1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
|
/* aarch64-dis.c -- AArch64 disassembler.
Copyright (C) 2009-2018 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not,
see <http://www.gnu.org/licenses/>. */
#include "sysdep.h"
#include "bfd_stdint.h"
#include "disassemble.h"
#include "libiberty.h"
#include "opintl.h"
#include "aarch64-dis.h"
#include "elf-bfd.h"
#define ERR_OK 0
#define ERR_UND -1
#define ERR_UNP -3
#define ERR_NYI -5
#define INSNLEN 4
/* Cached mapping symbol state. */
enum map_type
{
MAP_INSN,
MAP_DATA
};
static enum map_type last_type;
static int last_mapping_sym = -1;
static bfd_vma last_mapping_addr = 0;
/* Other options */
static int no_aliases = 0; /* If set disassemble as most general inst. */
static int no_notes = 1; /* If set do not print disassemble notes in the
output as comments. */
static void
set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
{
}
static void
parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
{
/* Try to match options that are simple flags */
if (CONST_STRNEQ (option, "no-aliases"))
{
no_aliases = 1;
return;
}
if (CONST_STRNEQ (option, "aliases"))
{
no_aliases = 0;
return;
}
if (CONST_STRNEQ (option, "no-notes"))
{
no_notes = 1;
return;
}
if (CONST_STRNEQ (option, "notes"))
{
no_notes = 0;
return;
}
#ifdef DEBUG_AARCH64
if (CONST_STRNEQ (option, "debug_dump"))
{
debug_dump = 1;
return;
}
#endif /* DEBUG_AARCH64 */
/* Invalid option. */
opcodes_error_handler (_("unrecognised disassembler option: %s"), option);
}
static void
parse_aarch64_dis_options (const char *options)
{
const char *option_end;
if (options == NULL)
return;
while (*options != '\0')
{
/* Skip empty options. */
if (*options == ',')
{
options++;
continue;
}
/* We know that *options is neither NUL or a comma. */
option_end = options + 1;
while (*option_end != ',' && *option_end != '\0')
option_end++;
parse_aarch64_dis_option (options, option_end - options);
/* Go on to the next one. If option_end points to a comma, it
will be skipped above. */
options = option_end;
}
}
/* Functions doing the instruction disassembling. */
/* The unnamed arguments consist of the number of fields and information about
these fields where the VALUE will be extracted from CODE and returned.
MASK can be zero or the base mask of the opcode.
N.B. the fields are required to be in such an order than the most signficant
field for VALUE comes the first, e.g. the <index> in
SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
is encoded in H:L:M in some cases, the fields H:L:M should be passed in
the order of H, L, M. */
aarch64_insn
extract_fields (aarch64_insn code, aarch64_insn mask, ...)
{
uint32_t num;
const aarch64_field *field;
enum aarch64_field_kind kind;
va_list va;
va_start (va, mask);
num = va_arg (va, uint32_t);
assert (num <= 5);
aarch64_insn value = 0x0;
while (num--)
{
kind = va_arg (va, enum aarch64_field_kind);
field = &fields[kind];
value <<= field->width;
value |= extract_field (kind, code, mask);
}
return value;
}
/* Extract the value of all fields in SELF->fields from instruction CODE.
The least significant bit comes from the final field. */
static aarch64_insn
extract_all_fields (const aarch64_operand *self, aarch64_insn code)
{
aarch64_insn value;
unsigned int i;
enum aarch64_field_kind kind;
value = 0;
for (i = 0; i < ARRAY_SIZE (self->fields) && self->fields[i] != FLD_NIL; ++i)
{
kind = self->fields[i];
value <<= fields[kind].width;
value |= extract_field (kind, code, 0);
}
return value;
}
/* Sign-extend bit I of VALUE. */
static inline int32_t
sign_extend (aarch64_insn value, unsigned i)
{
uint32_t ret = value;
assert (i < 32);
if ((value >> i) & 0x1)
{
uint32_t val = (uint32_t)(-1) << i;
ret = ret | val;
}
return (int32_t) ret;
}
/* N.B. the following inline helpfer functions create a dependency on the
order of operand qualifier enumerators. */
/* Given VALUE, return qualifier for a general purpose register. */
static inline enum aarch64_opnd_qualifier
get_greg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
assert (value <= 0x1
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given VALUE, return qualifier for a vector register. This does not support
decoding instructions that accept the 2H vector type. */
static inline enum aarch64_opnd_qualifier
get_vreg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
/* Instructions using vector type 2H should not call this function. Skip over
the 2H qualifier. */
if (qualifier >= AARCH64_OPND_QLF_V_2H)
qualifier += 1;
assert (value <= 0x8
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
static inline enum aarch64_opnd_qualifier
get_sreg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
assert (value <= 0x4
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given the instruction in *INST which is probably half way through the
decoding and our caller wants to know the expected qualifier for operand
I. Return such a qualifier if we can establish it; otherwise return
AARCH64_OPND_QLF_NIL. */
static aarch64_opnd_qualifier_t
get_expected_qualifier (const aarch64_inst *inst, int i)
{
aarch64_opnd_qualifier_seq_t qualifiers;
/* Should not be called if the qualifier is known. */
assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
i, qualifiers))
return qualifiers[i];
else
return AARCH64_OPND_QLF_NIL;
}
/* Operand extractors. */
bfd_boolean
aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->reg.regno = extract_field (self->fields[0], code, 0);
return TRUE;
}
bfd_boolean
aarch64_ext_regno_pair (const aarch64_operand *self ATTRIBUTE_UNUSED, aarch64_opnd_info *info,
const aarch64_insn code ATTRIBUTE_UNUSED,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
assert (info->idx == 1
|| info->idx ==3);
info->reg.regno = inst->operands[info->idx - 1].reg.regno + 1;
return TRUE;
}
/* e.g. IC <ic_op>{, <Xt>}. */
bfd_boolean
aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->reg.regno = extract_field (self->fields[0], code, 0);
assert (info->idx == 1
&& (aarch64_get_operand_class (inst->operands[0].type)
== AARCH64_OPND_CLASS_SYSTEM));
/* This will make the constraint checking happy and more importantly will
help the disassembler determine whether this operand is optional or
not. */
info->present = aarch64_sys_ins_reg_has_xt (inst->operands[0].sysins_op);
return TRUE;
}
/* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
bfd_boolean
aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* regno */
info->reglane.regno = extract_field (self->fields[0], code,
inst->opcode->mask);
/* Index and/or type. */
if (inst->opcode->iclass == asisdone
|| inst->opcode->iclass == asimdins)
{
if (info->type == AARCH64_OPND_En
&& inst->opcode->operands[0] == AARCH64_OPND_Ed)
{
unsigned shift;
/* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
assert (info->idx == 1); /* Vn */
aarch64_insn value = extract_field (FLD_imm4, code, 0);
/* Depend on AARCH64_OPND_Ed to determine the qualifier. */
info->qualifier = get_expected_qualifier (inst, info->idx);
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
info->reglane.index = value >> shift;
}
else
{
/* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
imm5<3:0> <V>
0000 RESERVED
xxx1 B
xx10 H
x100 S
1000 D */
int pos = -1;
aarch64_insn value = extract_field (FLD_imm5, code, 0);
while (++pos <= 3 && (value & 0x1) == 0)
value >>= 1;
if (pos > 3)
return FALSE;
info->qualifier = get_sreg_qualifier_from_value (pos);
info->reglane.index = (unsigned) (value >> 1);
}
}
else if (inst->opcode->iclass == dotproduct)
{
/* Need information in other operand(s) to help decoding. */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_S_4B:
/* L:H */
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
info->reglane.regno &= 0x1f;
break;
default:
return FALSE;
}
}
else if (inst->opcode->iclass == cryptosm3)
{
/* index for e.g. SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>S[<imm2>]. */
info->reglane.index = extract_field (FLD_SM3_imm2, code, 0);
}
else
{
/* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
/* Need information in other operand(s) to help decoding. */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_S_H:
if (info->type == AARCH64_OPND_Em16)
{
/* h:l:m */
info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
FLD_M);
info->reglane.regno &= 0xf;
}
else
{
/* h:l */
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
}
break;
case AARCH64_OPND_QLF_S_S:
/* h:l */
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
break;
case AARCH64_OPND_QLF_S_D:
/* H */
info->reglane.index = extract_field (FLD_H, code, 0);
break;
default:
return FALSE;
}
if (inst->opcode->op == OP_FCMLA_ELEM
&& info->qualifier != AARCH64_OPND_QLF_S_H)
{
/* Complex operand takes two elements. */
if (info->reglane.index & 1)
return FALSE;
info->reglane.index /= 2;
}
}
return TRUE;
}
bfd_boolean
aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* R */
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
/* len */
info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
return TRUE;
}
/* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
bfd_boolean
aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Number of elements in each structure to be loaded/stored. */
unsigned expected_num = get_opcode_dependent_value (inst->opcode);
struct
{
unsigned is_reserved;
unsigned num_regs;
unsigned num_elements;
} data [] =
{ {0, 4, 4},
{1, 4, 4},
{0, 4, 1},
{0, 4, 2},
{0, 3, 3},
{1, 3, 3},
{0, 3, 1},
{0, 1, 1},
{0, 2, 2},
{1, 2, 2},
{0, 2, 1},
};
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* opcode */
value = extract_field (FLD_opcode, code, 0);
/* PR 21595: Check for a bogus value. */
if (value >= ARRAY_SIZE (data))
return FALSE;
if (expected_num != data[value].num_elements || data[value].is_reserved)
return FALSE;
info->reglist.num_regs = data[value].num_regs;
return TRUE;
}
/* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
lanes instructions. */
bfd_boolean
aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* S */
value = extract_field (FLD_S, code, 0);
/* Number of registers is equal to the number of elements in
each structure to be loaded/stored. */
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
/* Except when it is LD1R. */
if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
info->reglist.num_regs = 2;
return TRUE;
}
/* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
load/store single element instructions. */
bfd_boolean
aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_field field = {0, 0};
aarch64_insn QSsize; /* fields Q:S:size. */
aarch64_insn opcodeh2; /* opcode<2:1> */
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* Decode the index, opcode<2:1> and size. */
gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
opcodeh2 = extract_field_2 (&field, code, 0);
QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
switch (opcodeh2)
{
case 0x0:
info->qualifier = AARCH64_OPND_QLF_S_B;
/* Index encoded in "Q:S:size". */
info->reglist.index = QSsize;
break;
case 0x1:
if (QSsize & 0x1)
/* UND. */
return FALSE;
info->qualifier = AARCH64_OPND_QLF_S_H;
/* Index encoded in "Q:S:size<1>". */
info->reglist.index = QSsize >> 1;
break;
case 0x2:
if ((QSsize >> 1) & 0x1)
/* UND. */
return FALSE;
if ((QSsize & 0x1) == 0)
{
info->qualifier = AARCH64_OPND_QLF_S_S;
/* Index encoded in "Q:S". */
info->reglist.index = QSsize >> 2;
}
else
{
if (extract_field (FLD_S, code, 0))
/* UND */
return FALSE;
info->qualifier = AARCH64_OPND_QLF_S_D;
/* Index encoded in "Q". */
info->reglist.index = QSsize >> 3;
}
break;
default:
return FALSE;
}
info->reglist.has_index = 1;
info->reglist.num_regs = 0;
/* Number of registers is equal to the number of elements in
each structure to be loaded/stored. */
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
return TRUE;
}
/* Decode fields immh:immb and/or Q for e.g.
SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
or SSHR <V><d>, <V><n>, #<shift>. */
bfd_boolean
aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int pos;
aarch64_insn Q, imm, immh;
enum aarch64_insn_class iclass = inst->opcode->iclass;
immh = extract_field (FLD_immh, code, 0);
if (immh == 0)
return FALSE;
imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
pos = 4;
/* Get highest set bit in immh. */
while (--pos >= 0 && (immh & 0x8) == 0)
immh <<= 1;
assert ((iclass == asimdshf || iclass == asisdshf)
&& (info->type == AARCH64_OPND_IMM_VLSR
|| info->type == AARCH64_OPND_IMM_VLSL));
if (iclass == asimdshf)
{
Q = extract_field (FLD_Q, code, 0);
/* immh Q <T>
0000 x SEE AdvSIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D */
info->qualifier =
get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
}
else
info->qualifier = get_sreg_qualifier_from_value (pos);
if (info->type == AARCH64_OPND_IMM_VLSR)
/* immh <shift>
0000 SEE AdvSIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb)) */
info->imm.value = (16 << pos) - imm;
else
/* immh:immb
immh <shift>
0000 SEE AdvSIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64) */
info->imm.value = imm - (8 << pos);
return TRUE;
}
/* Decode shift immediate for e.g. sshr (imm). */
bfd_boolean
aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int64_t imm;
aarch64_insn val;
val = extract_field (FLD_size, code, 0);
switch (val)
{
case 0: imm = 8; break;
case 1: imm = 16; break;
case 2: imm = 32; break;
default: return FALSE;
}
info->imm.value = imm;
return TRUE;
}
/* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
value in the field(s) will be extracted as unsigned immediate value. */
bfd_boolean
aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int64_t imm;
imm = extract_all_fields (self, code);
if (operand_need_sign_extension (self))
imm = sign_extend (imm, get_operand_fields_width (self) - 1);
if (operand_need_shift_by_two (self))
imm <<= 2;
if (info->type == AARCH64_OPND_ADDR_ADRP)
imm <<= 12;
info->imm.value = imm;
return TRUE;
}
/* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
bfd_boolean
aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors)
{
aarch64_ext_imm (self, info, code, inst, errors);
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
return TRUE;
}
/* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
bfd_boolean
aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
uint64_t imm;
enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
aarch64_field field = {0, 0};
assert (info->idx == 1);
if (info->type == AARCH64_OPND_SIMD_FPIMM)
info->imm.is_fp = 1;
/* a:b:c:d:e:f:g:h */
imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
{
/* Either MOVI <Dd>, #<imm>
or MOVI <Vd>.2D, #<imm>.
<imm> is a 64-bit immediate
'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
encoded in "a:b:c:d:e:f:g:h". */
int i;
unsigned abcdefgh = imm;
for (imm = 0ull, i = 0; i < 8; i++)
if (((abcdefgh >> i) & 0x1) != 0)
imm |= 0xffull << (8 * i);
}
info->imm.value = imm;
/* cmode */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_NIL:
/* no shift */
info->shifter.kind = AARCH64_MOD_NONE;
return 1;
case AARCH64_OPND_QLF_LSL:
/* shift zeros */
info->shifter.kind = AARCH64_MOD_LSL;
switch (aarch64_get_qualifier_esize (opnd0_qualifier))
{
case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
default: assert (0); return FALSE;
}
/* 00: 0; 01: 8; 10:16; 11:24. */
info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
break;
case AARCH64_OPND_QLF_MSL:
/* shift ones */
info->shifter.kind = AARCH64_MOD_MSL;
gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
break;
default:
assert (0);
return FALSE;
}
return TRUE;
}
/* Decode an 8-bit floating-point immediate. */
bfd_boolean
aarch64_ext_fpimm (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->imm.value = extract_all_fields (self, code);
info->imm.is_fp = 1;
return TRUE;
}
/* Decode a 1-bit rotate immediate (#90 or #270). */
bfd_boolean
aarch64_ext_imm_rotate1 (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
uint64_t rot = extract_field (self->fields[0], code, 0);
assert (rot < 2U);
info->imm.value = rot * 180 + 90;
return TRUE;
}
/* Decode a 2-bit rotate immediate (#0, #90, #180 or #270). */
bfd_boolean
aarch64_ext_imm_rotate2 (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
uint64_t rot = extract_field (self->fields[0], code, 0);
assert (rot < 4U);
info->imm.value = rot * 90;
return TRUE;
}
/* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
bfd_boolean
aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->imm.value = 64- extract_field (FLD_scale, code, 0);
return TRUE;
}
/* Decode arithmetic immediate for e.g.
SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
bfd_boolean
aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
info->shifter.kind = AARCH64_MOD_LSL;
/* shift */
value = extract_field (FLD_shift, code, 0);
if (value >= 2)
return FALSE;
info->shifter.amount = value ? 12 : 0;
/* imm12 (unsigned) */
info->imm.value = extract_field (FLD_imm12, code, 0);
return TRUE;
}
/* Return true if VALUE is a valid logical immediate encoding, storing the
decoded value in *RESULT if so. ESIZE is the number of bytes in the
decoded immediate. */
static bfd_boolean
decode_limm (uint32_t esize, aarch64_insn value, int64_t *result)
{
uint64_t imm, mask;
uint32_t N, R, S;
unsigned simd_size;
/* value is N:immr:imms. */
S = value & 0x3f;
R = (value >> 6) & 0x3f;
N = (value >> 12) & 0x1;
/* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
(in other words, right rotated by R), then replicated. */
if (N != 0)
{
simd_size = 64;
mask = 0xffffffffffffffffull;
}
else
{
switch (S)
{
case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
default: return FALSE;
}
mask = (1ull << simd_size) - 1;
/* Top bits are IGNORED. */
R &= simd_size - 1;
}
if (simd_size > esize * 8)
return FALSE;
/* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
if (S == simd_size - 1)
return FALSE;
/* S+1 consecutive bits to 1. */
/* NOTE: S can't be 63 due to detection above. */
imm = (1ull << (S + 1)) - 1;
/* Rotate to the left by simd_size - R. */
if (R != 0)
imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
/* Replicate the value according to SIMD size. */
switch (simd_size)
{
case 2: imm = (imm << 2) | imm;
/* Fall through. */
case 4: imm = (imm << 4) | imm;
/* Fall through. */
case 8: imm = (imm << 8) | imm;
/* Fall through. */
case 16: imm = (imm << 16) | imm;
/* Fall through. */
case 32: imm = (imm << 32) | imm;
/* Fall through. */
case 64: break;
default: assert (0); return 0;
}
*result = imm & ~((uint64_t) -1 << (esize * 4) << (esize * 4));
return TRUE;
}
/* Decode a logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
bfd_boolean
aarch64_ext_limm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
uint32_t esize;
aarch64_insn value;
value = extract_fields (code, 0, 3, self->fields[0], self->fields[1],
self->fields[2]);
esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
return decode_limm (esize, value, &info->imm.value);
}
/* Decode a logical immediate for the BIC alias of AND (etc.). */
bfd_boolean
aarch64_ext_inv_limm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors)
{
if (!aarch64_ext_limm (self, info, code, inst, errors))
return FALSE;
info->imm.value = ~info->imm.value;
return TRUE;
}
/* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
bfd_boolean
aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
const aarch64_insn code, const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rt */
info->reg.regno = extract_field (FLD_Rt, code, 0);
/* size */
value = extract_field (FLD_ldst_size, code, 0);
if (inst->opcode->iclass == ldstpair_indexed
|| inst->opcode->iclass == ldstnapair_offs
|| inst->opcode->iclass == ldstpair_off
|| inst->opcode->iclass == loadlit)
{
enum aarch64_opnd_qualifier qualifier;
switch (value)
{
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
default: return FALSE;
}
info->qualifier = qualifier;
}
else
{
/* opc1:size */
value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
if (value > 0x4)
return FALSE;
info->qualifier = get_sreg_qualifier_from_value (value);
}
return TRUE;
}
/* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
bfd_boolean
aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
return TRUE;
}
/* Decode the address operand for e.g.
stlur <Xt>, [<Xn|SP>{, <amount>}]. */
bfd_boolean
aarch64_ext_addr_offset (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Rn */
info->addr.base_regno = extract_field (self->fields[0], code, 0);
/* simm9 */
aarch64_insn imm = extract_fields (code, 0, 1, self->fields[1]);
info->addr.offset.imm = sign_extend (imm, 8);
if (extract_field (self->fields[2], code, 0) == 1) {
info->addr.writeback = 1;
info->addr.preind = 1;
}
return TRUE;
}
/* Decode the address operand for e.g.
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
bfd_boolean
aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn S, value;
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* Rm */
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
/* option */
value = extract_field (FLD_option, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
/* Fix-up the shifter kind; although the table-driven approach is
efficient, it is slightly inflexible, thus needing this fix-up. */
if (info->shifter.kind == AARCH64_MOD_UXTX)
info->shifter.kind = AARCH64_MOD_LSL;
/* S */
S = extract_field (FLD_S, code, 0);
if (S == 0)
{
info->shifter.amount = 0;
info->shifter.amount_present = 0;
}
else
{
int size;
/* Need information in other operand(s) to help achieve the decoding
from 'S' field. */
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Get the size of the data element that is accessed, which may be
different from that of the source register size, e.g. in strb/ldrb. */
size = aarch64_get_qualifier_esize (info->qualifier);
info->shifter.amount = get_logsz (size);
info->shifter.amount_present = 1;
}
return TRUE;
}
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
bfd_boolean
aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn imm;
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* simm (imm9 or imm7) */
imm = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
if (self->fields[0] == FLD_imm7)
/* scaled immediate in ld/st pair instructions. */
info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
/* qualifier */
if (inst->opcode->iclass == ldst_unscaled
|| inst->opcode->iclass == ldstnapair_offs
|| inst->opcode->iclass == ldstpair_off
|| inst->opcode->iclass == ldst_unpriv)
info->addr.writeback = 0;
else
{
/* pre/post- index */
info->addr.writeback = 1;
if (extract_field (self->fields[1], code, 0) == 1)
info->addr.preind = 1;
else
info->addr.postind = 1;
}
return TRUE;
}
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
bfd_boolean
aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int shift;
info->qualifier = get_expected_qualifier (inst, info->idx);
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
/* Rn */
info->addr.base_regno = extract_field (self->fields[0], code, 0);
/* uimm12 */
info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
return TRUE;
}
/* Decode the address operand for e.g. LDRAA <Xt>, [<Xn|SP>{, #<simm>}]. */
bfd_boolean
aarch64_ext_addr_simm10 (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn imm;
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Rn */
info->addr.base_regno = extract_field (self->fields[0], code, 0);
/* simm10 */
imm = extract_fields (code, 0, 2, self->fields[1], self->fields[2]);
info->addr.offset.imm = sign_extend (imm, 9) << 3;
if (extract_field (self->fields[3], code, 0) == 1) {
info->addr.writeback = 1;
info->addr.preind = 1;
}
return TRUE;
}
/* Decode the address operand for e.g.
LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
bfd_boolean
aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* The opcode dependent area stores the number of elements in
each structure to be loaded/stored. */
int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* Rm | #<amount> */
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
if (info->addr.offset.regno == 31)
{
if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
/* Special handling of loading single structure to all lane. */
info->addr.offset.imm = (is_ld1r ? 1
: inst->operands[0].reglist.num_regs)
* aarch64_get_qualifier_esize (inst->operands[0].qualifier);
else
info->addr.offset.imm = inst->operands[0].reglist.num_regs
* aarch64_get_qualifier_esize (inst->operands[0].qualifier)
* aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
}
else
info->addr.offset.is_reg = 1;
info->addr.writeback = 1;
return TRUE;
}
/* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
bfd_boolean
aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* cond */
value = extract_field (FLD_cond, code, 0);
info->cond = get_cond_from_value (value);
return TRUE;
}
/* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
bfd_boolean
aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* op0:op1:CRn:CRm:op2 */
info->sysreg.value = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
FLD_CRm, FLD_op2);
info->sysreg.flags = 0;
/* If a system instruction, check which restrictions should be on the register
value during decoding, these will be enforced then. */
if (inst->opcode->iclass == ic_system)
{
/* Check to see if it's read-only, else check if it's write only.
if it's both or unspecified don't care. */
if ((inst->opcode->flags & (F_SYS_READ | F_SYS_WRITE)) == F_SYS_READ)
info->sysreg.flags = F_REG_READ;
else if ((inst->opcode->flags & (F_SYS_READ | F_SYS_WRITE))
== F_SYS_WRITE)
info->sysreg.flags = F_REG_WRITE;
}
return TRUE;
}
/* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
bfd_boolean
aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int i;
/* op1:op2 */
info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
return TRUE;
/* Reserved value in <pstatefield>. */
return FALSE;
}
/* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
bfd_boolean
aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int i;
aarch64_insn value;
const aarch64_sys_ins_reg *sysins_ops;
/* op0:op1:CRn:CRm:op2 */
value = extract_fields (code, 0, 5,
FLD_op0, FLD_op1, FLD_CRn,
FLD_CRm, FLD_op2);
switch (info->type)
{
case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
default: assert (0); return FALSE;
}
for (i = 0; sysins_ops[i].name != NULL; ++i)
if (sysins_ops[i].value == value)
{
info->sysins_op = sysins_ops + i;
DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
info->sysins_op->name,
(unsigned)info->sysins_op->value,
aarch64_sys_ins_reg_has_xt (info->sysins_op), i);
return TRUE;
}
return FALSE;
}
/* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
bfd_boolean
aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* CRm */
info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
return TRUE;
}
/* Decode the prefetch operation option operand for e.g.
PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
bfd_boolean
aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* prfop in Rt */
info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
return TRUE;
}
/* Decode the hint number for an alias taking an operand. Set info->hint_option
to the matching name/value pair in aarch64_hint_options. */
bfd_boolean
aarch64_ext_hint (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
/* CRm:op2. */
unsigned hint_number;
int i;
hint_number = extract_fields (code, 0, 2, FLD_CRm, FLD_op2);
for (i = 0; aarch64_hint_options[i].name != NULL; i++)
{
if (hint_number == aarch64_hint_options[i].value)
{
info->hint_option = &(aarch64_hint_options[i]);
return TRUE;
}
}
return FALSE;
}
/* Decode the extended register operand for e.g.
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
bfd_boolean
aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rm */
info->reg.regno = extract_field (FLD_Rm, code, 0);
/* option */
value = extract_field (FLD_option, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
/* imm3 */
info->shifter.amount = extract_field (FLD_imm3, code, 0);
/* This makes the constraint checking happy. */
info->shifter.operator_present = 1;
/* Assume inst->operands[0].qualifier has been resolved. */
assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
info->qualifier = AARCH64_OPND_QLF_W;
if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
&& (info->shifter.kind == AARCH64_MOD_UXTX
|| info->shifter.kind == AARCH64_MOD_SXTX))
info->qualifier = AARCH64_OPND_QLF_X;
return TRUE;
}
/* Decode the shifted register operand for e.g.
SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
bfd_boolean
aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rm */
info->reg.regno = extract_field (FLD_Rm, code, 0);
/* shift */
value = extract_field (FLD_shift, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */);
if (info->shifter.kind == AARCH64_MOD_ROR
&& inst->opcode->iclass != log_shift)
/* ROR is not available for the shifted register operand in arithmetic
instructions. */
return FALSE;
/* imm6 */
info->shifter.amount = extract_field (FLD_imm6, code, 0);
/* This makes the constraint checking happy. */
info->shifter.operator_present = 1;
return TRUE;
}
/* Decode an SVE address [<base>, #<offset>*<factor>, MUL VL],
where <offset> is given by the OFFSET parameter and where <factor> is
1 plus SELF's operand-dependent value. fields[0] specifies the field
that holds <base>. */
static bfd_boolean
aarch64_ext_sve_addr_reg_mul_vl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
int64_t offset)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = offset * (1 + get_operand_specific_data (self));
info->addr.offset.is_reg = FALSE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
if (offset != 0)
info->shifter.kind = AARCH64_MOD_MUL_VL;
info->shifter.amount = 1;
info->shifter.operator_present = (info->addr.offset.imm != 0);
info->shifter.amount_present = FALSE;
return TRUE;
}
/* Decode an SVE address [<base>, #<simm4>*<factor>, MUL VL],
where <simm4> is a 4-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm4> is encoded in the SVE_imm4 field. */
bfd_boolean
aarch64_ext_sve_addr_ri_s4xvl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_field (FLD_SVE_imm4, code, 0);
offset = ((offset + 8) & 15) - 8;
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<simm6>*<factor>, MUL VL],
where <simm6> is a 6-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm6> is encoded in the SVE_imm6 field. */
bfd_boolean
aarch64_ext_sve_addr_ri_s6xvl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_field (FLD_SVE_imm6, code, 0);
offset = (((offset + 32) & 63) - 32);
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<simm9>*<factor>, MUL VL],
where <simm9> is a 9-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm9> is encoded in the concatenation of the SVE_imm6
and imm3 fields, with imm3 being the less-significant part. */
bfd_boolean
aarch64_ext_sve_addr_ri_s9xvl (const aarch64_operand *self,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_fields (code, 0, 2, FLD_SVE_imm6, FLD_imm3);
offset = (((offset + 256) & 511) - 256);
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<offset> << <shift>], where <offset>
is given by the OFFSET parameter and where <shift> is SELF's operand-
dependent value. fields[0] specifies the base register field <base>. */
static bfd_boolean
aarch64_ext_sve_addr_reg_imm (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
int64_t offset)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = offset * (1 << get_operand_specific_data (self));
info->addr.offset.is_reg = FALSE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.operator_present = FALSE;
info->shifter.amount_present = FALSE;
return TRUE;
}
/* Decode an SVE address [X<n>, #<SVE_imm4> << <shift>], where <SVE_imm4>
is a 4-bit signed number and where <shift> is SELF's operand-dependent
value. fields[0] specifies the base register field. */
bfd_boolean
aarch64_ext_sve_addr_ri_s4 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset = sign_extend (extract_field (FLD_SVE_imm4, code, 0), 3);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [X<n>, #<SVE_imm6> << <shift>], where <SVE_imm6>
is a 6-bit unsigned number and where <shift> is SELF's operand-dependent
value. fields[0] specifies the base register field. */
bfd_boolean
aarch64_ext_sve_addr_ri_u6 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset = extract_field (FLD_SVE_imm6, code, 0);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [X<n>, X<m>{, LSL #<shift>}], where <shift>
is SELF's operand-dependent value. fields[0] specifies the base
register field and fields[1] specifies the offset register field. */
bfd_boolean
aarch64_ext_sve_addr_rr_lsl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int index_regno;
index_regno = extract_field (self->fields[1], code, 0);
if (index_regno == 31 && (self->flags & OPD_F_NO_ZR) != 0)
return FALSE;
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = index_regno;
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = get_operand_specific_data (self);
info->shifter.operator_present = (info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
return TRUE;
}
/* Decode an SVE address [X<n>, Z<m>.<T>, (S|U)XTW {#<shift>}], where
<shift> is SELF's operand-dependent value. fields[0] specifies the
base register field, fields[1] specifies the offset register field and
fields[2] is a single-bit field that selects SXTW over UXTW. */
bfd_boolean
aarch64_ext_sve_addr_rz_xtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
if (extract_field (self->fields[2], code, 0))
info->shifter.kind = AARCH64_MOD_SXTW;
else
info->shifter.kind = AARCH64_MOD_UXTW;
info->shifter.amount = get_operand_specific_data (self);
info->shifter.operator_present = TRUE;
info->shifter.amount_present = (info->shifter.amount != 0);
return TRUE;
}
/* Decode an SVE address [Z<n>.<T>, #<imm5> << <shift>], where <imm5> is a
5-bit unsigned number and where <shift> is SELF's operand-dependent value.
fields[0] specifies the base register field. */
bfd_boolean
aarch64_ext_sve_addr_zi_u5 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int offset = extract_field (FLD_imm5, code, 0);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, <modifier> {#<msz>}}],
where <modifier> is given by KIND and where <msz> is a 2-bit unsigned
number. fields[0] specifies the base register field and fields[1]
specifies the offset register field. */
static bfd_boolean
aarch64_ext_sve_addr_zz (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code, enum aarch64_modifier_kind kind)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.kind = kind;
info->shifter.amount = extract_field (FLD_SVE_msz, code, 0);
info->shifter.operator_present = (kind != AARCH64_MOD_LSL
|| info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
return TRUE;
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, LSL #<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
bfd_boolean
aarch64_ext_sve_addr_zz_lsl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_LSL);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, SXTW {#<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
bfd_boolean
aarch64_ext_sve_addr_zz_sxtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_SXTW);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, UXTW {#<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
bfd_boolean
aarch64_ext_sve_addr_zz_uxtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_UXTW);
}
/* Finish decoding an SVE arithmetic immediate, given that INFO already
has the raw field value and that the low 8 bits decode to VALUE. */
static bfd_boolean
decode_sve_aimm (aarch64_opnd_info *info, int64_t value)
{
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = 0;
if (info->imm.value & 0x100)
{
if (value == 0)
/* Decode 0x100 as #0, LSL #8. */
info->shifter.amount = 8;
else
value *= 256;
}
info->shifter.operator_present = (info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
info->imm.value = value;
return TRUE;
}
/* Decode an SVE ADD/SUB immediate. */
bfd_boolean
aarch64_ext_sve_aimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors)
{
return (aarch64_ext_imm (self, info, code, inst, errors)
&& decode_sve_aimm (info, (uint8_t) info->imm.value));
}
/* Decode an SVE CPY/DUP immediate. */
bfd_boolean
aarch64_ext_sve_asimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors)
{
return (aarch64_ext_imm (self, info, code, inst, errors)
&& decode_sve_aimm (info, (int8_t) info->imm.value));
}
/* Decode a single-bit immediate that selects between #0.5 and #1.0.
The fields array specifies which field to use. */
bfd_boolean
aarch64_ext_sve_float_half_one (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x3f800000;
else
info->imm.value = 0x3f000000;
info->imm.is_fp = TRUE;
return TRUE;
}
/* Decode a single-bit immediate that selects between #0.5 and #2.0.
The fields array specifies which field to use. */
bfd_boolean
aarch64_ext_sve_float_half_two (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x40000000;
else
info->imm.value = 0x3f000000;
info->imm.is_fp = TRUE;
return TRUE;
}
/* Decode a single-bit immediate that selects between #0.0 and #1.0.
The fields array specifies which field to use. */
bfd_boolean
aarch64_ext_sve_float_zero_one (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x3f800000;
else
info->imm.value = 0x0;
info->imm.is_fp = TRUE;
return TRUE;
}
/* Decode Zn[MM], where MM has a 7-bit triangular encoding. The fields
array specifies which field to use for Zn. MM is encoded in the
concatenation of imm5 and SVE_tszh, with imm5 being the less
significant part. */
bfd_boolean
aarch64_ext_sve_index (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
int val;
info->reglane.regno = extract_field (self->fields[0], code, 0);
val = extract_fields (code, 0, 2, FLD_SVE_tszh, FLD_imm5);
if ((val & 31) == 0)
return 0;
while ((val & 1) == 0)
val /= 2;
info->reglane.index = val / 2;
return TRUE;
}
/* Decode a logical immediate for the MOV alias of SVE DUPM. */
bfd_boolean
aarch64_ext_sve_limm_mov (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst,
aarch64_operand_error *errors)
{
int esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
return (aarch64_ext_limm (self, info, code, inst, errors)
&& aarch64_sve_dupm_mov_immediate_p (info->imm.value, esize));
}
/* Decode Zn[MM], where Zn occupies the least-significant part of the field
and where MM occupies the most-significant part. The operand-dependent
value specifies the number of bits in Zn. */
bfd_boolean
aarch64_ext_sve_quad_index (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
unsigned int reg_bits = get_operand_specific_data (self);
unsigned int val = extract_all_fields (self, code);
info->reglane.regno = val & ((1 << reg_bits) - 1);
info->reglane.index = val >> reg_bits;
return TRUE;
}
/* Decode {Zn.<T> - Zm.<T>}. The fields array specifies which field
to use for Zn. The opcode-dependent value specifies the number
of registers in the list. */
bfd_boolean
aarch64_ext_sve_reglist (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
return TRUE;
}
/* Decode <pattern>{, MUL #<amount>}. The fields array specifies which
fields to use for <pattern>. <amount> - 1 is encoded in the SVE_imm4
field. */
bfd_boolean
aarch64_ext_sve_scale (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst, aarch64_operand_error *errors)
{
int val;
if (!aarch64_ext_imm (self, info, code, inst, errors))
return FALSE;
val = extract_field (FLD_SVE_imm4, code, 0);
info->shifter.kind = AARCH64_MOD_MUL;
info->shifter.amount = val + 1;
info->shifter.operator_present = (val != 0);
info->shifter.amount_present = (val != 0);
return TRUE;
}
/* Return the top set bit in VALUE, which is expected to be relatively
small. */
static uint64_t
get_top_bit (uint64_t value)
{
while ((value & -value) != value)
value -= value & -value;
return value;
}
/* Decode an SVE shift-left immediate. */
bfd_boolean
aarch64_ext_sve_shlimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst, aarch64_operand_error *errors)
{
if (!aarch64_ext_imm (self, info, code, inst, errors)
|| info->imm.value == 0)
return FALSE;
info->imm.value -= get_top_bit (info->imm.value);
return TRUE;
}
/* Decode an SVE shift-right immediate. */
bfd_boolean
aarch64_ext_sve_shrimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst, aarch64_operand_error *errors)
{
if (!aarch64_ext_imm (self, info, code, inst, errors)
|| info->imm.value == 0)
return FALSE;
info->imm.value = get_top_bit (info->imm.value) * 2 - info->imm.value;
return TRUE;
}
/* Bitfields that are commonly used to encode certain operands' information
may be partially used as part of the base opcode in some instructions.
For example, the bit 1 of the field 'size' in
FCVTXN <Vb><d>, <Va><n>
is actually part of the base opcode, while only size<0> is available
for encoding the register type. Another example is the AdvSIMD
instruction ORR (register), in which the field 'size' is also used for
the base opcode, leaving only the field 'Q' available to encode the
vector register arrangement specifier '8B' or '16B'.
This function tries to deduce the qualifier from the value of partially
constrained field(s). Given the VALUE of such a field or fields, the
qualifiers CANDIDATES and the MASK (indicating which bits are valid for
operand encoding), the function returns the matching qualifier or
AARCH64_OPND_QLF_NIL if nothing matches.
N.B. CANDIDATES is a group of possible qualifiers that are valid for
one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
may end with AARCH64_OPND_QLF_NIL. */
static enum aarch64_opnd_qualifier
get_qualifier_from_partial_encoding (aarch64_insn value,
const enum aarch64_opnd_qualifier* \
candidates,
aarch64_insn mask)
{
int i;
DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
{
aarch64_insn standard_value;
if (candidates[i] == AARCH64_OPND_QLF_NIL)
break;
standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
if ((standard_value & mask) == (value & mask))
return candidates[i];
}
return AARCH64_OPND_QLF_NIL;
}
/* Given a list of qualifier sequences, return all possible valid qualifiers
for operand IDX in QUALIFIERS.
Assume QUALIFIERS is an array whose length is large enough. */
static void
get_operand_possible_qualifiers (int idx,
const aarch64_opnd_qualifier_seq_t *list,
enum aarch64_opnd_qualifier *qualifiers)
{
int i;
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
break;
}
/* Decode the size Q field for e.g. SHADD.
We tag one operand with the qualifer according to the code;
whether the qualifier is valid for this opcode or not, it is the
duty of the semantic checking. */
static int
decode_sizeq (aarch64_inst *inst)
{
int idx;
enum aarch64_opnd_qualifier qualifier;
aarch64_insn code;
aarch64_insn value, mask;
enum aarch64_field_kind fld_sz;
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
if (inst->opcode->iclass == asisdlse
|| inst->opcode->iclass == asisdlsep
|| inst->opcode->iclass == asisdlso
|| inst->opcode->iclass == asisdlsop)
fld_sz = FLD_vldst_size;
else
fld_sz = FLD_size;
code = inst->value;
value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
/* Obtain the info that which bits of fields Q and size are actually
available for operand encoding. Opcodes like FMAXNM and FMLA have
size[1] unavailable. */
mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
/* The index of the operand we are going to tag a qualifier and the qualifer
itself are reasoned from the value of the size and Q fields and the
possible valid qualifier lists. */
idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
DEBUG_TRACE ("key idx: %d", idx);
/* For most related instruciton, size:Q are fully available for operand
encoding. */
if (mask == 0x7)
{
inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
return 1;
}
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
candidates);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
int i;
for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
&& i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
DEBUG_TRACE ("qualifier %d: %s", i,
aarch64_get_qualifier_name(candidates[i]));
DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
}
#endif /* DEBUG_AARCH64 */
qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
if (qualifier == AARCH64_OPND_QLF_NIL)
return 0;
inst->operands[idx].qualifier = qualifier;
return 1;
}
/* Decode size[0]:Q, i.e. bit 22 and bit 30, for
e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
static int
decode_asimd_fcvt (aarch64_inst *inst)
{
aarch64_field field = {0, 0};
aarch64_insn value;
enum aarch64_opnd_qualifier qualifier;
gen_sub_field (FLD_size, 0, 1, &field);
value = extract_field_2 (&field, inst->value, 0);
qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
: AARCH64_OPND_QLF_V_2D;
switch (inst->opcode->op)
{
case OP_FCVTN:
case OP_FCVTN2:
/* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
inst->operands[1].qualifier = qualifier;
break;
case OP_FCVTL:
case OP_FCVTL2:
/* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
inst->operands[0].qualifier = qualifier;
break;
default:
assert (0);
return 0;
}
return 1;
}
/* Decode size[0], i.e. bit 22, for
e.g. FCVTXN <Vb><d>, <Va><n>. */
static int
decode_asisd_fcvtxn (aarch64_inst *inst)
{
aarch64_field field = {0, 0};
gen_sub_field (FLD_size, 0, 1, &field);
if (!extract_field_2 (&field, inst->value, 0))
return 0;
inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
return 1;
}
/* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
static int
decode_fcvt (aarch64_inst *inst)
{
enum aarch64_opnd_qualifier qualifier;
aarch64_insn value;
const aarch64_field field = {15, 2};
/* opc dstsize */
value = extract_field_2 (&field, inst->value, 0);
switch (value)
{
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
default: return 0;
}
inst->operands[0].qualifier = qualifier;
return 1;
}
/* Do miscellaneous decodings that are not common enough to be driven by
flags. */
static int
do_misc_decoding (aarch64_inst *inst)
{
unsigned int value;
switch (inst->opcode->op)
{
case OP_FCVT:
return decode_fcvt (inst);
case OP_FCVTN:
case OP_FCVTN2:
case OP_FCVTL:
case OP_FCVTL2:
return decode_asimd_fcvt (inst);
case OP_FCVTXN_S:
return decode_asisd_fcvtxn (inst);
case OP_MOV_P_P:
case OP_MOVS_P_P:
value = extract_field (FLD_SVE_Pn, inst->value, 0);
return (value == extract_field (FLD_SVE_Pm, inst->value, 0)
&& value == extract_field (FLD_SVE_Pg4_10, inst->value, 0));
case OP_MOV_Z_P_Z:
return (extract_field (FLD_SVE_Zd, inst->value, 0)
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
case OP_MOV_Z_V:
/* Index must be zero. */
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
return value > 0 && value <= 16 && value == (value & -value);
case OP_MOV_Z_Z:
return (extract_field (FLD_SVE_Zn, inst->value, 0)
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
case OP_MOV_Z_Zi:
/* Index must be nonzero. */
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
return value > 0 && value != (value & -value);
case OP_MOVM_P_P_P:
return (extract_field (FLD_SVE_Pd, inst->value, 0)
== extract_field (FLD_SVE_Pm, inst->value, 0));
case OP_MOVZS_P_P_P:
case OP_MOVZ_P_P_P:
return (extract_field (FLD_SVE_Pn, inst->value, 0)
== extract_field (FLD_SVE_Pm, inst->value, 0));
case OP_NOTS_P_P_P_Z:
case OP_NOT_P_P_P_Z:
return (extract_field (FLD_SVE_Pm, inst->value, 0)
== extract_field (FLD_SVE_Pg4_10, inst->value, 0));
default:
return 0;
}
}
/* Opcodes that have fields shared by multiple operands are usually flagged
with flags. In this function, we detect such flags, decode the related
field(s) and store the information in one of the related operands. The
'one' operand is not any operand but one of the operands that can
accommadate all the information that has been decoded. */
static int
do_special_decoding (aarch64_inst *inst)
{
int idx;
aarch64_insn value;
/* Condition for truly conditional executed instructions, e.g. b.cond. */
if (inst->opcode->flags & F_COND)
{
value = extract_field (FLD_cond2, inst->value, 0);
inst->cond = get_cond_from_value (value);
}
/* 'sf' field. */
if (inst->opcode->flags & F_SF)
{
idx = select_operand_for_sf_field_coding (inst->opcode);
value = extract_field (FLD_sf, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
if ((inst->opcode->flags & F_N)
&& extract_field (FLD_N, inst->value, 0) != value)
return 0;
}
/* 'sf' field. */
if (inst->opcode->flags & F_LSE_SZ)
{
idx = select_operand_for_sf_field_coding (inst->opcode);
value = extract_field (FLD_lse_sz, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
}
/* size:Q fields. */
if (inst->opcode->flags & F_SIZEQ)
return decode_sizeq (inst);
if (inst->opcode->flags & F_FPTYPE)
{
idx = select_operand_for_fptype_field_coding (inst->opcode);
value = extract_field (FLD_type, inst->value, 0);
switch (value)
{
case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
default: return 0;
}
}
if (inst->opcode->flags & F_SSIZE)
{
/* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
of the base opcode. */
aarch64_insn mask;
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
idx = select_operand_for_scalar_size_field_coding (inst->opcode);
value = extract_field (FLD_size, inst->value, inst->opcode->mask);
mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
/* For most related instruciton, the 'size' field is fully available for
operand encoding. */
if (mask == 0x3)
inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
else
{
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
candidates);
inst->operands[idx].qualifier
= get_qualifier_from_partial_encoding (value, candidates, mask);
}
}
if (inst->opcode->flags & F_T)
{
/* Num of consecutive '0's on the right side of imm5<3:0>. */
int num = 0;
unsigned val, Q;
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_SIMD_REG);
/* imm5<3:0> q <t>
0000 x reserved
xxx1 0 8b
xxx1 1 16b
xx10 0 4h
xx10 1 8h
x100 0 2s
x100 1 4s
1000 0 reserved
1000 1 2d */
val = extract_field (FLD_imm5, inst->value, 0);
while ((val & 0x1) == 0 && ++num <= 3)
val >>= 1;
if (num > 3)
return 0;
Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
inst->operands[0].qualifier =
get_vreg_qualifier_from_value ((num << 1) | Q);
}
if (inst->opcode->flags & F_GPRSIZE_IN_Q)
{
/* Use Rt to encode in the case of e.g.
STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
if (idx == -1)
{
/* Otherwise use the result operand, which has to be a integer
register. */
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_INT_REG);
idx = 0;
}
assert (idx == 0 || idx == 1);
value = extract_field (FLD_Q, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
}
if (inst->opcode->flags & F_LDS_SIZE)
{
aarch64_field field = {0, 0};
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_INT_REG);
gen_sub_field (FLD_opc, 0, 1, &field);
value = extract_field_2 (&field, inst->value, 0);
inst->operands[0].qualifier
= value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
}
/* Miscellaneous decoding; done as the last step. */
if (inst->opcode->flags & F_MISC)
return do_misc_decoding (inst);
return 1;
}
/* Converters converting a real opcode instruction to its alias form. */
/* ROR <Wd>, <Ws>, #<shift>
is equivalent to:
EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
static int
convert_extr_to_ror (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
{
copy_operand_info (inst, 2, 3);
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
is equivalent to:
USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
static int
convert_shll_to_xtl (aarch64_inst *inst)
{
if (inst->operands[2].imm.value == 0)
{
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* Convert
UBFM <Xd>, <Xn>, #<shift>, #63.
to
LSR <Xd>, <Xn>, #<shift>. */
static int
convert_bfm_to_sr (aarch64_inst *inst)
{
int64_t imms, val;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
if (imms == val)
{
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* Convert MOV to ORR. */
static int
convert_orr_to_mov (aarch64_inst *inst)
{
/* MOV <Vd>.<T>, <Vn>.<T>
is equivalent to:
ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
{
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* When <imms> >= <immr>, the instruction written:
SBFX <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to:
SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
static int
convert_bfm_to_bfx (aarch64_inst *inst)
{
int64_t immr, imms;
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
if (imms >= immr)
{
int64_t lsb = immr;
inst->operands[2].imm.value = lsb;
inst->operands[3].imm.value = imms + 1 - lsb;
/* The two opcodes have different qualifiers for
the immediate operands; reset to help the checking. */
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* When <imms> < <immr>, the instruction written:
SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to:
SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
static int
convert_bfm_to_bfi (aarch64_inst *inst)
{
int64_t immr, imms, val;
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
if (imms < immr)
{
inst->operands[2].imm.value = (val - immr) & (val - 1);
inst->operands[3].imm.value = imms + 1;
/* The two opcodes have different qualifiers for
the immediate operands; reset to help the checking. */
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* The instruction written:
BFC <Xd>, #<lsb>, #<width>
is equivalent to:
BFM <Xd>, XZR, #((64-<lsb>)&0x3f), #(<width>-1). */
static int
convert_bfm_to_bfc (aarch64_inst *inst)
{
int64_t immr, imms, val;
/* Should have been assured by the base opcode value. */
assert (inst->operands[1].reg.regno == 0x1f);
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
if (imms < immr)
{
/* Drop XZR from the second operand. */
copy_operand_info (inst, 1, 2);
copy_operand_info (inst, 2, 3);
inst->operands[3].type = AARCH64_OPND_NIL;
/* Recalculate the immediates. */
inst->operands[1].imm.value = (val - immr) & (val - 1);
inst->operands[2].imm.value = imms + 1;
/* The two opcodes have different qualifiers for the operands; reset to
help the checking. */
reset_operand_qualifier (inst, 1);
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* The instruction written:
LSL <Xd>, <Xn>, #<shift>
is equivalent to:
UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
static int
convert_ubfm_to_lsl (aarch64_inst *inst)
{
int64_t immr = inst->operands[2].imm.value;
int64_t imms = inst->operands[3].imm.value;
int64_t val
= inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
if ((immr == 0 && imms == val) || immr == imms + 1)
{
inst->operands[3].type = AARCH64_OPND_NIL;
inst->operands[2].imm.value = val - imms;
return 1;
}
return 0;
}
/* CINC <Wd>, <Wn>, <cond>
is equivalent to:
CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)
where <cond> is not AL or NV. */
static int
convert_from_csel (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno
&& (inst->operands[3].cond->value & 0xe) != 0xe)
{
copy_operand_info (inst, 2, 3);
inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* CSET <Wd>, <cond>
is equivalent to:
CSINC <Wd>, WZR, WZR, invert(<cond>)
where <cond> is not AL or NV. */
static int
convert_csinc_to_cset (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == 0x1f
&& inst->operands[2].reg.regno == 0x1f
&& (inst->operands[3].cond->value & 0xe) != 0xe)
{
copy_operand_info (inst, 1, 3);
inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
inst->operands[3].type = AARCH64_OPND_NIL;
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* MOV <Wd>, #<imm>
is equivalent to:
MOVZ <Wd>, #<imm16>, LSL #<shift>.
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
or where a MOVN has an immediate that could be encoded by MOVZ, or where
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
machine-instruction mnemonic must be used. */
static int
convert_movewide_to_mov (aarch64_inst *inst)
{
uint64_t value = inst->operands[1].imm.value;
/* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
if (value == 0 && inst->operands[1].shifter.amount != 0)
return 0;
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
value <<= inst->operands[1].shifter.amount;
/* As an alias convertor, it has to be clear that the INST->OPCODE
is the opcode of the real instruction. */
if (inst->opcode->op == OP_MOVN)
{
int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
value = ~value;
/* A MOVN has an immediate that could be encoded by MOVZ. */
if (aarch64_wide_constant_p (value, is32, NULL))
return 0;
}
inst->operands[1].imm.value = value;
inst->operands[1].shifter.amount = 0;
return 1;
}
/* MOV <Wd>, #<imm>
is equivalent to:
ORR <Wd>, WZR, #<imm>.
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
or where a MOVN has an immediate that could be encoded by MOVZ, or where
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
machine-instruction mnemonic must be used. */
static int
convert_movebitmask_to_mov (aarch64_inst *inst)
{
int is32;
uint64_t value;
/* Should have been assured by the base opcode value. */
assert (inst->operands[1].reg.regno == 0x1f);
copy_operand_info (inst, 1, 2);
is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
value = inst->operands[1].imm.value;
/* ORR has an immediate that could be generated by a MOVZ or MOVN
instruction. */
if (inst->operands[0].reg.regno != 0x1f
&& (aarch64_wide_constant_p (value, is32, NULL)
|| aarch64_wide_constant_p (~value, is32, NULL)))
return 0;
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
/* Some alias opcodes are disassembled by being converted from their real-form.
N.B. INST->OPCODE is the real opcode rather than the alias. */
static int
convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
{
switch (alias->op)
{
case OP_ASR_IMM:
case OP_LSR_IMM:
return convert_bfm_to_sr (inst);
case OP_LSL_IMM:
return convert_ubfm_to_lsl (inst);
case OP_CINC:
case OP_CINV:
case OP_CNEG:
return convert_from_csel (inst);
case OP_CSET:
case OP_CSETM:
return convert_csinc_to_cset (inst);
case OP_UBFX:
case OP_BFXIL:
case OP_SBFX:
return convert_bfm_to_bfx (inst);
case OP_SBFIZ:
case OP_BFI:
case OP_UBFIZ:
return convert_bfm_to_bfi (inst);
case OP_BFC:
return convert_bfm_to_bfc (inst);
case OP_MOV_V:
return convert_orr_to_mov (inst);
case OP_MOV_IMM_WIDE:
case OP_MOV_IMM_WIDEN:
return convert_movewide_to_mov (inst);
case OP_MOV_IMM_LOG:
return convert_movebitmask_to_mov (inst);
case OP_ROR_IMM:
return convert_extr_to_ror (inst);
case OP_SXTL:
case OP_SXTL2:
case OP_UXTL:
case OP_UXTL2:
return convert_shll_to_xtl (inst);
default:
return 0;
}
}
static bfd_boolean
aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
aarch64_inst *, int, aarch64_operand_error *errors);
/* Given the instruction information in *INST, check if the instruction has
any alias form that can be used to represent *INST. If the answer is yes,
update *INST to be in the form of the determined alias. */
/* In the opcode description table, the following flags are used in opcode
entries to help establish the relations between the real and alias opcodes:
F_ALIAS: opcode is an alias
F_HAS_ALIAS: opcode has alias(es)
F_P1
F_P2
F_P3: Disassembly preference priority 1-3 (the larger the
higher). If nothing is specified, it is the priority
0 by default, i.e. the lowest priority.
Although the relation between the machine and the alias instructions are not
explicitly described, it can be easily determined from the base opcode
values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
description entries:
The mask of an alias opcode must be equal to or a super-set (i.e. more
constrained) of that of the aliased opcode; so is the base opcode value.
if (opcode_has_alias (real) && alias_opcode_p (opcode)
&& (opcode->mask & real->mask) == real->mask
&& (real->mask & opcode->opcode) == (real->mask & real->opcode))
then OPCODE is an alias of, and only of, the REAL instruction
The alias relationship is forced flat-structured to keep related algorithm
simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
During the disassembling, the decoding decision tree (in
opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
if the decoding of such a machine instruction succeeds (and -Mno-aliases is
not specified), the disassembler will check whether there is any alias
instruction exists for this real instruction. If there is, the disassembler
will try to disassemble the 32-bit binary again using the alias's rule, or
try to convert the IR to the form of the alias. In the case of the multiple
aliases, the aliases are tried one by one from the highest priority
(currently the flag F_P3) to the lowest priority (no priority flag), and the
first succeeds first adopted.
You may ask why there is a need for the conversion of IR from one form to
another in handling certain aliases. This is because on one hand it avoids
adding more operand code to handle unusual encoding/decoding; on other
hand, during the disassembling, the conversion is an effective approach to
check the condition of an alias (as an alias may be adopted only if certain
conditions are met).
In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
aarch64_opcode_table and generated aarch64_find_alias_opcode and
aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
static void
determine_disassembling_preference (struct aarch64_inst *inst,
aarch64_operand_error *errors)
{
const aarch64_opcode *opcode;
const aarch64_opcode *alias;
opcode = inst->opcode;
/* This opcode does not have an alias, so use itself. */
if (!opcode_has_alias (opcode))
return;
alias = aarch64_find_alias_opcode (opcode);
assert (alias);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
const aarch64_opcode *tmp = alias;
printf ("#### LIST orderd: ");
while (tmp)
{
printf ("%s, ", tmp->name);
tmp = aarch64_find_next_alias_opcode (tmp);
}
printf ("\n");
}
#endif /* DEBUG_AARCH64 */
for (; alias; alias = aarch64_find_next_alias_opcode (alias))
{
DEBUG_TRACE ("try %s", alias->name);
assert (alias_opcode_p (alias) || opcode_has_alias (opcode));
/* An alias can be a pseudo opcode which will never be used in the
disassembly, e.g. BIC logical immediate is such a pseudo opcode
aliasing AND. */
if (pseudo_opcode_p (alias))
{
DEBUG_TRACE ("skip pseudo %s", alias->name);
continue;
}
if ((inst->value & alias->mask) != alias->opcode)
{
DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
continue;
}
/* No need to do any complicated transformation on operands, if the alias
opcode does not have any operand. */
if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
{
DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
aarch64_replace_opcode (inst, alias);
return;
}
if (alias->flags & F_CONV)
{
aarch64_inst copy;
memcpy (©, inst, sizeof (aarch64_inst));
/* ALIAS is the preference as long as the instruction can be
successfully converted to the form of ALIAS. */
if (convert_to_alias (©, alias) == 1)
{
aarch64_replace_opcode (©, alias);
assert (aarch64_match_operands_constraint (©, NULL));
DEBUG_TRACE ("succeed with %s via conversion", alias->name);
memcpy (inst, ©, sizeof (aarch64_inst));
return;
}
}
else
{
/* Directly decode the alias opcode. */
aarch64_inst temp;
memset (&temp, '\0', sizeof (aarch64_inst));
if (aarch64_opcode_decode (alias, inst->value, &temp, 1, errors) == 1)
{
DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
memcpy (inst, &temp, sizeof (aarch64_inst));
return;
}
}
}
}
/* Some instructions (including all SVE ones) use the instruction class
to describe how a qualifiers_list index is represented in the instruction
encoding. If INST is such an instruction, decode the appropriate fields
and fill in the operand qualifiers accordingly. Return true if no
problems are found. */
static bfd_boolean
aarch64_decode_variant_using_iclass (aarch64_inst *inst)
{
int i, variant;
variant = 0;
switch (inst->opcode->iclass)
{
case sve_cpy:
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_14);
break;
case sve_index:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
if ((i & 31) == 0)
return FALSE;
while ((i & 1) == 0)
{
i >>= 1;
variant += 1;
}
break;
case sve_limm:
/* Pick the smallest applicable element size. */
if ((inst->value & 0x20600) == 0x600)
variant = 0;
else if ((inst->value & 0x20400) == 0x400)
variant = 1;
else if ((inst->value & 0x20000) == 0)
variant = 2;
else
variant = 3;
break;
case sve_misc:
/* sve_misc instructions have only a single variant. */
break;
case sve_movprfx:
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_16);
break;
case sve_pred_zm:
variant = extract_field (FLD_SVE_M_4, inst->value, 0);
break;
case sve_shift_pred:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_8);
sve_shift:
if (i == 0)
return FALSE;
while (i != 1)
{
i >>= 1;
variant += 1;
}
break;
case sve_shift_unpred:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_19);
goto sve_shift;
case sve_size_bhs:
variant = extract_field (FLD_size, inst->value, 0);
if (variant >= 3)
return FALSE;
break;
case sve_size_bhsd:
variant = extract_field (FLD_size, inst->value, 0);
break;
case sve_size_hsd:
i = extract_field (FLD_size, inst->value, 0);
if (i < 1)
return FALSE;
variant = i - 1;
break;
case sve_size_sd:
variant = extract_field (FLD_SVE_sz, inst->value, 0);
break;
default:
/* No mapping between instruction class and qualifiers. */
return TRUE;
}
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
inst->operands[i].qualifier = inst->opcode->qualifiers_list[variant][i];
return TRUE;
}
/* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
fails, which meanes that CODE is not an instruction of OPCODE; otherwise
return 1.
If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
determined and used to disassemble CODE; this is done just before the
return. */
static bfd_boolean
aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
aarch64_inst *inst, int noaliases_p,
aarch64_operand_error *errors)
{
int i;
DEBUG_TRACE ("enter with %s", opcode->name);
assert (opcode && inst);
/* Clear inst. */
memset (inst, '\0', sizeof (aarch64_inst));
/* Check the base opcode. */
if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
{
DEBUG_TRACE ("base opcode match FAIL");
goto decode_fail;
}
inst->opcode = opcode;
inst->value = code;
/* Assign operand codes and indexes. */
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
if (opcode->operands[i] == AARCH64_OPND_NIL)
break;
inst->operands[i].type = opcode->operands[i];
inst->operands[i].idx = i;
}
/* Call the opcode decoder indicated by flags. */
if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
{
DEBUG_TRACE ("opcode flag-based decoder FAIL");
goto decode_fail;
}
/* Possibly use the instruction class to determine the correct
qualifier. */
if (!aarch64_decode_variant_using_iclass (inst))
{
DEBUG_TRACE ("iclass-based decoder FAIL");
goto decode_fail;
}
/* Call operand decoders. */
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
const aarch64_operand *opnd;
enum aarch64_opnd type;
type = opcode->operands[i];
if (type == AARCH64_OPND_NIL)
break;
opnd = &aarch64_operands[type];
if (operand_has_extractor (opnd)
&& (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst,
errors)))
{
DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
goto decode_fail;
}
}
/* If the opcode has a verifier, then check it now. */
if (opcode->verifier && ! opcode->verifier (opcode, code))
{
DEBUG_TRACE ("operand verifier FAIL");
goto decode_fail;
}
/* Match the qualifiers. */
if (aarch64_match_operands_constraint (inst, NULL) == 1)
{
/* Arriving here, the CODE has been determined as a valid instruction
of OPCODE and *INST has been filled with information of this OPCODE
instruction. Before the return, check if the instruction has any
alias and should be disassembled in the form of its alias instead.
If the answer is yes, *INST will be updated. */
if (!noaliases_p)
determine_disassembling_preference (inst, errors);
DEBUG_TRACE ("SUCCESS");
return TRUE;
}
else
{
DEBUG_TRACE ("constraint matching FAIL");
}
decode_fail:
return FALSE;
}
/* This does some user-friendly fix-up to *INST. It is currently focus on
the adjustment of qualifiers to help the printed instruction
recognized/understood more easily. */
static void
user_friendly_fixup (aarch64_inst *inst)
{
switch (inst->opcode->iclass)
{
case testbranch:
/* TBNZ Xn|Wn, #uimm6, label
Test and Branch Not Zero: conditionally jumps to label if bit number
uimm6 in register Xn is not zero. The bit number implies the width of
the register, which may be written and should be disassembled as Wn if
uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
*/
if (inst->operands[1].imm.value < 32)
inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
break;
default: break;
}
}
/* Decode INSN and fill in *INST the instruction information. An alias
opcode may be filled in *INSN if NOALIASES_P is FALSE. Return zero on
success. */
int
aarch64_decode_insn (aarch64_insn insn, aarch64_inst *inst,
bfd_boolean noaliases_p,
aarch64_operand_error *errors)
{
const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
const aarch64_opcode *tmp = opcode;
printf ("\n");
DEBUG_TRACE ("opcode lookup:");
while (tmp != NULL)
{
aarch64_verbose (" %s", tmp->name);
tmp = aarch64_find_next_opcode (tmp);
}
}
#endif /* DEBUG_AARCH64 */
/* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
opcode field and value, apart from the difference that one of them has an
extra field as part of the opcode, but such a field is used for operand
encoding in other opcode(s) ('immh' in the case of the example). */
while (opcode != NULL)
{
/* But only one opcode can be decoded successfully for, as the
decoding routine will check the constraint carefully. */
if (aarch64_opcode_decode (opcode, insn, inst, noaliases_p, errors) == 1)
return ERR_OK;
opcode = aarch64_find_next_opcode (opcode);
}
return ERR_UND;
}
/* Print operands. */
static void
print_operands (bfd_vma pc, const aarch64_opcode *opcode,
const aarch64_opnd_info *opnds, struct disassemble_info *info)
{
int i, pcrel_p, num_printed;
char *notes = NULL;
for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
char str[128];
/* We regard the opcode operand info more, however we also look into
the inst->operands to support the disassembling of the optional
operand.
The two operand code should be the same in all cases, apart from
when the operand can be optional. */
if (opcode->operands[i] == AARCH64_OPND_NIL
|| opnds[i].type == AARCH64_OPND_NIL)
break;
/* Generate the operand string in STR. */
aarch64_print_operand (str, sizeof (str), pc, opcode, opnds, i, &pcrel_p,
&info->target, ¬es);
/* Print the delimiter (taking account of omitted operand(s)). */
if (str[0] != '\0')
(*info->fprintf_func) (info->stream, "%s",
num_printed++ == 0 ? "\t" : ", ");
/* Print the operand. */
if (pcrel_p)
(*info->print_address_func) (info->target, info);
else
(*info->fprintf_func) (info->stream, "%s", str);
}
if (notes && !no_notes)
(*info->fprintf_func) (info->stream, "\t; note: %s", notes);
}
/* Set NAME to a copy of INST's mnemonic with the "." suffix removed. */
static void
remove_dot_suffix (char *name, const aarch64_inst *inst)
{
char *ptr;
size_t len;
ptr = strchr (inst->opcode->name, '.');
assert (ptr && inst->cond);
len = ptr - inst->opcode->name;
assert (len < 8);
strncpy (name, inst->opcode->name, len);
name[len] = '\0';
}
/* Print the instruction mnemonic name. */
static void
print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
{
if (inst->opcode->flags & F_COND)
{
/* For instructions that are truly conditionally executed, e.g. b.cond,
prepare the full mnemonic name with the corresponding condition
suffix. */
char name[8];
remove_dot_suffix (name, inst);
(*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]);
}
else
(*info->fprintf_func) (info->stream, "%s", inst->opcode->name);
}
/* Decide whether we need to print a comment after the operands of
instruction INST. */
static void
print_comment (const aarch64_inst *inst, struct disassemble_info *info)
{
if (inst->opcode->flags & F_COND)
{
char name[8];
unsigned int i, num_conds;
remove_dot_suffix (name, inst);
num_conds = ARRAY_SIZE (inst->cond->names);
for (i = 1; i < num_conds && inst->cond->names[i]; ++i)
(*info->fprintf_func) (info->stream, "%s %s.%s",
i == 1 ? " //" : ",",
name, inst->cond->names[i]);
}
}
/* Print the instruction according to *INST. */
static void
print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
struct disassemble_info *info)
{
print_mnemonic_name (inst, info);
print_operands (pc, inst->opcode, inst->operands, info);
print_comment (inst, info);
}
/* Entry-point of the instruction disassembler and printer. */
static void
print_insn_aarch64_word (bfd_vma pc,
uint32_t word,
struct disassemble_info *info,
aarch64_operand_error *errors)
{
static const char *err_msg[6] =
{
[ERR_OK] = "_",
[-ERR_UND] = "undefined",
[-ERR_UNP] = "unpredictable",
[-ERR_NYI] = "NYI"
};
int ret;
aarch64_inst inst;
info->insn_info_valid = 1;
info->branch_delay_insns = 0;
info->data_size = 0;
info->target = 0;
info->target2 = 0;
if (info->flags & INSN_HAS_RELOC)
/* If the instruction has a reloc associated with it, then
the offset field in the instruction will actually be the
addend for the reloc. (If we are using REL type relocs).
In such cases, we can ignore the pc when computing
addresses, since the addend is not currently pc-relative. */
pc = 0;
ret = aarch64_decode_insn (word, &inst, no_aliases, errors);
if (((word >> 21) & 0x3ff) == 1)
{
/* RESERVED for ALES. */
assert (ret != ERR_OK);
ret = ERR_NYI;
}
switch (ret)
{
case ERR_UND:
case ERR_UNP:
case ERR_NYI:
/* Handle undefined instructions. */
info->insn_type = dis_noninsn;
(*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s",
word, err_msg[-ret]);
break;
case ERR_OK:
user_friendly_fixup (&inst);
print_aarch64_insn (pc, &inst, info);
break;
default:
abort ();
}
}
/* Disallow mapping symbols ($x, $d etc) from
being displayed in symbol relative addresses. */
bfd_boolean
aarch64_symbol_is_valid (asymbol * sym,
struct disassemble_info * info ATTRIBUTE_UNUSED)
{
const char * name;
if (sym == NULL)
return FALSE;
name = bfd_asymbol_name (sym);
return name
&& (name[0] != '$'
|| (name[1] != 'x' && name[1] != 'd')
|| (name[2] != '\0' && name[2] != '.'));
}
/* Print data bytes on INFO->STREAM. */
static void
print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
uint32_t word,
struct disassemble_info *info,
aarch64_operand_error *errors ATTRIBUTE_UNUSED)
{
switch (info->bytes_per_chunk)
{
case 1:
info->fprintf_func (info->stream, ".byte\t0x%02x", word);
break;
case 2:
info->fprintf_func (info->stream, ".short\t0x%04x", word);
break;
case 4:
info->fprintf_func (info->stream, ".word\t0x%08x", word);
break;
default:
abort ();
}
}
/* Try to infer the code or data type from a symbol.
Returns nonzero if *MAP_TYPE was set. */
static int
get_sym_code_type (struct disassemble_info *info, int n,
enum map_type *map_type)
{
elf_symbol_type *es;
unsigned int type;
const char *name;
/* If the symbol is in a different section, ignore it. */
if (info->section != NULL && info->section != info->symtab[n]->section)
return FALSE;
es = *(elf_symbol_type **)(info->symtab + n);
type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
/* If the symbol has function type then use that. */
if (type == STT_FUNC)
{
*map_type = MAP_INSN;
return TRUE;
}
/* Check for mapping symbols. */
name = bfd_asymbol_name(info->symtab[n]);
if (name[0] == '$'
&& (name[1] == 'x' || name[1] == 'd')
&& (name[2] == '\0' || name[2] == '.'))
{
*map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
return TRUE;
}
return FALSE;
}
/* Entry-point of the AArch64 disassembler. */
int
print_insn_aarch64 (bfd_vma pc,
struct disassemble_info *info)
{
bfd_byte buffer[INSNLEN];
int status;
void (*printer) (bfd_vma, uint32_t, struct disassemble_info *,
aarch64_operand_error *);
bfd_boolean found = FALSE;
unsigned int size = 4;
unsigned long data;
aarch64_operand_error errors;
if (info->disassembler_options)
{
set_default_aarch64_dis_options (info);
parse_aarch64_dis_options (info->disassembler_options);
/* To avoid repeated parsing of these options, we remove them here. */
info->disassembler_options = NULL;
}
/* Aarch64 instructions are always little-endian */
info->endian_code = BFD_ENDIAN_LITTLE;
/* First check the full symtab for a mapping symbol, even if there
are no usable non-mapping symbols for this address. */
if (info->symtab_size != 0
&& bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
{
enum map_type type = MAP_INSN;
int last_sym = -1;
bfd_vma addr;
int n;
if (pc <= last_mapping_addr)
last_mapping_sym = -1;
/* Start scanning at the start of the function, or wherever
we finished last time. */
n = info->symtab_pos + 1;
if (n < last_mapping_sym)
n = last_mapping_sym;
/* Scan up to the location being disassembled. */
for (; n < info->symtab_size; n++)
{
addr = bfd_asymbol_value (info->symtab[n]);
if (addr > pc)
break;
if (get_sym_code_type (info, n, &type))
{
last_sym = n;
found = TRUE;
}
}
if (!found)
{
n = info->symtab_pos;
if (n < last_mapping_sym)
n = last_mapping_sym;
/* No mapping symbol found at this address. Look backwards
for a preceeding one. */
for (; n >= 0; n--)
{
if (get_sym_code_type (info, n, &type))
{
last_sym = n;
found = TRUE;
break;
}
}
}
last_mapping_sym = last_sym;
last_type = type;
/* Look a little bit ahead to see if we should print out
less than four bytes of data. If there's a symbol,
mapping or otherwise, after two bytes then don't
print more. */
if (last_type == MAP_DATA)
{
size = 4 - (pc & 3);
for (n = last_sym + 1; n < info->symtab_size; n++)
{
addr = bfd_asymbol_value (info->symtab[n]);
if (addr > pc)
{
if (addr - pc < size)
size = addr - pc;
break;
}
}
/* If the next symbol is after three bytes, we need to
print only part of the data, so that we can use either
.byte or .short. */
if (size == 3)
size = (pc & 1) ? 1 : 2;
}
}
if (last_type == MAP_DATA)
{
/* size was set above. */
info->bytes_per_chunk = size;
info->display_endian = info->endian;
printer = print_insn_data;
}
else
{
info->bytes_per_chunk = size = INSNLEN;
info->display_endian = info->endian_code;
printer = print_insn_aarch64_word;
}
status = (*info->read_memory_func) (pc, buffer, size, info);
if (status != 0)
{
(*info->memory_error_func) (status, pc, info);
return -1;
}
data = bfd_get_bits (buffer, size * 8,
info->display_endian == BFD_ENDIAN_BIG);
(*printer) (pc, data, info, &errors);
return size;
}
void
print_aarch64_disassembler_options (FILE *stream)
{
fprintf (stream, _("\n\
The following AARCH64 specific disassembler options are supported for use\n\
with the -M switch (multiple options should be separated by commas):\n"));
fprintf (stream, _("\n\
no-aliases Don't print instruction aliases.\n"));
fprintf (stream, _("\n\
aliases Do print instruction aliases.\n"));
fprintf (stream, _("\n\
no-notes Don't print instruction notes.\n"));
fprintf (stream, _("\n\
notes Do print instruction notes.\n"));
#ifdef DEBUG_AARCH64
fprintf (stream, _("\n\
debug_dump Temp switch for debug trace.\n"));
#endif /* DEBUG_AARCH64 */
fprintf (stream, _("\n"));
}
|