_LDXDW\n");
      bpf_regs[insn->dst] = bpf_read_u64 (cpu,
                                          bpf_regs[insn->src] + insn->offset16);
      break;
      /* Generic store instructions (from register.)  */
    case BPF_INSN_STXBR:
      BPF_TRACE ("BPF_INSN_STXBR\n");
      bpf_write_u8 (cpu,
                    bpf_regs[insn->dst] + insn->offset16,
                    bpf_regs[insn->src]);
      break;
    case BPF_INSN_STXHR:
      BPF_TRACE ("BPF_INSN_STXHR\n");
      bpf_write_u16 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     bpf_regs[insn->src]);
      break;
    case BPF_INSN_STXWR:
      BPF_TRACE ("BPF_INSN_STXWR\n");
      bpf_write_u32 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     bpf_regs[insn->src]);
      break;
    case BPF_INSN_STXDWR:
      BPF_TRACE ("BPF_INSN_STXDWR\n");
      bpf_write_u64 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     bpf_regs[insn->src]);
      break;
      /* Generic store instructions (from 32-bit immediate.) */
    case BPF_INSN_STXBI:
      BPF_TRACE ("BPF_INSN_STXBI\n");
      bpf_write_u8 (cpu,
                    bpf_regs[insn->dst] + insn->offset16,
                    insn->imm32);
      break;
    case BPF_INSN_STXHI:
      BPF_TRACE ("BPF_INSN_STXHI\n");
      bpf_write_u16 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     insn->imm32);
      break;
    case BPF_INSN_STXWI:
      BPF_TRACE ("BPF_INSN_STXWI\n");
      bpf_write_u32 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     insn->imm32);
      break;
    case BPF_INSN_STXDWI:
      BPF_TRACE ("BPF_INSN_STXDWI\n");
      bpf_write_u64 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     insn->imm32);
      break;
      /* Compare-and-jump instructions (reg OP reg).  */
    case BPF_INSN_JAR:
      BPF_TRACE ("BPF_INSN_JAR\n");
      next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JEQR:
      BPF_TRACE ("BPF_INSN_JEQR\n");
      if (bpf_regs[insn->dst] == bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGTR:
      BPF_TRACE ("BPF_INSN_JGTR\n");
      if (bpf_regs[insn->dst] > bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGTR:
      BPF_TRACE ("BPF_INSN_JSGTR\n");
      if ((int64_t) bpf_regs[insn->dst] > (int64_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGER:
      BPF_TRACE ("BPF_INSN_JGER\n");
      if (bpf_regs[insn->dst] >= bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGER:
      BPF_TRACE ("BPF_INSN_JSGER\n");
      if ((int64_t) bpf_regs[insn->dst] >= (int64_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLTR:
      BPF_TRACE ("BPF_INSN_JLTR\n");
      if (bpf_regs[insn->dst] < bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLTR:
      BPF_TRACE ("BPF_INSN_JSLTR\n");
      if ((int64_t) bpf_regs[insn->dst] < (int64_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLER:
      BPF_TRACE ("BPF_INSN_JLER\n");
      if (bpf_regs[insn->dst] <= bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLER:
      BPF_TRACE ("BPF_INSN_JSLER\n");
      if ((int64_t) bpf_regs[insn->dst] <= (int64_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSETR:
      BPF_TRACE ("BPF_INSN_JSETR\n");
      if (bpf_regs[insn->dst] & bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JNER:
      BPF_TRACE ("BPF_INSN_JNER\n");
      if (bpf_regs[insn->dst] != bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_CALLR:
      BPF_TRACE ("BPF_INSN_CALLR\n");
      bpf_call (cpu, DISP (bpf_regs[insn->dst]), insn->src);
      break;
    case BPF_INSN_CALL:
      BPF_TRACE ("BPF_INSN_CALL\n");
      bpf_call (cpu, insn->imm32, insn->src);
      break;
    case BPF_INSN_EXIT:
      BPF_TRACE ("BPF_INSN_EXIT\n");
      {
        SIM_DESC sd = CPU_STATE (cpu);
        printf ("exit %" PRId64 " (0x%" PRIx64 ")\n",
                bpf_regs[BPF_R0], bpf_regs[BPF_R0]);
        sim_engine_halt (sd, cpu, NULL, bpf_pc,
                         sim_exited, 0 /* sigrc */);
        break;
      }
      /* Compare-and-jump instructions (reg OP imm).  */
    case BPF_INSN_JEQI:
      BPF_TRACE ("BPF_INSN_JEQI\n");
      if (bpf_regs[insn->dst] == insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGTI:
      BPF_TRACE ("BPF_INSN_JGTI\n");
      if (bpf_regs[insn->dst] > insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGTI:
      BPF_TRACE ("BPF_INSN_JSGTI\n");
      if ((int64_t) bpf_regs[insn->dst] > insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGEI:
      BPF_TRACE ("BPF_INSN_JGEI\n");
      if (bpf_regs[insn->dst] >= insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGEI:
      BPF_TRACE ("BPF_INSN_JSGEI\n");
      if ((int64_t) bpf_regs[insn->dst] >= (int64_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLTI:
      BPF_TRACE ("BPF_INSN_JLTI\n");
      if (bpf_regs[insn->dst] < insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLTI:
      BPF_TRACE ("BPF_INSN_JSLTI\n");
      if ((int64_t) bpf_regs[insn->dst] < (int64_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLEI:
      BPF_TRACE ("BPF_INSN_JLEI\n");
      if (bpf_regs[insn->dst] <= insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLEI:
      BPF_TRACE ("BPF_INSN_JSLEI\n");
      if ((int64_t) bpf_regs[insn->dst] <= (int64_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSETI:
      BPF_TRACE ("BPF_INSN_JSETI\n");
      if (bpf_regs[insn->dst] & insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JNEI:
      BPF_TRACE ("BPF_INSN_JNEI\n");
      if (bpf_regs[insn->dst] != insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
      /* 32-bit compare-and-jump instructions (reg OP reg).  */
    case BPF_INSN_JEQ32R:
      BPF_TRACE ("BPF_INSN_JEQ32R\n");
      if ((uint32_t) bpf_regs[insn->dst] == (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGT32R:
      BPF_TRACE ("BPF_INSN_JGT32R\n");
      if ((uint32_t) bpf_regs[insn->dst] > (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGT32R:
      BPF_TRACE ("BPF_INSN_JSGT32R\n");
      if ((int32_t) bpf_regs[insn->dst] > (int32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGE32R:
      BPF_TRACE ("BPF_INSN_JGE32R\n");
      if ((uint32_t) bpf_regs[insn->dst] >= (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGE32R:
      BPF_TRACE ("BPF_INSN_JSGE32R\n");
      if ((int32_t) bpf_regs[insn->dst] >= (int32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLT32R:
      BPF_TRACE ("BPF_INSN_JLT32R\n");
      if ((uint32_t) bpf_regs[insn->dst] < (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLT32R:
      BPF_TRACE ("BPF_INSN_JSLT32R\n");
      if ((int32_t) bpf_regs[insn->dst] < (int32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLE32R:
      BPF_TRACE ("BPF_INSN_JLE32R\n");
      if ((uint32_t) bpf_regs[insn->dst] <= (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLE32R:
      BPF_TRACE ("BPF_INSN_JSLE32R\n");
      if ((int32_t) bpf_regs[insn->dst] <= (int32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSET32R:
      BPF_TRACE ("BPF_INSN_JSET32R\n");
      if ((uint32_t) bpf_regs[insn->dst] & (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JNE32R:
      BPF_TRACE ("BPF_INSN_JNE32R\n");
      if ((uint32_t) bpf_regs[insn->dst] != (uint32_t) bpf_regs[insn->src])
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
      /* 32-bit compare-and-jump instructions (reg OP imm).  */
    case BPF_INSN_JEQ32I:
      BPF_TRACE ("BPF_INSN_JEQ32I\n");
      if ((uint32_t) bpf_regs[insn->dst] == insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGT32I:
      BPF_TRACE ("BPF_INSN_JGT32I\n");
      if ((uint32_t) bpf_regs[insn->dst] > insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGT32I:
      BPF_TRACE ("BPF_INSN_JSGT32I\n");
      if ((int32_t) bpf_regs[insn->dst] > insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JGE32I:
      BPF_TRACE ("BPF_INSN_JGE32I\n");
      if ((uint32_t) bpf_regs[insn->dst] >= insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSGE32I:
      BPF_TRACE ("BPF_INSN_JSGE32I\n");
      if ((int32_t) bpf_regs[insn->dst] >= (int32_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLT32I:
      BPF_TRACE ("BPF_INSN_JLT32I\n");
      if ((uint32_t) bpf_regs[insn->dst] < insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLT32I:
      BPF_TRACE ("BPF_INSN_JSLT32I\n");
      if ((int32_t) bpf_regs[insn->dst] < (int32_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JLE32I:
      BPF_TRACE ("BPF_INSN_JLE32I\n");
      if ((uint32_t) bpf_regs[insn->dst] <= insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSLE32I:
      BPF_TRACE ("BPF_INSN_JSLE32I\n");
      if ((int32_t) bpf_regs[insn->dst] <= (int32_t) insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JSET32I:
      BPF_TRACE ("BPF_INSN_JSET32I\n");
      if ((uint32_t) bpf_regs[insn->dst] & insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
    case BPF_INSN_JNE32I:
      BPF_TRACE ("BPF_INSN_JNE32I\n");
      if ((uint32_t) bpf_regs[insn->dst] != insn->imm32)
        next_pc = bpf_pc + DISP (insn->offset16);
      break;
      /* Atomic instructions.  */
    case BPF_INSN_AADD:
      BPF_TRACE ("BPF_INSN_AADD\n");
      bpf_write_u64 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     bpf_read_u64 (cpu, bpf_regs[insn->dst] + insn->offset16)
                     + bpf_regs[insn->src]);
      break;
    case BPF_INSN_AADD32:
      BPF_TRACE ("BPF_INSN_AADD32\n");
      bpf_write_u32 (cpu,
                     bpf_regs[insn->dst] + insn->offset16,
                     (int32_t) bpf_read_u32 (cpu, bpf_regs[insn->dst] + insn->offset16)
                     + bpf_regs[insn->src]);
      break;
      /* XXX Atomic instructions with fetching.  */
    default: /* XXX */
    case BPF_NOINSN:
      BPF_TRACE ("BPF_NOINSN\n");
      return 0;
      break;
    }

  /* Set new PC.  */
  bpf_pc = next_pc;

  return 1;
}

/* Entry points.  */

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
                     char * const *argv, char * const *env)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  host_callback *cb = STATE_CALLBACK (sd);
  bfd_vma addr;

  /* Determine the start address.

     XXX acknowledge bpf_program_section.  If it is NULL, emit a
     warning explaining that we are using the ELF file start address,
     which often is not what is actually wanted.  */
  if (abfd != NULL)
    addr = bfd_get_start_address (abfd);
  else
    addr = 0;

  sim_pc_set (cpu, addr);

  return SIM_RC_OK;
}

/* Like sim_state_free, but free the cpu buffers as well.  */

static void
bpf_free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);

  sim_cpu_free_all (sd);
  sim_state_free (sd);
}

/* Create an instance of the simulator.  */

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb,
          struct bfd *abfd, char * const *argv)
{
  SIM_DESC sd = sim_state_alloc_extra (kind, cb, sizeof (struct bpf_sim_state));
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* Set default options before parsing user options.  */
  current_target_byte_order = BFD_ENDIAN_LITTLE;

  if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct bpf_sim_state)) != SIM_RC_OK)
    goto error;

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    goto error;

  /* Add the BPF-specific option list to the simulator.  */
  if (sim_add_option_table (sd, NULL, bpf_options) != SIM_RC_OK)
    {
      bpf_free_state (sd);
      return 0;
    }

  /* The parser will print an error message for us, so we silently return.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    goto error;

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
    goto error;

  /* Configure/verify the target byte order and other runtime
     configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    goto error;

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    goto error;

  /* Initialize properties of the simulated CPU.  */

  assert (MAX_NR_PROCESSORS == 1);
  {
    SIM_CPU *cpu = STATE_CPU (sd, i);

    cpu = STATE_CPU (sd, 0);
    CPU_PC_FETCH (cpu) = bpf_pc_get;
    CPU_PC_STORE (cpu) = bpf_pc_set;
    CPU_REG_FETCH (cpu) = bpf_reg_get;
    CPU_REG_STORE (cpu) = bpf_reg_set;
  }

  return sd;

 error:
      bpf_free_state (sd);
      return NULL;
}

void
sim_engine_run (SIM_DESC sd,
                int next_cpu_nr ATTRIBUTE_UNUSED,
                int nr_cpus ATTRIBUTE_UNUSED,
                int siggnal ATTRIBUTE_UNUSED)
{
  SIM_CPU *cpu = STATE_CPU (sd, 0);
  struct bpf_insn insn;

  while (1)
    {
      if (!decode (cpu, bpf_pc, &insn))
        {
          sim_io_eprintf (sd, "couldn't decode instruction at PC 0x%" PRIx64 "\n",
                          bpf_pc);
          break;
        }

      if (!execute (cpu, &insn))
        {
          sim_io_eprintf (sd, "couldn' execute instruction at PC 0x%" PRIx64 "\n",
                          bpf_pc);
          break;
        }
    }
}