1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/* interp.c -- AArch64 sim interface to GDB.
Copyright (C) 2015-2019 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <stdio.h>
#include <assert.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include "ansidecl.h"
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "gdb/signals.h"
#include "gdb/sim-aarch64.h"
#include "sim-main.h"
#include "sim-options.h"
#include "memory.h"
#include "simulator.h"
#include "sim-assert.h"
/* Filter out (in place) symbols that are useless for disassembly.
COUNT is the number of elements in SYMBOLS.
Return the number of useful symbols. */
static long
remove_useless_symbols (asymbol **symbols, long count)
{
asymbol **in_ptr = symbols;
asymbol **out_ptr = symbols;
while (count-- > 0)
{
asymbol *sym = *in_ptr++;
if (strstr (sym->name, "gcc2_compiled"))
continue;
if (sym->name == NULL || sym->name[0] == '\0')
continue;
if (sym->flags & (BSF_DEBUGGING))
continue;
if ( bfd_is_und_section (sym->section)
|| bfd_is_com_section (sym->section))
continue;
if (sym->name[0] == '$')
continue;
*out_ptr++ = sym;
}
return out_ptr - symbols;
}
static signed int
compare_symbols (const void *ap, const void *bp)
{
const asymbol *a = * (const asymbol **) ap;
const asymbol *b = * (const asymbol **) bp;
if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
return 1;
if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
return -1;
return 0;
}
/* Find the name of the function at ADDR. */
const char *
aarch64_get_func (SIM_DESC sd, uint64_t addr)
{
long symcount = STATE_PROG_SYMS_COUNT (sd);
asymbol **symtab = STATE_PROG_SYMS (sd);
int min, max;
min = -1;
max = symcount;
while (min < max - 1)
{
int sym;
bfd_vma sa;
sym = (min + max) / 2;
sa = bfd_asymbol_value (symtab[sym]);
if (sa > addr)
max = sym;
else if (sa < addr)
min = sym;
else
{
min = sym;
break;
}
}
if (min != -1)
return bfd_asymbol_name (symtab [min]);
return "";
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
char * const *argv, char * const *env)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
bfd_vma addr = 0;
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
aarch64_set_next_PC (cpu, addr);
aarch64_update_PC (cpu);
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
if (trace_load_symbols (sd))
{
STATE_PROG_SYMS_COUNT (sd) =
remove_useless_symbols (STATE_PROG_SYMS (sd),
STATE_PROG_SYMS_COUNT (sd));
qsort (STATE_PROG_SYMS (sd), STATE_PROG_SYMS_COUNT (sd),
sizeof (asymbol *), compare_symbols);
}
aarch64_init (cpu, addr);
return SIM_RC_OK;
}
/* Read the LENGTH bytes at BUF as a little-endian value. */
static bfd_vma
get_le (unsigned char *buf, unsigned int length)
{
bfd_vma acc = 0;
while (length -- > 0)
acc = (acc << 8) + buf[length];
return acc;
}
/* Store VAL as a little-endian value in the LENGTH bytes at BUF. */
static void
put_le (unsigned char *buf, unsigned int length, bfd_vma val)
{
int i;
for (i = 0; i < length; i++)
{
buf[i] = val & 0xff;
val >>= 8;
}
}
static int
check_regno (int regno)
{
return 0 <= regno && regno < AARCH64_MAX_REGNO;
}
static size_t
reg_size (int regno)
{
if (regno == AARCH64_CPSR_REGNO || regno == AARCH64_FPSR_REGNO)
return 32;
return 64;
}
static int
aarch64_reg_get (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return 0;
size = reg_size (regno);
if (length != size)
return 0;
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
val = aarch64_get_reg_u64 (cpu, regno, 0);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
val = aarch64_get_FP_double (cpu, regno - 32);
break;
case AARCH64_PC_REGNO:
val = aarch64_get_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
val = aarch64_get_CPSR (cpu);
break;
case AARCH64_FPSR_REGNO:
val = aarch64_get_FPSR (cpu);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return -1;
}
put_le (buf, length, val);
return size;
}
static int
aarch64_reg_set (SIM_CPU *cpu, int regno, unsigned char *buf, int length)
{
size_t size;
bfd_vma val;
if (!check_regno (regno))
return -1;
size = reg_size (regno);
if (length != size)
return -1;
val = get_le (buf, length);
switch (regno)
{
case AARCH64_MIN_GR ... AARCH64_MAX_GR:
aarch64_set_reg_u64 (cpu, regno, 1, val);
break;
case AARCH64_MIN_FR ... AARCH64_MAX_FR:
aarch64_set_FP_double (cpu, regno - 32, (double) val);
break;
case AARCH64_PC_REGNO:
aarch64_set_next_PC (cpu, val);
aarch64_update_PC (cpu);
break;
case AARCH64_CPSR_REGNO:
aarch64_set_CPSR (cpu, val);
break;
case AARCH64_FPSR_REGNO:
aarch64_set_FPSR (cpu, val);
break;
default:
sim_io_eprintf (CPU_STATE (cpu),
"sim: unrecognized register number: %d\n", regno);
return 0;
}
return size;
}
static sim_cia
aarch64_pc_get (sim_cpu *cpu)
{
return aarch64_get_PC (cpu);
}
static void
aarch64_pc_set (sim_cpu *cpu, sim_cia pc)
{
aarch64_set_next_PC (cpu, pc);
aarch64_update_PC (cpu);
}
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
struct host_callback_struct * callback,
struct bfd * abfd,
char * const * argv)
{
sim_cpu *cpu;
SIM_DESC sd = sim_state_alloc (kind, callback);
if (sd == NULL)
return sd;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* Perform the initialization steps one by one. */
if (sim_cpu_alloc_all (sd, 1, 0) != SIM_RC_OK
|| sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK
|| sim_parse_args (sd, argv) != SIM_RC_OK
|| sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK
|| sim_config (sd) != SIM_RC_OK
|| sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return NULL;
}
aarch64_init_LIT_table ();
assert (MAX_NR_PROCESSORS == 1);
cpu = STATE_CPU (sd, 0);
CPU_PC_FETCH (cpu) = aarch64_pc_get;
CPU_PC_STORE (cpu) = aarch64_pc_set;
CPU_REG_FETCH (cpu) = aarch64_reg_get;
CPU_REG_STORE (cpu) = aarch64_reg_set;
/* Set SP, FP and PC to 0 and set LR to -1
so we can detect a top-level return. */
aarch64_set_reg_u64 (cpu, SP, 1, 0);
aarch64_set_reg_u64 (cpu, FP, 1, 0);
aarch64_set_reg_u64 (cpu, LR, 1, TOP_LEVEL_RETURN_PC);
aarch64_set_next_PC (cpu, 0);
aarch64_update_PC (cpu);
/* Default to a 128 Mbyte (== 2^27) memory space. */
sim_do_commandf (sd, "memory-size 0x8000000");
return sd;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr ATTRIBUTE_UNUSED,
int nr_cpus ATTRIBUTE_UNUSED,
int siggnal ATTRIBUTE_UNUSED)
{
aarch64_run (sd);
}
|