aboutsummaryrefslogtreecommitdiff
path: root/move-if-change
blob: ee1b348beebd9d85ffc66a39d5c4c8940ca45897 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/bin/sh

# Copyright (C) 1996 Free Software Foundation, Inc.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

if
test -r $2
then
if
cmp $1 $2 > /dev/null
then
echo $2 is unchanged
rm -f $1
else
mv -f $1 $2
fi
else
mv -f $1 $2
fi
='#n821'>821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265
/* Output Dwarf2 format symbol table information from GCC.
   Copyright (C) 1992-2022 Free Software Foundation, Inc.
   Contributed by Gary Funck (gary@intrepid.com).
   Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
   Extensively modified by Jason Merrill (jason@cygnus.com).

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* TODO: Emit .debug_line header even when there are no functions, since
	   the file numbers are used by .debug_info.  Alternately, leave
	   out locations for types and decls.
	 Avoid talking about ctors and op= for PODs.
	 Factor out common prologue sequences into multiple CIEs.  */

/* The first part of this file deals with the DWARF 2 frame unwind
   information, which is also used by the GCC efficient exception handling
   mechanism.  The second part, controlled only by an #ifdef
   DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
   information.  */

/* DWARF2 Abbreviation Glossary:

   CFA = Canonical Frame Address
	   a fixed address on the stack which identifies a call frame.
	   We define it to be the value of SP just before the call insn.
	   The CFA register and offset, which may change during the course
	   of the function, are used to calculate its value at runtime.

   CFI = Call Frame Instruction
	   an instruction for the DWARF2 abstract machine

   CIE = Common Information Entry
	   information describing information common to one or more FDEs

   DIE = Debugging Information Entry

   FDE = Frame Description Entry
	   information describing the stack call frame, in particular,
	   how to restore registers

   DW_CFA_... = DWARF2 CFA call frame instruction
   DW_TAG_... = DWARF2 DIE tag */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "insn-config.h"
#include "ira.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "varasm.h"
#include "version.h"
#include "flags.h"
#include "rtlhash.h"
#include "reload.h"
#include "output.h"
#include "expr.h"
#include "dwarf2out.h"
#include "dwarf2ctf.h"
#include "dwarf2asm.h"
#include "toplev.h"
#include "md5.h"
#include "tree-pretty-print.h"
#include "print-rtl.h"
#include "debug.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "lra.h"
#include "dumpfile.h"
#include "opts.h"
#include "tree-dfa.h"
#include "gdb/gdb-index.h"
#include "rtl-iter.h"
#include "stringpool.h"
#include "attribs.h"
#include "file-prefix-map.h" /* remap_debug_filename()  */

static void dwarf2out_source_line (unsigned int, unsigned int, const char *,
				   int, bool);
static rtx_insn *last_var_location_insn;
static rtx_insn *cached_next_real_insn;
static void dwarf2out_decl (tree);
static bool is_redundant_typedef (const_tree);

#ifndef XCOFF_DEBUGGING_INFO
#define XCOFF_DEBUGGING_INFO 0
#endif

#ifndef HAVE_XCOFF_DWARF_EXTRAS
#define HAVE_XCOFF_DWARF_EXTRAS 0
#endif

#ifdef VMS_DEBUGGING_INFO
int vms_file_stats_name (const char *, long long *, long *, char *, int *);

/* Define this macro to be a nonzero value if the directory specifications
    which are output in the debug info should end with a separator.  */
#define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
/* Define this macro to evaluate to a nonzero value if GCC should refrain
   from generating indirect strings in DWARF2 debug information, for instance
   if your target is stuck with an old version of GDB that is unable to
   process them properly or uses VMS Debug.  */
#define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
#else
#define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
#define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
#endif

/* ??? Poison these here until it can be done generically.  They've been
   totally replaced in this file; make sure it stays that way.  */
#undef DWARF2_UNWIND_INFO
#undef DWARF2_FRAME_INFO
#if (GCC_VERSION >= 3000)
 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
#endif

/* The size of the target's pointer type.  */
#ifndef PTR_SIZE
#define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
#endif

/* Array of RTXes referenced by the debugging information, which therefore
   must be kept around forever.  */
static GTY(()) vec<rtx, va_gc> *used_rtx_array;

/* A pointer to the base of a list of incomplete types which might be
   completed at some later time.  incomplete_types_list needs to be a
   vec<tree, va_gc> *because we want to tell the garbage collector about
   it.  */
static GTY(()) vec<tree, va_gc> *incomplete_types;

/* Pointers to various DWARF2 sections.  */
static GTY(()) section *debug_info_section;
static GTY(()) section *debug_skeleton_info_section;
static GTY(()) section *debug_abbrev_section;
static GTY(()) section *debug_skeleton_abbrev_section;
static GTY(()) section *debug_aranges_section;
static GTY(()) section *debug_addr_section;
static GTY(()) section *debug_macinfo_section;
static const char *debug_macinfo_section_name;
static unsigned macinfo_label_base = 1;
static GTY(()) section *debug_line_section;
static GTY(()) section *debug_skeleton_line_section;
static GTY(()) section *debug_loc_section;
static GTY(()) section *debug_pubnames_section;
static GTY(()) section *debug_pubtypes_section;
static GTY(()) section *debug_str_section;
static GTY(()) section *debug_line_str_section;
static GTY(()) section *debug_str_dwo_section;
static GTY(()) section *debug_str_offsets_section;
static GTY(()) section *debug_ranges_section;
static GTY(()) section *debug_ranges_dwo_section;
static GTY(()) section *debug_frame_section;

/* Maximum size (in bytes) of an artificially generated label.  */
#define MAX_ARTIFICIAL_LABEL_BYTES	40

/* According to the (draft) DWARF 3 specification, the initial length
   should either be 4 or 12 bytes.  When it's 12 bytes, the first 4
   bytes are 0xffffffff, followed by the length stored in the next 8
   bytes.

   However, the SGI/MIPS ABI uses an initial length which is equal to
   dwarf_offset_size.  It is defined (elsewhere) accordingly.  */

#ifndef DWARF_INITIAL_LENGTH_SIZE
#define DWARF_INITIAL_LENGTH_SIZE (dwarf_offset_size == 4 ? 4 : 12)
#endif

#ifndef DWARF_INITIAL_LENGTH_SIZE_STR
#define DWARF_INITIAL_LENGTH_SIZE_STR (dwarf_offset_size == 4 ? "-4" : "-12")
#endif

/* Round SIZE up to the nearest BOUNDARY.  */
#define DWARF_ROUND(SIZE,BOUNDARY) \
  ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))

/* CIE identifier.  */
#if HOST_BITS_PER_WIDE_INT >= 64
#define DWARF_CIE_ID \
  (unsigned HOST_WIDE_INT) (dwarf_offset_size == 4 ? DW_CIE_ID : DW64_CIE_ID)
#else
#define DWARF_CIE_ID DW_CIE_ID
#endif


/* A vector for a table that contains frame description
   information for each routine.  */
#define NOT_INDEXED (-1U)
#define NO_INDEX_ASSIGNED (-2U)

static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;

struct GTY((for_user)) indirect_string_node {
  const char *str;
  unsigned int refcount;
  enum dwarf_form form;
  char *label;
  unsigned int index;
};

struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node>
{
  typedef const char *compare_type;

  static hashval_t hash (indirect_string_node *);
  static bool equal (indirect_string_node *, const char *);
};

static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;

static GTY (()) hash_table<indirect_string_hasher> *debug_line_str_hash;

/* With split_debug_info, both the comp_dir and dwo_name go in the
   main object file, rather than the dwo, similar to the force_direct
   parameter elsewhere but with additional complications:

   1) The string is needed in both the main object file and the dwo.
   That is, the comp_dir and dwo_name will appear in both places.

   2) Strings can use four forms: DW_FORM_string, DW_FORM_strp,
   DW_FORM_line_strp or DW_FORM_strx/GNU_str_index.

   3) GCC chooses the form to use late, depending on the size and
   reference count.

   Rather than forcing the all debug string handling functions and
   callers to deal with these complications, simply use a separate,
   special-cased string table for any attribute that should go in the
   main object file.  This limits the complexity to just the places
   that need it.  */

static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;

static GTY(()) int dw2_string_counter;

/* True if the compilation unit places functions in more than one section.  */
static GTY(()) bool have_multiple_function_sections = false;

/* The default cold text section.  */
static GTY(()) section *cold_text_section;

/* True if currently in text section.  */
static GTY(()) bool in_text_section_p = false;

/* Last debug-on location in corresponding section.  */
static GTY(()) const char *last_text_label;
static GTY(()) const char *last_cold_label;

/* Mark debug-on/off locations per section.
   NULL means the section is not used at all.  */
static GTY(()) vec<const char *, va_gc> *switch_text_ranges;
static GTY(()) vec<const char *, va_gc> *switch_cold_ranges;

/* The DIE for C++14 'auto' in a function return type.  */
static GTY(()) dw_die_ref auto_die;

/* The DIE for C++14 'decltype(auto)' in a function return type.  */
static GTY(()) dw_die_ref decltype_auto_die;

/* Forward declarations for functions defined in this file.  */

static void output_call_frame_info (int);

/* Personality decl of current unit.  Used only when assembler does not support
   personality CFI.  */
static GTY(()) rtx current_unit_personality;

/* Whether an eh_frame section is required.  */
static GTY(()) bool do_eh_frame = false;

/* .debug_rnglists next index.  */
static unsigned int rnglist_idx;

/* Data and reference forms for relocatable data.  */
#define DW_FORM_data (dwarf_offset_size == 8 ? DW_FORM_data8 : DW_FORM_data4)
#define DW_FORM_ref (dwarf_offset_size == 8 ? DW_FORM_ref8 : DW_FORM_ref4)

#ifndef DEBUG_FRAME_SECTION
#define DEBUG_FRAME_SECTION	".debug_frame"
#endif

#ifndef FUNC_BEGIN_LABEL
#define FUNC_BEGIN_LABEL	"LFB"
#endif

#ifndef FUNC_SECOND_SECT_LABEL
#define FUNC_SECOND_SECT_LABEL	"LFSB"
#endif

#ifndef FUNC_END_LABEL
#define FUNC_END_LABEL		"LFE"
#endif

#ifndef PROLOGUE_END_LABEL
#define PROLOGUE_END_LABEL	"LPE"
#endif

#ifndef EPILOGUE_BEGIN_LABEL
#define EPILOGUE_BEGIN_LABEL	"LEB"
#endif

#ifndef FRAME_BEGIN_LABEL
#define FRAME_BEGIN_LABEL	"Lframe"
#endif
#define CIE_AFTER_SIZE_LABEL	"LSCIE"
#define CIE_END_LABEL		"LECIE"
#define FDE_LABEL		"LSFDE"
#define FDE_AFTER_SIZE_LABEL	"LASFDE"
#define FDE_END_LABEL		"LEFDE"
#define LINE_NUMBER_BEGIN_LABEL	"LSLT"
#define LINE_NUMBER_END_LABEL	"LELT"
#define LN_PROLOG_AS_LABEL	"LASLTP"
#define LN_PROLOG_END_LABEL	"LELTP"
#define DIE_LABEL_PREFIX	"DW"

/* Match the base name of a file to the base name of a compilation unit. */

static int
matches_main_base (const char *path)
{
  /* Cache the last query. */
  static const char *last_path = NULL;
  static int last_match = 0;
  if (path != last_path)
    {
      const char *base;
      int length = base_of_path (path, &base);
      last_path = path;
      last_match = (length == main_input_baselength
                    && memcmp (base, main_input_basename, length) == 0);
    }
  return last_match;
}

#ifdef DEBUG_DEBUG_STRUCT

static int
dump_struct_debug (tree type, enum debug_info_usage usage,
		   enum debug_struct_file criterion, int generic,
		   int matches, int result)
{
  /* Find the type name. */
  tree type_decl = TYPE_STUB_DECL (type);
  tree t = type_decl;
  const char *name = 0;
  if (TREE_CODE (t) == TYPE_DECL)
    t = DECL_NAME (t);
  if (t)
    name = IDENTIFIER_POINTER (t);

  fprintf (stderr, "	struct %d %s %s %s %s %d %p %s\n",
	   criterion,
           DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
           matches ? "bas" : "hdr",
           generic ? "gen" : "ord",
           usage == DINFO_USAGE_DFN ? ";" :
             usage == DINFO_USAGE_DIR_USE ? "." : "*",
           result,
           (void*) type_decl, name);
  return result;
}
#define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
  dump_struct_debug (type, usage, criterion, generic, matches, result)

#else

#define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
  (result)

#endif

/* Get the number of HOST_WIDE_INTs needed to represent the precision
   of the number.  */

static unsigned int
get_full_len (const wide_int &op)
{
  int prec = wi::get_precision (op);
  return ((prec + HOST_BITS_PER_WIDE_INT - 1)
	  / HOST_BITS_PER_WIDE_INT);
}

static bool
should_emit_struct_debug (tree type, enum debug_info_usage usage)
{
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return false;

  enum debug_struct_file criterion;
  tree type_decl;
  bool generic = lang_hooks.types.generic_p (type);

  if (generic)
    criterion = debug_struct_generic[usage];
  else
    criterion = debug_struct_ordinary[usage];

  if (criterion == DINFO_STRUCT_FILE_NONE)
    return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
  if (criterion == DINFO_STRUCT_FILE_ANY)
    return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);

  type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));

  if (type_decl != NULL)
    {
     if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
        return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);

      if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
        return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
    }

  return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
}

/* Switch [BACK] to eh_frame_section.  If we don't have an eh_frame_section,
   switch to the data section instead, and write out a synthetic start label
   for collect2 the first time around.  */

static void
switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED)
{
  if (eh_frame_section == 0)
    {
      int flags;

      if (EH_TABLES_CAN_BE_READ_ONLY)
	{
	  int fde_encoding;
	  int per_encoding;
	  int lsda_encoding;

	  fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
						       /*global=*/0);
	  per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
						       /*global=*/1);
	  lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
							/*global=*/0);
	  flags = ((! flag_pic
		    || ((fde_encoding & 0x70) != DW_EH_PE_absptr
			&& (fde_encoding & 0x70) != DW_EH_PE_aligned
			&& (per_encoding & 0x70) != DW_EH_PE_absptr
			&& (per_encoding & 0x70) != DW_EH_PE_aligned
			&& (lsda_encoding & 0x70) != DW_EH_PE_absptr
			&& (lsda_encoding & 0x70) != DW_EH_PE_aligned))
		   ? 0 : SECTION_WRITE);
	}
      else
	flags = SECTION_WRITE;

#ifdef EH_FRAME_SECTION_NAME
      eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
#else
      eh_frame_section = ((flags == SECTION_WRITE)
			  ? data_section : readonly_data_section);
#endif /* EH_FRAME_SECTION_NAME */
    }

  switch_to_section (eh_frame_section);

#ifdef EH_FRAME_THROUGH_COLLECT2
  /* We have no special eh_frame section.  Emit special labels to guide
     collect2.  */
  if (!back)
    {
      tree label = get_file_function_name ("F");
      ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
      targetm.asm_out.globalize_label (asm_out_file,
					IDENTIFIER_POINTER (label));
      ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
    }
#endif
}

/* Switch [BACK] to the eh or debug frame table section, depending on
   FOR_EH.  */

static void
switch_to_frame_table_section (int for_eh, bool back)
{
  if (for_eh)
    switch_to_eh_frame_section (back);
  else
    {
      if (!debug_frame_section)
	debug_frame_section = get_section (DEBUG_FRAME_SECTION,
					   SECTION_DEBUG, NULL);
      switch_to_section (debug_frame_section);
    }
}

/* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used.  */

enum dw_cfi_oprnd_type
dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
{
  switch (cfi)
    {
    case DW_CFA_nop:
    case DW_CFA_GNU_window_save:
    case DW_CFA_remember_state:
    case DW_CFA_restore_state:
      return dw_cfi_oprnd_unused;

    case DW_CFA_set_loc:
    case DW_CFA_advance_loc1:
    case DW_CFA_advance_loc2:
    case DW_CFA_advance_loc4:
    case DW_CFA_MIPS_advance_loc8:
      return dw_cfi_oprnd_addr;

    case DW_CFA_offset:
    case DW_CFA_offset_extended:
    case DW_CFA_def_cfa:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_restore:
    case DW_CFA_restore_extended:
    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_def_cfa_register:
    case DW_CFA_register:
    case DW_CFA_expression:
    case DW_CFA_val_expression:
      return dw_cfi_oprnd_reg_num;

    case DW_CFA_def_cfa_offset:
    case DW_CFA_GNU_args_size:
    case DW_CFA_def_cfa_offset_sf:
      return dw_cfi_oprnd_offset;

    case DW_CFA_def_cfa_expression:
      return dw_cfi_oprnd_loc;

    default:
      gcc_unreachable ();
    }
}

/* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used.  */

enum dw_cfi_oprnd_type
dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
{
  switch (cfi)
    {
    case DW_CFA_def_cfa:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_offset:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_offset_extended:
      return dw_cfi_oprnd_offset;

    case DW_CFA_register:
      return dw_cfi_oprnd_reg_num;

    case DW_CFA_expression:
    case DW_CFA_val_expression:
      return dw_cfi_oprnd_loc;

    case DW_CFA_def_cfa_expression:
      return dw_cfi_oprnd_cfa_loc;

    default:
      return dw_cfi_oprnd_unused;
    }
}

/* Output one FDE.  */

static void
output_fde (dw_fde_ref fde, bool for_eh, bool second,
	    char *section_start_label, int fde_encoding, char *augmentation,
	    bool any_lsda_needed, int lsda_encoding)
{
  const char *begin, *end;
  static unsigned int j;
  char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];

  targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
				     /* empty */ 0);
  targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
				  for_eh + j);
  ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
  ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
  if (!XCOFF_DEBUGGING_INFO || for_eh)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4 && !for_eh)
	dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
			     " indicating 64-bit DWARF extension");
      dw2_asm_output_delta (for_eh ? 4 : dwarf_offset_size, l2, l1,
			    "FDE Length");
    }
  ASM_OUTPUT_LABEL (asm_out_file, l1);

  if (for_eh)
    dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
  else
    dw2_asm_output_offset (dwarf_offset_size, section_start_label,
			   debug_frame_section, "FDE CIE offset");

  begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
  end = second ? fde->dw_fde_second_end : fde->dw_fde_end;

  if (for_eh)
    {
      rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
      SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
      dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
				       "FDE initial location");
      dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
			    end, begin, "FDE address range");
    }
  else
    {
      dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
      dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
    }

  if (augmentation[0])
    {
      if (any_lsda_needed)
	{
	  int size = size_of_encoded_value (lsda_encoding);

	  if (lsda_encoding == DW_EH_PE_aligned)
	    {
	      int offset = (  4		/* Length */
			    + 4		/* CIE offset */
			    + 2 * size_of_encoded_value (fde_encoding)
			    + 1		/* Augmentation size */ );
	      int pad = -offset & (PTR_SIZE - 1);

	      size += pad;
	      gcc_assert (size_of_uleb128 (size) == 1);
	    }

	  dw2_asm_output_data_uleb128 (size, "Augmentation size");

	  if (fde->uses_eh_lsda)
	    {
	      ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
					   fde->funcdef_number);
	      dw2_asm_output_encoded_addr_rtx (lsda_encoding,
					       gen_rtx_SYMBOL_REF (Pmode, l1),
					       false,
					       "Language Specific Data Area");
	    }
	  else
	    {
	      if (lsda_encoding == DW_EH_PE_aligned)
		ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
	      dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
				   "Language Specific Data Area (none)");
	    }
	}
      else
	dw2_asm_output_data_uleb128 (0, "Augmentation size");
    }

  /* Loop through the Call Frame Instructions associated with this FDE.  */
  fde->dw_fde_current_label = begin;
  {
    size_t from, until, i;

    from = 0;
    until = vec_safe_length (fde->dw_fde_cfi);

    if (fde->dw_fde_second_begin == NULL)
      ;
    else if (!second)
      until = fde->dw_fde_switch_cfi_index;
    else
      from = fde->dw_fde_switch_cfi_index;

    for (i = from; i < until; i++)
      output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
  }

  /* If we are to emit a ref/link from function bodies to their frame tables,
     do it now.  This is typically performed to make sure that tables
     associated with functions are dragged with them and not discarded in
     garbage collecting links. We need to do this on a per function basis to
     cope with -ffunction-sections.  */

#ifdef ASM_OUTPUT_DWARF_TABLE_REF
  /* Switch to the function section, emit the ref to the tables, and
     switch *back* into the table section.  */
  switch_to_section (function_section (fde->decl));
  ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
  switch_to_frame_table_section (for_eh, true);
#endif

  /* Pad the FDE out to an address sized boundary.  */
  ASM_OUTPUT_ALIGN (asm_out_file,
		    floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
  ASM_OUTPUT_LABEL (asm_out_file, l2);

  j += 2;
}

/* Return true if frame description entry FDE is needed for EH.  */

static bool
fde_needed_for_eh_p (dw_fde_ref fde)
{
  if (flag_asynchronous_unwind_tables)
    return true;

  if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
    return true;

  if (fde->uses_eh_lsda)
    return true;

  /* If exceptions are enabled, we have collected nothrow info.  */
  if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
    return false;

  return true;
}

/* Output the call frame information used to record information
   that relates to calculating the frame pointer, and records the
   location of saved registers.  */

static void
output_call_frame_info (int for_eh)
{
  unsigned int i;
  dw_fde_ref fde;
  dw_cfi_ref cfi;
  char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
  char section_start_label[MAX_ARTIFICIAL_LABEL_BYTES];
  bool any_lsda_needed = false;
  char augmentation[6];
  int augmentation_size;
  int fde_encoding = DW_EH_PE_absptr;
  int per_encoding = DW_EH_PE_absptr;
  int lsda_encoding = DW_EH_PE_absptr;
  int return_reg;
  rtx personality = NULL;
  int dw_cie_version;

  /* Don't emit a CIE if there won't be any FDEs.  */
  if (!fde_vec)
    return;

  /* Nothing to do if the assembler's doing it all.  */
  if (dwarf2out_do_cfi_asm ())
    return;

  /* If we don't have any functions we'll want to unwind out of, don't emit
     any EH unwind information.  If we make FDEs linkonce, we may have to
     emit an empty label for an FDE that wouldn't otherwise be emitted.  We
     want to avoid having an FDE kept around when the function it refers to
     is discarded.  Example where this matters: a primary function template
     in C++ requires EH information, an explicit specialization doesn't.  */
  if (for_eh)
    {
      bool any_eh_needed = false;

      FOR_EACH_VEC_ELT (*fde_vec, i, fde)
	{
	  if (fde->uses_eh_lsda)
	    any_eh_needed = any_lsda_needed = true;
	  else if (fde_needed_for_eh_p (fde))
	    any_eh_needed = true;
	  else if (TARGET_USES_WEAK_UNWIND_INFO)
	    targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
	}

      if (!any_eh_needed)
	return;
    }

  /* We're going to be generating comments, so turn on app.  */
  if (flag_debug_asm)
    app_enable ();

  /* Switch to the proper frame section, first time.  */
  switch_to_frame_table_section (for_eh, false);

  ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
  ASM_OUTPUT_LABEL (asm_out_file, section_start_label);

  /* Output the CIE.  */
  ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
  ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
  if (!XCOFF_DEBUGGING_INFO || for_eh)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4 && !for_eh)
	dw2_asm_output_data (4, 0xffffffff,
	  "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_delta (for_eh ? 4 : dwarf_offset_size, l2, l1,
			    "Length of Common Information Entry");
    }
  ASM_OUTPUT_LABEL (asm_out_file, l1);

  /* Now that the CIE pointer is PC-relative for EH,
     use 0 to identify the CIE.  */
  dw2_asm_output_data ((for_eh ? 4 : dwarf_offset_size),
		       (for_eh ? 0 : DWARF_CIE_ID),
		       "CIE Identifier Tag");

  /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
     use CIE version 1, unless that would produce incorrect results
     due to overflowing the return register column.  */
  return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
  dw_cie_version = 1;
  if (return_reg >= 256 || dwarf_version > 2)
    dw_cie_version = 3;
  dw2_asm_output_data (1, dw_cie_version, "CIE Version");

  augmentation[0] = 0;
  augmentation_size = 0;

  personality = current_unit_personality;
  if (for_eh)
    {
      char *p;

      /* Augmentation:
	 z	Indicates that a uleb128 is present to size the
		augmentation section.
	 L	Indicates the encoding (and thus presence) of
		an LSDA pointer in the FDE augmentation.
	 R	Indicates a non-default pointer encoding for
		FDE code pointers.
	 P	Indicates the presence of an encoding + language
		personality routine in the CIE augmentation.  */

      fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
      per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
      lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);

      p = augmentation + 1;
      if (personality)
	{
	  *p++ = 'P';
	  augmentation_size += 1 + size_of_encoded_value (per_encoding);
	  assemble_external_libcall (personality);
	}
      if (any_lsda_needed)
	{
	  *p++ = 'L';
	  augmentation_size += 1;
	}
      if (fde_encoding != DW_EH_PE_absptr)
	{
	  *p++ = 'R';
	  augmentation_size += 1;
	}
      if (p > augmentation + 1)
	{
	  augmentation[0] = 'z';
	  *p = '\0';
	}

      /* Ug.  Some platforms can't do unaligned dynamic relocations at all.  */
      if (personality && per_encoding == DW_EH_PE_aligned)
	{
	  int offset = (  4		/* Length */
			+ 4		/* CIE Id */
			+ 1		/* CIE version */
			+ strlen (augmentation) + 1	/* Augmentation */
			+ size_of_uleb128 (1)		/* Code alignment */
			+ size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
			+ 1		/* RA column */
			+ 1		/* Augmentation size */
			+ 1		/* Personality encoding */ );
	  int pad = -offset & (PTR_SIZE - 1);

	  augmentation_size += pad;

	  /* Augmentations should be small, so there's scarce need to
	     iterate for a solution.  Die if we exceed one uleb128 byte.  */
	  gcc_assert (size_of_uleb128 (augmentation_size) == 1);
	}
    }

  dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
  if (dw_cie_version >= 4)
    {
      dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
      dw2_asm_output_data (1, 0, "CIE Segment Size");
    }
  dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
  dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
			       "CIE Data Alignment Factor");

  if (dw_cie_version == 1)
    dw2_asm_output_data (1, return_reg, "CIE RA Column");
  else
    dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");

  if (augmentation[0])
    {
      dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
      if (personality)
	{
	  dw2_asm_output_data (1, per_encoding, "Personality (%s)",
			       eh_data_format_name (per_encoding));
	  dw2_asm_output_encoded_addr_rtx (per_encoding,
					   personality,
					   true, NULL);
	}

      if (any_lsda_needed)
	dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
			     eh_data_format_name (lsda_encoding));

      if (fde_encoding != DW_EH_PE_absptr)
	dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
			     eh_data_format_name (fde_encoding));
    }

  FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
    output_cfi (cfi, NULL, for_eh);

  /* Pad the CIE out to an address sized boundary.  */
  ASM_OUTPUT_ALIGN (asm_out_file,
		    floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
  ASM_OUTPUT_LABEL (asm_out_file, l2);

  /* Loop through all of the FDE's.  */
  FOR_EACH_VEC_ELT (*fde_vec, i, fde)
    {
      unsigned int k;

      /* Don't emit EH unwind info for leaf functions that don't need it.  */
      if (for_eh && !fde_needed_for_eh_p (fde))
	continue;

      for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
	output_fde (fde, for_eh, k, section_start_label, fde_encoding,
		    augmentation, any_lsda_needed, lsda_encoding);
    }

  if (for_eh && targetm.terminate_dw2_eh_frame_info)
    dw2_asm_output_data (4, 0, "End of Table");

  /* Turn off app to make assembly quicker.  */
  if (flag_debug_asm)
    app_disable ();
}

/* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed.  */

static void
dwarf2out_do_cfi_startproc (bool second)
{
  int enc;
  rtx ref;

  fprintf (asm_out_file, "\t.cfi_startproc\n");

  targetm.asm_out.post_cfi_startproc (asm_out_file, current_function_decl);

  /* .cfi_personality and .cfi_lsda are only relevant to DWARF2
     eh unwinders.  */
  if (targetm_common.except_unwind_info (&global_options) != UI_DWARF2)
    return;

  rtx personality = get_personality_function (current_function_decl);

  if (personality)
    {
      enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
      ref = personality;

      /* ??? The GAS support isn't entirely consistent.  We have to
	 handle indirect support ourselves, but PC-relative is done
	 in the assembler.  Further, the assembler can't handle any
	 of the weirder relocation types.  */
      if (enc & DW_EH_PE_indirect)
	{
	  if (targetm.asm_out.make_eh_symbol_indirect != NULL)
	    ref = targetm.asm_out.make_eh_symbol_indirect (ref, true);
	  else
	    ref = dw2_force_const_mem (ref, true);
	}

      fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
      output_addr_const (asm_out_file, ref);
      fputc ('\n', asm_out_file);
    }

  if (crtl->uses_eh_lsda)
    {
      char lab[MAX_ARTIFICIAL_LABEL_BYTES];

      enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
      ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
				   current_function_funcdef_no);
      ref = gen_rtx_SYMBOL_REF (Pmode, lab);
      SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;

      if (enc & DW_EH_PE_indirect)
	{
	  if (targetm.asm_out.make_eh_symbol_indirect != NULL)
	    ref = targetm.asm_out.make_eh_symbol_indirect (ref, true);
	  else
	    ref = dw2_force_const_mem (ref, true);
	}

      fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
      output_addr_const (asm_out_file, ref);
      fputc ('\n', asm_out_file);
    }
}

/* Allocate CURRENT_FDE.  Immediately initialize all we can, noting that
   this allocation may be done before pass_final.  */

dw_fde_ref
dwarf2out_alloc_current_fde (void)
{
  dw_fde_ref fde;

  fde = ggc_cleared_alloc<dw_fde_node> ();
  fde->decl = current_function_decl;
  fde->funcdef_number = current_function_funcdef_no;
  fde->fde_index = vec_safe_length (fde_vec);
  fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
  fde->uses_eh_lsda = crtl->uses_eh_lsda;
  fde->nothrow = crtl->nothrow;
  fde->drap_reg = INVALID_REGNUM;
  fde->vdrap_reg = INVALID_REGNUM;

  /* Record the FDE associated with this function.  */
  cfun->fde = fde;
  vec_safe_push (fde_vec, fde);

  return fde;
}

/* Output a marker (i.e. a label) for the beginning of a function, before
   the prologue.  */

void
dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
			  unsigned int column ATTRIBUTE_UNUSED,
			  const char *file ATTRIBUTE_UNUSED)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  char * dup_label;
  dw_fde_ref fde;
  section *fnsec;
  bool do_frame;

  current_function_func_begin_label = NULL;

  do_frame = dwarf2out_do_frame ();

  /* ??? current_function_func_begin_label is also used by except.cc for
     call-site information.  We must emit this label if it might be used.  */
  if (!do_frame
      && (!flag_exceptions
	  || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
    return;

  fnsec = function_section (current_function_decl);
  switch_to_section (fnsec);
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
			  current_function_funcdef_no);
  dup_label = xstrdup (label);
  current_function_func_begin_label = dup_label;

  /* We can elide FDE allocation if we're not emitting frame unwind info.  */
  if (!do_frame)
    return;

  /* Unlike the debug version, the EH version of frame unwind info is a per-
     function setting so we need to record whether we need it for the unit.  */
  do_eh_frame |= dwarf2out_do_eh_frame ();

  /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
     emit insns as rtx but bypass the bulk of rest_of_compilation, which
     would include pass_dwarf2_frame.  If we've not created the FDE yet,
     do so now.  */
  fde = cfun->fde;
  if (fde == NULL)
    fde = dwarf2out_alloc_current_fde ();

  /* Initialize the bits of CURRENT_FDE that were not available earlier.  */
  fde->dw_fde_begin = dup_label;
  fde->dw_fde_current_label = dup_label;
  fde->in_std_section = (fnsec == text_section
			 || (cold_text_section && fnsec == cold_text_section));
  fde->ignored_debug = DECL_IGNORED_P (current_function_decl);
  in_text_section_p = fnsec == text_section;

  /* We only want to output line number information for the genuine dwarf2
     prologue case, not the eh frame case.  */
#ifdef DWARF2_DEBUGGING_INFO
  if (file)
    dwarf2out_source_line (line, column, file, 0, true);
#endif

  if (dwarf2out_do_cfi_asm ())
    dwarf2out_do_cfi_startproc (false);
  else
    {
      rtx personality = get_personality_function (current_function_decl);
      if (!current_unit_personality)
        current_unit_personality = personality;

      /* We cannot keep a current personality per function as without CFI
	 asm, at the point where we emit the CFI data, there is no current
	 function anymore.  */
      if (personality && current_unit_personality != personality)
	sorry ("multiple EH personalities are supported only with assemblers "
	       "supporting %<.cfi_personality%> directive");
    }
}

/* Output a marker (i.e. a label) for the end of the generated code
   for a function prologue.  This gets called *after* the prologue code has
   been generated.  */

void
dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
			    const char *file ATTRIBUTE_UNUSED)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  /* Output a label to mark the endpoint of the code generated for this
     function.  */
  ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
			  current_function_funcdef_no);
  cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
}

/* Output a marker (i.e. a label) for the beginning of the generated code
   for a function epilogue.  This gets called *before* the prologue code has
   been generated.  */

void
dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
			  const char *file ATTRIBUTE_UNUSED)
{
  dw_fde_ref fde = cfun->fde;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (fde->dw_fde_vms_begin_epilogue)
    return;

  /* Output a label to mark the endpoint of the code generated for this
     function.  */
  ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
			  current_function_funcdef_no);
  fde->dw_fde_vms_begin_epilogue = xstrdup (label);
}

/* Mark the ranges of non-debug subsections in the std text sections.  */

static void
mark_ignored_debug_section (dw_fde_ref fde, bool second)
{
  bool std_section;
  const char *begin_label, *end_label;
  const char **last_end_label;
  vec<const char *, va_gc> **switch_ranges;

  if (second)
    {
      std_section = fde->second_in_std_section;
      begin_label = fde->dw_fde_second_begin;
      end_label   = fde->dw_fde_second_end;
    }
  else
    {
      std_section = fde->in_std_section;
      begin_label = fde->dw_fde_begin;
      end_label   = fde->dw_fde_end;
    }

  if (!std_section)
    return;

  if (in_text_section_p)
    {
      last_end_label = &last_text_label;
      switch_ranges  = &switch_text_ranges;
    }
  else
    {
      last_end_label = &last_cold_label;
      switch_ranges  = &switch_cold_ranges;
    }

  if (fde->ignored_debug)
    {
      if (*switch_ranges && !(vec_safe_length (*switch_ranges) & 1))
	vec_safe_push (*switch_ranges, *last_end_label);
    }
  else
    {
      *last_end_label = end_label;

      if (!*switch_ranges)
	vec_alloc (*switch_ranges, 16);
      else if (vec_safe_length (*switch_ranges) & 1)
	vec_safe_push (*switch_ranges, begin_label);
    }
}

/* Output a marker (i.e. a label) for the absolute end of the generated code
   for a function definition.  This gets called *after* the epilogue code has
   been generated.  */

void
dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
			const char *file ATTRIBUTE_UNUSED)
{
  dw_fde_ref fde;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  last_var_location_insn = NULL;
  cached_next_real_insn = NULL;

  if (dwarf2out_do_cfi_asm ())
    fprintf (asm_out_file, "\t.cfi_endproc\n");

  /* Output a label to mark the endpoint of the code generated for this
     function.  */
  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
			       current_function_funcdef_no);
  ASM_OUTPUT_LABEL (asm_out_file, label);
  fde = cfun->fde;
  gcc_assert (fde != NULL);
  if (fde->dw_fde_second_begin == NULL)
    fde->dw_fde_end = xstrdup (label);

  mark_ignored_debug_section (fde, fde->dw_fde_second_begin != NULL);
}

void
dwarf2out_frame_finish (void)
{
  /* Output call frame information.  */
  if (targetm.debug_unwind_info () == UI_DWARF2)
    output_call_frame_info (0);

  /* Output another copy for the unwinder.  */
  if (do_eh_frame)
    output_call_frame_info (1);
}

static void var_location_switch_text_section (void);
static void set_cur_line_info_table (section *);

void
dwarf2out_switch_text_section (void)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  section *sect;
  dw_fde_ref fde = cfun->fde;

  gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);

  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_SECOND_SECT_LABEL,
			       current_function_funcdef_no);

  fde->dw_fde_second_begin = ggc_strdup (label);
  if (!in_cold_section_p)
    {
      fde->dw_fde_end = crtl->subsections.cold_section_end_label;
      fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
    }
  else
    {
      fde->dw_fde_end = crtl->subsections.hot_section_end_label;
      fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
    }
  have_multiple_function_sections = true;

  if (dwarf2out_do_cfi_asm ())
    fprintf (asm_out_file, "\t.cfi_endproc\n");

  mark_ignored_debug_section (fde, false);

  /* Now do the real section switch.  */
  sect = current_function_section ();
  switch_to_section (sect);

  fde->second_in_std_section
    = (sect == text_section
       || (cold_text_section && sect == cold_text_section));
  in_text_section_p = sect == text_section;

  if (dwarf2out_do_cfi_asm ())
    dwarf2out_do_cfi_startproc (true);

  var_location_switch_text_section ();

  if (cold_text_section != NULL)
    set_cur_line_info_table (sect);
}

/* And now, the subset of the debugging information support code necessary
   for emitting location expressions.  */

/* Describe an entry into the .debug_addr section.  */

enum ate_kind {
  ate_kind_rtx,
  ate_kind_rtx_dtprel,
  ate_kind_label
};

struct GTY((for_user)) addr_table_entry {
  enum ate_kind kind;
  unsigned int refcount;
  unsigned int index;
  union addr_table_entry_struct_union
    {
      rtx GTY ((tag ("0"))) rtl;
      char * GTY ((tag ("1"))) label;
    }
  GTY ((desc ("%1.kind"))) addr;
};

typedef unsigned int var_loc_view;

/* Location lists are ranges + location descriptions for that range,
   so you can track variables that are in different places over
   their entire life.  */
typedef struct GTY(()) dw_loc_list_struct {
  dw_loc_list_ref dw_loc_next;
  const char *begin; /* Label and addr_entry for start of range */
  addr_table_entry *begin_entry;
  const char *end;  /* Label for end of range */
  addr_table_entry *end_entry;
  char *ll_symbol; /* Label for beginning of location list.
		      Only on head of list.  */
  char *vl_symbol; /* Label for beginning of view list.  Ditto.  */
  const char *section; /* Section this loclist is relative to */
  dw_loc_descr_ref expr;
  var_loc_view vbegin, vend;
  hashval_t hash;
  /* True if all addresses in this and subsequent lists are known to be
     resolved.  */
  bool resolved_addr;
  /* True if this list has been replaced by dw_loc_next.  */
  bool replaced;
  /* True if it has been emitted into .debug_loc* / .debug_loclists*
     section.  */
  unsigned char emitted : 1;
  /* True if hash field is index rather than hash value.  */
  unsigned char num_assigned : 1;
  /* True if .debug_loclists.dwo offset has been emitted for it already.  */
  unsigned char offset_emitted : 1;
  /* True if note_variable_value_in_expr has been called on it.  */
  unsigned char noted_variable_value : 1;
  /* True if the range should be emitted even if begin and end
     are the same.  */
  bool force;
} dw_loc_list_node;

static dw_loc_descr_ref int_loc_descriptor (poly_int64);
static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT);

/* Convert a DWARF stack opcode into its string name.  */

static const char *
dwarf_stack_op_name (unsigned int op)
{
  const char *name = get_DW_OP_name (op);

  if (name != NULL)
    return name;

  return "OP_<unknown>";
}

/* Return TRUE iff we're to output location view lists as a separate
   attribute next to the location lists, as an extension compatible
   with DWARF 2 and above.  */

static inline bool
dwarf2out_locviews_in_attribute ()
{
  return debug_variable_location_views == 1;
}

/* Return TRUE iff we're to output location view lists as part of the
   location lists, as proposed for standardization after DWARF 5.  */

static inline bool
dwarf2out_locviews_in_loclist ()
{
#ifndef DW_LLE_view_pair
  return false;
#else
  return debug_variable_location_views == -1;
#endif
}

/* Return a pointer to a newly allocated location description.  Location
   descriptions are simple expression terms that can be strung
   together to form more complicated location (address) descriptions.  */

static inline dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
	       unsigned HOST_WIDE_INT oprnd2)
{
  dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();

  descr->dw_loc_opc = op;
  descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd1.val_entry = NULL;
  descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
  descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
  descr->dw_loc_oprnd2.val_entry = NULL;
  descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;

  return descr;
}

/* Add a location description term to a location description expression.  */

static inline void
add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
{
  dw_loc_descr_ref *d;

  /* Find the end of the chain.  */
  for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
    ;

  *d = descr;
}

/* Compare two location operands for exact equality.  */

static bool
dw_val_equal_p (dw_val_node *a, dw_val_node *b)
{
  if (a->val_class != b->val_class)
    return false;
  switch (a->val_class)
    {
    case dw_val_class_none:
      return true;
    case dw_val_class_addr:
      return rtx_equal_p (a->v.val_addr, b->v.val_addr);

    case dw_val_class_offset:
    case dw_val_class_unsigned_const:
    case dw_val_class_const:
    case dw_val_class_unsigned_const_implicit:
    case dw_val_class_const_implicit:
    case dw_val_class_range_list:
      /* These are all HOST_WIDE_INT, signed or unsigned.  */
      return a->v.val_unsigned == b->v.val_unsigned;

    case dw_val_class_loc:
      return a->v.val_loc == b->v.val_loc;
    case dw_val_class_loc_list:
      return a->v.val_loc_list == b->v.val_loc_list;
    case dw_val_class_view_list:
      return a->v.val_view_list == b->v.val_view_list;
    case dw_val_class_die_ref:
      return a->v.val_die_ref.die == b->v.val_die_ref.die;
    case dw_val_class_fde_ref:
      return a->v.val_fde_index == b->v.val_fde_index;
    case dw_val_class_symview:
      return strcmp (a->v.val_symbolic_view, b->v.val_symbolic_view) == 0;
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
    case dw_val_class_high_pc:
      return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
    case dw_val_class_str:
      return a->v.val_str == b->v.val_str;
    case dw_val_class_flag:
      return a->v.val_flag == b->v.val_flag;
    case dw_val_class_file:
    case dw_val_class_file_implicit:
      return a->v.val_file == b->v.val_file;
    case dw_val_class_decl_ref:
      return a->v.val_decl_ref == b->v.val_decl_ref;
    
    case dw_val_class_const_double:
      return (a->v.val_double.high == b->v.val_double.high
	      && a->v.val_double.low == b->v.val_double.low);

    case dw_val_class_wide_int:
      return *a->v.val_wide == *b->v.val_wide;

    case dw_val_class_vec:
      {
	size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
	size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;

	return (a_len == b_len
		&& !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
      }

    case dw_val_class_data8:
      return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;

    case dw_val_class_vms_delta:
      return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
	      && !strcmp (a->v.val_vms_delta.lbl2, b->v.val_vms_delta.lbl2));

    case dw_val_class_discr_value:
      return (a->v.val_discr_value.pos == b->v.val_discr_value.pos
	      && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval);
    case dw_val_class_discr_list:
      /* It makes no sense comparing two discriminant value lists.  */
      return false;
    }
  gcc_unreachable ();
}

/* Compare two location atoms for exact equality.  */

static bool
loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
{
  if (a->dw_loc_opc != b->dw_loc_opc)
    return false;

  /* ??? This is only ever set for DW_OP_constNu, for N equal to the
     address size, but since we always allocate cleared storage it
     should be zero for other types of locations.  */
  if (a->dtprel != b->dtprel)
    return false;

  return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
	  && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
}

/* Compare two complete location expressions for exact equality.  */

bool
loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
{
  while (1)
    {
      if (a == b)
	return true;
      if (a == NULL || b == NULL)
	return false;
      if (!loc_descr_equal_p_1 (a, b))
	return false;

      a = a->dw_loc_next;
      b = b->dw_loc_next;
    }
}


/* Add a constant POLY_OFFSET to a location expression.  */

static void
loc_descr_plus_const (dw_loc_descr_ref *list_head, poly_int64 poly_offset)
{
  dw_loc_descr_ref loc;
  HOST_WIDE_INT *p;

  gcc_assert (*list_head != NULL);

  if (known_eq (poly_offset, 0))
    return;

  /* Find the end of the chain.  */
  for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
    ;

  HOST_WIDE_INT offset;
  if (!poly_offset.is_constant (&offset))
    {
      loc->dw_loc_next = int_loc_descriptor (poly_offset);
      add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_plus, 0, 0));
      return;
    }

  p = NULL;
  if (loc->dw_loc_opc == DW_OP_fbreg
      || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
    p = &loc->dw_loc_oprnd1.v.val_int;
  else if (loc->dw_loc_opc == DW_OP_bregx)
    p = &loc->dw_loc_oprnd2.v.val_int;

  /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
     offset.  Don't optimize if an signed integer overflow would happen.  */
  if (p != NULL
      && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
	  || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
    *p += offset;

  else if (offset > 0)
    loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);

  else
    {
      loc->dw_loc_next
	= uint_loc_descriptor (-(unsigned HOST_WIDE_INT) offset);
      add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
    }
}

/* Return a pointer to a newly allocated location description for
   REG and OFFSET.  */

static inline dw_loc_descr_ref
new_reg_loc_descr (unsigned int reg, poly_int64 offset)
{
  HOST_WIDE_INT const_offset;
  if (offset.is_constant (&const_offset))
    {
      if (reg <= 31)
	return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
			      const_offset, 0);
      else
	return new_loc_descr (DW_OP_bregx, reg, const_offset);
    }
  else
    {
      dw_loc_descr_ref ret = new_reg_loc_descr (reg, 0);
      loc_descr_plus_const (&ret, offset);
      return ret;
    }
}

/* Add a constant OFFSET to a location list.  */

static void
loc_list_plus_const (dw_loc_list_ref list_head, poly_int64 offset)
{
  dw_loc_list_ref d;
  for (d = list_head; d != NULL; d = d->dw_loc_next)
    loc_descr_plus_const (&d->expr, offset);
}

#define DWARF_REF_SIZE	\
  (dwarf_version == 2 ? DWARF2_ADDR_SIZE : dwarf_offset_size)

/* The number of bits that can be encoded by largest DW_FORM_dataN.
   In DWARF4 and earlier it is DW_FORM_data8 with 64 bits, in DWARF5
   DW_FORM_data16 with 128 bits.  */
#define DWARF_LARGEST_DATA_FORM_BITS \
  (dwarf_version >= 5 ? 128 : 64)

/* Utility inline function for construction of ops that were GNU extension
   before DWARF 5.  */
static inline enum dwarf_location_atom
dwarf_OP (enum dwarf_location_atom op)
{
  switch (op)
    {
    case DW_OP_implicit_pointer:
      if (dwarf_version < 5)
	return DW_OP_GNU_implicit_pointer;
      break;

    case DW_OP_entry_value:
      if (dwarf_version < 5)
	return DW_OP_GNU_entry_value;
      break;

    case DW_OP_const_type:
      if (dwarf_version < 5)
	return DW_OP_GNU_const_type;
      break;

    case DW_OP_regval_type:
      if (dwarf_version < 5)
	return DW_OP_GNU_regval_type;
      break;

    case DW_OP_deref_type:
      if (dwarf_version < 5)
	return DW_OP_GNU_deref_type;
      break;

    case DW_OP_convert:
      if (dwarf_version < 5)
	return DW_OP_GNU_convert;
      break;

    case DW_OP_reinterpret:
      if (dwarf_version < 5)
	return DW_OP_GNU_reinterpret;
      break;

    case DW_OP_addrx:
      if (dwarf_version < 5)
	return DW_OP_GNU_addr_index;
      break;

    case DW_OP_constx:
      if (dwarf_version < 5)
	return DW_OP_GNU_const_index;
      break;

    default:
      break;
    }
  return op;
}

/* Similarly for attributes.  */
static inline enum dwarf_attribute
dwarf_AT (enum dwarf_attribute at)
{
  switch (at)
    {
    case DW_AT_call_return_pc:
      if (dwarf_version < 5)
	return DW_AT_low_pc;
      break;

    case DW_AT_call_tail_call:
      if (dwarf_version < 5)
	return DW_AT_GNU_tail_call;
      break;

    case DW_AT_call_origin:
      if (dwarf_version < 5)
	return DW_AT_abstract_origin;
      break;

    case DW_AT_call_target:
      if (dwarf_version < 5)
	return DW_AT_GNU_call_site_target;
      break;

    case DW_AT_call_target_clobbered:
      if (dwarf_version < 5)
	return DW_AT_GNU_call_site_target_clobbered;
      break;

    case DW_AT_call_parameter:
      if (dwarf_version < 5)
	return DW_AT_abstract_origin;
      break;

    case DW_AT_call_value:
      if (dwarf_version < 5)
	return DW_AT_GNU_call_site_value;
      break;

    case DW_AT_call_data_value:
      if (dwarf_version < 5)
	return DW_AT_GNU_call_site_data_value;
      break;

    case DW_AT_call_all_calls:
      if (dwarf_version < 5)
	return DW_AT_GNU_all_call_sites;
      break;

    case DW_AT_call_all_tail_calls:
      if (dwarf_version < 5)
	return DW_AT_GNU_all_tail_call_sites;
      break;

    case DW_AT_dwo_name:
      if (dwarf_version < 5)
	return DW_AT_GNU_dwo_name;
      break;

    case DW_AT_addr_base:
      if (dwarf_version < 5)
	return DW_AT_GNU_addr_base;
      break;

    default:
      break;
    }
  return at;
}

/* And similarly for tags.  */
static inline enum dwarf_tag
dwarf_TAG (enum dwarf_tag tag)
{
  switch (tag)
    {
    case DW_TAG_call_site:
      if (dwarf_version < 5)
	return DW_TAG_GNU_call_site;
      break;

    case DW_TAG_call_site_parameter:
      if (dwarf_version < 5)
	return DW_TAG_GNU_call_site_parameter;
      break;

    default:
      break;
    }
  return tag;
}

/* And similarly for forms.  */
static inline enum dwarf_form
dwarf_FORM (enum dwarf_form form)
{
  switch (form)
    {
    case DW_FORM_addrx:
      if (dwarf_version < 5)
	return DW_FORM_GNU_addr_index;
      break;

    case DW_FORM_strx:
      if (dwarf_version < 5)
	return DW_FORM_GNU_str_index;
      break;

    default:
      break;
    }
  return form;
}

static unsigned long int get_base_type_offset (dw_die_ref);

/* Return the size of a location descriptor.  */

static unsigned long
size_of_loc_descr (dw_loc_descr_ref loc)
{
  unsigned long size = 1;

  switch (loc->dw_loc_opc)
    {
    case DW_OP_addr:
      size += DWARF2_ADDR_SIZE;
      break;
    case DW_OP_GNU_addr_index:
    case DW_OP_addrx:
    case DW_OP_GNU_const_index:
    case DW_OP_constx:
      gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
      size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
      break;
    case DW_OP_const1u:
    case DW_OP_const1s:
      size += 1;
      break;
    case DW_OP_const2u:
    case DW_OP_const2s:
      size += 2;
      break;
    case DW_OP_const4u:
    case DW_OP_const4s:
      size += 4;
      break;
    case DW_OP_const8u:
    case DW_OP_const8s:
      size += 8;
      break;
    case DW_OP_constu:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_consts:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_pick:
      size += 1;
      break;
    case DW_OP_plus_uconst:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      size += 2;
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_regx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_fbreg:
      size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
      break;
    case DW_OP_bregx:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
      break;
    case DW_OP_piece:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      break;
    case DW_OP_bit_piece:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      size += 1;
      break;
    case DW_OP_call2:
      size += 2;
      break;
    case DW_OP_call4:
      size += 4;
      break;
    case DW_OP_call_ref:
    case DW_OP_GNU_variable_value:
      size += DWARF_REF_SIZE;
      break;
    case DW_OP_implicit_value:
      size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
	      + loc->dw_loc_oprnd1.v.val_unsigned;
      break;
    case DW_OP_implicit_pointer:
    case DW_OP_GNU_implicit_pointer:
      size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
      break;
    case DW_OP_entry_value:
    case DW_OP_GNU_entry_value:
      {
	unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
	size += size_of_uleb128 (op_size) + op_size;
	break;
      }
    case DW_OP_const_type:
    case DW_OP_GNU_const_type:
      {
	unsigned long o
	  = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
	size += size_of_uleb128 (o) + 1;
	switch (loc->dw_loc_oprnd2.val_class)
	  {
	  case dw_val_class_vec:
	    size += loc->dw_loc_oprnd2.v.val_vec.length
		    * loc->dw_loc_oprnd2.v.val_vec.elt_size;
	    break;
	  case dw_val_class_const:
	    size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
	    break;
	  case dw_val_class_const_double:
	    size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
	    break;
	  case dw_val_class_wide_int:
	    size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
		     * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
	    break;
	  default:
	    gcc_unreachable ();
	  }
	break;
      }
    case DW_OP_regval_type:
    case DW_OP_GNU_regval_type:
      {
	unsigned long o
	  = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
	size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
		+ size_of_uleb128 (o);
      }
      break;
    case DW_OP_deref_type:
    case DW_OP_GNU_deref_type:
      {
	unsigned long o
	  = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
	size += 1 + size_of_uleb128 (o);
      }
      break;
    case DW_OP_convert:
    case DW_OP_reinterpret:
    case DW_OP_GNU_convert:
    case DW_OP_GNU_reinterpret:
      if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
	size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
      else
	{
	  unsigned long o
	    = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
	  size += size_of_uleb128 (o);
	}
      break;
    case DW_OP_GNU_parameter_ref:
      size += 4;
      break;
    default:
      break;
    }

  return size;
}

/* Return the size of a series of location descriptors.  */

unsigned long
size_of_locs (dw_loc_descr_ref loc)
{
  dw_loc_descr_ref l;
  unsigned long size;

  /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
     field, to avoid writing to a PCH file.  */
  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
    {
      if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
	break;
      size += size_of_loc_descr (l);
    }
  if (! l)
    return size;

  for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
    {
      l->dw_loc_addr = size;
      size += size_of_loc_descr (l);
    }

  return size;
}

/* Return the size of the value in a DW_AT_discr_value attribute.  */

static int
size_of_discr_value (dw_discr_value *discr_value)
{
  if (discr_value->pos)
    return size_of_uleb128 (discr_value->v.uval);
  else
    return size_of_sleb128 (discr_value->v.sval);
}

/* Return the size of the value in a DW_AT_discr_list attribute.  */

static int
size_of_discr_list (dw_discr_list_ref discr_list)
{
  int size = 0;

  for (dw_discr_list_ref list = discr_list;
       list != NULL;
       list = list->dw_discr_next)
    {
      /* One byte for the discriminant value descriptor, and then one or two
	 LEB128 numbers, depending on whether it's a single case label or a
	 range label.  */
      size += 1;
      size += size_of_discr_value (&list->dw_discr_lower_bound);
      if (list->dw_discr_range != 0)
	size += size_of_discr_value (&list->dw_discr_upper_bound);
    }
  return size;
}

static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
static void get_ref_die_offset_label (char *, dw_die_ref);
static unsigned long int get_ref_die_offset (dw_die_ref);

/* Output location description stack opcode's operands (if any).
   The for_eh_or_skip parameter controls whether register numbers are
   converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
   hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
   info).  This should be suppressed for the cases that have not been converted
   (i.e. symbolic debug info), by setting the parameter < 0.  See PR47324.  */

static void
output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
{
  dw_val_ref val1 = &loc->dw_loc_oprnd1;
  dw_val_ref val2 = &loc->dw_loc_oprnd2;

  switch (loc->dw_loc_opc)
    {
#ifdef DWARF2_DEBUGGING_INFO
    case DW_OP_const2u:
    case DW_OP_const2s:
      dw2_asm_output_data (2, val1->v.val_int, NULL);
      break;
    case DW_OP_const4u:
      if (loc->dtprel)
	{
	  gcc_assert (targetm.asm_out.output_dwarf_dtprel);
	  targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
					       val1->v.val_addr);
	  fputc ('\n', asm_out_file);
	  break;
	}
      /* FALLTHRU */
    case DW_OP_const4s:
      dw2_asm_output_data (4, val1->v.val_int, NULL);
      break;
    case DW_OP_const8u:
      if (loc->dtprel)
	{
	  gcc_assert (targetm.asm_out.output_dwarf_dtprel);
	  targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
					       val1->v.val_addr);
	  fputc ('\n', asm_out_file);
	  break;
	}
      /* FALLTHRU */
    case DW_OP_const8s:
      gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
      dw2_asm_output_data (8, val1->v.val_int, NULL);
      break;
    case DW_OP_skip:
    case DW_OP_bra:
      {
	int offset;

	gcc_assert (val1->val_class == dw_val_class_loc);
	offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);

	dw2_asm_output_data (2, offset, NULL);
      }
      break;
    case DW_OP_implicit_value:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      switch (val2->val_class)
	{
	case dw_val_class_const:
	  dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
	  break;
	case dw_val_class_vec:
	  {
	    unsigned int elt_size = val2->v.val_vec.elt_size;
	    unsigned int len = val2->v.val_vec.length;
	    unsigned int i;
	    unsigned char *p;

	    if (elt_size > sizeof (HOST_WIDE_INT))
	      {
		elt_size /= 2;
		len *= 2;
	      }
	    for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
		 i < len;
		 i++, p += elt_size)
	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
				   "fp or vector constant word %u", i);
	  }
	  break;
	case dw_val_class_const_double:
	  {
	    unsigned HOST_WIDE_INT first, second;

	    if (WORDS_BIG_ENDIAN)
	      {
		first = val2->v.val_double.high;
		second = val2->v.val_double.low;
	      }
	    else
	      {
		first = val2->v.val_double.low;
		second = val2->v.val_double.high;
	      }
	    dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
				 first, NULL);
	    dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
				 second, NULL);
	  }
	  break;
	case dw_val_class_wide_int:
	  {
	    int i;
	    int len = get_full_len (*val2->v.val_wide);
	    if (WORDS_BIG_ENDIAN)
	      for (i = len - 1; i >= 0; --i)
		dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
				     val2->v.val_wide->elt (i), NULL);
	    else
	      for (i = 0; i < len; ++i)
		dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
				     val2->v.val_wide->elt (i), NULL);
	  }
	  break;
	case dw_val_class_addr:
	  gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
	  break;
	default:
	  gcc_unreachable ();
	}
      break;
#else
    case DW_OP_const2u:
    case DW_OP_const2s:
    case DW_OP_const4u:
    case DW_OP_const4s:
    case DW_OP_const8u:
    case DW_OP_const8s:
    case DW_OP_skip:
    case DW_OP_bra:
    case DW_OP_implicit_value:
      /* We currently don't make any attempt to make sure these are
	 aligned properly like we do for the main unwind info, so
	 don't support emitting things larger than a byte if we're
	 only doing unwinding.  */
      gcc_unreachable ();
#endif
    case DW_OP_const1u:
    case DW_OP_const1s:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;
    case DW_OP_constu:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_consts:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_pick:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;
    case DW_OP_plus_uconst:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_regx:
      {
	unsigned r = val1->v.val_unsigned;
	if (for_eh_or_skip >= 0)
	  r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
	gcc_assert (size_of_uleb128 (r) 
		    == size_of_uleb128 (val1->v.val_unsigned));
	dw2_asm_output_data_uleb128 (r, NULL);	
      }
      break;
    case DW_OP_fbreg:
      dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
      break;
    case DW_OP_bregx:
      {
	unsigned r = val1->v.val_unsigned;
	if (for_eh_or_skip >= 0)
	  r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
	gcc_assert (size_of_uleb128 (r) 
		    == size_of_uleb128 (val1->v.val_unsigned));
	dw2_asm_output_data_uleb128 (r, NULL);	
	dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
      }
      break;
    case DW_OP_piece:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      break;
    case DW_OP_bit_piece:
      dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
      break;
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      dw2_asm_output_data (1, val1->v.val_int, NULL);
      break;

    case DW_OP_addr:
      if (loc->dtprel)
	{
	  if (targetm.asm_out.output_dwarf_dtprel)
	    {
	      targetm.asm_out.output_dwarf_dtprel (asm_out_file,
						   DWARF2_ADDR_SIZE,
						   val1->v.val_addr);
	      fputc ('\n', asm_out_file);
	    }
	  else
	    gcc_unreachable ();
	}
      else
	{
#ifdef DWARF2_DEBUGGING_INFO
	  dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
#else
	  gcc_unreachable ();
#endif
	}
      break;

    case DW_OP_GNU_addr_index:
    case DW_OP_addrx:
    case DW_OP_GNU_const_index:
    case DW_OP_constx:
      gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
      dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
                                   "(index into .debug_addr)");
      break;

    case DW_OP_call2:
    case DW_OP_call4:
      {
	unsigned long die_offset
	  = get_ref_die_offset (val1->v.val_die_ref.die);
	/* Make sure the offset has been computed and that we can encode it as
	   an operand.  */
	gcc_assert (die_offset > 0
		    && die_offset <= (loc->dw_loc_opc == DW_OP_call2
				     ? 0xffff
				     : 0xffffffff));
	dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4,
			     die_offset, NULL);
      }
      break;

    case DW_OP_call_ref:
    case DW_OP_GNU_variable_value:
      {
	char label[MAX_ARTIFICIAL_LABEL_BYTES
		   + HOST_BITS_PER_WIDE_INT / 2 + 2];
	gcc_assert (val1->val_class == dw_val_class_die_ref);
	get_ref_die_offset_label (label, val1->v.val_die_ref.die);
	dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
      }
      break;

    case DW_OP_implicit_pointer:
    case DW_OP_GNU_implicit_pointer:
      {
	char label[MAX_ARTIFICIAL_LABEL_BYTES
		   + HOST_BITS_PER_WIDE_INT / 2 + 2];
	gcc_assert (val1->val_class == dw_val_class_die_ref);
	get_ref_die_offset_label (label, val1->v.val_die_ref.die);
	dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
	dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
      }
      break;

    case DW_OP_entry_value:
    case DW_OP_GNU_entry_value:
      dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
      output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
      break;

    case DW_OP_const_type:
    case DW_OP_GNU_const_type:
      {
	unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
	gcc_assert (o);
	dw2_asm_output_data_uleb128 (o, NULL);
	switch (val2->val_class)
	  {
	  case dw_val_class_const:
	    l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
	    dw2_asm_output_data (1, l, NULL);
	    dw2_asm_output_data (l, val2->v.val_int, NULL);
	    break;
	  case dw_val_class_vec:
	    {
	      unsigned int elt_size = val2->v.val_vec.elt_size;
	      unsigned int len = val2->v.val_vec.length;
	      unsigned int i;
	      unsigned char *p;

	      l = len * elt_size;
	      dw2_asm_output_data (1, l, NULL);
	      if (elt_size > sizeof (HOST_WIDE_INT))
		{
		  elt_size /= 2;
		  len *= 2;
		}
	      for (i = 0, p = (unsigned char *) val2->v.val_vec.array;
		   i < len;
		   i++, p += elt_size)
		dw2_asm_output_data (elt_size, extract_int (p, elt_size),
				     "fp or vector constant word %u", i);
	    }
	    break;
	  case dw_val_class_const_double:
	    {
	      unsigned HOST_WIDE_INT first, second;
	      l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;

	      dw2_asm_output_data (1, 2 * l, NULL);
	      if (WORDS_BIG_ENDIAN)
		{
		  first = val2->v.val_double.high;
		  second = val2->v.val_double.low;
		}
	      else
		{
		  first = val2->v.val_double.low;
		  second = val2->v.val_double.high;
		}
	      dw2_asm_output_data (l, first, NULL);
	      dw2_asm_output_data (l, second, NULL);
	    }
	    break;
	  case dw_val_class_wide_int:
	    {
	      int i;
	      int len = get_full_len (*val2->v.val_wide);
	      l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;

	      dw2_asm_output_data (1, len * l, NULL);
	      if (WORDS_BIG_ENDIAN)
		for (i = len - 1; i >= 0; --i)
		  dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
	      else
		for (i = 0; i < len; ++i)
		  dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
	    }
	    break;
	  default:
	    gcc_unreachable ();
	  }
      }
      break;
    case DW_OP_regval_type:
    case DW_OP_GNU_regval_type:
      {
	unsigned r = val1->v.val_unsigned;
	unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
	gcc_assert (o);
	if (for_eh_or_skip >= 0)
	  {
	    r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
	    gcc_assert (size_of_uleb128 (r)
			== size_of_uleb128 (val1->v.val_unsigned));
	  }
	dw2_asm_output_data_uleb128 (r, NULL);
	dw2_asm_output_data_uleb128 (o, NULL);
      }
      break;
    case DW_OP_deref_type:
    case DW_OP_GNU_deref_type:
      {
	unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
	gcc_assert (o);
	dw2_asm_output_data (1, val1->v.val_int, NULL);
	dw2_asm_output_data_uleb128 (o, NULL);
      }
      break;
    case DW_OP_convert:
    case DW_OP_reinterpret:
    case DW_OP_GNU_convert:
    case DW_OP_GNU_reinterpret:
      if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
	dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
      else
	{
	  unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
	  gcc_assert (o);
	  dw2_asm_output_data_uleb128 (o, NULL);
	}
      break;

    case DW_OP_GNU_parameter_ref:
      {
	unsigned long o;
	gcc_assert (val1->val_class == dw_val_class_die_ref);
	o = get_ref_die_offset (val1->v.val_die_ref.die);
	dw2_asm_output_data (4, o, NULL);
      }
      break;

    default:
      /* Other codes have no operands.  */
      break;
    }
}

/* Output a sequence of location operations.  
   The for_eh_or_skip parameter controls whether register numbers are
   converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
   hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
   info).  This should be suppressed for the cases that have not been converted
   (i.e. symbolic debug info), by setting the parameter < 0.  See PR47324.  */

void
output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
{
  for (; loc != NULL; loc = loc->dw_loc_next)
    {
      enum dwarf_location_atom opc = loc->dw_loc_opc;
      /* Output the opcode.  */
      if (for_eh_or_skip >= 0 
          && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
	{
	  unsigned r = (opc - DW_OP_breg0);
	  r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
	  gcc_assert (r <= 31);
	  opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
	}
      else if (for_eh_or_skip >= 0 
	       && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
	{
	  unsigned r = (opc - DW_OP_reg0);
	  r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
	  gcc_assert (r <= 31);
	  opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
	}

      dw2_asm_output_data (1, opc,
			     "%s", dwarf_stack_op_name (opc));

      /* Output the operand(s) (if any).  */
      output_loc_operands (loc, for_eh_or_skip);
    }
}

/* Output location description stack opcode's operands (if any).
   The output is single bytes on a line, suitable for .cfi_escape.  */

static void
output_loc_operands_raw (dw_loc_descr_ref loc)
{
  dw_val_ref val1 = &loc->dw_loc_oprnd1;
  dw_val_ref val2 = &loc->dw_loc_oprnd2;

  switch (loc->dw_loc_opc)
    {
    case DW_OP_addr:
    case DW_OP_GNU_addr_index:
    case DW_OP_addrx:
    case DW_OP_GNU_const_index:
    case DW_OP_constx:
    case DW_OP_implicit_value:
      /* We cannot output addresses in .cfi_escape, only bytes.  */
      gcc_unreachable ();

    case DW_OP_const1u:
    case DW_OP_const1s:
    case DW_OP_pick:
    case DW_OP_deref_size:
    case DW_OP_xderef_size:
      fputc (',', asm_out_file);
      dw2_asm_output_data_raw (1, val1->v.val_int);
      break;

    case DW_OP_const2u:
    case DW_OP_const2s:
      fputc (',', asm_out_file);
      dw2_asm_output_data_raw (2, val1->v.val_int);
      break;

    case DW_OP_const4u:
    case DW_OP_const4s:
      fputc (',', asm_out_file);
      dw2_asm_output_data_raw (4, val1->v.val_int);
      break;

    case DW_OP_const8u:
    case DW_OP_const8s:
      gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
      fputc (',', asm_out_file);
      dw2_asm_output_data_raw (8, val1->v.val_int);
      break;

    case DW_OP_skip:
    case DW_OP_bra:
      {
	int offset;

	gcc_assert (val1->val_class == dw_val_class_loc);
	offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);

        fputc (',', asm_out_file);
	dw2_asm_output_data_raw (2, offset);
      }
      break;

    case DW_OP_regx:
      {
	unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
	gcc_assert (size_of_uleb128 (r) 
		    == size_of_uleb128 (val1->v.val_unsigned));
	fputc (',', asm_out_file);
	dw2_asm_output_data_uleb128_raw (r);
      }
      break;
      
    case DW_OP_constu:
    case DW_OP_plus_uconst:
    case DW_OP_piece:
      fputc (',', asm_out_file);
      dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
      break;

    case DW_OP_bit_piece:
      fputc (',', asm_out_file);
      dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
      dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
      break;

    case DW_OP_consts:
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
    case DW_OP_fbreg:
      fputc (',', asm_out_file);
      dw2_asm_output_data_sleb128_raw (val1->v.val_int);
      break;

    case DW_OP_bregx:
      {
	unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
	gcc_assert (size_of_uleb128 (r) 
		    == size_of_uleb128 (val1->v.val_unsigned));
	fputc (',', asm_out_file);
	dw2_asm_output_data_uleb128_raw (r);
	fputc (',', asm_out_file);
	dw2_asm_output_data_sleb128_raw (val2->v.val_int);
      }
      break;

    case DW_OP_implicit_pointer:
    case DW_OP_entry_value:
    case DW_OP_const_type:
    case DW_OP_regval_type:
    case DW_OP_deref_type:
    case DW_OP_convert:
    case DW_OP_reinterpret:
    case DW_OP_GNU_implicit_pointer:
    case DW_OP_GNU_entry_value:
    case DW_OP_GNU_const_type:
    case DW_OP_GNU_regval_type:
    case DW_OP_GNU_deref_type:
    case DW_OP_GNU_convert:
    case DW_OP_GNU_reinterpret:
    case DW_OP_GNU_parameter_ref:
      gcc_unreachable ();
      break;

    default:
      /* Other codes have no operands.  */
      break;
    }
}

void
output_loc_sequence_raw (dw_loc_descr_ref loc)
{
  while (1)
    {
      enum dwarf_location_atom opc = loc->dw_loc_opc;
      /* Output the opcode.  */
      if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
	{
	  unsigned r = (opc - DW_OP_breg0);
	  r = DWARF2_FRAME_REG_OUT (r, 1);
	  gcc_assert (r <= 31);
	  opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
	}
      else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
	{
	  unsigned r = (opc - DW_OP_reg0);
	  r = DWARF2_FRAME_REG_OUT (r, 1);
	  gcc_assert (r <= 31);
	  opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
	}
      /* Output the opcode.  */
      fprintf (asm_out_file, "%#x", opc);
      output_loc_operands_raw (loc);

      if (!loc->dw_loc_next)
	break;
      loc = loc->dw_loc_next;

      fputc (',', asm_out_file);
    }
}

static void
build_breg_loc (struct dw_loc_descr_node **head, unsigned int regno)
{
  if (regno <= 31)
    add_loc_descr (head, new_loc_descr ((enum dwarf_location_atom)
					(DW_OP_breg0 + regno),  0, 0));
  else
    add_loc_descr (head, new_loc_descr (DW_OP_bregx, regno, 0));
}

/* Build a dwarf location for a cfa_reg spanning multiple
   consecutive registers.  */

struct dw_loc_descr_node *
build_span_loc (struct cfa_reg reg)
{
  struct dw_loc_descr_node *head = NULL;

  gcc_assert (reg.span_width > 0);
  gcc_assert (reg.span > 1);

  /* Start from the highest number register as it goes in the upper bits.  */
  unsigned int regno = reg.reg + reg.span - 1;
  build_breg_loc (&head, regno);

  /* Deal with the remaining registers in the span.  */
  for (int i = reg.span - 2; i >= 0; i--)
    {
      add_loc_descr (&head, int_loc_descriptor (reg.span_width * 8));
      add_loc_descr (&head, new_loc_descr (DW_OP_shl, 0, 0));
      regno--;
      build_breg_loc (&head, regno);
      add_loc_descr (&head, new_loc_descr (DW_OP_plus, 0, 0));
    }
  return head;
}

/* This function builds a dwarf location descriptor sequence from a
   dw_cfa_location, adding the given OFFSET to the result of the
   expression.  */

struct dw_loc_descr_node *
build_cfa_loc (dw_cfa_location *cfa, poly_int64 offset)
{
  struct dw_loc_descr_node *head, *tmp;

  offset += cfa->offset;

  if (cfa->reg.span > 1)
    {
      head = build_span_loc (cfa->reg);

      if (maybe_ne (offset, 0))
	  loc_descr_plus_const (&head, offset);
    }
  else if (cfa->indirect)
    {
      head = new_reg_loc_descr (cfa->reg.reg, cfa->base_offset);
      head->dw_loc_oprnd1.val_class = dw_val_class_const;
      head->dw_loc_oprnd1.val_entry = NULL;
      tmp = new_loc_descr (DW_OP_deref, 0, 0);
      add_loc_descr (&head, tmp);
      loc_descr_plus_const (&head, offset);
    }
  else
    head = new_reg_loc_descr (cfa->reg.reg, offset);

  return head;
}

/* This function builds a dwarf location descriptor sequence for
   the address at OFFSET from the CFA when stack is aligned to
   ALIGNMENT byte.  */

struct dw_loc_descr_node *
build_cfa_aligned_loc (dw_cfa_location *cfa,
		       poly_int64 offset, HOST_WIDE_INT alignment)
{
  struct dw_loc_descr_node *head;
  unsigned int dwarf_fp
    = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);

  /* When CFA is defined as FP+OFFSET, emulate stack alignment.  */
  if (cfa->reg.reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
    {
      head = new_reg_loc_descr (dwarf_fp, 0);
      add_loc_descr (&head, int_loc_descriptor (alignment));
      add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
      loc_descr_plus_const (&head, offset);
    }
  else
    head = new_reg_loc_descr (dwarf_fp, offset);
  return head;
}

/* And now, the support for symbolic debugging information.  */

/* .debug_str support.  */

static void dwarf2out_init (const char *);
static void dwarf2out_finish (const char *);
static void dwarf2out_early_finish (const char *);
static void dwarf2out_assembly_start (void);
static void dwarf2out_define (unsigned int, const char *);
static void dwarf2out_undef (unsigned int, const char *);
static void dwarf2out_start_source_file (unsigned, const char *);
static void dwarf2out_end_source_file (unsigned);
static void dwarf2out_function_decl (tree);
static void dwarf2out_begin_block (unsigned, unsigned);
static void dwarf2out_end_block (unsigned, unsigned);
static bool dwarf2out_ignore_block (const_tree);
static void dwarf2out_set_ignored_loc (unsigned, unsigned, const char *);
static void dwarf2out_early_global_decl (tree);
static void dwarf2out_late_global_decl (tree);
static void dwarf2out_type_decl (tree, int);
static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool, bool);
static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
						 dw_die_ref);
static void dwarf2out_abstract_function (tree);
static void dwarf2out_var_location (rtx_insn *);
static void dwarf2out_inline_entry (tree);
static void dwarf2out_size_function (tree);
static void dwarf2out_begin_function (tree);
static void dwarf2out_end_function (unsigned int);
static void dwarf2out_register_main_translation_unit (tree unit);
static void dwarf2out_set_name (tree, tree);
static void dwarf2out_register_external_die (tree decl, const char *sym,
					     unsigned HOST_WIDE_INT off);
static bool dwarf2out_die_ref_for_decl (tree decl, const char **sym,
					unsigned HOST_WIDE_INT *off);

/* The debug hooks structure.  */

const struct gcc_debug_hooks dwarf2_debug_hooks =
{
  dwarf2out_init,
  dwarf2out_finish,
  dwarf2out_early_finish,
  dwarf2out_assembly_start,
  dwarf2out_define,
  dwarf2out_undef,
  dwarf2out_start_source_file,
  dwarf2out_end_source_file,
  dwarf2out_begin_block,
  dwarf2out_end_block,
  dwarf2out_ignore_block,
  dwarf2out_source_line,
  dwarf2out_set_ignored_loc,
  dwarf2out_begin_prologue,
#if VMS_DEBUGGING_INFO
  dwarf2out_vms_end_prologue,
  dwarf2out_vms_begin_epilogue,
#else
  debug_nothing_int_charstar,
  debug_nothing_int_charstar,
#endif
  dwarf2out_end_epilogue,
  dwarf2out_begin_function,
  dwarf2out_end_function,	/* end_function */
  dwarf2out_register_main_translation_unit,
  dwarf2out_function_decl,	/* function_decl */
  dwarf2out_early_global_decl,
  dwarf2out_late_global_decl,
  dwarf2out_type_decl,		/* type_decl */
  dwarf2out_imported_module_or_decl,
  dwarf2out_die_ref_for_decl,
  dwarf2out_register_external_die,
  debug_nothing_tree,		/* deferred_inline_function */
  /* The DWARF 2 backend tries to reduce debugging bloat by not
     emitting the abstract description of inline functions until
     something tries to reference them.  */
  dwarf2out_abstract_function,	/* outlining_inline_function */
  debug_nothing_rtx_code_label,	/* label */
  debug_nothing_int,		/* handle_pch */
  dwarf2out_var_location,
  dwarf2out_inline_entry,	/* inline_entry */
  dwarf2out_size_function,	/* size_function */
  dwarf2out_switch_text_section,
  dwarf2out_set_name,
  1,                            /* start_end_main_source_file */
  TYPE_SYMTAB_IS_DIE            /* tree_type_symtab_field */
};

const struct gcc_debug_hooks dwarf2_lineno_debug_hooks =
{
  dwarf2out_init,
  debug_nothing_charstar,
  debug_nothing_charstar,
  dwarf2out_assembly_start,
  debug_nothing_int_charstar,
  debug_nothing_int_charstar,
  debug_nothing_int_charstar,
  debug_nothing_int,
  debug_nothing_int_int,	         /* begin_block */
  debug_nothing_int_int,	         /* end_block */
  debug_true_const_tree,	         /* ignore_block */
  dwarf2out_source_line,		 /* source_line */
  debug_nothing_int_int_charstar,	 /* set_ignored_loc */
  debug_nothing_int_int_charstar,	 /* begin_prologue */
  debug_nothing_int_charstar,	         /* end_prologue */
  debug_nothing_int_charstar,	         /* begin_epilogue */
  debug_nothing_int_charstar,	         /* end_epilogue */
  debug_nothing_tree,		         /* begin_function */
  debug_nothing_int,		         /* end_function */
  debug_nothing_tree,			 /* register_main_translation_unit */
  debug_nothing_tree,		         /* function_decl */
  debug_nothing_tree,		         /* early_global_decl */
  debug_nothing_tree,		         /* late_global_decl */
  debug_nothing_tree_int,		 /* type_decl */
  debug_nothing_tree_tree_tree_bool_bool,/* imported_module_or_decl */
  debug_false_tree_charstarstar_uhwistar,/* die_ref_for_decl */
  debug_nothing_tree_charstar_uhwi,      /* register_external_die */
  debug_nothing_tree,		         /* deferred_inline_function */
  debug_nothing_tree,		         /* outlining_inline_function */
  debug_nothing_rtx_code_label,	         /* label */
  debug_nothing_int,		         /* handle_pch */
  debug_nothing_rtx_insn,	         /* var_location */
  debug_nothing_tree,	         	 /* inline_entry */
  debug_nothing_tree,			 /* size_function */
  debug_nothing_void,                    /* switch_text_section */
  debug_nothing_tree_tree,		 /* set_name */
  0,                                     /* start_end_main_source_file */
  TYPE_SYMTAB_IS_ADDRESS                 /* tree_type_symtab_field */
};

/* NOTE: In the comments in this file, many references are made to
   "Debugging Information Entries".  This term is abbreviated as `DIE'
   throughout the remainder of this file.  */

/* An internal representation of the DWARF output is built, and then
   walked to generate the DWARF debugging info.  The walk of the internal
   representation is done after the entire program has been compiled.
   The types below are used to describe the internal representation.  */

/* Whether to put type DIEs into their own section .debug_types instead
   of making them part of the .debug_info section.  Only supported for
   Dwarf V4 or higher and the user didn't disable them through
   -fno-debug-types-section.  It is more efficient to put them in a
   separate comdat sections since the linker will then be able to
   remove duplicates.  But not all tools support .debug_types sections
   yet.  For Dwarf V5 or higher .debug_types doesn't exist any more,
   it is DW_UT_type unit type in .debug_info section.  For late LTO
   debug there should be almost no types emitted so avoid enabling
   -fdebug-types-section there.  */

#define use_debug_types (dwarf_version >= 4 \
			 && flag_debug_types_section \
			 && !in_lto_p)

/* Various DIE's use offsets relative to the beginning of the
   .debug_info section to refer to each other.  */

typedef long int dw_offset;

struct comdat_type_node;

/* The entries in the line_info table more-or-less mirror the opcodes
   that are used in the real dwarf line table.  Arrays of these entries
   are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
   supported.  */

enum dw_line_info_opcode {
  /* Emit DW_LNE_set_address; the operand is the label index.  */
  LI_set_address,

  /* Emit a row to the matrix with the given line.  This may be done
     via any combination of DW_LNS_copy, DW_LNS_advance_line, and
     special opcodes.  */
  LI_set_line,

  /* Emit a DW_LNS_set_file.  */
  LI_set_file,

  /* Emit a DW_LNS_set_column.  */
  LI_set_column,

  /* Emit a DW_LNS_negate_stmt; the operand is ignored.  */
  LI_negate_stmt,

  /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored.  */
  LI_set_prologue_end,
  LI_set_epilogue_begin,

  /* Emit a DW_LNE_set_discriminator.  */
  LI_set_discriminator,

  /* Output a Fixed Advance PC; the target PC is the label index; the
     base PC is the previous LI_adv_address or LI_set_address entry.
     We only use this when emitting debug views without assembler
     support, at explicit user request.  Ideally, we should only use
     it when the offset might be zero but we can't tell: it's the only
     way to maybe change the PC without resetting the view number.  */
  LI_adv_address
};

typedef struct GTY(()) dw_line_info_struct {
  enum dw_line_info_opcode opcode;
  unsigned int val;
} dw_line_info_entry;


struct GTY(()) dw_line_info_table {
  /* The label that marks the end of this section.  */
  const char *end_label;

  /* The values for the last row of the matrix, as collected in the table.
     These are used to minimize the changes to the next row.  */
  unsigned int file_num;
  unsigned int line_num;
  unsigned int column_num;
  int discrim_num;
  bool is_stmt;
  bool in_use;

  /* This denotes the NEXT view number.

     If it is 0, it is known that the NEXT view will be the first view
     at the given PC.

     If it is -1, we're forcing the view number to be reset, e.g. at a
     function entry.

     The meaning of other nonzero values depends on whether we're
     computing views internally or leaving it for the assembler to do
     so.  If we're emitting them internally, view denotes the view
     number since the last known advance of PC.  If we're leaving it
     for the assembler, it denotes the LVU label number that we're
     going to ask the assembler to assign.  */
  var_loc_view view;

  /* This counts the number of symbolic views emitted in this table
     since the latest view reset.  Its max value, over all tables,
     sets symview_upper_bound.  */
  var_loc_view symviews_since_reset;

#define FORCE_RESET_NEXT_VIEW(x) ((x) = (var_loc_view)-1)
#define RESET_NEXT_VIEW(x) ((x) = (var_loc_view)0)
#define FORCE_RESETTING_VIEW_P(x) ((x) == (var_loc_view)-1)
#define RESETTING_VIEW_P(x) ((x) == (var_loc_view)0 || FORCE_RESETTING_VIEW_P (x))

  vec<dw_line_info_entry, va_gc> *entries;
};

/* This is an upper bound for view numbers that the assembler may
   assign to symbolic views output in this translation.  It is used to
   decide how big a field to use to represent view numbers in
   symview-classed attributes.  */

static var_loc_view symview_upper_bound;

/* If we're keep track of location views and their reset points, and
   INSN is a reset point (i.e., it necessarily advances the PC), mark
   the next view in TABLE as reset.  */

static void
maybe_reset_location_view (rtx_insn *insn, dw_line_info_table *table)
{
  if (!debug_internal_reset_location_views)
    return;

  /* Maybe turn (part of?) this test into a default target hook.  */
  int reset = 0;

  if (targetm.reset_location_view)
    reset = targetm.reset_location_view (insn);

  if (reset)
    ;
  else if (JUMP_TABLE_DATA_P (insn))
    reset = 1;
  else if (GET_CODE (insn) == USE
	   || GET_CODE (insn) == CLOBBER
	   || GET_CODE (insn) == ASM_INPUT
	   || asm_noperands (insn) >= 0)
    ;
  else if (get_attr_min_length (insn) > 0)
    reset = 1;

  if (reset > 0 && !RESETTING_VIEW_P (table->view))
    RESET_NEXT_VIEW (table->view);
}

/* The Debugging Information Entry (DIE) structure.  DIEs form a tree.
   The children of each node form a circular list linked by
   die_sib.  die_child points to the node *before* the "first" child node.  */

typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
  union die_symbol_or_type_node
    {
      const char * GTY ((tag ("0"))) die_symbol;
      comdat_type_node *GTY ((tag ("1"))) die_type_node;
    }
  GTY ((desc ("%0.comdat_type_p"))) die_id;
  vec<dw_attr_node, va_gc> *die_attr;
  dw_die_ref die_parent;
  dw_die_ref die_child;
  dw_die_ref die_sib;
  dw_die_ref die_definition; /* ref from a specification to its definition */
  dw_offset die_offset;
  unsigned long die_abbrev;
  int die_mark;
  unsigned int decl_id;
  enum dwarf_tag die_tag;
  /* Die is used and must not be pruned as unused.  */
  BOOL_BITFIELD die_perennial_p : 1;
  BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
  /* For an external ref to die_symbol if die_offset contains an extra
     offset to that symbol.  */
  BOOL_BITFIELD with_offset : 1;
  /* Whether this DIE was removed from the DIE tree, for example via
     prune_unused_types.  We don't consider those present from the
     DIE lookup routines.  */
  BOOL_BITFIELD removed : 1;
  /* Lots of spare bits.  */
}
die_node;

/* Set to TRUE while dwarf2out_early_global_decl is running.  */
static bool early_dwarf;
static bool early_dwarf_finished;
class set_early_dwarf {
public:
  bool saved;
  set_early_dwarf () : saved(early_dwarf)
    {
      gcc_assert (! early_dwarf_finished);
      early_dwarf = true;
    }
  ~set_early_dwarf () { early_dwarf = saved; }
};

/* Evaluate 'expr' while 'c' is set to each child of DIE in order.  */
#define FOR_EACH_CHILD(die, c, expr) do {	\
  c = die->die_child;				\
  if (c) do {					\
    c = c->die_sib;				\
    expr;					\
  } while (c != die->die_child);		\
} while (0)

/* The pubname structure */

typedef struct GTY(()) pubname_struct {
  dw_die_ref die;
  const char *name;
}
pubname_entry;


struct GTY(()) dw_ranges {
  const char *label;
  /* If this is positive, it's a block number, otherwise it's a
     bitwise-negated index into dw_ranges_by_label.  */
  int num;
  /* If idx is equal to DW_RANGES_IDX_SKELETON, it should be emitted
     into .debug_rnglists section rather than .debug_rnglists.dwo
     for -gsplit-dwarf and DWARF >= 5.  */
#define DW_RANGES_IDX_SKELETON ((1U << 31) - 1)
  /* Index for the range list for DW_FORM_rnglistx.  */
  unsigned int idx : 31;
  /* True if this range might be possibly in a different section
     from previous entry.  */
  unsigned int maybe_new_sec : 1;
  addr_table_entry *begin_entry;
  addr_table_entry *end_entry;
};

/* A structure to hold a macinfo entry.  */

typedef struct GTY(()) macinfo_struct {
  unsigned char code;
  unsigned HOST_WIDE_INT lineno;
  const char *info;
}
macinfo_entry;


struct GTY(()) dw_ranges_by_label {
  const char *begin;
  const char *end;
};

/* The comdat type node structure.  */
struct GTY(()) comdat_type_node
{
  dw_die_ref root_die;
  dw_die_ref type_die;
  dw_die_ref skeleton_die;
  char signature[DWARF_TYPE_SIGNATURE_SIZE];
  comdat_type_node *next;
};

/* A list of DIEs for which we can't determine ancestry (parent_die
   field) just yet.  Later in dwarf2out_finish we will fill in the
   missing bits.  */
typedef struct GTY(()) limbo_die_struct {
  dw_die_ref die;
  /* The tree for which this DIE was created.  We use this to
     determine ancestry later.  */
  tree created_for;
  struct limbo_die_struct *next;
}
limbo_die_node;

typedef struct skeleton_chain_struct
{
  dw_die_ref old_die;
  dw_die_ref new_die;
  struct skeleton_chain_struct *parent;
}
skeleton_chain_node;

/* Define a macro which returns nonzero for a TYPE_DECL which was
   implicitly generated for a type.

   Note that, unlike the C front-end (which generates a NULL named
   TYPE_DECL node for each complete tagged type, each array type,
   and each function type node created) the C++ front-end generates
   a _named_ TYPE_DECL node for each tagged type node created.
   These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
   generate a DW_TAG_typedef DIE for them.  Likewise with the Ada
   front-end, but for each type, tagged or not.  */

#define TYPE_DECL_IS_STUB(decl)				\
  (DECL_NAME (decl) == NULL_TREE			\
   || (DECL_ARTIFICIAL (decl)				\
       && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl)))	\
	   /* This is necessary for stub decls that	\
	      appear in nested inline functions.  */	\
	   || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE	\
	       && (decl_ultimate_origin (decl)		\
		   == TYPE_STUB_DECL (TREE_TYPE (decl)))))))

/* Information concerning the compilation unit's programming
   language, and compiler version.  */

/* Fixed size portion of the DWARF compilation unit header.  */
#define DWARF_COMPILE_UNIT_HEADER_SIZE \
  (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size			\
   + (dwarf_version >= 5 ? 4 : 3))

/* Fixed size portion of the DWARF comdat type unit header.  */
#define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
  (DWARF_COMPILE_UNIT_HEADER_SIZE					\
   + DWARF_TYPE_SIGNATURE_SIZE + dwarf_offset_size)

/* Fixed size portion of the DWARF skeleton compilation unit header.  */
#define DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE \
  (DWARF_COMPILE_UNIT_HEADER_SIZE + (dwarf_version >= 5 ? 8 : 0))

/* Fixed size portion of public names info.  */
#define DWARF_PUBNAMES_HEADER_SIZE (2 * dwarf_offset_size + 2)

/* Fixed size portion of the address range info.  */
#define DWARF_ARANGES_HEADER_SIZE					\
  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4,	\
		DWARF2_ADDR_SIZE * 2)					\
   - DWARF_INITIAL_LENGTH_SIZE)

/* Size of padding portion in the address range info.  It must be
   aligned to twice the pointer size.  */
#define DWARF_ARANGES_PAD_SIZE \
  (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4, \
		DWARF2_ADDR_SIZE * 2)				   \
   - (DWARF_INITIAL_LENGTH_SIZE + dwarf_offset_size + 4))

/* Use assembler line directives if available.  */
#ifndef DWARF2_ASM_LINE_DEBUG_INFO
#ifdef HAVE_AS_DWARF2_DEBUG_LINE
#define DWARF2_ASM_LINE_DEBUG_INFO 1
#else
#define DWARF2_ASM_LINE_DEBUG_INFO 0
#endif
#endif

/* Use assembler views in line directives if available.  */
#ifndef DWARF2_ASM_VIEW_DEBUG_INFO
#ifdef HAVE_AS_DWARF2_DEBUG_VIEW
#define DWARF2_ASM_VIEW_DEBUG_INFO 1
#else
#define DWARF2_ASM_VIEW_DEBUG_INFO 0
#endif
#endif

/* Return true if GCC configure detected assembler support for .loc.  */

bool
dwarf2out_default_as_loc_support (void)
{
  return DWARF2_ASM_LINE_DEBUG_INFO;
#if (GCC_VERSION >= 3000)
# undef DWARF2_ASM_LINE_DEBUG_INFO
# pragma GCC poison DWARF2_ASM_LINE_DEBUG_INFO
#endif
}

/* Return true if GCC configure detected assembler support for views
   in .loc directives.  */

bool
dwarf2out_default_as_locview_support (void)
{
  return DWARF2_ASM_VIEW_DEBUG_INFO;
#if (GCC_VERSION >= 3000)
# undef DWARF2_ASM_VIEW_DEBUG_INFO
# pragma GCC poison DWARF2_ASM_VIEW_DEBUG_INFO
#endif
}

/* A bit is set in ZERO_VIEW_P if we are using the assembler-supported
   view computation, and it refers to a view identifier for which we
   will not emit a label because it is known to map to a view number
   zero.  We won't allocate the bitmap if we're not using assembler
   support for location views, but we have to make the variable
   visible for GGC and for code that will be optimized out for lack of
   support but that's still parsed and compiled.  We could abstract it
   out with macros, but it's not worth it.  */
static GTY(()) bitmap zero_view_p;

/* Evaluate to TRUE iff N is known to identify the first location view
   at its PC.  When not using assembler location view computation,
   that must be view number zero.  Otherwise, ZERO_VIEW_P is allocated
   and views label numbers recorded in it are the ones known to be
   zero.  */
#define ZERO_VIEW_P(N) ((N) == (var_loc_view)0				\
			|| (N) == (var_loc_view)-1			\
			|| (zero_view_p					\
			    && bitmap_bit_p (zero_view_p, (N))))

/* Return true iff we're to emit .loc directives for the assembler to
   generate line number sections.

   When we're not emitting views, all we need from the assembler is
   support for .loc directives.

   If we are emitting views, we can only use the assembler's .loc
   support if it also supports views.

   When the compiler is emitting the line number programs and
   computing view numbers itself, it resets view numbers at known PC
   changes and counts from that, and then it emits view numbers as
   literal constants in locviewlists.  There are cases in which the
   compiler is not sure about PC changes, e.g. when extra alignment is
   requested for a label.  In these cases, the compiler may not reset
   the view counter, and the potential PC advance in the line number
   program will use an opcode that does not reset the view counter
   even if the PC actually changes, so that compiler and debug info
   consumer can keep view numbers in sync.

   When the compiler defers view computation to the assembler, it
   emits symbolic view numbers in locviewlists, with the exception of
   views known to be zero (forced resets, or reset after
   compiler-visible PC changes): instead of emitting symbols for
   these, we emit literal zero and assert the assembler agrees with
   the compiler's assessment.  We could use symbolic views everywhere,
   instead of special-casing zero views, but then we'd be unable to
   optimize out locviewlists that contain only zeros.  */

static bool
output_asm_line_debug_info (void)
{
  return (dwarf2out_as_loc_support
	  && (dwarf2out_as_locview_support
	      || !debug_variable_location_views));
}

static bool asm_outputs_debug_line_str (void);

/* Minimum line offset in a special line info. opcode.
   This value was chosen to give a reasonable range of values.  */
#define DWARF_LINE_BASE  -10

/* First special line opcode - leave room for the standard opcodes.  */
#define DWARF_LINE_OPCODE_BASE  ((int)DW_LNS_set_isa + 1)

/* Range of line offsets in a special line info. opcode.  */
#define DWARF_LINE_RANGE  (254-DWARF_LINE_OPCODE_BASE+1)

/* Flag that indicates the initial value of the is_stmt_start flag.
   In the present implementation, we do not mark any lines as
   the beginning of a source statement, because that information
   is not made available by the GCC front-end.  */
#define	DWARF_LINE_DEFAULT_IS_STMT_START 1

/* Maximum number of operations per instruction bundle.  */
#ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
#define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
#endif

/* This location is used by calc_die_sizes() to keep track
   the offset of each DIE within the .debug_info section.  */
static unsigned long next_die_offset;

/* Record the root of the DIE's built for the current compilation unit.  */
static GTY(()) dw_die_ref single_comp_unit_die;

/* A list of type DIEs that have been separated into comdat sections.  */
static GTY(()) comdat_type_node *comdat_type_list;

/* A list of CU DIEs that have been separated.  */
static GTY(()) limbo_die_node *cu_die_list;

/* A list of DIEs with a NULL parent waiting to be relocated.  */
static GTY(()) limbo_die_node *limbo_die_list;

/* A list of DIEs for which we may have to generate
   DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set.  */
static GTY(()) limbo_die_node *deferred_asm_name;

struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data>
{
  typedef const char *compare_type;

  static hashval_t hash (dwarf_file_data *);
  static bool equal (dwarf_file_data *, const char *);
};

/* Filenames referenced by this compilation unit.  */
static GTY(()) hash_table<dwarf_file_hasher> *file_table;

struct decl_die_hasher : ggc_ptr_hash<die_node>
{
  typedef tree compare_type;

  static hashval_t hash (die_node *);
  static bool equal (die_node *, tree);
};
/* A hash table of references to DIE's that describe declarations.
   The key is a DECL_UID() which is a unique number identifying each decl.  */
static GTY (()) hash_table<decl_die_hasher> *decl_die_table;

struct GTY ((for_user)) variable_value_struct {
  unsigned int decl_id;
  vec<dw_die_ref, va_gc> *dies;
};

struct variable_value_hasher : ggc_ptr_hash<variable_value_struct>
{
  typedef tree compare_type;

  static hashval_t hash (variable_value_struct *);
  static bool equal (variable_value_struct *, tree);
};
/* A hash table of DIEs that contain DW_OP_GNU_variable_value with
   dw_val_class_decl_ref class, indexed by FUNCTION_DECLs which is
   DECL_CONTEXT of the referenced VAR_DECLs.  */
static GTY (()) hash_table<variable_value_hasher> *variable_value_hash;

struct block_die_hasher : ggc_ptr_hash<die_struct>
{
  static hashval_t hash (die_struct *);
  static bool equal (die_struct *, die_struct *);
};

/* A hash table of references to DIE's that describe COMMON blocks.
   The key is DECL_UID() ^ die_parent.  */
static GTY (()) hash_table<block_die_hasher> *common_block_die_table;

typedef struct GTY(()) die_arg_entry_struct {
    dw_die_ref die;
    tree arg;
} die_arg_entry;


/* Node of the variable location list.  */
struct GTY ((chain_next ("%h.next"))) var_loc_node {
  /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
     EXPR_LIST chain.  For small bitsizes, bitsize is encoded
     in mode of the EXPR_LIST node and first EXPR_LIST operand
     is either NOTE_INSN_VAR_LOCATION for a piece with a known
     location or NULL for padding.  For larger bitsizes,
     mode is 0 and first operand is a CONCAT with bitsize
     as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
     NULL as second operand.  */
  rtx GTY (()) loc;
  const char * GTY (()) label;
  struct var_loc_node * GTY (()) next;
  var_loc_view view;
};

/* Variable location list.  */
struct GTY ((for_user)) var_loc_list_def {
  struct var_loc_node * GTY (()) first;

  /* Pointer to the last but one or last element of the
     chained list.  If the list is empty, both first and
     last are NULL, if the list contains just one node
     or the last node certainly is not redundant, it points
     to the last node, otherwise points to the last but one.
     Do not mark it for GC because it is marked through the chain.  */
  struct var_loc_node * GTY ((skip ("%h"))) last;

  /* Pointer to the last element before section switch,
     if NULL, either sections weren't switched or first
     is after section switch.  */
  struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;

  /* DECL_UID of the variable decl.  */
  unsigned int decl_id;
};
typedef struct var_loc_list_def var_loc_list;

/* Call argument location list.  */
struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
  rtx GTY (()) call_arg_loc_note;
  const char * GTY (()) label;
  tree GTY (()) block;
  bool tail_call_p;
  rtx GTY (()) symbol_ref;
  struct call_arg_loc_node * GTY (()) next;
};


struct decl_loc_hasher : ggc_ptr_hash<var_loc_list>
{
  typedef const_tree compare_type;

  static hashval_t hash (var_loc_list *);
  static bool equal (var_loc_list *, const_tree);
};

/* Table of decl location linked lists.  */
static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;

/* Head and tail of call_arg_loc chain.  */
static GTY (()) struct call_arg_loc_node *call_arg_locations;
static struct call_arg_loc_node *call_arg_loc_last;

/* Number of call sites in the current function.  */
static int call_site_count = -1;
/* Number of tail call sites in the current function.  */
static int tail_call_site_count = -1;

/* A cached location list.  */
struct GTY ((for_user)) cached_dw_loc_list_def {
  /* The DECL_UID of the decl that this entry describes.  */
  unsigned int decl_id;

  /* The cached location list.  */
  dw_loc_list_ref loc_list;
};
typedef struct cached_dw_loc_list_def cached_dw_loc_list;

struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list>
{

  typedef const_tree compare_type;
  
  static hashval_t hash (cached_dw_loc_list *);
  static bool equal (cached_dw_loc_list *, const_tree);
};

/* Table of cached location lists.  */
static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;

/* A vector of references to DIE's that are uniquely identified by their tag,
   presence/absence of children DIE's, and list of attribute/value pairs.  */
static GTY(()) vec<dw_die_ref, va_gc> *abbrev_die_table;

/* A hash map to remember the stack usage for DWARF procedures.  The value
   stored is the stack size difference between before the DWARF procedure
   invokation and after it returned.  In other words, for a DWARF procedure
   that consumes N stack slots and that pushes M ones, this stores M - N.  */
static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map;

/* A global counter for generating labels for line number data.  */
static unsigned int line_info_label_num;

/* The current table to which we should emit line number information
   for the current function.  This will be set up at the beginning of
   assembly for the function.  */
static GTY(()) dw_line_info_table *cur_line_info_table;

/* The two default tables of line number info.  */
static GTY(()) dw_line_info_table *text_section_line_info;
static GTY(()) dw_line_info_table *cold_text_section_line_info;

/* The set of all non-default tables of line number info.  */
static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info;

/* A flag to tell pubnames/types export if there is an info section to
   refer to.  */
static bool info_section_emitted;

/* A pointer to the base of a table that contains a list of publicly
   accessible names.  */
static GTY (()) vec<pubname_entry, va_gc> *pubname_table;

/* A pointer to the base of a table that contains a list of publicly
   accessible types.  */
static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;

/* A pointer to the base of a table that contains a list of macro
   defines/undefines (and file start/end markers).  */
static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;

/* True if .debug_macinfo or .debug_macros section is going to be
   emitted.  */
#define have_macinfo \
  ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
   && debug_info_level >= DINFO_LEVEL_VERBOSE \
   && !macinfo_table->is_empty ())

/* Vector of dies for which we should generate .debug_ranges info.  */
static GTY (()) vec<dw_ranges, va_gc> *ranges_table;

/* Vector of pairs of labels referenced in ranges_table.  */
static GTY (()) vec<dw_ranges_by_label, va_gc> *ranges_by_label;

/* Whether we have location lists that need outputting */
static GTY(()) bool have_location_lists;

/* Unique label counter.  */
static GTY(()) unsigned int loclabel_num;

/* Unique label counter for point-of-call tables.  */
static GTY(()) unsigned int poc_label_num;

/* The last file entry emitted by maybe_emit_file().  */
static GTY(()) struct dwarf_file_data * last_emitted_file;

/* Number of internal labels generated by gen_internal_sym().  */
static GTY(()) int label_num;

static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;

/* Instances of generic types for which we need to generate debug
   info that describe their generic parameters and arguments. That
   generation needs to happen once all types are properly laid out so
   we do it at the end of compilation.  */
static GTY(()) vec<tree, va_gc> *generic_type_instances;

/* Offset from the "steady-state frame pointer" to the frame base,
   within the current function.  */
static poly_int64 frame_pointer_fb_offset;
static bool frame_pointer_fb_offset_valid;

static vec<dw_die_ref> base_types;

/* Flags to represent a set of attribute classes for attributes that represent
   a scalar value (bounds, pointers, ...).  */
enum dw_scalar_form
{
  dw_scalar_form_constant = 0x01,
  dw_scalar_form_exprloc = 0x02,
  dw_scalar_form_reference = 0x04
};

/* Forward declarations for functions defined in this file.  */

static int is_pseudo_reg (const_rtx);
static tree type_main_variant (tree);
static int is_tagged_type (const_tree);
static const char *dwarf_tag_name (unsigned);
static const char *dwarf_attr_name (unsigned);
static const char *dwarf_form_name (unsigned);
static tree decl_ultimate_origin (const_tree);
static tree decl_class_context (tree);
static void add_dwarf_attr (dw_die_ref, dw_attr_node *);
static inline unsigned int AT_index (dw_attr_node *);
static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
static inline unsigned AT_flag (dw_attr_node *);
static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
static void add_AT_double (dw_die_ref, enum dwarf_attribute,
			   HOST_WIDE_INT, unsigned HOST_WIDE_INT);
static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
			       unsigned int, unsigned char *);
static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
static inline const char *AT_string (dw_attr_node *);
static enum dwarf_form AT_string_form (dw_attr_node *);
static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
static void add_AT_specification (dw_die_ref, dw_die_ref);
static inline dw_die_ref AT_ref (dw_attr_node *);
static inline int AT_ref_external (dw_attr_node *);
static inline void set_AT_ref_external (dw_attr_node *, int);
static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
			     dw_loc_list_ref);
static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
static void add_AT_view_list (dw_die_ref, enum dwarf_attribute);
static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
static void remove_addr_table_entry (addr_table_entry *);
static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
static inline rtx AT_addr (dw_attr_node *);
static void add_AT_symview (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
                               unsigned long, bool);
static inline const char *AT_lbl (dw_attr_node *);
static const char *get_AT_low_pc (dw_die_ref);
static bool is_c (void);
static bool is_cxx (void);
static bool is_cxx (const_tree);
static bool is_fortran (void);
static bool is_ada (void);
static bool remove_AT (dw_die_ref, enum dwarf_attribute);
static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
static void add_child_die (dw_die_ref, dw_die_ref);
static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
static void equate_type_number_to_die (tree, dw_die_ref);
static var_loc_list *lookup_decl_loc (const_tree);
static void equate_decl_number_to_die (tree, dw_die_ref);
static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *, var_loc_view);
static void print_spaces (FILE *);
static void print_die (dw_die_ref, FILE *);
static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *);
static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *,
				   struct md5_ctx *, int *);
struct checksum_attributes;
static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
static void checksum_die_context (dw_die_ref, struct md5_ctx *);
static void generate_type_signature (dw_die_ref, comdat_type_node *);
static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
static int same_attr_p (dw_attr_node *, dw_attr_node *, int *);
static int same_die_p (dw_die_ref, dw_die_ref, int *);
static int is_type_die (dw_die_ref);
static inline bool is_template_instantiation (dw_die_ref);
static int is_declaration_die (dw_die_ref);
static int should_move_die_to_comdat (dw_die_ref);
static dw_die_ref clone_as_declaration (dw_die_ref);
static dw_die_ref clone_die (dw_die_ref);
static dw_die_ref clone_tree (dw_die_ref);
static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
static void generate_skeleton_bottom_up (skeleton_chain_node *);
static dw_die_ref generate_skeleton (dw_die_ref);
static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
                                                         dw_die_ref,
                                                         dw_die_ref);
static void break_out_comdat_types (dw_die_ref);
static void copy_decls_for_unworthy_types (dw_die_ref);

static void add_sibling_attributes (dw_die_ref);
static void output_location_lists (dw_die_ref);
static int constant_size (unsigned HOST_WIDE_INT);
static unsigned long size_of_die (dw_die_ref);
static void calc_die_sizes (dw_die_ref);
static void calc_base_type_die_sizes (void);
static void mark_dies (dw_die_ref);
static void unmark_dies (dw_die_ref);
static void unmark_all_dies (dw_die_ref);
static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
static unsigned long size_of_aranges (void);
static enum dwarf_form value_format (dw_attr_node *);
static void output_value_format (dw_attr_node *);
static void output_abbrev_section (void);
static void output_die_abbrevs (unsigned long, dw_die_ref);
static void output_die (dw_die_ref);
static void output_compilation_unit_header (enum dwarf_unit_type);
static void output_comp_unit (dw_die_ref, int, const unsigned char *);
static void output_comdat_type_unit (comdat_type_node *, bool);
static const char *dwarf2_name (tree, int);
static void add_pubname (tree, dw_die_ref);
static void add_enumerator_pubname (const char *, dw_die_ref);
static void add_pubname_string (const char *, dw_die_ref);
static void add_pubtype (tree, dw_die_ref);
static void output_pubnames (vec<pubname_entry, va_gc> *);
static void output_aranges (void);
static unsigned int add_ranges (const_tree, bool = false);
static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
                                  bool *, bool);
static void output_ranges (void);
static dw_line_info_table *new_line_info_table (void);
static void output_line_info (bool);
static void output_file_names (void);
static int is_base_type (tree);
static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref);
static int decl_quals (const_tree);
static dw_die_ref modified_type_die (tree, int, bool, dw_die_ref);
static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
static unsigned int debugger_reg_number (const_rtx);
static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
						enum var_init_status);
static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
						     enum var_init_status);
static dw_loc_descr_ref based_loc_descr (rtx, poly_int64,
					 enum var_init_status);
static int is_based_loc (const_rtx);
static bool resolve_one_addr (rtx *);
static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
					       enum var_init_status);
static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
					enum var_init_status);
struct loc_descr_context;
static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref);
static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list);
static dw_loc_list_ref loc_list_from_tree (tree, int,
					   struct loc_descr_context *);
static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
						  struct loc_descr_context *);
static tree field_type (const_tree);
static unsigned int simple_type_align_in_bits (const_tree);
static unsigned int simple_decl_align_in_bits (const_tree);
static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
struct vlr_context;
static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *,
					   HOST_WIDE_INT *);
static void add_AT_location_description	(dw_die_ref, enum dwarf_attribute,
					 dw_loc_list_ref);
static void add_data_member_location_attribute (dw_die_ref, tree,
						struct vlr_context *);
static bool add_const_value_attribute (dw_die_ref, machine_mode, rtx);
static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
static void insert_wide_int (const wide_int &, unsigned char *, int);
static unsigned insert_float (const_rtx, unsigned char *);
static rtx rtl_for_decl_location (tree);
static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool);
static bool tree_add_const_value_attribute (dw_die_ref, tree);
static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
static void add_desc_attribute (dw_die_ref, tree);
static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
static void add_comp_dir_attribute (dw_die_ref);
static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
			     struct loc_descr_context *);
static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
			    struct loc_descr_context *);
static void add_subscript_info (dw_die_ref, tree, bool);
static void add_byte_size_attribute (dw_die_ref, tree);
static void add_alignment_attribute (dw_die_ref, tree);
static void add_bit_offset_attribute (dw_die_ref, tree);
static void add_bit_size_attribute (dw_die_ref, tree);
static void add_prototyped_attribute (dw_die_ref, tree);
static void add_abstract_origin_attribute (dw_die_ref, tree);
static void add_pure_or_virtual_attribute (dw_die_ref, tree);
static void add_src_coords_attributes (dw_die_ref, tree);
static void add_name_and_src_coords_attributes (dw_die_ref, tree, bool = false);
static void add_discr_value (dw_die_ref, dw_discr_value *);
static void add_discr_list (dw_die_ref, dw_discr_list_ref);
static inline dw_discr_list_ref AT_discr_list (dw_attr_node *);
static dw_die_ref scope_die_for (tree, dw_die_ref);
static inline int local_scope_p (dw_die_ref);
static inline int class_scope_p (dw_die_ref);
static inline int class_or_namespace_scope_p (dw_die_ref);
static void add_type_attribute (dw_die_ref, tree, int, bool, dw_die_ref);
static void add_calling_convention_attribute (dw_die_ref, tree);
static const char *type_tag (const_tree);
static tree member_declared_type (const_tree);
#if 0
static const char *decl_start_label (tree);
#endif
static void gen_array_type_die (tree, dw_die_ref);
static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
#if 0
static void gen_entry_point_die (tree, dw_die_ref);
#endif
static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
static dw_die_ref gen_formal_parameter_pack_die  (tree, tree, dw_die_ref, tree*);
static void gen_unspecified_parameters_die (tree, dw_die_ref);
static void gen_formal_types_die (tree, dw_die_ref);
static void gen_subprogram_die (tree, dw_die_ref);
static void gen_variable_die (tree, tree, dw_die_ref);
static void gen_const_die (tree, dw_die_ref);
static void gen_label_die (tree, dw_die_ref);
static void gen_lexical_block_die (tree, dw_die_ref);
static void gen_inlined_subroutine_die (tree, dw_die_ref);
static void gen_field_die (tree, struct vlr_context *, dw_die_ref);
static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
static dw_die_ref gen_compile_unit_die (const char *);
static void gen_inheritance_die (tree, tree, tree, dw_die_ref);
static void gen_member_die (tree, dw_die_ref);
static void gen_struct_or_union_type_die (tree, dw_die_ref,
						enum debug_info_usage);
static void gen_subroutine_type_die (tree, dw_die_ref);
static void gen_typedef_die (tree, dw_die_ref);
static void gen_type_die (tree, dw_die_ref);
static void gen_block_die (tree, dw_die_ref);
static void decls_for_scope (tree, dw_die_ref, bool = true);
static bool is_naming_typedef_decl (const_tree);
static inline dw_die_ref get_context_die (tree);
static void gen_namespace_die (tree, dw_die_ref);
static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref);
static dw_die_ref force_decl_die (tree);
static dw_die_ref force_type_die (tree);
static dw_die_ref setup_namespace_context (tree, dw_die_ref);
static dw_die_ref declare_in_namespace (tree, dw_die_ref);
static struct dwarf_file_data * lookup_filename (const char *);
static void retry_incomplete_types (void);
static void gen_type_die_for_member (tree, tree, dw_die_ref);
static void gen_generic_params_dies (tree);
static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
static void splice_child_die (dw_die_ref, dw_die_ref);
static int file_info_cmp (const void *, const void *);
static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *, var_loc_view,
				     const char *, var_loc_view, const char *);
static void output_loc_list (dw_loc_list_ref);
static char *gen_internal_sym (const char *);
static bool want_pubnames (void);

static void prune_unmark_dies (dw_die_ref);
static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
static void prune_unused_types_mark (dw_die_ref, int);
static void prune_unused_types_walk (dw_die_ref);
static void prune_unused_types_walk_attribs (dw_die_ref);
static void prune_unused_types_prune (dw_die_ref);
static void prune_unused_types (void);
static int maybe_emit_file (struct dwarf_file_data *fd);
static inline const char *AT_vms_delta1 (dw_attr_node *);
static inline const char *AT_vms_delta2 (dw_attr_node *);
#if VMS_DEBUGGING_INFO
static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
				     const char *, const char *);
#endif
static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
static void gen_remaining_tmpl_value_param_die_attribute (void);
static bool generic_type_p (tree);
static void schedule_generic_params_dies_gen (tree t);
static void gen_scheduled_generic_parms_dies (void);
static void resolve_variable_values (void);

static const char *comp_dir_string (void);

static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);

/* enum for tracking thread-local variables whose address is really an offset
   relative to the TLS pointer, which will need link-time relocation, but will
   not need relocation by the DWARF consumer.  */

enum dtprel_bool
{
  dtprel_false = 0,
  dtprel_true = 1
};

/* Return the operator to use for an address of a variable.  For dtprel_true, we
   use DW_OP_const*.  For regular variables, which need both link-time
   relocation and consumer-level relocation (e.g., to account for shared objects
   loaded at a random address), we use DW_OP_addr*.  */

static inline enum dwarf_location_atom
dw_addr_op (enum dtprel_bool dtprel)
{
  if (dtprel == dtprel_true)
    return (dwarf_split_debug_info ? dwarf_OP (DW_OP_constx)
            : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
  else
    return dwarf_split_debug_info ? dwarf_OP (DW_OP_addrx) : DW_OP_addr;
}

/* Return a pointer to a newly allocated address location description.  If
   dwarf_split_debug_info is true, then record the address with the appropriate
   relocation.  */
static inline dw_loc_descr_ref
new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
{
  dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);

  ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
  ref->dw_loc_oprnd1.v.val_addr = addr;
  ref->dtprel = dtprel;
  if (dwarf_split_debug_info)
    ref->dw_loc_oprnd1.val_entry
      = add_addr_table_entry (addr,
			      dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
  else
    ref->dw_loc_oprnd1.val_entry = NULL;

  return ref;
}

/* Section names used to hold DWARF debugging information.  */

#ifndef DEBUG_INFO_SECTION
#define DEBUG_INFO_SECTION	".debug_info"
#endif
#ifndef DEBUG_DWO_INFO_SECTION
#define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
#endif
#ifndef DEBUG_LTO_INFO_SECTION
#define DEBUG_LTO_INFO_SECTION	".gnu.debuglto_.debug_info"
#endif
#ifndef DEBUG_LTO_DWO_INFO_SECTION
#define DEBUG_LTO_DWO_INFO_SECTION ".gnu.debuglto_.debug_info.dwo"
#endif
#ifndef DEBUG_ABBREV_SECTION
#define DEBUG_ABBREV_SECTION	".debug_abbrev"
#endif
#ifndef DEBUG_LTO_ABBREV_SECTION
#define DEBUG_LTO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev"
#endif
#ifndef DEBUG_DWO_ABBREV_SECTION
#define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
#endif
#ifndef DEBUG_LTO_DWO_ABBREV_SECTION
#define DEBUG_LTO_DWO_ABBREV_SECTION ".gnu.debuglto_.debug_abbrev.dwo"
#endif
#ifndef DEBUG_ARANGES_SECTION
#define DEBUG_ARANGES_SECTION	".debug_aranges"
#endif
#ifndef DEBUG_ADDR_SECTION
#define DEBUG_ADDR_SECTION     ".debug_addr"
#endif
#ifndef DEBUG_MACINFO_SECTION
#define DEBUG_MACINFO_SECTION     ".debug_macinfo"
#endif
#ifndef DEBUG_LTO_MACINFO_SECTION
#define DEBUG_LTO_MACINFO_SECTION      ".gnu.debuglto_.debug_macinfo"
#endif
#ifndef DEBUG_DWO_MACINFO_SECTION
#define DEBUG_DWO_MACINFO_SECTION      ".debug_macinfo.dwo"
#endif
#ifndef DEBUG_LTO_DWO_MACINFO_SECTION
#define DEBUG_LTO_DWO_MACINFO_SECTION  ".gnu.debuglto_.debug_macinfo.dwo"
#endif
#ifndef DEBUG_MACRO_SECTION
#define DEBUG_MACRO_SECTION	".debug_macro"
#endif
#ifndef DEBUG_LTO_MACRO_SECTION
#define DEBUG_LTO_MACRO_SECTION ".gnu.debuglto_.debug_macro"
#endif
#ifndef DEBUG_DWO_MACRO_SECTION
#define DEBUG_DWO_MACRO_SECTION        ".debug_macro.dwo"
#endif
#ifndef DEBUG_LTO_DWO_MACRO_SECTION
#define DEBUG_LTO_DWO_MACRO_SECTION    ".gnu.debuglto_.debug_macro.dwo"
#endif
#ifndef DEBUG_LINE_SECTION
#define DEBUG_LINE_SECTION	".debug_line"
#endif
#ifndef DEBUG_LTO_LINE_SECTION
#define DEBUG_LTO_LINE_SECTION ".gnu.debuglto_.debug_line"
#endif
#ifndef DEBUG_DWO_LINE_SECTION
#define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
#endif
#ifndef DEBUG_LTO_DWO_LINE_SECTION
#define DEBUG_LTO_DWO_LINE_SECTION ".gnu.debuglto_.debug_line.dwo"
#endif
#ifndef DEBUG_LOC_SECTION
#define DEBUG_LOC_SECTION	".debug_loc"
#endif
#ifndef DEBUG_DWO_LOC_SECTION
#define DEBUG_DWO_LOC_SECTION  ".debug_loc.dwo"
#endif
#ifndef DEBUG_LOCLISTS_SECTION
#define DEBUG_LOCLISTS_SECTION	".debug_loclists"
#endif
#ifndef DEBUG_DWO_LOCLISTS_SECTION
#define DEBUG_DWO_LOCLISTS_SECTION  ".debug_loclists.dwo"
#endif
#ifndef DEBUG_PUBNAMES_SECTION
#define DEBUG_PUBNAMES_SECTION	\
  ((debug_generate_pub_sections == 2) \
   ? ".debug_gnu_pubnames" : ".debug_pubnames")
#endif
#ifndef DEBUG_PUBTYPES_SECTION
#define DEBUG_PUBTYPES_SECTION	\
  ((debug_generate_pub_sections == 2) \
   ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
#endif
#ifndef DEBUG_STR_OFFSETS_SECTION
#define DEBUG_STR_OFFSETS_SECTION ".debug_str_offsets"
#endif
#ifndef DEBUG_DWO_STR_OFFSETS_SECTION
#define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
#endif
#ifndef DEBUG_LTO_DWO_STR_OFFSETS_SECTION
#define DEBUG_LTO_DWO_STR_OFFSETS_SECTION ".gnu.debuglto_.debug_str_offsets.dwo"
#endif
#ifndef DEBUG_STR_SECTION
#define DEBUG_STR_SECTION  ".debug_str"
#endif
#ifndef DEBUG_LTO_STR_SECTION
#define DEBUG_LTO_STR_SECTION ".gnu.debuglto_.debug_str"
#endif
#ifndef DEBUG_STR_DWO_SECTION
#define DEBUG_STR_DWO_SECTION   ".debug_str.dwo"
#endif
#ifndef DEBUG_LTO_STR_DWO_SECTION
#define DEBUG_LTO_STR_DWO_SECTION ".gnu.debuglto_.debug_str.dwo"
#endif
#ifndef DEBUG_RANGES_SECTION
#define DEBUG_RANGES_SECTION	".debug_ranges"
#endif
#ifndef DEBUG_RNGLISTS_SECTION
#define DEBUG_RNGLISTS_SECTION	".debug_rnglists"
#endif
#ifndef DEBUG_DWO_RNGLISTS_SECTION
#define DEBUG_DWO_RNGLISTS_SECTION	".debug_rnglists.dwo"
#endif
#ifndef DEBUG_LINE_STR_SECTION
#define DEBUG_LINE_STR_SECTION  ".debug_line_str"
#endif
#ifndef DEBUG_LTO_LINE_STR_SECTION
#define DEBUG_LTO_LINE_STR_SECTION  ".gnu.debuglto_.debug_line_str"
#endif

/* Section flags for .debug_str section.  */
#define DEBUG_STR_SECTION_FLAGS                                 \
  (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings               \
   ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1        \
   : SECTION_DEBUG)

/* Section flags for .debug_str.dwo section.  */
#define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)

/* Attribute used to refer to the macro section.  */
#define DEBUG_MACRO_ATTRIBUTE (dwarf_version >= 5 ? DW_AT_macros \
		   : dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros)

/* Labels we insert at beginning sections we can reference instead of
   the section names themselves.  */

#ifndef TEXT_SECTION_LABEL
#define TEXT_SECTION_LABEL                 "Ltext"
#endif
#ifndef COLD_TEXT_SECTION_LABEL
#define COLD_TEXT_SECTION_LABEL             "Ltext_cold"
#endif
#ifndef DEBUG_LINE_SECTION_LABEL
#define DEBUG_LINE_SECTION_LABEL           "Ldebug_line"
#endif
#ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
#define DEBUG_SKELETON_LINE_SECTION_LABEL   "Lskeleton_debug_line"
#endif
#ifndef DEBUG_INFO_SECTION_LABEL
#define DEBUG_INFO_SECTION_LABEL           "Ldebug_info"
#endif
#ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
#define DEBUG_SKELETON_INFO_SECTION_LABEL   "Lskeleton_debug_info"
#endif
#ifndef DEBUG_ABBREV_SECTION_LABEL
#define DEBUG_ABBREV_SECTION_LABEL         "Ldebug_abbrev"
#endif
#ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
#define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
#endif
#ifndef DEBUG_ADDR_SECTION_LABEL
#define DEBUG_ADDR_SECTION_LABEL           "Ldebug_addr"
#endif
#ifndef DEBUG_LOC_SECTION_LABEL
#define DEBUG_LOC_SECTION_LABEL                    "Ldebug_loc"
#endif
#ifndef DEBUG_RANGES_SECTION_LABEL
#define DEBUG_RANGES_SECTION_LABEL         "Ldebug_ranges"
#endif
#ifndef DEBUG_MACINFO_SECTION_LABEL
#define DEBUG_MACINFO_SECTION_LABEL         "Ldebug_macinfo"
#endif
#ifndef DEBUG_MACRO_SECTION_LABEL
#define DEBUG_MACRO_SECTION_LABEL          "Ldebug_macro"
#endif
#define SKELETON_COMP_DIE_ABBREV 1
#define SKELETON_TYPE_DIE_ABBREV 2

/* Definitions of defaults for formats and names of various special
   (artificial) labels which may be generated within this file (when the -g
   options is used and DWARF2_DEBUGGING_INFO is in effect.
   If necessary, these may be overridden from within the tm.h file, but
   typically, overriding these defaults is unnecessary.  */

static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
static char ranges_base_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];

#ifndef TEXT_END_LABEL
#define TEXT_END_LABEL		"Letext"
#endif
#ifndef COLD_END_LABEL
#define COLD_END_LABEL          "Letext_cold"
#endif
#ifndef BLOCK_BEGIN_LABEL
#define BLOCK_BEGIN_LABEL	"LBB"
#endif
#ifndef BLOCK_INLINE_ENTRY_LABEL
#define BLOCK_INLINE_ENTRY_LABEL "LBI"
#endif
#ifndef BLOCK_END_LABEL
#define BLOCK_END_LABEL		"LBE"
#endif
#ifndef LINE_CODE_LABEL
#define LINE_CODE_LABEL		"LM"
#endif


/* Return the root of the DIE's built for the current compilation unit.  */
static dw_die_ref
comp_unit_die (void)
{
  if (!single_comp_unit_die)
    single_comp_unit_die = gen_compile_unit_die (NULL);
  return single_comp_unit_die;
}

/* We allow a language front-end to designate a function that is to be
   called to "demangle" any name before it is put into a DIE.  */

static const char *(*demangle_name_func) (const char *);

void
dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
{
  demangle_name_func = func;
}

/* Test if rtl node points to a pseudo register.  */

static inline int
is_pseudo_reg (const_rtx rtl)
{
  return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
	  || (GET_CODE (rtl) == SUBREG
	      && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
}

/* Return a reference to a type, with its const and volatile qualifiers
   removed.  */

static inline tree
type_main_variant (tree type)
{
  type = TYPE_MAIN_VARIANT (type);

  /* ??? There really should be only one main variant among any group of
     variants of a given type (and all of the MAIN_VARIANT values for all
     members of the group should point to that one type) but sometimes the C
     front-end messes this up for array types, so we work around that bug
     here.  */
  if (TREE_CODE (type) == ARRAY_TYPE)
    while (type != TYPE_MAIN_VARIANT (type))
      type = TYPE_MAIN_VARIANT (type);

  return type;
}

/* Return nonzero if the given type node represents a tagged type.  */

static inline int
is_tagged_type (const_tree type)
{
  enum tree_code code = TREE_CODE (type);

  return (code == RECORD_TYPE || code == UNION_TYPE
	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
}

/* Set label to debug_info_section_label + die_offset of a DIE reference.  */

static void
get_ref_die_offset_label (char *label, dw_die_ref ref)
{
  sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
}

/* Return die_offset of a DIE reference to a base type.  */

static unsigned long int
get_base_type_offset (dw_die_ref ref)
{
  if (ref->die_offset)
    return ref->die_offset;
  if (comp_unit_die ()->die_abbrev)
    {
      calc_base_type_die_sizes ();
      gcc_assert (ref->die_offset);
    }
  return ref->die_offset;
}

/* Return die_offset of a DIE reference other than base type.  */

static unsigned long int
get_ref_die_offset (dw_die_ref ref)
{
  gcc_assert (ref->die_offset);
  return ref->die_offset;
}

/* Convert a DIE tag into its string name.  */

static const char *
dwarf_tag_name (unsigned int tag)
{
  const char *name = get_DW_TAG_name (tag);

  if (name != NULL)
    return name;

  return "DW_TAG_<unknown>";
}

/* Convert a DWARF attribute code into its string name.  */

static const char *
dwarf_attr_name (unsigned int attr)
{
  const char *name;

  switch (attr)
    {
#if VMS_DEBUGGING_INFO
    case DW_AT_HP_prologue:
      return "DW_AT_HP_prologue";
#else
    case DW_AT_MIPS_loop_unroll_factor:
      return "DW_AT_MIPS_loop_unroll_factor";
#endif

#if VMS_DEBUGGING_INFO
    case DW_AT_HP_epilogue:
      return "DW_AT_HP_epilogue";
#else
    case DW_AT_MIPS_stride:
      return "DW_AT_MIPS_stride";
#endif
    }

  name = get_DW_AT_name (attr);

  if (name != NULL)
    return name;

  return "DW_AT_<unknown>";
}

/* Convert a DWARF value form code into its string name.  */

static const char *
dwarf_form_name (unsigned int form)
{
  const char *name = get_DW_FORM_name (form);

  if (name != NULL)
    return name;

  return "DW_FORM_<unknown>";
}

/* Determine the "ultimate origin" of a decl.  The decl may be an inlined
   instance of an inlined instance of a decl which is local to an inline
   function, so we have to trace all of the way back through the origin chain
   to find out what sort of node actually served as the original seed for the
   given block.  */

static tree
decl_ultimate_origin (const_tree decl)
{
  if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
    return NULL_TREE;

  /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
     we're trying to output the abstract instance of this function.  */
  if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
    return NULL_TREE;

  /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
     most distant ancestor, this should never happen.  */
  gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));

  return DECL_ABSTRACT_ORIGIN (decl);
}

/* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
   of a virtual function may refer to a base class, so we check the 'this'
   parameter.  */

static tree
decl_class_context (tree decl)
{
  tree context = NULL_TREE;

  if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
    context = DECL_CONTEXT (decl);
  else
    context = TYPE_MAIN_VARIANT
      (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));

  if (context && !TYPE_P (context))
    context = NULL_TREE;

  return context;
}

/* Add an attribute/value pair to a DIE.  */

static inline void
add_dwarf_attr (dw_die_ref die, dw_attr_node *attr)
{
  /* Maybe this should be an assert?  */
  if (die == NULL)
    return;

  if (flag_checking)
    {
      /* Check we do not add duplicate attrs.  Can't use get_AT here
         because that recurses to the specification/abstract origin DIE.  */
      dw_attr_node *a;
      unsigned ix;
      FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
	gcc_assert (a->dw_attr != attr->dw_attr);
    }

  vec_safe_reserve (die->die_attr, 1);
  vec_safe_push (die->die_attr, *attr);
}

enum dw_val_class
AT_class (dw_attr_node *a)
{
  return a->dw_attr_val.val_class;
}

/* Return the index for any attribute that will be referenced with a
   DW_FORM_addrx/GNU_addr_index or DW_FORM_strx/GNU_str_index.  String
   indices are stored in dw_attr_val.v.val_str for reference counting
   pruning.  */

static inline unsigned int
AT_index (dw_attr_node *a)
{
  if (AT_class (a) == dw_val_class_str)
    return a->dw_attr_val.v.val_str->index;
  else if (a->dw_attr_val.val_entry != NULL)
    return a->dw_attr_val.val_entry->index;
  return NOT_INDEXED;
}

/* Add a flag value attribute to a DIE.  */

static inline void
add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_flag;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_flag = flag;
  add_dwarf_attr (die, &attr);
}

static inline unsigned
AT_flag (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_flag);
  return a->dw_attr_val.v.val_flag;
}

/* Add a signed integer attribute value to a DIE.  */

static inline void
add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_const;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_int = int_val;
  add_dwarf_attr (die, &attr);
}

HOST_WIDE_INT
AT_int (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_const
		    || AT_class (a) == dw_val_class_const_implicit));
  return a->dw_attr_val.v.val_int;
}

/* Add an unsigned integer attribute value to a DIE.  */

static inline void
add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
		 unsigned HOST_WIDE_INT unsigned_val)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_unsigned = unsigned_val;
  add_dwarf_attr (die, &attr);
}

unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_unsigned_const
		    || AT_class (a) == dw_val_class_unsigned_const_implicit));
  return a->dw_attr_val.v.val_unsigned;
}

/* Add an unsigned wide integer attribute value to a DIE.  */

static inline void
add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
	     const wide_int& w)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_wide_int;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
  *attr.dw_attr_val.v.val_wide = w;
  add_dwarf_attr (die, &attr);
}

/* Add an unsigned double integer attribute value to a DIE.  */

static inline void
add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
	       HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_const_double;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_double.high = high;
  attr.dw_attr_val.v.val_double.low = low;
  add_dwarf_attr (die, &attr);
}

/* Add a floating point attribute value to a DIE and return it.  */

static inline void
add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
	    unsigned int length, unsigned int elt_size, unsigned char *array)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_vec;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_vec.length = length;
  attr.dw_attr_val.v.val_vec.elt_size = elt_size;
  attr.dw_attr_val.v.val_vec.array = array;
  add_dwarf_attr (die, &attr);
}

/* Add an 8-byte data attribute value to a DIE.  */

static inline void
add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
              unsigned char data8[8])
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_data8;
  attr.dw_attr_val.val_entry = NULL;
  memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
  add_dwarf_attr (die, &attr);
}

/* Add DW_AT_low_pc and DW_AT_high_pc to a DIE.  When using
   dwarf_split_debug_info, address attributes in dies destined for the
   final executable have force_direct set to avoid using indexed
   references.  */

static inline void
add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
                    bool force_direct)
{
  dw_attr_node attr;
  char * lbl_id;

  lbl_id = xstrdup (lbl_low);
  attr.dw_attr = DW_AT_low_pc;
  attr.dw_attr_val.val_class = dw_val_class_lbl_id;
  attr.dw_attr_val.v.val_lbl_id = lbl_id;
  if (dwarf_split_debug_info && !force_direct)
    attr.dw_attr_val.val_entry
      = add_addr_table_entry (lbl_id, ate_kind_label);
  else
    attr.dw_attr_val.val_entry = NULL;
  add_dwarf_attr (die, &attr);

  attr.dw_attr = DW_AT_high_pc;
  if (dwarf_version < 4)
    attr.dw_attr_val.val_class = dw_val_class_lbl_id;
  else
    attr.dw_attr_val.val_class = dw_val_class_high_pc;
  lbl_id = xstrdup (lbl_high);
  attr.dw_attr_val.v.val_lbl_id = lbl_id;
  if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
      && dwarf_split_debug_info && !force_direct)
    attr.dw_attr_val.val_entry
      = add_addr_table_entry (lbl_id, ate_kind_label);
  else
    attr.dw_attr_val.val_entry = NULL;
  add_dwarf_attr (die, &attr);
}

/* Hash and equality functions for debug_str_hash.  */

hashval_t
indirect_string_hasher::hash (indirect_string_node *x)
{
  return htab_hash_string (x->str);
}

bool
indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
{
  return strcmp (x1->str, x2) == 0;
}

/* Add STR to the given string hash table.  */

static struct indirect_string_node *
find_AT_string_in_table (const char *str,
			 hash_table<indirect_string_hasher> *table,
			 enum insert_option insert = INSERT)
{
  struct indirect_string_node *node;

  indirect_string_node **slot
    = table->find_slot_with_hash (str, htab_hash_string (str), insert);
  if (*slot == NULL)
    {
      node = ggc_cleared_alloc<indirect_string_node> ();
      node->str = ggc_strdup (str);
      *slot = node;
    }
  else
    node = *slot;

  node->refcount++;
  return node;
}

/* Add STR to the indirect string hash table.  */

static struct indirect_string_node *
find_AT_string (const char *str, enum insert_option insert = INSERT)
{
  if (! debug_str_hash)
    debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);

  return find_AT_string_in_table (str, debug_str_hash, insert);
}

/* Add a string attribute value to a DIE.  */

static inline void
add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
{
  dw_attr_node attr;
  struct indirect_string_node *node;

  node = find_AT_string (str);

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_str;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_str = node;
  add_dwarf_attr (die, &attr);
}

static inline const char *
AT_string (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_str);
  return a->dw_attr_val.v.val_str->str;
}

/* Call this function directly to bypass AT_string_form's logic to put
   the string inline in the die. */

static void
set_indirect_string (struct indirect_string_node *node)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  /* Already indirect is a no op.  */
  if (node->form == DW_FORM_strp
      || node->form == DW_FORM_line_strp
      || node->form == dwarf_FORM (DW_FORM_strx))
    {
      gcc_assert (node->label);
      return;
    }
  ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
  ++dw2_string_counter;
  node->label = xstrdup (label);

  if (!dwarf_split_debug_info)
    {
      node->form = DW_FORM_strp;
      node->index = NOT_INDEXED;
    }
  else
    {
      node->form = dwarf_FORM (DW_FORM_strx);
      node->index = NO_INDEX_ASSIGNED;
    }
}

/* A helper function for dwarf2out_finish, called to reset indirect
   string decisions done for early LTO dwarf output before fat object
   dwarf output.  */

int
reset_indirect_string (indirect_string_node **h, void *)
{
  struct indirect_string_node *node = *h;
  if (node->form == DW_FORM_strp
      || node->form == DW_FORM_line_strp
      || node->form == dwarf_FORM (DW_FORM_strx))
    {
      free (node->label);
      node->label = NULL;
      node->form = (dwarf_form) 0;
      node->index = 0;
    }
  return 1;
}

/* Add a string representing a file or filepath attribute value to a DIE.  */

static inline void
add_filepath_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
			const char *str)
{
  if (! asm_outputs_debug_line_str ())
    add_AT_string (die, attr_kind, str);
  else
    {
      dw_attr_node attr;
      struct indirect_string_node *node;

      if (!debug_line_str_hash)
	debug_line_str_hash
	  = hash_table<indirect_string_hasher>::create_ggc (10);

      node = find_AT_string_in_table (str, debug_line_str_hash);
      set_indirect_string (node);
      node->form = DW_FORM_line_strp;

      attr.dw_attr = attr_kind;
      attr.dw_attr_val.val_class = dw_val_class_str;
      attr.dw_attr_val.val_entry = NULL;
      attr.dw_attr_val.v.val_str = node;
      add_dwarf_attr (die, &attr);
    }
}

/* Find out whether a string should be output inline in DIE
   or out-of-line in .debug_str section.  */

static enum dwarf_form
find_string_form (struct indirect_string_node *node)
{
  unsigned int len;

  if (node->form)
    return node->form;

  len = strlen (node->str) + 1;

  /* If the string is shorter or equal to the size of the reference, it is
     always better to put it inline.  */
  if (len <= (unsigned) dwarf_offset_size || node->refcount == 0)
    return node->form = DW_FORM_string;

  /* If we cannot expect the linker to merge strings in .debug_str
     section, only put it into .debug_str if it is worth even in this
     single module.  */
  if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
      || ((debug_str_section->common.flags & SECTION_MERGE) == 0
	  && (len - dwarf_offset_size) * node->refcount <= len))
    return node->form = DW_FORM_string;

  set_indirect_string (node);

  return node->form;
}

/* Find out whether the string referenced from the attribute should be
   output inline in DIE or out-of-line in .debug_str section.  */

static enum dwarf_form
AT_string_form (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_str);
  return find_string_form (a->dw_attr_val.v.val_str);
}

/* Add a DIE reference attribute value to a DIE.  */

static inline void
add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
{
  dw_attr_node attr;
  gcc_checking_assert (targ_die != NULL);

  /* With LTO we can end up trying to reference something we didn't create
     a DIE for.  Avoid crashing later on a NULL referenced DIE.  */
  if (targ_die == NULL)
    return;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_die_ref;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_die_ref.die = targ_die;
  attr.dw_attr_val.v.val_die_ref.external = 0;
  add_dwarf_attr (die, &attr);
}

/* Change DIE reference REF to point to NEW_DIE instead.  */

static inline void
change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die)
{
  gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
  ref->dw_attr_val.v.val_die_ref.die = new_die;
  ref->dw_attr_val.v.val_die_ref.external = 0;
}

/* Add an AT_specification attribute to a DIE, and also make the back
   pointer from the specification to the definition.  */

static inline void
add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
{
  add_AT_die_ref (die, DW_AT_specification, targ_die);
  gcc_assert (!targ_die->die_definition);
  targ_die->die_definition = die;
}

static inline dw_die_ref
AT_ref (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
  return a->dw_attr_val.v.val_die_ref.die;
}

static inline int
AT_ref_external (dw_attr_node *a)
{
  if (a && AT_class (a) == dw_val_class_die_ref)
    return a->dw_attr_val.v.val_die_ref.external;

  return 0;
}

static inline void
set_AT_ref_external (dw_attr_node *a, int i)
{
  gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
  a->dw_attr_val.v.val_die_ref.external = i;
}

/* Add a location description attribute value to a DIE.  */

static inline void
add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_loc;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_loc = loc;
  add_dwarf_attr (die, &attr);
}

dw_loc_descr_ref
AT_loc (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_loc);
  return a->dw_attr_val.v.val_loc;
}

static inline void
add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
{
  dw_attr_node attr;

  if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
    return;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_loc_list;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_loc_list = loc_list;
  add_dwarf_attr (die, &attr);
  have_location_lists = true;
}

static inline dw_loc_list_ref
AT_loc_list (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
  return a->dw_attr_val.v.val_loc_list;
}

/* Add a view list attribute to DIE.  It must have a DW_AT_location
   attribute, because the view list complements the location list.  */

static inline void
add_AT_view_list (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node attr;

  if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
    return;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_view_list;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_view_list = die;
  add_dwarf_attr (die, &attr);
  gcc_checking_assert (get_AT (die, DW_AT_location));
  gcc_assert (have_location_lists);
}

/* Return a pointer to the location list referenced by the attribute.
   If the named attribute is a view list, look up the corresponding
   DW_AT_location attribute and return its location list.  */

static inline dw_loc_list_ref *
AT_loc_list_ptr (dw_attr_node *a)
{
  gcc_assert (a);
  switch (AT_class (a))
    {
    case dw_val_class_loc_list:
      return &a->dw_attr_val.v.val_loc_list;
    case dw_val_class_view_list:
      {
	dw_attr_node *l;
	l = get_AT (a->dw_attr_val.v.val_view_list, DW_AT_location);
	if (!l)
	  return NULL;
	gcc_checking_assert (l + 1 == a);
	return AT_loc_list_ptr (l);
      }
    default:
      gcc_unreachable ();
    }
}

/* Return the location attribute value associated with a view list
   attribute value.  */

static inline dw_val_node *
view_list_to_loc_list_val_node (dw_val_node *val)
{
  gcc_assert (val->val_class == dw_val_class_view_list);
  dw_attr_node *loc = get_AT (val->v.val_view_list, DW_AT_location);
  if (!loc)
    return NULL;
  gcc_checking_assert (&(loc + 1)->dw_attr_val == val);
  gcc_assert (AT_class (loc) == dw_val_class_loc_list);
  return &loc->dw_attr_val;
}

struct addr_hasher : ggc_ptr_hash<addr_table_entry>
{
  static hashval_t hash (addr_table_entry *);
  static bool equal (addr_table_entry *, addr_table_entry *);
};

/* Table of entries into the .debug_addr section.  */

static GTY (()) hash_table<addr_hasher> *addr_index_table;

/* Hash an address_table_entry.  */

hashval_t
addr_hasher::hash (addr_table_entry *a)
{
  inchash::hash hstate;
  switch (a->kind)
    {
      case ate_kind_rtx:
	hstate.add_int (0);
	break;
      case ate_kind_rtx_dtprel:
	hstate.add_int (1);
	break;
      case ate_kind_label:
        return htab_hash_string (a->addr.label);
      default:
        gcc_unreachable ();
    }
  inchash::add_rtx (a->addr.rtl, hstate);
  return hstate.end ();
}

/* Determine equality for two address_table_entries.  */

bool
addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
{
  if (a1->kind != a2->kind)
    return 0;
  switch (a1->kind)
    {
      case ate_kind_rtx:
      case ate_kind_rtx_dtprel:
        return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
      case ate_kind_label:
        return strcmp (a1->addr.label, a2->addr.label) == 0;
      default:
        gcc_unreachable ();
    }
}

/* Initialize an addr_table_entry.  */

void
init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
{
  e->kind = kind;
  switch (kind)
    {
      case ate_kind_rtx:
      case ate_kind_rtx_dtprel:
        e->addr.rtl = (rtx) addr;
        break;
      case ate_kind_label:
        e->addr.label = (char *) addr;
        break;
    }
  e->refcount = 0;
  e->index = NO_INDEX_ASSIGNED;
}

/* Add attr to the address table entry to the table.  Defer setting an
   index until output time.  */

static addr_table_entry *
add_addr_table_entry (void *addr, enum ate_kind kind)
{
  addr_table_entry *node;
  addr_table_entry finder;

  gcc_assert (dwarf_split_debug_info);
  if (! addr_index_table)
    addr_index_table = hash_table<addr_hasher>::create_ggc (10);
  init_addr_table_entry (&finder, kind, addr);
  addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);

  if (*slot == HTAB_EMPTY_ENTRY)
    {
      node = ggc_cleared_alloc<addr_table_entry> ();
      init_addr_table_entry (node, kind, addr);
      *slot = node;
    }
  else
    node = *slot;

  node->refcount++;
  return node;
}

/* Remove an entry from the addr table by decrementing its refcount.
   Strictly, decrementing the refcount would be enough, but the
   assertion that the entry is actually in the table has found
   bugs.  */

static void
remove_addr_table_entry (addr_table_entry *entry)
{
  gcc_assert (dwarf_split_debug_info && addr_index_table);
  /* After an index is assigned, the table is frozen.  */
  gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
  entry->refcount--;
}

/* Given a location list, remove all addresses it refers to from the
   address_table.  */

static void
remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
{
  for (; descr; descr = descr->dw_loc_next)
    if (descr->dw_loc_oprnd1.val_entry != NULL)
      {
        gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
        remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
      }
}

/* A helper function for dwarf2out_finish called through
   htab_traverse.  Assign an addr_table_entry its index.  All entries
   must be collected into the table when this function is called,
   because the indexing code relies on htab_traverse to traverse nodes
   in the same order for each run. */

int
index_addr_table_entry (addr_table_entry **h, unsigned int *index)
{
  addr_table_entry *node = *h;

  /* Don't index unreferenced nodes.  */
  if (node->refcount == 0)
    return 1;

  gcc_assert (node->index == NO_INDEX_ASSIGNED);
  node->index = *index;
  *index += 1;

  return 1;
}

/* Return the tag of a given DIE.  */

enum dwarf_tag
dw_get_die_tag (dw_die_ref die)
{
  return die->die_tag;
}

/* Return a reference to the children list of a given DIE.  */

dw_die_ref
dw_get_die_child (dw_die_ref die)
{
  return die->die_child;
}

/* Return a reference to the sibling of a given DIE.  */

dw_die_ref
dw_get_die_sib (dw_die_ref die)
{
  return die->die_sib;
}

/* Add an address constant attribute value to a DIE.  When using
   dwarf_split_debug_info, address attributes in dies destined for the
   final executable should be direct references--setting the parameter
   force_direct ensures this behavior.  */

static inline void
add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
             bool force_direct)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_addr;
  attr.dw_attr_val.v.val_addr = addr;
  if (dwarf_split_debug_info && !force_direct)
    attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
  else
    attr.dw_attr_val.val_entry = NULL;
  add_dwarf_attr (die, &attr);
}

/* Get the RTX from to an address DIE attribute.  */

static inline rtx
AT_addr (dw_attr_node *a)
{
  gcc_assert (a && AT_class (a) == dw_val_class_addr);
  return a->dw_attr_val.v.val_addr;
}

/* Add a file attribute value to a DIE.  */

static inline void
add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
	     struct dwarf_file_data *fd)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_file;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_file = fd;
  add_dwarf_attr (die, &attr);
}

/* Get the dwarf_file_data from a file DIE attribute.  */

static inline struct dwarf_file_data *
AT_file (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_file
		    || AT_class (a) == dw_val_class_file_implicit));
  return a->dw_attr_val.v.val_file;
}

#if VMS_DEBUGGING_INFO
/* Add a vms delta attribute value to a DIE.  */

static inline void
add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
		  const char *lbl1, const char *lbl2)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_vms_delta;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
  attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
  add_dwarf_attr (die, &attr);
}
#endif

/* Add a symbolic view identifier attribute value to a DIE.  */

static inline void
add_AT_symview (dw_die_ref die, enum dwarf_attribute attr_kind,
               const char *view_label)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_symview;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_symbolic_view = xstrdup (view_label);
  add_dwarf_attr (die, &attr);
}

/* Add a label identifier attribute value to a DIE.  */

static inline void
add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
               const char *lbl_id)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_lbl_id;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
  if (dwarf_split_debug_info)
    attr.dw_attr_val.val_entry
        = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
                                ate_kind_label);
  add_dwarf_attr (die, &attr);
}

/* Add a section offset attribute value to a DIE, an offset into the
   debug_line section.  */

static inline void
add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
		const char *label)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_lineptr;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
  add_dwarf_attr (die, &attr);
}

/* Add a section offset attribute value to a DIE, an offset into the
   debug_macinfo section.  */

static inline void
add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
	       const char *label)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_macptr;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
  add_dwarf_attr (die, &attr);
}

/* Add a range_list attribute value to a DIE.  When using
   dwarf_split_debug_info, address attributes in dies destined for the
   final executable should be direct references--setting the parameter
   force_direct ensures this behavior.  */

#define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
#define RELOCATED_OFFSET (NULL)

static void
add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
                   long unsigned int offset, bool force_direct)
{
  dw_attr_node attr;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_range_list;
  /* For the range_list attribute, use val_entry to store whether the
     offset should follow split-debug-info or normal semantics.  This
     value is read in output_range_list_offset.  */
  if (dwarf_split_debug_info && !force_direct)
    attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
  else
    attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
  attr.dw_attr_val.v.val_offset = offset;
  add_dwarf_attr (die, &attr);
}

/* Return the start label of a delta attribute.  */

static inline const char *
AT_vms_delta1 (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
  return a->dw_attr_val.v.val_vms_delta.lbl1;
}

/* Return the end label of a delta attribute.  */

static inline const char *
AT_vms_delta2 (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
  return a->dw_attr_val.v.val_vms_delta.lbl2;
}

static inline const char *
AT_lbl (dw_attr_node *a)
{
  gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
		    || AT_class (a) == dw_val_class_lineptr
		    || AT_class (a) == dw_val_class_macptr
		    || AT_class (a) == dw_val_class_loclistsptr
		    || AT_class (a) == dw_val_class_high_pc));
  return a->dw_attr_val.v.val_lbl_id;
}

/* Get the attribute of type attr_kind.  */

dw_attr_node *
get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a;
  unsigned ix;
  dw_die_ref spec = NULL;

  if (! die)
    return NULL;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (a->dw_attr == attr_kind)
      return a;
    else if (a->dw_attr == DW_AT_specification
	     || a->dw_attr == DW_AT_abstract_origin)
      spec = AT_ref (a);

  if (spec)
    return get_AT (spec, attr_kind);

  return NULL;
}

/* Returns the parent of the declaration of DIE.  */

static dw_die_ref
get_die_parent (dw_die_ref die)
{
  dw_die_ref t;

  if (!die)
    return NULL;

  if ((t = get_AT_ref (die, DW_AT_abstract_origin))
      || (t = get_AT_ref (die, DW_AT_specification)))
    die = t;

  return die->die_parent;
}

/* Return the "low pc" attribute value, typically associated with a subprogram
   DIE.  Return null if the "low pc" attribute is either not present, or if it
   cannot be represented as an assembler label identifier.  */

static inline const char *
get_AT_low_pc (dw_die_ref die)
{
  dw_attr_node *a = get_AT (die, DW_AT_low_pc);

  return a ? AT_lbl (a) : NULL;
}

/* Return the value of the string attribute designated by ATTR_KIND, or
   NULL if it is not present.  */

const char *
get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a = get_AT (die, attr_kind);

  return a ? AT_string (a) : NULL;
}

/* Return the value of the flag attribute designated by ATTR_KIND, or -1
   if it is not present.  */

int
get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a = get_AT (die, attr_kind);

  return a ? AT_flag (a) : 0;
}

/* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
   if it is not present.  */

unsigned
get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a = get_AT (die, attr_kind);

  return a ? AT_unsigned (a) : 0;
}

dw_die_ref
get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a = get_AT (die, attr_kind);

  return a ? AT_ref (a) : NULL;
}

struct dwarf_file_data *
get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a = get_AT (die, attr_kind);

  return a ? AT_file (a) : NULL;
}

/* Return TRUE if the language is C.  */

static inline bool
is_c (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);

  return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_C99
	  || lang == DW_LANG_C11 || lang == DW_LANG_ObjC);


}

/* Return TRUE if the language is C++.  */

static inline bool
is_cxx (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);

  return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
	  || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
}

/* Return TRUE if DECL was created by the C++ frontend.  */

static bool
is_cxx (const_tree decl)
{
  if (in_lto_p)
    {
      const_tree context = get_ultimate_context (decl);
      if (context && TRANSLATION_UNIT_LANGUAGE (context))
	return startswith (TRANSLATION_UNIT_LANGUAGE (context), "GNU C++");
    }
  return is_cxx ();
}

/* Return TRUE if the language is Fortran.  */

static inline bool
is_fortran (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);

  return (lang == DW_LANG_Fortran77
	  || lang == DW_LANG_Fortran90
	  || lang == DW_LANG_Fortran95
	  || lang == DW_LANG_Fortran03
	  || lang == DW_LANG_Fortran08);
}

static inline bool
is_fortran (const_tree decl)
{
  if (in_lto_p)
    {
      const_tree context = get_ultimate_context (decl);
      if (context && TRANSLATION_UNIT_LANGUAGE (context))
	return (strncmp (TRANSLATION_UNIT_LANGUAGE (context),
			 "GNU Fortran", 11) == 0
		|| strcmp (TRANSLATION_UNIT_LANGUAGE (context),
			   "GNU F77") == 0);
    }
  return is_fortran ();
}

/* Return TRUE if the language is Ada.  */

static inline bool
is_ada (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);

  return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
}

/* Return TRUE if the language is D.  */

static inline bool
is_dlang (void)
{
  unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);

  return lang == DW_LANG_D;
}

/* Remove the specified attribute if present.  Return TRUE if removal
   was successful.  */

static bool
remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
{
  dw_attr_node *a;
  unsigned ix;

  if (! die)
    return false;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (a->dw_attr == attr_kind)
      {
	if (AT_class (a) == dw_val_class_str)
	  if (a->dw_attr_val.v.val_str->refcount)
	    a->dw_attr_val.v.val_str->refcount--;

	/* vec::ordered_remove should help reduce the number of abbrevs
	   that are needed.  */
	die->die_attr->ordered_remove (ix);
	return true;
      }
  return false;
}

/* Remove CHILD from its parent.  PREV must have the property that
   PREV->DIE_SIB == CHILD.  Does not alter CHILD.  */

static void
remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
{
  gcc_assert (child->die_parent == prev->die_parent);
  gcc_assert (prev->die_sib == child);
  if (prev == child)
    {
      gcc_assert (child->die_parent->die_child == child);
      prev = NULL;
    }
  else
    prev->die_sib = child->die_sib;
  if (child->die_parent->die_child == child)
    child->die_parent->die_child = prev;
  child->die_sib = NULL;
}

/* Replace OLD_CHILD with NEW_CHILD.  PREV must have the property that
   PREV->DIE_SIB == OLD_CHILD.  Does not alter OLD_CHILD.  */

static void
replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
{
  dw_die_ref parent = old_child->die_parent;

  gcc_assert (parent == prev->die_parent);
  gcc_assert (prev->die_sib == old_child);

  new_child->die_parent = parent;
  if (prev == old_child)
    {
      gcc_assert (parent->die_child == old_child);
      new_child->die_sib = new_child;
    }
  else
    {
      prev->die_sib = new_child;
      new_child->die_sib = old_child->die_sib;
    }
  if (old_child->die_parent->die_child == old_child)
    old_child->die_parent->die_child = new_child;
  old_child->die_sib = NULL;
}

/* Move all children from OLD_PARENT to NEW_PARENT.  */

static void
move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
{
  dw_die_ref c;
  new_parent->die_child = old_parent->die_child;
  old_parent->die_child = NULL;
  FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
}

/* Remove child DIE whose die_tag is TAG.  Do nothing if no child
   matches TAG.  */

static void
remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
{
  dw_die_ref c;

  c = die->die_child;
  if (c) do {
    dw_die_ref prev = c;
    c = c->die_sib;
    while (c->die_tag == tag)
      {
	remove_child_with_prev (c, prev);
	c->die_parent = NULL;
	/* Might have removed every child.  */
	if (die->die_child == NULL)
	  return;
	c = prev->die_sib;
      }
  } while (c != die->die_child);
}

/* Add a CHILD_DIE as the last child of DIE.  */

static void
add_child_die (dw_die_ref die, dw_die_ref child_die)
{
  /* FIXME this should probably be an assert.  */
  if (! die || ! child_die)
    return;
  gcc_assert (die != child_die);

  child_die->die_parent = die;
  if (die->die_child)
    {
      child_die->die_sib = die->die_child->die_sib;
      die->die_child->die_sib = child_die;
    }
  else
    child_die->die_sib = child_die;
  die->die_child = child_die;
}

/* Like add_child_die, but put CHILD_DIE after AFTER_DIE.  */

static void
add_child_die_after (dw_die_ref die, dw_die_ref child_die,
		     dw_die_ref after_die)
{
  gcc_assert (die
	      && child_die
	      && after_die
	      && die->die_child
	      && die != child_die);

  child_die->die_parent = die;
  child_die->die_sib = after_die->die_sib;
  after_die->die_sib = child_die;
  if (die->die_child == after_die)
    die->die_child = child_die;
}

/* Unassociate CHILD from its parent, and make its parent be
   NEW_PARENT.  */

static void
reparent_child (dw_die_ref child, dw_die_ref new_parent)
{
  for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib)
    if (p->die_sib == child)
      {
	remove_child_with_prev (child, p);
	break;
      }
  add_child_die (new_parent, child);
}

/* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
   is the specification, to the end of PARENT's list of children.
   This is done by removing and re-adding it.  */

static void
splice_child_die (dw_die_ref parent, dw_die_ref child)
{
  /* We want the declaration DIE from inside the class, not the
     specification DIE at toplevel.  */
  if (child->die_parent != parent)
    {
      dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);

      if (tmp)
	child = tmp;
    }

  gcc_assert (child->die_parent == parent
	      || (child->die_parent
		  == get_AT_ref (parent, DW_AT_specification)));

  reparent_child (child, parent);
}

/* Create and return a new die with TAG_VALUE as tag.  */
 
dw_die_ref
new_die_raw (enum dwarf_tag tag_value)
{
  dw_die_ref die = ggc_cleared_alloc<die_node> ();
  die->die_tag = tag_value;
  return die;
}

/* Create and return a new die with a parent of PARENT_DIE.  If
   PARENT_DIE is NULL, the new DIE is placed in limbo and an
   associated tree T must be supplied to determine parenthood
   later.  */

static inline dw_die_ref
new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
{
  dw_die_ref die = new_die_raw (tag_value);

  if (parent_die != NULL)
    add_child_die (parent_die, die);
  else
    {
      limbo_die_node *limbo_node;

      /* No DIEs created after early dwarf should end up in limbo,
	 because the limbo list should not persist past LTO
	 streaming.  */
      if (tag_value != DW_TAG_compile_unit
	  /* These are allowed because they're generated while
	     breaking out COMDAT units late.  */
	  && tag_value != DW_TAG_type_unit
	  && tag_value != DW_TAG_skeleton_unit
	  && !early_dwarf
	  /* Allow nested functions to live in limbo because they will
	     only temporarily live there, as decls_for_scope will fix
	     them up.  */
	  && (TREE_CODE (t) != FUNCTION_DECL
	      || !decl_function_context (t))
	  /* Same as nested functions above but for types.  Types that
	     are local to a function will be fixed in
	     decls_for_scope.  */
	  && (!RECORD_OR_UNION_TYPE_P (t)
	      || !TYPE_CONTEXT (t)
	      || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL)
	  /* FIXME debug-early: Allow late limbo DIE creation for LTO,
	     especially in the ltrans stage, but once we implement LTO
	     dwarf streaming, we should remove this exception.  */
	  && !in_lto_p)
	{
	  fprintf (stderr, "symbol ended up in limbo too late:");
	  debug_generic_stmt (t);
	  gcc_unreachable ();
	}

      limbo_node = ggc_cleared_alloc<limbo_die_node> ();
      limbo_node->die = die;
      limbo_node->created_for = t;
      limbo_node->next = limbo_die_list;
      limbo_die_list = limbo_node;
    }

  return die;
}

/* Return the DIE associated with the given type specifier.  */

dw_die_ref
lookup_type_die (tree type)
{
  dw_die_ref die = TYPE_SYMTAB_DIE (type);
  if (die && die->removed)
    {
      TYPE_SYMTAB_DIE (type) = NULL;
      return NULL;
    }
  return die;
}

/* Given a TYPE_DIE representing the type TYPE, if TYPE is an
   anonymous type named by the typedef TYPE_DIE, return the DIE of the
   anonymous type instead the one of the naming typedef.  */

static inline dw_die_ref
strip_naming_typedef (tree type, dw_die_ref type_die)
{
  if (type
      && TREE_CODE (type) == RECORD_TYPE
      && type_die
      && type_die->die_tag == DW_TAG_typedef
      && is_naming_typedef_decl (TYPE_NAME (type)))
    type_die = get_AT_ref (type_die, DW_AT_type);
  return type_die;
}

/* Like lookup_type_die, but if type is an anonymous type named by a
   typedef[1], return the DIE of the anonymous type instead the one of
   the naming typedef.  This is because in gen_typedef_die, we did
   equate the anonymous struct named by the typedef with the DIE of
   the naming typedef. So by default, lookup_type_die on an anonymous
   struct yields the DIE of the naming typedef.

   [1]: Read the comment of is_naming_typedef_decl to learn about what
   a naming typedef is.  */

static inline dw_die_ref
lookup_type_die_strip_naming_typedef (tree type)
{
  dw_die_ref die = lookup_type_die (type);
  return strip_naming_typedef (type, die);
}

/* Equate a DIE to a given type specifier.  */

static inline void
equate_type_number_to_die (tree type, dw_die_ref type_die)
{
  TYPE_SYMTAB_DIE (type) = type_die;
}

static dw_die_ref maybe_create_die_with_external_ref (tree);
struct GTY(()) sym_off_pair 
{
  const char * GTY((skip)) sym;
  unsigned HOST_WIDE_INT off;
};
static GTY(()) hash_map<tree, sym_off_pair> *external_die_map;

/* Returns a hash value for X (which really is a die_struct).  */

inline hashval_t
decl_die_hasher::hash (die_node *x)
{
  return (hashval_t) x->decl_id;
}

/* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y.  */

inline bool
decl_die_hasher::equal (die_node *x, tree y)
{
  return (x->decl_id == DECL_UID (y));
}

/* Return the DIE associated with a given declaration.  */

dw_die_ref
lookup_decl_die (tree decl)
{
  dw_die_ref *die = decl_die_table->find_slot_with_hash (decl, DECL_UID (decl),
							 NO_INSERT);
  if (!die)
    {
      if (in_lto_p)
	return maybe_create_die_with_external_ref (decl);
      return NULL;
    }
  if ((*die)->removed)
    {
      decl_die_table->clear_slot (die);
      return NULL;
    }
  return *die;
}


/* Return the DIE associated with BLOCK.  */

static inline dw_die_ref
lookup_block_die (tree block)
{
  dw_die_ref die = BLOCK_DIE (block);
  if (!die && in_lto_p)
    return maybe_create_die_with_external_ref (block);
  return die;
}

/* Associate DIE with BLOCK.  */

static inline void
equate_block_to_die (tree block, dw_die_ref die)
{
  BLOCK_DIE (block) = die;
}
#undef BLOCK_DIE


/* For DECL which might have early dwarf output query a SYMBOL + OFFSET
   style reference.  Return true if we found one refering to a DIE for
   DECL, otherwise return false.  */

static bool
dwarf2out_die_ref_for_decl (tree decl, const char **sym,
			    unsigned HOST_WIDE_INT *off)
{
  dw_die_ref die;

  if (in_lto_p)
    {
      /* During WPA stage and incremental linking we use a hash-map
	 to store the decl <-> label + offset map.  */
      if (!external_die_map)
	return false;
      sym_off_pair *desc = external_die_map->get (decl);
      if (!desc)
	return false;
      *sym = desc->sym;
      *off = desc->off;
      return true;
    }

  if (TREE_CODE (decl) == BLOCK)
    die = lookup_block_die (decl);
  else
    die = lookup_decl_die (decl);
  if (!die)
    return false;

  /* Similar to get_ref_die_offset_label, but using the "correct"
     label.  */
  *off = die->die_offset;
  while (die->die_parent)
    die = die->die_parent;
  /* For the containing CU DIE we compute a die_symbol in
     compute_comp_unit_symbol.  */
  gcc_assert (die->die_tag == DW_TAG_compile_unit
	      && die->die_id.die_symbol != NULL);
  *sym = die->die_id.die_symbol;
  return true;
}

/* Add a reference of kind ATTR_KIND to a DIE at SYMBOL + OFFSET to DIE.  */

static void
add_AT_external_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind,
			 const char *symbol, HOST_WIDE_INT offset)
{
  /* Create a fake DIE that contains the reference.  Don't use
     new_die because we don't want to end up in the limbo list.  */
  /* ???  We probably want to share these, thus put a ref to the DIE
     we create here to the external_die_map entry.  */
  dw_die_ref ref = new_die_raw (die->die_tag);
  ref->die_id.die_symbol = symbol;
  ref->die_offset = offset;
  ref->with_offset = 1;
  add_AT_die_ref (die, attr_kind, ref);
}

/* Create a DIE for DECL if required and add a reference to a DIE
   at SYMBOL + OFFSET which contains attributes dumped early.  */

static void
dwarf2out_register_external_die (tree decl, const char *sym,
				 unsigned HOST_WIDE_INT off)
{
  if (debug_info_level == DINFO_LEVEL_NONE)
    return;

  if (!external_die_map)
    external_die_map = hash_map<tree, sym_off_pair>::create_ggc (1000);
  gcc_checking_assert (!external_die_map->get (decl));
  sym_off_pair p = { IDENTIFIER_POINTER (get_identifier (sym)), off };
  external_die_map->put (decl, p);
}

/* If we have a registered external DIE for DECL return a new DIE for
   the concrete instance with an appropriate abstract origin.  */

static dw_die_ref
maybe_create_die_with_external_ref (tree decl)
{
  if (!external_die_map)
    return NULL;
  sym_off_pair *desc = external_die_map->get (decl);
  if (!desc)
    return NULL;

  const char *sym = desc->sym;
  unsigned HOST_WIDE_INT off = desc->off;
  external_die_map->remove (decl);

  in_lto_p = false;
  dw_die_ref die = (TREE_CODE (decl) == BLOCK
		    ? lookup_block_die (decl) : lookup_decl_die (decl));
  gcc_assert (!die);
  in_lto_p = true;

  tree ctx;
  dw_die_ref parent = NULL;
  /* Need to lookup a DIE for the decls context - the containing
     function or translation unit.  */
  if (TREE_CODE (decl) == BLOCK)
    {
      ctx = BLOCK_SUPERCONTEXT (decl);
      /* ???  We do not output DIEs for all scopes thus skip as
	 many DIEs as needed.  */
      while (TREE_CODE (ctx) == BLOCK
	     && !lookup_block_die (ctx))
	ctx = BLOCK_SUPERCONTEXT (ctx);
    }
  else
    ctx = DECL_CONTEXT (decl);
  /* Peel types in the context stack.  */
  while (ctx && TYPE_P (ctx))
    ctx = TYPE_CONTEXT (ctx);
  /* Likewise namespaces in case we do not want to emit DIEs for them.  */
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    while (ctx && TREE_CODE (ctx) == NAMESPACE_DECL)
      ctx = DECL_CONTEXT (ctx);
  if (ctx)
    {
      if (TREE_CODE (ctx) == BLOCK)
	parent = lookup_block_die (ctx);
      else if (TREE_CODE (ctx) == TRANSLATION_UNIT_DECL
	       /* Keep the 1:1 association during WPA.  */
	       && !flag_wpa
	       && flag_incremental_link != INCREMENTAL_LINK_LTO)
	/* Otherwise all late annotations go to the main CU which
	   imports the original CUs.  */
	parent = comp_unit_die ();
      else if (TREE_CODE (ctx) == FUNCTION_DECL
	       && TREE_CODE (decl) != FUNCTION_DECL
	       && TREE_CODE (decl) != PARM_DECL
	       && TREE_CODE (decl) != RESULT_DECL
	       && TREE_CODE (decl) != BLOCK)
	/* Leave function local entities parent determination to when
	   we process scope vars.  */
	;
      else
	parent = lookup_decl_die (ctx);
    }
  else
    /* In some cases the FEs fail to set DECL_CONTEXT properly.
       Handle this case gracefully by globalizing stuff.  */
    parent = comp_unit_die ();
  /* Create a DIE "stub".  */
  switch (TREE_CODE (decl))
    {
    case TRANSLATION_UNIT_DECL:
      {
	die = comp_unit_die ();
	/* We re-target all CU decls to the LTRANS CU DIE, so no need
	   to create a DIE for the original CUs.  */
	return die;
      }
    case NAMESPACE_DECL:
      if (is_fortran (decl))
	die = new_die (DW_TAG_module, parent, decl);
      else
	die = new_die (DW_TAG_namespace, parent, decl);
      break;
    case FUNCTION_DECL:
      die = new_die (DW_TAG_subprogram, parent, decl);
      break;
    case VAR_DECL:
      die = new_die (DW_TAG_variable, parent, decl);
      break;
    case RESULT_DECL:
      die = new_die (DW_TAG_variable, parent, decl);
      break;
    case PARM_DECL:
      die = new_die (DW_TAG_formal_parameter, parent, decl);
      break;
    case CONST_DECL:
      die = new_die (DW_TAG_constant, parent, decl);
      break;
    case LABEL_DECL:
      die = new_die (DW_TAG_label, parent, decl);
      break;
    case BLOCK:
      die = new_die (DW_TAG_lexical_block, parent, decl);
      break;
    default:
      gcc_unreachable ();
    }
  if (TREE_CODE (decl) == BLOCK)
    equate_block_to_die (decl, die);
  else
    equate_decl_number_to_die (decl, die);

  add_desc_attribute (die, decl);

  /* Add a reference to the DIE providing early debug at $sym + off.  */
  add_AT_external_die_ref (die, DW_AT_abstract_origin, sym, off);

  return die;
}

/* Returns a hash value for X (which really is a var_loc_list).  */

inline hashval_t
decl_loc_hasher::hash (var_loc_list *x)
{
  return (hashval_t) x->decl_id;
}

/* Return nonzero if decl_id of var_loc_list X is the same as
   UID of decl *Y.  */

inline bool
decl_loc_hasher::equal (var_loc_list *x, const_tree y)
{
  return (x->decl_id == DECL_UID (y));
}

/* Return the var_loc list associated with a given declaration.  */

static inline var_loc_list *
lookup_decl_loc (const_tree decl)
{
  if (!decl_loc_table)
    return NULL;
  return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
}

/* Returns a hash value for X (which really is a cached_dw_loc_list_list).  */

inline hashval_t
dw_loc_list_hasher::hash (cached_dw_loc_list *x)
{
  return (hashval_t) x->decl_id;
}

/* Return nonzero if decl_id of cached_dw_loc_list X is the same as
   UID of decl *Y.  */

inline bool
dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
{
  return (x->decl_id == DECL_UID (y));
}

/* Equate a DIE to a particular declaration.  */

static void
equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
{
  unsigned int decl_id = DECL_UID (decl);

  *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
  decl_die->decl_id = decl_id;
}

/* Return how many bits covers PIECE EXPR_LIST.  */

static HOST_WIDE_INT
decl_piece_bitsize (rtx piece)
{
  int ret = (int) GET_MODE (piece);
  if (ret)
    return ret;
  gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
	      && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
  return INTVAL (XEXP (XEXP (piece, 0), 0));
}

/* Return pointer to the location of location note in PIECE EXPR_LIST.  */

static rtx *
decl_piece_varloc_ptr (rtx piece)
{
  if ((int) GET_MODE (piece))
    return &XEXP (piece, 0);
  else
    return &XEXP (XEXP (piece, 0), 1);
}

/* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
   Next is the chain of following piece nodes.  */

static rtx_expr_list *
decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
{
  if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
    return alloc_EXPR_LIST (bitsize, loc_note, next);
  else
    return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
					       GEN_INT (bitsize),
					       loc_note), next);
}

/* Return rtx that should be stored into loc field for
   LOC_NOTE and BITPOS/BITSIZE.  */

static rtx
construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
		      HOST_WIDE_INT bitsize)
{
  if (bitsize != -1)
    {
      loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
      if (bitpos != 0)
	loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
    }
  return loc_note;
}

/* This function either modifies location piece list *DEST in
   place (if SRC and INNER is NULL), or copies location piece list
   *SRC to *DEST while modifying it.  Location BITPOS is modified
   to contain LOC_NOTE, any pieces overlapping it are removed resp.
   not copied and if needed some padding around it is added.
   When modifying in place, DEST should point to EXPR_LIST where
   earlier pieces cover PIECE_BITPOS bits, when copying SRC points
   to the start of the whole list and INNER points to the EXPR_LIST
   where earlier pieces cover PIECE_BITPOS bits.  */

static void
adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
		   HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
		   HOST_WIDE_INT bitsize, rtx loc_note)
{
  HOST_WIDE_INT diff;
  bool copy = inner != NULL;

  if (copy)
    {
      /* First copy all nodes preceding the current bitpos.  */
      while (src != inner)
	{
	  *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
				   decl_piece_bitsize (*src), NULL_RTX);
	  dest = &XEXP (*dest, 1);
	  src = &XEXP (*src, 1);
	}
    }
  /* Add padding if needed.  */
  if (bitpos != piece_bitpos)
    {
      *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
			       copy ? NULL_RTX : *dest);
      dest = &XEXP (*dest, 1);
    }
  else if (*dest && decl_piece_bitsize (*dest) == bitsize)
    {
      gcc_assert (!copy);
      /* A piece with correct bitpos and bitsize already exist,
	 just update the location for it and return.  */
      *decl_piece_varloc_ptr (*dest) = loc_note;
      return;
    }
  /* Add the piece that changed.  */
  *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
  dest = &XEXP (*dest, 1);
  /* Skip over pieces that overlap it.  */
  diff = bitpos - piece_bitpos + bitsize;
  if (!copy)
    src = dest;
  while (diff > 0 && *src)
    {
      rtx piece = *src;
      diff -= decl_piece_bitsize (piece);
      if (copy)
	src = &XEXP (piece, 1);
      else
	{
	  *src = XEXP (piece, 1);
	  free_EXPR_LIST_node (piece);
	}
    }
  /* Add padding if needed.  */
  if (diff < 0 && *src)
    {
      if (!copy)
	dest = src;
      *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
      dest = &XEXP (*dest, 1);
    }
  if (!copy)
    return;
  /* Finally copy all nodes following it.  */
  while (*src)
    {
      *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
			       decl_piece_bitsize (*src), NULL_RTX);
      dest = &XEXP (*dest, 1);
      src = &XEXP (*src, 1);
    }
}

/* Add a variable location node to the linked list for DECL.  */

static struct var_loc_node *
add_var_loc_to_decl (tree decl, rtx loc_note, const char *label, var_loc_view view)
{
  unsigned int decl_id;
  var_loc_list *temp;
  struct var_loc_node *loc = NULL;
  HOST_WIDE_INT bitsize = -1, bitpos = -1;

  if (VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
    {
      tree realdecl = DECL_DEBUG_EXPR (decl);
      if (handled_component_p (realdecl)
	  || (TREE_CODE (realdecl) == MEM_REF
	      && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
	{
	  bool reverse;
	  tree innerdecl = get_ref_base_and_extent_hwi (realdecl, &bitpos,
							&bitsize, &reverse);
	  if (!innerdecl
	      || !DECL_P (innerdecl)
	      || DECL_IGNORED_P (innerdecl)
	      || TREE_STATIC (innerdecl)
	      || bitsize == 0
	      || bitpos + bitsize > 256)
	    return NULL;
	  decl = innerdecl;
	}
    }

  decl_id = DECL_UID (decl);
  var_loc_list **slot
    = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
  if (*slot == NULL)
    {
      temp = ggc_cleared_alloc<var_loc_list> ();
      temp->decl_id = decl_id;
      *slot = temp;
    }
  else
    temp = *slot;

  /* For PARM_DECLs try to keep around the original incoming value,
     even if that means we'll emit a zero-range .debug_loc entry.  */
  if (temp->last
      && temp->first == temp->last
      && TREE_CODE (decl) == PARM_DECL
      && NOTE_P (temp->first->loc)
      && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
      && DECL_INCOMING_RTL (decl)
      && NOTE_VAR_LOCATION_LOC (temp->first->loc)
      && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
	 == GET_CODE (DECL_INCOMING_RTL (decl))
      && prev_real_insn (as_a<rtx_insn *> (temp->first->loc)) == NULL_RTX
      && (bitsize != -1
	  || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
			   NOTE_VAR_LOCATION_LOC (loc_note))
	  || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
	      != NOTE_VAR_LOCATION_STATUS (loc_note))))
    {
      loc = ggc_cleared_alloc<var_loc_node> ();
      temp->first->next = loc;
      temp->last = loc;
      loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
    }
  else if (temp->last)
    {
      struct var_loc_node *last = temp->last, *unused = NULL;
      rtx *piece_loc = NULL, last_loc_note;
      HOST_WIDE_INT piece_bitpos = 0;
      if (last->next)
	{
	  last = last->next;
	  gcc_assert (last->next == NULL);
	}
      if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
	{
	  piece_loc = &last->loc;
	  do
	    {
	      HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
	      if (piece_bitpos + cur_bitsize > bitpos)
		break;
	      piece_bitpos += cur_bitsize;
	      piece_loc = &XEXP (*piece_loc, 1);
	    }
	  while (*piece_loc);
	}
      /* TEMP->LAST here is either pointer to the last but one or
	 last element in the chained list, LAST is pointer to the
	 last element.  */
      if (label && strcmp (last->label, label) == 0 && last->view == view)
	{
	  /* For SRA optimized variables if there weren't any real
	     insns since last note, just modify the last node.  */
	  if (piece_loc != NULL)
	    {
	      adjust_piece_list (piece_loc, NULL, NULL,
				 bitpos, piece_bitpos, bitsize, loc_note);
	      return NULL;
	    }
	  /* If the last note doesn't cover any instructions, remove it.  */
	  if (temp->last != last)
	    {
	      temp->last->next = NULL;
	      unused = last;
	      last = temp->last;
	      gcc_assert (strcmp (last->label, label) != 0 || last->view != view);
	    }
	  else
	    {
	      gcc_assert (temp->first == temp->last
			  || (temp->first->next == temp->last
			      && TREE_CODE (decl) == PARM_DECL));
	      memset (temp->last, '\0', sizeof (*temp->last));
	      temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
	      return temp->last;
	    }
	}
      if (bitsize == -1 && NOTE_P (last->loc))
	last_loc_note = last->loc;
      else if (piece_loc != NULL
	       && *piece_loc != NULL_RTX
	       && piece_bitpos == bitpos
	       && decl_piece_bitsize (*piece_loc) == bitsize)
	last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
      else
	last_loc_note = NULL_RTX;
      /* If the current location is the same as the end of the list,
	 and either both or neither of the locations is uninitialized,
	 we have nothing to do.  */
      if (last_loc_note == NULL_RTX
	  || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
			    NOTE_VAR_LOCATION_LOC (loc_note)))
	  || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
	       != NOTE_VAR_LOCATION_STATUS (loc_note))
	      && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
		   == VAR_INIT_STATUS_UNINITIALIZED)
		  || (NOTE_VAR_LOCATION_STATUS (loc_note)
		      == VAR_INIT_STATUS_UNINITIALIZED))))
	{
	  /* Add LOC to the end of list and update LAST.  If the last
	     element of the list has been removed above, reuse its
	     memory for the new node, otherwise allocate a new one.  */
	  if (unused)
	    {
	      loc = unused;
	      memset (loc, '\0', sizeof (*loc));
	    }
	  else
	    loc = ggc_cleared_alloc<var_loc_node> ();
	  if (bitsize == -1 || piece_loc == NULL)
	    loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
	  else
	    adjust_piece_list (&loc->loc, &last->loc, piece_loc,
			       bitpos, piece_bitpos, bitsize, loc_note);
	  last->next = loc;
	  /* Ensure TEMP->LAST will point either to the new last but one
	     element of the chain, or to the last element in it.  */
	  if (last != temp->last)
	    temp->last = last;
	}
      else if (unused)
	ggc_free (unused);
    }
  else
    {
      loc = ggc_cleared_alloc<var_loc_node> ();
      temp->first = loc;
      temp->last = loc;
      loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
    }
  return loc;
}

/* Keep track of the number of spaces used to indent the
   output of the debugging routines that print the structure of
   the DIE internal representation.  */
static int print_indent;

/* Indent the line the number of spaces given by print_indent.  */

static inline void
print_spaces (FILE *outfile)
{
  fprintf (outfile, "%*s", print_indent, "");
}

/* Print a type signature in hex.  */

static inline void
print_signature (FILE *outfile, char *sig)
{
  int i;

  for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
    fprintf (outfile, "%02x", sig[i] & 0xff);
}

static inline void
print_discr_value (FILE *outfile, dw_discr_value *discr_value)
{
  if (discr_value->pos)
    fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval);
  else
    fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval);
}

static void print_loc_descr (dw_loc_descr_ref, FILE *);

/* Print the value associated to the VAL DWARF value node to OUTFILE.  If
   RECURSE, output location descriptor operations.  */

static void
print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
{
  switch (val->val_class)
    {
    case dw_val_class_addr:
      fprintf (outfile, "address");
      break;
    case dw_val_class_offset:
      fprintf (outfile, "offset");
      break;
    case dw_val_class_loc:
      fprintf (outfile, "location descriptor");
      if (val->v.val_loc == NULL)
	fprintf (outfile, " -> <null>\n");
      else if (recurse)
	{
	  fprintf (outfile, ":\n");
	  print_indent += 4;
	  print_loc_descr (val->v.val_loc, outfile);
	  print_indent -= 4;
	}
      else
	{
	  if (flag_dump_noaddr || flag_dump_unnumbered)
	    fprintf (outfile, " #\n");
	  else
	    fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
	}
      break;
    case dw_val_class_loc_list:
      fprintf (outfile, "location list -> label:%s",
	       val->v.val_loc_list->ll_symbol);
      break;
    case dw_val_class_view_list:
      val = view_list_to_loc_list_val_node (val);
      fprintf (outfile, "location list with views -> labels:%s and %s",
	       val->v.val_loc_list->ll_symbol,
	       val->v.val_loc_list->vl_symbol);
      break;
    case dw_val_class_range_list:
      fprintf (outfile, "range list");
      break;
    case dw_val_class_const:
    case dw_val_class_const_implicit:
      fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
      break;
    case dw_val_class_unsigned_const:
    case dw_val_class_unsigned_const_implicit:
      fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
      break;
    case dw_val_class_const_double:
      fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
			HOST_WIDE_INT_PRINT_UNSIGNED")",
	       val->v.val_double.high,
	       val->v.val_double.low);
      break;
    case dw_val_class_wide_int:
      {
	int i = val->v.val_wide->get_len ();
	fprintf (outfile, "constant (");
	gcc_assert (i > 0);
	if (val->v.val_wide->elt (i - 1) == 0)
	  fprintf (outfile, "0x");
	fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
		 val->v.val_wide->elt (--i));
	while (--i >= 0)
	  fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
		   val->v.val_wide->elt (i));
	fprintf (outfile, ")");
	break;
      }
    case dw_val_class_vec:
      fprintf (outfile, "floating-point or vector constant");
      break;
    case dw_val_class_flag:
      fprintf (outfile, "%u", val->v.val_flag);
      break;
    case dw_val_class_die_ref:
      if (val->v.val_die_ref.die != NULL)
	{
	  dw_die_ref die = val->v.val_die_ref.die;

	  if (die->comdat_type_p)
	    {
	      fprintf (outfile, "die -> signature: ");
	      print_signature (outfile,
			       die->die_id.die_type_node->signature);
	    }
	  else if (die->die_id.die_symbol)
	    {
	      fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
	      if (die->with_offset)
		fprintf (outfile, " + %ld", die->die_offset);
	    }
	  else
	    fprintf (outfile, "die -> %ld", die->die_offset);
	  if (flag_dump_noaddr || flag_dump_unnumbered)
	    fprintf (outfile, " #");
	  else
	    fprintf (outfile, " (%p)", (void *) die);
	}
      else
	fprintf (outfile, "die -> <null>");
      break;
    case dw_val_class_vms_delta:
      fprintf (outfile, "delta: @slotcount(%s-%s)",
	       val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
      break;
    case dw_val_class_symview:
      fprintf (outfile, "view: %s", val->v.val_symbolic_view);
      break;
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
    case dw_val_class_high_pc:
      fprintf (outfile, "label: %s", val->v.val_lbl_id);
      break;
    case dw_val_class_str:
      if (val->v.val_str->str != NULL)
	fprintf (outfile, "\"%s\"", val->v.val_str->str);
      else
	fprintf (outfile, "<null>");
      break;
    case dw_val_class_file:
    case dw_val_class_file_implicit:
      fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
	       val->v.val_file->emitted_number);
      break;
    case dw_val_class_data8:
      {
	int i;

	for (i = 0; i < 8; i++)
	  fprintf (outfile, "%02x", val->v.val_data8[i]);
	break;
      }
    case dw_val_class_discr_value:
      print_discr_value (outfile, &val->v.val_discr_value);
      break;
    case dw_val_class_discr_list:
      for (dw_discr_list_ref node = val->v.val_discr_list;
	   node != NULL;
	   node = node->dw_discr_next)
	{
	  if (node->dw_discr_range)
	    {
	      fprintf (outfile, " .. ");
	      print_discr_value (outfile, &node->dw_discr_lower_bound);
	      print_discr_value (outfile, &node->dw_discr_upper_bound);
	    }
	  else
	    print_discr_value (outfile, &node->dw_discr_lower_bound);

	  if (node->dw_discr_next != NULL)
	    fprintf (outfile, " | ");
	}
    default:
      break;
    }
}

/* Likewise, for a DIE attribute.  */

static void
print_attribute (dw_attr_node *a, bool recurse, FILE *outfile)
{
  print_dw_val (&a->dw_attr_val, recurse, outfile);
}


/* Print the list of operands in the LOC location description to OUTFILE.  This
   routine is a debugging aid only.  */

static void
print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
{
  dw_loc_descr_ref l = loc;

  if (loc == NULL)
    {
      print_spaces (outfile);
      fprintf (outfile, "<null>\n");
      return;
    }

  for (l = loc; l != NULL; l = l->dw_loc_next)
    {
      print_spaces (outfile);
      if (flag_dump_noaddr || flag_dump_unnumbered)
	fprintf (outfile, "#");
      else
	fprintf (outfile, "(%p)", (void *) l);
      fprintf (outfile, " %s",
	       dwarf_stack_op_name (l->dw_loc_opc));
      if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
	{
	  fprintf (outfile, " ");
	  print_dw_val (&l->dw_loc_oprnd1, false, outfile);
	}
      if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
	{
	  fprintf (outfile, ", ");
	  print_dw_val (&l->dw_loc_oprnd2, false, outfile);
	}
      fprintf (outfile, "\n");
    }
}

/* Print the information associated with a given DIE, and its children.
   This routine is a debugging aid only.  */

static void
print_die (dw_die_ref die, FILE *outfile)
{
  dw_attr_node *a;
  dw_die_ref c;
  unsigned ix;

  print_spaces (outfile);
  fprintf (outfile, "DIE %4ld: %s ",
	   die->die_offset, dwarf_tag_name (die->die_tag));
  if (flag_dump_noaddr || flag_dump_unnumbered)
    fprintf (outfile, "#\n");
  else
    fprintf (outfile, "(%p)\n", (void*) die);
  print_spaces (outfile);
  fprintf (outfile, "  abbrev id: %lu", die->die_abbrev);
  fprintf (outfile, " offset: %ld", die->die_offset);
  fprintf (outfile, " mark: %d\n", die->die_mark);

  if (die->comdat_type_p)
    {
      print_spaces (outfile);
      fprintf (outfile, "  signature: ");
      print_signature (outfile, die->die_id.die_type_node->signature);
      fprintf (outfile, "\n");
    }

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      print_spaces (outfile);
      fprintf (outfile, "  %s: ", dwarf_attr_name (a->dw_attr));

      print_attribute (a, true, outfile);
      fprintf (outfile, "\n");
    }

  if (die->die_child != NULL)
    {
      print_indent += 4;
      FOR_EACH_CHILD (die, c, print_die (c, outfile));
      print_indent -= 4;
    }
  if (print_indent == 0)
    fprintf (outfile, "\n");
}

/* Print the list of operations in the LOC location description.  */

DEBUG_FUNCTION void
debug_dwarf_loc_descr (dw_loc_descr_ref loc)
{
  print_loc_descr (loc, stderr);
}

/* Print the information collected for a given DIE.  */

DEBUG_FUNCTION void
debug_dwarf_die (dw_die_ref die)
{
  print_die (die, stderr);
}

DEBUG_FUNCTION void
debug (die_struct &ref)
{
  print_die (&ref, stderr);
}

DEBUG_FUNCTION void
debug (die_struct *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}


/* Print all DWARF information collected for the compilation unit.
   This routine is a debugging aid only.  */

DEBUG_FUNCTION void
debug_dwarf (void)
{
  print_indent = 0;
  print_die (comp_unit_die (), stderr);
}

/* Verify the DIE tree structure.  */

DEBUG_FUNCTION void
verify_die (dw_die_ref die)
{
  gcc_assert (!die->die_mark);
  if (die->die_parent == NULL
      && die->die_sib == NULL)
    return;
  /* Verify the die_sib list is cyclic.  */
  dw_die_ref x = die;
  do
    {
      x->die_mark = 1;
      x = x->die_sib;
    }
  while (x && !x->die_mark);
  gcc_assert (x == die);
  x = die;
  do
    {
      /* Verify all dies have the same parent.  */
      gcc_assert (x->die_parent == die->die_parent);
      if (x->die_child)
	{
	  /* Verify the child has the proper parent and recurse.  */
	  gcc_assert (x->die_child->die_parent == x);
	  verify_die (x->die_child);
	}
      x->die_mark = 0;
      x = x->die_sib;
    }
  while (x && x->die_mark);
}

/* Sanity checks on DIEs.  */

static void
check_die (dw_die_ref die)
{
  unsigned ix;
  dw_attr_node *a;
  bool inline_found = false;
  int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0;
  int n_decl_line = 0, n_decl_column = 0, n_decl_file = 0;
  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      switch (a->dw_attr)
	{
	case DW_AT_inline:
	  if (a->dw_attr_val.v.val_unsigned)
	    inline_found = true;
	  break;
	case DW_AT_location:
	  ++n_location;
	  break;
	case DW_AT_low_pc:
	  ++n_low_pc;
	  break;
	case DW_AT_high_pc:
	  ++n_high_pc;
	  break;
	case DW_AT_artificial:
	  ++n_artificial;
	  break;
        case DW_AT_decl_column:
	  ++n_decl_column;
	  break;
	case DW_AT_decl_line:
	  ++n_decl_line;
	  break;
	case DW_AT_decl_file:
	  ++n_decl_file;
	  break;
	default:
	  break;
	}
    }
  if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1
      || n_decl_column > 1 || n_decl_line > 1 || n_decl_file > 1)
    {
      fprintf (stderr, "Duplicate attributes in DIE:\n");
      debug_dwarf_die (die);
      gcc_unreachable ();
    }
  if (inline_found)
    {
      /* A debugging information entry that is a member of an abstract
	 instance tree [that has DW_AT_inline] should not contain any
	 attributes which describe aspects of the subroutine which vary
	 between distinct inlined expansions or distinct out-of-line
	 expansions.  */
      FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
	gcc_assert (a->dw_attr != DW_AT_low_pc
		    && a->dw_attr != DW_AT_high_pc
		    && a->dw_attr != DW_AT_location
		    && a->dw_attr != DW_AT_frame_base
		    && a->dw_attr != DW_AT_call_all_calls
		    && a->dw_attr != DW_AT_GNU_all_call_sites);
    }
}

#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
#define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)

/* Calculate the checksum of a location expression.  */

static inline void
loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
{
  int tem;
  inchash::hash hstate;
  hashval_t hash;

  tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
  CHECKSUM (tem);
  hash_loc_operands (loc, hstate);
  hash = hstate.end();
  CHECKSUM (hash);
}

/* Calculate the checksum of an attribute.  */

static void
attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark)
{
  dw_loc_descr_ref loc;
  rtx r;

  CHECKSUM (at->dw_attr);

  /* We don't care that this was compiled with a different compiler
     snapshot; if the output is the same, that's what matters.  */
  if (at->dw_attr == DW_AT_producer)
    return;

  switch (AT_class (at))
    {
    case dw_val_class_const:
    case dw_val_class_const_implicit:
      CHECKSUM (at->dw_attr_val.v.val_int);
      break;
    case dw_val_class_unsigned_const:
    case dw_val_class_unsigned_const_implicit:
      CHECKSUM (at->dw_attr_val.v.val_unsigned);
      break;
    case dw_val_class_const_double:
      CHECKSUM (at->dw_attr_val.v.val_double);
      break;
    case dw_val_class_wide_int:
      CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
		      get_full_len (*at->dw_attr_val.v.val_wide)
		      * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
      break;
    case dw_val_class_vec:
      CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
		      (at->dw_attr_val.v.val_vec.length
		       * at->dw_attr_val.v.val_vec.elt_size));
      break;
    case dw_val_class_flag:
      CHECKSUM (at->dw_attr_val.v.val_flag);
      break;
    case dw_val_class_str:
      CHECKSUM_STRING (AT_string (at));
      break;

    case dw_val_class_addr:
      r = AT_addr (at);
      gcc_assert (GET_CODE (r) == SYMBOL_REF);
      CHECKSUM_STRING (XSTR (r, 0));
      break;

    case dw_val_class_offset:
      CHECKSUM (at->dw_attr_val.v.val_offset);
      break;

    case dw_val_class_loc:
      for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
	loc_checksum (loc, ctx);
      break;

    case dw_val_class_die_ref:
      die_checksum (AT_ref (at), ctx, mark);
      break;

    case dw_val_class_fde_ref:
    case dw_val_class_vms_delta:
    case dw_val_class_symview:
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
    case dw_val_class_high_pc:
      break;

    case dw_val_class_file:
    case dw_val_class_file_implicit:
      CHECKSUM_STRING (AT_file (at)->filename);
      break;

    case dw_val_class_data8:
      CHECKSUM (at->dw_attr_val.v.val_data8);
      break;

    default:
      break;
    }
}

/* Calculate the checksum of a DIE.  */

static void
die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  /* To avoid infinite recursion.  */
  if (die->die_mark)
    {
      CHECKSUM (die->die_mark);
      return;
    }
  die->die_mark = ++(*mark);

  CHECKSUM (die->die_tag);

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    attr_checksum (a, ctx, mark);

  FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
}

#undef CHECKSUM
#undef CHECKSUM_BLOCK
#undef CHECKSUM_STRING

/* For DWARF-4 types, include the trailing NULL when checksumming strings.  */
#define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
#define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
#define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
#define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
#define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
#define CHECKSUM_ATTR(FOO) \
  if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)

/* Calculate the checksum of a number in signed LEB128 format.  */

static void
checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
{
  unsigned char byte;
  bool more;

  while (1)
    {
      byte = (value & 0x7f);
      value >>= 7;
      more = !((value == 0 && (byte & 0x40) == 0)
		|| (value == -1 && (byte & 0x40) != 0));
      if (more)
	byte |= 0x80;
      CHECKSUM (byte);
      if (!more)
	break;
    }
}

/* Calculate the checksum of a number in unsigned LEB128 format.  */

static void
checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
{
  while (1)
    {
      unsigned char byte = (value & 0x7f);
      value >>= 7;
      if (value != 0)
	/* More bytes to follow.  */
	byte |= 0x80;
      CHECKSUM (byte);
      if (value == 0)
	break;
    }
}

/* Checksum the context of the DIE.  This adds the names of any
   surrounding namespaces or structures to the checksum.  */

static void
checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
{
  const char *name;
  dw_die_ref spec;
  int tag = die->die_tag;

  if (tag != DW_TAG_namespace
      && tag != DW_TAG_structure_type
      && tag != DW_TAG_class_type)
    return;

  name = get_AT_string (die, DW_AT_name);

  spec = get_AT_ref (die, DW_AT_specification);
  if (spec != NULL)
    die = spec;

  if (die->die_parent != NULL)
    checksum_die_context (die->die_parent, ctx);

  CHECKSUM_ULEB128 ('C');
  CHECKSUM_ULEB128 (tag);
  if (name != NULL)
    CHECKSUM_STRING (name);
}

/* Calculate the checksum of a location expression.  */

static inline void
loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
{
  /* Special case for lone DW_OP_plus_uconst: checksum as if the location
     were emitted as a DW_FORM_sdata instead of a location expression.  */
  if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
    {
      CHECKSUM_ULEB128 (DW_FORM_sdata);
      CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
      return;
    }

  /* Otherwise, just checksum the raw location expression.  */
  while (loc != NULL)
    {
      inchash::hash hstate;
      hashval_t hash;

      CHECKSUM_ULEB128 (loc->dtprel);
      CHECKSUM_ULEB128 (loc->dw_loc_opc);
      hash_loc_operands (loc, hstate);
      hash = hstate.end ();
      CHECKSUM (hash);
      loc = loc->dw_loc_next;
    }
}

/* Calculate the checksum of an attribute.  */

static void
attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at,
		       struct md5_ctx *ctx, int *mark)
{
  dw_loc_descr_ref loc;
  rtx r;

  if (AT_class (at) == dw_val_class_die_ref)
    {
      dw_die_ref target_die = AT_ref (at);

      /* For pointer and reference types, we checksum only the (qualified)
	 name of the target type (if there is a name).  For friend entries,
	 we checksum only the (qualified) name of the target type or function.
	 This allows the checksum to remain the same whether the target type
	 is complete or not.  */
      if ((at->dw_attr == DW_AT_type
	   && (tag == DW_TAG_pointer_type
	       || tag == DW_TAG_reference_type
	       || tag == DW_TAG_rvalue_reference_type
	       || tag == DW_TAG_ptr_to_member_type))
	  || (at->dw_attr == DW_AT_friend
	      && tag == DW_TAG_friend))
	{
	  dw_attr_node *name_attr = get_AT (target_die, DW_AT_name);

	  if (name_attr != NULL)
	    {
	      dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);

	      if (decl == NULL)
		decl = target_die;
	      CHECKSUM_ULEB128 ('N');
	      CHECKSUM_ULEB128 (at->dw_attr);
	      if (decl->die_parent != NULL)
		checksum_die_context (decl->die_parent, ctx);
	      CHECKSUM_ULEB128 ('E');
	      CHECKSUM_STRING (AT_string (name_attr));
	      return;
	    }
	}

      /* For all other references to another DIE, we check to see if the
         target DIE has already been visited.  If it has, we emit a
         backward reference; if not, we descend recursively.  */
      if (target_die->die_mark > 0)
        {
	  CHECKSUM_ULEB128 ('R');
	  CHECKSUM_ULEB128 (at->dw_attr);
	  CHECKSUM_ULEB128 (target_die->die_mark);
        }
      else
        {
	  dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);

	  if (decl == NULL)
	    decl = target_die;
	  target_die->die_mark = ++(*mark);
	  CHECKSUM_ULEB128 ('T');
	  CHECKSUM_ULEB128 (at->dw_attr);
	  if (decl->die_parent != NULL)
	    checksum_die_context (decl->die_parent, ctx);
	  die_checksum_ordered (target_die, ctx, mark);
        }
      return;
    }

  CHECKSUM_ULEB128 ('A');
  CHECKSUM_ULEB128 (at->dw_attr);

  switch (AT_class (at))
    {
    case dw_val_class_const:
    case dw_val_class_const_implicit:
      CHECKSUM_ULEB128 (DW_FORM_sdata);
      CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
      break;

    case dw_val_class_unsigned_const:
    case dw_val_class_unsigned_const_implicit:
      CHECKSUM_ULEB128 (DW_FORM_sdata);
      CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
      break;

    case dw_val_class_const_double:
      CHECKSUM_ULEB128 (DW_FORM_block);
      CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
      CHECKSUM (at->dw_attr_val.v.val_double);
      break;

    case dw_val_class_wide_int:
      CHECKSUM_ULEB128 (DW_FORM_block);
      CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
			* HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
      CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
		      get_full_len (*at->dw_attr_val.v.val_wide)
		      * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
      break;

    case dw_val_class_vec:
      CHECKSUM_ULEB128 (DW_FORM_block);
      CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
			* at->dw_attr_val.v.val_vec.elt_size);
      CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
		      (at->dw_attr_val.v.val_vec.length
		       * at->dw_attr_val.v.val_vec.elt_size));
      break;

    case dw_val_class_flag:
      CHECKSUM_ULEB128 (DW_FORM_flag);
      CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
      break;

    case dw_val_class_str:
      CHECKSUM_ULEB128 (DW_FORM_string);
      CHECKSUM_STRING (AT_string (at));
      break;

    case dw_val_class_addr:
      r = AT_addr (at);
      gcc_assert (GET_CODE (r) == SYMBOL_REF);
      CHECKSUM_ULEB128 (DW_FORM_string);
      CHECKSUM_STRING (XSTR (r, 0));
      break;

    case dw_val_class_offset:
      CHECKSUM_ULEB128 (DW_FORM_sdata);
      CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
      break;

    case dw_val_class_loc:
      for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
	loc_checksum_ordered (loc, ctx);
      break;

    case dw_val_class_fde_ref:
    case dw_val_class_symview:
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
    case dw_val_class_high_pc:
      break;

    case dw_val_class_file:
    case dw_val_class_file_implicit:
      CHECKSUM_ULEB128 (DW_FORM_string);
      CHECKSUM_STRING (AT_file (at)->filename);
      break;

    case dw_val_class_data8:
      CHECKSUM (at->dw_attr_val.v.val_data8);
      break;

    default:
      break;
    }
}

struct checksum_attributes
{
  dw_attr_node *at_name;
  dw_attr_node *at_type;
  dw_attr_node *at_friend;
  dw_attr_node *at_accessibility;
  dw_attr_node *at_address_class;
  dw_attr_node *at_alignment;
  dw_attr_node *at_allocated;
  dw_attr_node *at_artificial;
  dw_attr_node *at_associated;
  dw_attr_node *at_binary_scale;
  dw_attr_node *at_bit_offset;
  dw_attr_node *at_bit_size;
  dw_attr_node *at_bit_stride;
  dw_attr_node *at_byte_size;
  dw_attr_node *at_byte_stride;
  dw_attr_node *at_const_value;
  dw_attr_node *at_containing_type;
  dw_attr_node *at_count;
  dw_attr_node *at_data_location;
  dw_attr_node *at_data_member_location;
  dw_attr_node *at_decimal_scale;
  dw_attr_node *at_decimal_sign;
  dw_attr_node *at_default_value;
  dw_attr_node *at_digit_count;
  dw_attr_node *at_discr;
  dw_attr_node *at_discr_list;
  dw_attr_node *at_discr_value;
  dw_attr_node *at_encoding;
  dw_attr_node *at_endianity;
  dw_attr_node *at_explicit;
  dw_attr_node *at_is_optional;
  dw_attr_node *at_location;
  dw_attr_node *at_lower_bound;
  dw_attr_node *at_mutable;
  dw_attr_node *at_ordering;
  dw_attr_node *at_picture_string;
  dw_attr_node *at_prototyped;
  dw_attr_node *at_small;
  dw_attr_node *at_segment;
  dw_attr_node *at_string_length;
  dw_attr_node *at_string_length_bit_size;
  dw_attr_node *at_string_length_byte_size;
  dw_attr_node *at_threads_scaled;
  dw_attr_node *at_upper_bound;
  dw_attr_node *at_use_location;
  dw_attr_node *at_use_UTF8;
  dw_attr_node *at_variable_parameter;
  dw_attr_node *at_virtuality;
  dw_attr_node *at_visibility;
  dw_attr_node *at_vtable_elem_location;
};

/* Collect the attributes that we will want to use for the checksum.  */

static void
collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
{
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      switch (a->dw_attr)
        {
        case DW_AT_name:
          attrs->at_name = a;
          break;
        case DW_AT_type:
          attrs->at_type = a;
          break;
        case DW_AT_friend:
          attrs->at_friend = a;
          break;
        case DW_AT_accessibility:
          attrs->at_accessibility = a;
          break;
        case DW_AT_address_class:
          attrs->at_address_class = a;
          break;
	case DW_AT_alignment:
	  attrs->at_alignment = a;
	  break;
        case DW_AT_allocated:
          attrs->at_allocated = a;
          break;
        case DW_AT_artificial:
          attrs->at_artificial = a;
          break;
        case DW_AT_associated:
          attrs->at_associated = a;
          break;
        case DW_AT_binary_scale:
          attrs->at_binary_scale = a;
          break;
        case DW_AT_bit_offset:
          attrs->at_bit_offset = a;
          break;
        case DW_AT_bit_size:
          attrs->at_bit_size = a;
          break;
        case DW_AT_bit_stride:
          attrs->at_bit_stride = a;
          break;
        case DW_AT_byte_size:
          attrs->at_byte_size = a;
          break;
        case DW_AT_byte_stride:
          attrs->at_byte_stride = a;
          break;
        case DW_AT_const_value:
          attrs->at_const_value = a;
          break;
        case DW_AT_containing_type:
          attrs->at_containing_type = a;
          break;
        case DW_AT_count:
          attrs->at_count = a;
          break;
        case DW_AT_data_location:
          attrs->at_data_location = a;
          break;
        case DW_AT_data_member_location:
          attrs->at_data_member_location = a;
          break;
        case DW_AT_decimal_scale:
          attrs->at_decimal_scale = a;
          break;
        case DW_AT_decimal_sign:
          attrs->at_decimal_sign = a;
          break;
        case DW_AT_default_value:
          attrs->at_default_value = a;
          break;
        case DW_AT_digit_count:
          attrs->at_digit_count = a;
          break;
        case DW_AT_discr:
          attrs->at_discr = a;
          break;
        case DW_AT_discr_list:
          attrs->at_discr_list = a;
          break;
        case DW_AT_discr_value:
          attrs->at_discr_value = a;
          break;
        case DW_AT_encoding:
          attrs->at_encoding = a;
          break;
        case DW_AT_endianity:
          attrs->at_endianity = a;
          break;
        case DW_AT_explicit:
          attrs->at_explicit = a;
          break;
        case DW_AT_is_optional:
          attrs->at_is_optional = a;
          break;
        case DW_AT_location:
          attrs->at_location = a;
          break;
        case DW_AT_lower_bound:
          attrs->at_lower_bound = a;
          break;
        case DW_AT_mutable:
          attrs->at_mutable = a;
          break;
        case DW_AT_ordering:
          attrs->at_ordering = a;
          break;
        case DW_AT_picture_string:
          attrs->at_picture_string = a;
          break;
        case DW_AT_prototyped:
          attrs->at_prototyped = a;
          break;
        case DW_AT_small:
          attrs->at_small = a;
          break;
        case DW_AT_segment:
          attrs->at_segment = a;
          break;
        case DW_AT_string_length:
          attrs->at_string_length = a;
          break;
	case DW_AT_string_length_bit_size:
	  attrs->at_string_length_bit_size = a;
	  break;
	case DW_AT_string_length_byte_size:
	  attrs->at_string_length_byte_size = a;
	  break;
        case DW_AT_threads_scaled:
          attrs->at_threads_scaled = a;
          break;
        case DW_AT_upper_bound:
          attrs->at_upper_bound = a;
          break;
        case DW_AT_use_location:
          attrs->at_use_location = a;
          break;
        case DW_AT_use_UTF8:
          attrs->at_use_UTF8 = a;
          break;
        case DW_AT_variable_parameter:
          attrs->at_variable_parameter = a;
          break;
        case DW_AT_virtuality:
          attrs->at_virtuality = a;
          break;
        case DW_AT_visibility:
          attrs->at_visibility = a;
          break;
        case DW_AT_vtable_elem_location:
          attrs->at_vtable_elem_location = a;
          break;
        default:
          break;
        }
    }
}

/* Calculate the checksum of a DIE, using an ordered subset of attributes.  */

static void
die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
{
  dw_die_ref c;
  dw_die_ref decl;
  struct checksum_attributes attrs;

  CHECKSUM_ULEB128 ('D');
  CHECKSUM_ULEB128 (die->die_tag);

  memset (&attrs, 0, sizeof (attrs));

  decl = get_AT_ref (die, DW_AT_specification);
  if (decl != NULL)
    collect_checksum_attributes (&attrs, decl);
  collect_checksum_attributes (&attrs, die);

  CHECKSUM_ATTR (attrs.at_name);
  CHECKSUM_ATTR (attrs.at_accessibility);
  CHECKSUM_ATTR (attrs.at_address_class);
  CHECKSUM_ATTR (attrs.at_allocated);
  CHECKSUM_ATTR (attrs.at_artificial);
  CHECKSUM_ATTR (attrs.at_associated);
  CHECKSUM_ATTR (attrs.at_binary_scale);
  CHECKSUM_ATTR (attrs.at_bit_offset);
  CHECKSUM_ATTR (attrs.at_bit_size);
  CHECKSUM_ATTR (attrs.at_bit_stride);
  CHECKSUM_ATTR (attrs.at_byte_size);
  CHECKSUM_ATTR (attrs.at_byte_stride);
  CHECKSUM_ATTR (attrs.at_const_value);
  CHECKSUM_ATTR (attrs.at_containing_type);
  CHECKSUM_ATTR (attrs.at_count);
  CHECKSUM_ATTR (attrs.at_data_location);
  CHECKSUM_ATTR (attrs.at_data_member_location);
  CHECKSUM_ATTR (attrs.at_decimal_scale);
  CHECKSUM_ATTR (attrs.at_decimal_sign);
  CHECKSUM_ATTR (attrs.at_default_value);
  CHECKSUM_ATTR (attrs.at_digit_count);
  CHECKSUM_ATTR (attrs.at_discr);
  CHECKSUM_ATTR (attrs.at_discr_list);
  CHECKSUM_ATTR (attrs.at_discr_value);
  CHECKSUM_ATTR (attrs.at_encoding);
  CHECKSUM_ATTR (attrs.at_endianity);
  CHECKSUM_ATTR (attrs.at_explicit);
  CHECKSUM_ATTR (attrs.at_is_optional);
  CHECKSUM_ATTR (attrs.at_location);
  CHECKSUM_ATTR (attrs.at_lower_bound);
  CHECKSUM_ATTR (attrs.at_mutable);
  CHECKSUM_ATTR (attrs.at_ordering);
  CHECKSUM_ATTR (attrs.at_picture_string);
  CHECKSUM_ATTR (attrs.at_prototyped);
  CHECKSUM_ATTR (attrs.at_small);
  CHECKSUM_ATTR (attrs.at_segment);
  CHECKSUM_ATTR (attrs.at_string_length);
  CHECKSUM_ATTR (attrs.at_string_length_bit_size);
  CHECKSUM_ATTR (attrs.at_string_length_byte_size);
  CHECKSUM_ATTR (attrs.at_threads_scaled);
  CHECKSUM_ATTR (attrs.at_upper_bound);
  CHECKSUM_ATTR (attrs.at_use_location);
  CHECKSUM_ATTR (attrs.at_use_UTF8);
  CHECKSUM_ATTR (attrs.at_variable_parameter);
  CHECKSUM_ATTR (attrs.at_virtuality);
  CHECKSUM_ATTR (attrs.at_visibility);
  CHECKSUM_ATTR (attrs.at_vtable_elem_location);
  CHECKSUM_ATTR (attrs.at_type);
  CHECKSUM_ATTR (attrs.at_friend);
  CHECKSUM_ATTR (attrs.at_alignment);

  /* Checksum the child DIEs.  */
  c = die->die_child;
  if (c) do {
    dw_attr_node *name_attr;

    c = c->die_sib;
    name_attr = get_AT (c, DW_AT_name);
    if (is_template_instantiation (c))
      {
	/* Ignore instantiations of member type and function templates.  */
      }
    else if (name_attr != NULL
	     && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
      {
	/* Use a shallow checksum for named nested types and member
	   functions.  */
        CHECKSUM_ULEB128 ('S');
        CHECKSUM_ULEB128 (c->die_tag);
        CHECKSUM_STRING (AT_string (name_attr));
      }
    else
      {
	/* Use a deep checksum for other children.  */
        /* Mark this DIE so it gets processed when unmarking.  */
        if (c->die_mark == 0)
          c->die_mark = -1;
        die_checksum_ordered (c, ctx, mark);
      }
  } while (c != die->die_child);

  CHECKSUM_ULEB128 (0);
}

/* Add a type name and tag to a hash.  */
static void
die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
{
  CHECKSUM_ULEB128 (tag);
  CHECKSUM_STRING (name);
}

#undef CHECKSUM
#undef CHECKSUM_STRING
#undef CHECKSUM_ATTR
#undef CHECKSUM_LEB128
#undef CHECKSUM_ULEB128

/* Generate the type signature for DIE.  This is computed by generating an
   MD5 checksum over the DIE's tag, its relevant attributes, and its
   children.  Attributes that are references to other DIEs are processed
   by recursion, using the MARK field to prevent infinite recursion.
   If the DIE is nested inside a namespace or another type, we also
   need to include that context in the signature.  The lower 64 bits
   of the resulting MD5 checksum comprise the signature.  */

static void
generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
{
  int mark;
  const char *name;
  unsigned char checksum[16];
  struct md5_ctx ctx;
  dw_die_ref decl;
  dw_die_ref parent;

  name = get_AT_string (die, DW_AT_name);
  decl = get_AT_ref (die, DW_AT_specification);
  parent = get_die_parent (die);

  /* First, compute a signature for just the type name (and its surrounding
     context, if any.  This is stored in the type unit DIE for link-time
     ODR (one-definition rule) checking.  */

  if (is_cxx () && name != NULL)
    {
      md5_init_ctx (&ctx);

      /* Checksum the names of surrounding namespaces and structures.  */
      if (parent != NULL)
        checksum_die_context (parent, &ctx);

      /* Checksum the current DIE. */
      die_odr_checksum (die->die_tag, name, &ctx);
      md5_finish_ctx (&ctx, checksum);

      add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
    }

  /* Next, compute the complete type signature.  */

  md5_init_ctx (&ctx);
  mark = 1;
  die->die_mark = mark;

  /* Checksum the names of surrounding namespaces and structures.  */
  if (parent != NULL)
    checksum_die_context (parent, &ctx);

  /* Checksum the DIE and its children.  */
  die_checksum_ordered (die, &ctx, &mark);
  unmark_all_dies (die);
  md5_finish_ctx (&ctx, checksum);

  /* Store the signature in the type node and link the type DIE and the
     type node together.  */
  memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
          DWARF_TYPE_SIGNATURE_SIZE);
  die->comdat_type_p = true;
  die->die_id.die_type_node = type_node;
  type_node->type_die = die;

  /* If the DIE is a specification, link its declaration to the type node
     as well.  */
  if (decl != NULL)
    {
      decl->comdat_type_p = true;
      decl->die_id.die_type_node = type_node;
    }
}

/* Do the location expressions look same?  */
static inline int
same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
{
  return loc1->dw_loc_opc == loc2->dw_loc_opc
	 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
	 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
}

/* Do the values look the same?  */
static int
same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
{
  dw_loc_descr_ref loc1, loc2;
  rtx r1, r2;

  if (v1->val_class != v2->val_class)
    return 0;

  switch (v1->val_class)
    {
    case dw_val_class_const:
    case dw_val_class_const_implicit:
      return v1->v.val_int == v2->v.val_int;
    case dw_val_class_unsigned_const:
    case dw_val_class_unsigned_const_implicit:
      return v1->v.val_unsigned == v2->v.val_unsigned;
    case dw_val_class_const_double:
      return v1->v.val_double.high == v2->v.val_double.high
	     && v1->v.val_double.low == v2->v.val_double.low;
    case dw_val_class_wide_int:
      return *v1->v.val_wide == *v2->v.val_wide;
    case dw_val_class_vec:
      if (v1->v.val_vec.length != v2->v.val_vec.length
	  || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
	return 0;
      if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
		  v1->v.val_vec.length * v1->v.val_vec.elt_size))
	return 0;
      return 1;
    case dw_val_class_flag:
      return v1->v.val_flag == v2->v.val_flag;
    case dw_val_class_str:
      return !strcmp (v1->v.val_str->str, v2->v.val_str->str);

    case dw_val_class_addr:
      r1 = v1->v.val_addr;
      r2 = v2->v.val_addr;
      if (GET_CODE (r1) != GET_CODE (r2))
	return 0;
      return !rtx_equal_p (r1, r2);

    case dw_val_class_offset:
      return v1->v.val_offset == v2->v.val_offset;

    case dw_val_class_loc:
      for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
	   loc1 && loc2;
	   loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
	if (!same_loc_p (loc1, loc2, mark))
	  return 0;
      return !loc1 && !loc2;

    case dw_val_class_die_ref:
      return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);

    case dw_val_class_symview:
      return strcmp (v1->v.val_symbolic_view, v2->v.val_symbolic_view) == 0;

    case dw_val_class_fde_ref:
    case dw_val_class_vms_delta:
    case dw_val_class_lbl_id:
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
    case dw_val_class_high_pc:
      return 1;

    case dw_val_class_file:
    case dw_val_class_file_implicit:
      return v1->v.val_file == v2->v.val_file;

    case dw_val_class_data8:
      return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);

    default:
      return 1;
    }
}

/* Do the attributes look the same?  */

static int
same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark)
{
  if (at1->dw_attr != at2->dw_attr)
    return 0;

  /* We don't care that this was compiled with a different compiler
     snapshot; if the output is the same, that's what matters. */
  if (at1->dw_attr == DW_AT_producer)
    return 1;

  return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
}

/* Do the dies look the same?  */

static int
same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
{
  dw_die_ref c1, c2;
  dw_attr_node *a1;
  unsigned ix;

  /* To avoid infinite recursion.  */
  if (die1->die_mark)
    return die1->die_mark == die2->die_mark;
  die1->die_mark = die2->die_mark = ++(*mark);

  if (die1->die_tag != die2->die_tag)
    return 0;

  if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
    return 0;

  FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
    if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
      return 0;

  c1 = die1->die_child;
  c2 = die2->die_child;
  if (! c1)
    {
      if (c2)
	return 0;
    }
  else
    for (;;)
      {
	if (!same_die_p (c1, c2, mark))
	  return 0;
	c1 = c1->die_sib;
	c2 = c2->die_sib;
	if (c1 == die1->die_child)
	  {
	    if (c2 == die2->die_child)
	      break;
	    else
	      return 0;
	  }
    }

  return 1;
}

/* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
   children, and set die_symbol.  */

static void
compute_comp_unit_symbol (dw_die_ref unit_die)
{
  const char *die_name = get_AT_string (unit_die, DW_AT_name);
  const char *base = die_name ? lbasename (die_name) : "anonymous";
  char *name = XALLOCAVEC (char, strlen (base) + 64);
  char *p;
  int i, mark;
  unsigned char checksum[16];
  struct md5_ctx ctx;

  /* Compute the checksum of the DIE, then append part of it as hex digits to
     the name filename of the unit.  */

  md5_init_ctx (&ctx);
  mark = 0;
  die_checksum (unit_die, &ctx, &mark);
  unmark_all_dies (unit_die);
  md5_finish_ctx (&ctx, checksum);

  /* When we this for comp_unit_die () we have a DW_AT_name that might
     not start with a letter but with anything valid for filenames and
     clean_symbol_name doesn't fix that up.  Prepend 'g' if the first
     character is not a letter.  */
  sprintf (name, "%s%s.", ISALPHA (*base) ? "" : "g", base);
  clean_symbol_name (name);

  p = name + strlen (name);
  for (i = 0; i < 4; i++)
    {
      sprintf (p, "%.2x", checksum[i]);
      p += 2;
    }

  unit_die->die_id.die_symbol = xstrdup (name);
}

/* Returns nonzero if DIE represents a type, in the sense of TYPE_P.  */

static int
is_type_die (dw_die_ref die)
{
  switch (die->die_tag)
    {
    case DW_TAG_array_type:
    case DW_TAG_class_type:
    case DW_TAG_interface_type:
    case DW_TAG_enumeration_type:
    case DW_TAG_pointer_type:
    case DW_TAG_reference_type:
    case DW_TAG_rvalue_reference_type:
    case DW_TAG_string_type:
    case DW_TAG_structure_type:
    case DW_TAG_subroutine_type:
    case DW_TAG_union_type:
    case DW_TAG_ptr_to_member_type:
    case DW_TAG_set_type:
    case DW_TAG_subrange_type:
    case DW_TAG_base_type:
    case DW_TAG_const_type:
    case DW_TAG_file_type:
    case DW_TAG_packed_type:
    case DW_TAG_volatile_type:
    case DW_TAG_typedef:
      return 1;
    default:
      return 0;
    }
}

/* Returns true iff C is a compile-unit DIE.  */

static inline bool
is_cu_die (dw_die_ref c)
{
  return c && (c->die_tag == DW_TAG_compile_unit
	       || c->die_tag == DW_TAG_skeleton_unit);
}

/* Returns true iff C is a unit DIE of some sort.  */

static inline bool
is_unit_die (dw_die_ref c)
{
  return c && (c->die_tag == DW_TAG_compile_unit
	       || c->die_tag == DW_TAG_partial_unit
	       || c->die_tag == DW_TAG_type_unit
	       || c->die_tag == DW_TAG_skeleton_unit);
}

/* Returns true iff C is a namespace DIE.  */

static inline bool
is_namespace_die (dw_die_ref c)
{
  return c && c->die_tag == DW_TAG_namespace;
}

/* Return non-zero if this DIE is a template parameter.  */

static inline bool
is_template_parameter (dw_die_ref die)
{
  switch (die->die_tag)
    {
    case DW_TAG_template_type_param:
    case DW_TAG_template_value_param:
    case DW_TAG_GNU_template_template_param:
    case DW_TAG_GNU_template_parameter_pack:
      return true;
    default:
      return false;
    }
}

/* Return non-zero if this DIE represents a template instantiation.  */

static inline bool
is_template_instantiation (dw_die_ref die)
{
  dw_die_ref c;

  if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
    return false;
  FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
  return false;
}

static char *
gen_internal_sym (const char *prefix)
{
  char buf[MAX_ARTIFICIAL_LABEL_BYTES];

  ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
  return xstrdup (buf);
}

/* Return non-zero if this DIE is a declaration.  */

static int
is_declaration_die (dw_die_ref die)
{
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (a->dw_attr == DW_AT_declaration)
      return 1;

  return 0;
}

/* Return non-zero if this DIE is nested inside a subprogram.  */

static int
is_nested_in_subprogram (dw_die_ref die)
{
  dw_die_ref decl = get_AT_ref (die, DW_AT_specification);

  if (decl == NULL)
    decl = die;
  return local_scope_p (decl);
}

/* Return non-zero if this DIE contains a defining declaration of a
   subprogram.  */

static int
contains_subprogram_definition (dw_die_ref die)
{
  dw_die_ref c;

  if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
    return 1;
  FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
  return 0;
}

/* Return non-zero if this is a type DIE that should be moved to a
   COMDAT .debug_types section or .debug_info section with DW_UT_*type
   unit type.  */

static int
should_move_die_to_comdat (dw_die_ref die)
{
  switch (die->die_tag)
    {
    case DW_TAG_class_type:
    case DW_TAG_structure_type:
    case DW_TAG_enumeration_type:
    case DW_TAG_union_type:
      /* Don't move declarations, inlined instances, types nested in a
	 subprogram, or types that contain subprogram definitions.  */
      if (is_declaration_die (die)
          || get_AT (die, DW_AT_abstract_origin)
          || is_nested_in_subprogram (die)
          || contains_subprogram_definition (die))
        return 0;
      return 1;
    case DW_TAG_array_type:
    case DW_TAG_interface_type:
    case DW_TAG_pointer_type:
    case DW_TAG_reference_type:
    case DW_TAG_rvalue_reference_type:
    case DW_TAG_string_type:
    case DW_TAG_subroutine_type:
    case DW_TAG_ptr_to_member_type:
    case DW_TAG_set_type:
    case DW_TAG_subrange_type:
    case DW_TAG_base_type:
    case DW_TAG_const_type:
    case DW_TAG_file_type:
    case DW_TAG_packed_type:
    case DW_TAG_volatile_type:
    case DW_TAG_typedef:
    default:
      return 0;
    }
}

/* Make a clone of DIE.  */

static dw_die_ref
clone_die (dw_die_ref die)
{
  dw_die_ref clone = new_die_raw (die->die_tag);
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    add_dwarf_attr (clone, a);

  return clone;
}

/* Make a clone of the tree rooted at DIE.  */

static dw_die_ref
clone_tree (dw_die_ref die)
{
  dw_die_ref c;
  dw_die_ref clone = clone_die (die);

  FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));

  return clone;
}

/* Make a clone of DIE as a declaration.  */

static dw_die_ref
clone_as_declaration (dw_die_ref die)
{
  dw_die_ref clone;
  dw_die_ref decl;
  dw_attr_node *a;
  unsigned ix;

  /* If the DIE is already a declaration, just clone it.  */
  if (is_declaration_die (die))
    return clone_die (die);

  /* If the DIE is a specification, just clone its declaration DIE.  */
  decl = get_AT_ref (die, DW_AT_specification);
  if (decl != NULL)
    {
      clone = clone_die (decl);
      if (die->comdat_type_p)
	add_AT_die_ref (clone, DW_AT_signature, die);
      return clone;
    }

  clone = new_die_raw (die->die_tag);

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      /* We don't want to copy over all attributes.
         For example we don't want DW_AT_byte_size because otherwise we will no
         longer have a declaration and GDB will treat it as a definition.  */

      switch (a->dw_attr)
        {
        case DW_AT_abstract_origin:
        case DW_AT_artificial:
        case DW_AT_containing_type:
        case DW_AT_external:
        case DW_AT_name:
        case DW_AT_type:
        case DW_AT_virtuality:
        case DW_AT_linkage_name:
        case DW_AT_MIPS_linkage_name:
          add_dwarf_attr (clone, a);
          break;
        case DW_AT_byte_size:
	case DW_AT_alignment:
        default:
          break;
        }
    }

  if (die->comdat_type_p)
    add_AT_die_ref (clone, DW_AT_signature, die);

  add_AT_flag (clone, DW_AT_declaration, 1);
  return clone;
}


/* Structure to map a DIE in one CU to its copy in a comdat type unit.  */

struct decl_table_entry
{
  dw_die_ref orig;
  dw_die_ref copy;
};

/* Helpers to manipulate hash table of copied declarations.  */

/* Hashtable helpers.  */

struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry>
{
  typedef die_struct *compare_type;
  static inline hashval_t hash (const decl_table_entry *);
  static inline bool equal (const decl_table_entry *, const die_struct *);
};

inline hashval_t
decl_table_entry_hasher::hash (const decl_table_entry *entry)
{
  return htab_hash_pointer (entry->orig);
}

inline bool
decl_table_entry_hasher::equal (const decl_table_entry *entry1,
				const die_struct *entry2)
{
  return entry1->orig == entry2;
}

typedef hash_table<decl_table_entry_hasher> decl_hash_type;

/* Copy DIE and its ancestors, up to, but not including, the compile unit
   or type unit entry, to a new tree.  Adds the new tree to UNIT and returns
   a pointer to the copy of DIE.  If DECL_TABLE is provided, it is used
   to check if the ancestor has already been copied into UNIT.  */

static dw_die_ref
copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
		    decl_hash_type *decl_table)
{
  dw_die_ref parent = die->die_parent;
  dw_die_ref new_parent = unit;
  dw_die_ref copy;
  decl_table_entry **slot = NULL;
  struct decl_table_entry *entry = NULL;

  /* If DIE refers to a stub unfold that so we get the appropriate
     DIE registered as orig in decl_table.  */
  if (dw_die_ref c = get_AT_ref (die, DW_AT_signature))
    die = c;

  if (decl_table)
    {
      /* Check if the entry has already been copied to UNIT.  */
      slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
					      INSERT);
      if (*slot != HTAB_EMPTY_ENTRY)
        {
          entry = *slot;
          return entry->copy;
        }

      /* Record in DECL_TABLE that DIE has been copied to UNIT.  */
      entry = XCNEW (struct decl_table_entry);
      entry->orig = die;
      entry->copy = NULL;
      *slot = entry;
    }

  if (parent != NULL)
    {
      dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
      if (spec != NULL)
        parent = spec;
      if (!is_unit_die (parent))
        new_parent = copy_ancestor_tree (unit, parent, decl_table);
    }

  copy = clone_as_declaration (die);
  add_child_die (new_parent, copy);

  if (decl_table)
    {
      /* Record the pointer to the copy.  */
      entry->copy = copy;
    }

  return copy;
}
/* Copy the declaration context to the new type unit DIE.  This includes
   any surrounding namespace or type declarations.  If the DIE has an
   AT_specification attribute, it also includes attributes and children
   attached to the specification, and returns a pointer to the original
   parent of the declaration DIE.  Returns NULL otherwise.  */

static dw_die_ref
copy_declaration_context (dw_die_ref unit, dw_die_ref die)
{
  dw_die_ref decl;
  dw_die_ref new_decl;
  dw_die_ref orig_parent = NULL;

  decl = get_AT_ref (die, DW_AT_specification);
  if (decl == NULL)
    decl = die;
  else
    {
      unsigned ix;
      dw_die_ref c;
      dw_attr_node *a;

      /* The original DIE will be changed to a declaration, and must
         be moved to be a child of the original declaration DIE.  */
      orig_parent = decl->die_parent;

      /* Copy the type node pointer from the new DIE to the original
         declaration DIE so we can forward references later.  */
      decl->comdat_type_p = true;
      decl->die_id.die_type_node = die->die_id.die_type_node;

      remove_AT (die, DW_AT_specification);

      FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
        {
          if (a->dw_attr != DW_AT_name
              && a->dw_attr != DW_AT_declaration
              && a->dw_attr != DW_AT_external)
            add_dwarf_attr (die, a);
        }

      FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
    }

  if (decl->die_parent != NULL
      && !is_unit_die (decl->die_parent))
    {
      new_decl = copy_ancestor_tree (unit, decl, NULL);
      if (new_decl != NULL)
        {
          remove_AT (new_decl, DW_AT_signature);
          add_AT_specification (die, new_decl);
        }
    }

  return orig_parent;
}

/* Generate the skeleton ancestor tree for the given NODE, then clone
   the DIE and add the clone into the tree.  */

static void
generate_skeleton_ancestor_tree (skeleton_chain_node *node)
{
  if (node->new_die != NULL)
    return;

  node->new_die = clone_as_declaration (node->old_die);

  if (node->parent != NULL)
    {
      generate_skeleton_ancestor_tree (node->parent);
      add_child_die (node->parent->new_die, node->new_die);
    }
}

/* Generate a skeleton tree of DIEs containing any declarations that are
   found in the original tree.  We traverse the tree looking for declaration
   DIEs, and construct the skeleton from the bottom up whenever we find one.  */

static void
generate_skeleton_bottom_up (skeleton_chain_node *parent)
{
  skeleton_chain_node node;
  dw_die_ref c;
  dw_die_ref first;
  dw_die_ref prev = NULL;
  dw_die_ref next = NULL;

  node.parent = parent;

  first = c = parent->old_die->die_child;
  if (c)
    next = c->die_sib;
  if (c) do {
    if (prev == NULL || prev->die_sib == c)
      prev = c;
    c = next;
    next = (c == first ? NULL : c->die_sib);
    node.old_die = c;
    node.new_die = NULL;
    if (is_declaration_die (c))
      {
	if (is_template_instantiation (c))
	  {
	    /* Instantiated templates do not need to be cloned into the
	       type unit.  Just move the DIE and its children back to
	       the skeleton tree (in the main CU).  */
	    remove_child_with_prev (c, prev);
	    add_child_die (parent->new_die, c);
	    c = prev;
	  }
	else if (c->comdat_type_p)
	  {
	    /* This is the skeleton of earlier break_out_comdat_types
	       type.  Clone the existing DIE, but keep the children
	       under the original (which is in the main CU).  */
	    dw_die_ref clone = clone_die (c);

	    replace_child (c, clone, prev);
	    generate_skeleton_ancestor_tree (parent);
	    add_child_die (parent->new_die, c);
	    c = clone;
	    continue;
	  }
	else
	  {
	    /* Clone the existing DIE, move the original to the skeleton
	       tree (which is in the main CU), and put the clone, with
	       all the original's children, where the original came from
	       (which is about to be moved to the type unit).  */
	    dw_die_ref clone = clone_die (c);
	    move_all_children (c, clone);

	    /* If the original has a DW_AT_object_pointer attribute,
	       it would now point to a child DIE just moved to the
	       cloned tree, so we need to remove that attribute from
	       the original.  */
	    remove_AT (c, DW_AT_object_pointer);

	    replace_child (c, clone, prev);
	    generate_skeleton_ancestor_tree (parent);
	    add_child_die (parent->new_die, c);
	    node.old_die = clone;
	    node.new_die = c;
	    c = clone;
	  }
      }
    generate_skeleton_bottom_up (&node);
  } while (next != NULL);
}

/* Wrapper function for generate_skeleton_bottom_up.  */

static dw_die_ref
generate_skeleton (dw_die_ref die)
{
  skeleton_chain_node node;

  node.old_die = die;
  node.new_die = NULL;
  node.parent = NULL;

  /* If this type definition is nested inside another type,
     and is not an instantiation of a template, always leave
     at least a declaration in its place.  */
  if (die->die_parent != NULL
      && is_type_die (die->die_parent)
      && !is_template_instantiation (die))
    node.new_die = clone_as_declaration (die);

  generate_skeleton_bottom_up (&node);
  return node.new_die;
}

/* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
   declaration.  The original DIE is moved to a new compile unit so that
   existing references to it follow it to the new location.  If any of the
   original DIE's descendants is a declaration, we need to replace the
   original DIE with a skeleton tree and move the declarations back into the
   skeleton tree.  */

static dw_die_ref
remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
				       dw_die_ref prev)
{
  dw_die_ref skeleton, orig_parent;

  /* Copy the declaration context to the type unit DIE.  If the returned
     ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
     that DIE.  */
  orig_parent = copy_declaration_context (unit, child);

  skeleton = generate_skeleton (child);
  if (skeleton == NULL)
    remove_child_with_prev (child, prev);
  else
    {
      skeleton->comdat_type_p = true;
      skeleton->die_id.die_type_node = child->die_id.die_type_node;

      /* If the original DIE was a specification, we need to put
         the skeleton under the parent DIE of the declaration.
	 This leaves the original declaration in the tree, but
	 it will be pruned later since there are no longer any
	 references to it.  */
      if (orig_parent != NULL)
	{
	  remove_child_with_prev (child, prev);
	  add_child_die (orig_parent, skeleton);
	}
      else
	replace_child (child, skeleton, prev);
    }

  return skeleton;
}

static void
copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
			       comdat_type_node *type_node,
			       hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs);

/* Helper for copy_dwarf_procs_ref_in_dies.  Make a copy of the DIE DWARF
   procedure, put it under TYPE_NODE and return the copy.  Continue looking for
   DWARF procedure references in the DW_AT_location attribute.  */

static dw_die_ref
copy_dwarf_procedure (dw_die_ref die,
		      comdat_type_node *type_node,
		      hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
{
  gcc_assert (die->die_tag == DW_TAG_dwarf_procedure);

  /* DWARF procedures are not supposed to have children...  */
  gcc_assert (die->die_child == NULL);

  /* ... and they are supposed to have only one attribute: DW_AT_location.  */
  gcc_assert (vec_safe_length (die->die_attr) == 1
	      && ((*die->die_attr)[0].dw_attr == DW_AT_location));

  /* Do not copy more than once DWARF procedures.  */
  bool existed;
  dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed);
  if (existed)
    return die_copy;

  die_copy = clone_die (die);
  add_child_die (type_node->root_die, die_copy);
  copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs);
  return die_copy;
}

/* Helper for copy_dwarf_procs_ref_in_dies.  Look for references to DWARF
   procedures in DIE's attributes.  */

static void
copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
			       comdat_type_node *type_node,
			       hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
{
  dw_attr_node *a;
  unsigned i;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a)
    {
      dw_loc_descr_ref loc;

      if (a->dw_attr_val.val_class != dw_val_class_loc)
	continue;

      for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next)
	{
	  switch (loc->dw_loc_opc)
	    {
	    case DW_OP_call2:
	    case DW_OP_call4:
	    case DW_OP_call_ref:
	      gcc_assert (loc->dw_loc_oprnd1.val_class
			  == dw_val_class_die_ref);
	      loc->dw_loc_oprnd1.v.val_die_ref.die
	        = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die,
					type_node,
					copied_dwarf_procs);

	    default:
	      break;
	    }
	}
    }
}

/* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
   rewrite references to point to the copies.

   References are looked for in DIE's attributes and recursively in all its
   children attributes that are location descriptions. COPIED_DWARF_PROCS is a
   mapping from old DWARF procedures to their copy. It is used not to copy
   twice the same DWARF procedure under TYPE_NODE.  */

static void
copy_dwarf_procs_ref_in_dies (dw_die_ref die,
			      comdat_type_node *type_node,
			      hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
{
  dw_die_ref c;

  copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs);
  FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c,
							type_node,
							copied_dwarf_procs));
}

/* Traverse the DIE and set up additional .debug_types or .debug_info
   DW_UT_*type sections for each type worthy of being placed in a COMDAT
   section.  */

static void
break_out_comdat_types (dw_die_ref die)
{
  dw_die_ref c;
  dw_die_ref first;
  dw_die_ref prev = NULL;
  dw_die_ref next = NULL;
  dw_die_ref unit = NULL;

  first = c = die->die_child;
  if (c)
    next = c->die_sib;
  if (c) do {
    if (prev == NULL || prev->die_sib == c)
      prev = c;
    c = next;
    next = (c == first ? NULL : c->die_sib);
    if (should_move_die_to_comdat (c))
      {
        dw_die_ref replacement;
	comdat_type_node *type_node;

        /* Break out nested types into their own type units.  */
        break_out_comdat_types (c);

        /* Create a new type unit DIE as the root for the new tree.  */
        unit = new_die (DW_TAG_type_unit, NULL, NULL);
        add_AT_unsigned (unit, DW_AT_language,
                         get_AT_unsigned (comp_unit_die (), DW_AT_language));

	/* Add the new unit's type DIE into the comdat type list.  */
        type_node = ggc_cleared_alloc<comdat_type_node> ();
        type_node->root_die = unit;
        type_node->next = comdat_type_list;
        comdat_type_list = type_node;

        /* Generate the type signature.  */
        generate_type_signature (c, type_node);

        /* Copy the declaration context, attributes, and children of the
           declaration into the new type unit DIE, then remove this DIE
	   from the main CU (or replace it with a skeleton if necessary).  */
	replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
	type_node->skeleton_die = replacement;

        /* Add the DIE to the new compunit.  */
	add_child_die (unit, c);

	/* Types can reference DWARF procedures for type size or data location
	   expressions.  Calls in DWARF expressions cannot target procedures
	   that are not in the same section.  So we must copy DWARF procedures
	   along with this type and then rewrite references to them.  */
	hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs;
	copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs);

        if (replacement != NULL)
          c = replacement;
      }
    else if (c->die_tag == DW_TAG_namespace
             || c->die_tag == DW_TAG_class_type
             || c->die_tag == DW_TAG_structure_type
             || c->die_tag == DW_TAG_union_type)
      {
        /* Look for nested types that can be broken out.  */
        break_out_comdat_types (c);
      }
  } while (next != NULL);
}

/* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
   Enter all the cloned children into the hash table decl_table.  */

static dw_die_ref
clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
{
  dw_die_ref c;
  dw_die_ref clone;
  struct decl_table_entry *entry;
  decl_table_entry **slot;

  if (die->die_tag == DW_TAG_subprogram)
    clone = clone_as_declaration (die);
  else
    clone = clone_die (die);

  slot = decl_table->find_slot_with_hash (die,
					  htab_hash_pointer (die), INSERT);

  /* Assert that DIE isn't in the hash table yet.  If it would be there
     before, the ancestors would be necessarily there as well, therefore
     clone_tree_partial wouldn't be called.  */
  gcc_assert (*slot == HTAB_EMPTY_ENTRY);

  entry = XCNEW (struct decl_table_entry);
  entry->orig = die;
  entry->copy = clone;
  *slot = entry;

  if (die->die_tag != DW_TAG_subprogram)
    FOR_EACH_CHILD (die, c,
		    add_child_die (clone, clone_tree_partial (c, decl_table)));

  return clone;
}

/* Walk the DIE and its children, looking for references to incomplete
   or trivial types that are unmarked (i.e., that are not in the current
   type_unit).  */

static void
copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      if (AT_class (a) == dw_val_class_die_ref)
        {
          dw_die_ref targ = AT_ref (a);
          decl_table_entry **slot;
          struct decl_table_entry *entry;

          if (targ->die_mark != 0 || targ->comdat_type_p)
            continue;

          slot = decl_table->find_slot_with_hash (targ,
						  htab_hash_pointer (targ),
						  INSERT);

          if (*slot != HTAB_EMPTY_ENTRY)
            {
              /* TARG has already been copied, so we just need to
                 modify the reference to point to the copy.  */
              entry = *slot;
              a->dw_attr_val.v.val_die_ref.die = entry->copy;
            }
          else
            {
              dw_die_ref parent = unit;
	      dw_die_ref copy = clone_die (targ);

              /* Record in DECL_TABLE that TARG has been copied.
                 Need to do this now, before the recursive call,
                 because DECL_TABLE may be expanded and SLOT
                 would no longer be a valid pointer.  */
              entry = XCNEW (struct decl_table_entry);
              entry->orig = targ;
              entry->copy = copy;
              *slot = entry;

	      /* If TARG is not a declaration DIE, we need to copy its
	         children.  */
	      if (!is_declaration_die (targ))
		{
		  FOR_EACH_CHILD (
		      targ, c,
		      add_child_die (copy,
				     clone_tree_partial (c, decl_table)));
		}

              /* Make sure the cloned tree is marked as part of the
                 type unit.  */
              mark_dies (copy);

              /* If TARG has surrounding context, copy its ancestor tree
                 into the new type unit.  */
              if (targ->die_parent != NULL
		  && !is_unit_die (targ->die_parent))
                parent = copy_ancestor_tree (unit, targ->die_parent,
                                             decl_table);

              add_child_die (parent, copy);
              a->dw_attr_val.v.val_die_ref.die = copy;

              /* Make sure the newly-copied DIE is walked.  If it was
                 installed in a previously-added context, it won't
                 get visited otherwise.  */
              if (parent != unit)
		{
		  /* Find the highest point of the newly-added tree,
		     mark each node along the way, and walk from there.  */
		  parent->die_mark = 1;
		  while (parent->die_parent
		  	 && parent->die_parent->die_mark == 0)
		    {
		      parent = parent->die_parent;
		      parent->die_mark = 1;
		    }
		  copy_decls_walk (unit, parent, decl_table);
		}
            }
        }
    }

  FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
}

/* Collect skeleton dies in DIE created by break_out_comdat_types already
   and record them in DECL_TABLE.  */

static void
collect_skeleton_dies (dw_die_ref die, decl_hash_type *decl_table)
{
  dw_die_ref c;

  if (dw_attr_node *a = get_AT (die, DW_AT_signature))
    {
      dw_die_ref targ = AT_ref (a);
      gcc_assert (targ->die_mark == 0 && targ->comdat_type_p);
      decl_table_entry **slot
        = decl_table->find_slot_with_hash (targ,
					   htab_hash_pointer (targ),
					   INSERT);
      gcc_assert (*slot == HTAB_EMPTY_ENTRY);
      /* Record in DECL_TABLE that TARG has been already copied
	 by remove_child_or_replace_with_skeleton.  */
      decl_table_entry *entry = XCNEW (struct decl_table_entry);
      entry->orig = targ;
      entry->copy = die;
      *slot = entry;
    }
  FOR_EACH_CHILD (die, c, collect_skeleton_dies (c, decl_table));
}

/* Copy declarations for "unworthy" types into the new comdat section.
   Incomplete types, modified types, and certain other types aren't broken
   out into comdat sections of their own, so they don't have a signature,
   and we need to copy the declaration into the same section so that we
   don't have an external reference.  */

static void
copy_decls_for_unworthy_types (dw_die_ref unit)
{
  mark_dies (unit);
  decl_hash_type decl_table (10);
  collect_skeleton_dies (unit, &decl_table);
  copy_decls_walk (unit, unit, &decl_table);
  unmark_dies (unit);
}

/* Traverse the DIE and add a sibling attribute if it may have the
   effect of speeding up access to siblings.  To save some space,
   avoid generating sibling attributes for DIE's without children.  */

static void
add_sibling_attributes (dw_die_ref die)
{
  dw_die_ref c;

  if (! die->die_child)
    return;

  if (die->die_parent && die != die->die_parent->die_child)
    add_AT_die_ref (die, DW_AT_sibling, die->die_sib);

  FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
}

/* Output all location lists for the DIE and its children.  */

static void
output_location_lists (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_loc_list)
      output_loc_list (AT_loc_list (a));

  FOR_EACH_CHILD (die, c, output_location_lists (c));
}

/* During assign_location_list_indexes and output_loclists_offset the
   current index, after it the number of assigned indexes (i.e. how
   large the .debug_loclists* offset table should be).  */
static unsigned int loc_list_idx;

/* Output all location list offsets for the DIE and its children.  */

static void
output_loclists_offsets (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_loc_list)
      {
	dw_loc_list_ref l = AT_loc_list (a);
	if (l->offset_emitted)
	  continue;
	dw2_asm_output_delta (dwarf_offset_size, l->ll_symbol,
			      loc_section_label, NULL);
	gcc_assert (l->hash == loc_list_idx);
	loc_list_idx++;
	l->offset_emitted = true;
      }

  FOR_EACH_CHILD (die, c, output_loclists_offsets (c));
}

/* Recursively set indexes of location lists.  */

static void
assign_location_list_indexes (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_loc_list)
      {
	dw_loc_list_ref list = AT_loc_list (a);
	if (!list->num_assigned)
	  {
	    list->num_assigned = true;
	    list->hash = loc_list_idx++;
	  }
      }

  FOR_EACH_CHILD (die, c, assign_location_list_indexes (c));
}

/* We want to limit the number of external references, because they are
   larger than local references: a relocation takes multiple words, and
   even a sig8 reference is always eight bytes, whereas a local reference
   can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
   So if we encounter multiple external references to the same type DIE, we
   make a local typedef stub for it and redirect all references there.

   This is the element of the hash table for keeping track of these
   references.  */

struct external_ref
{
  dw_die_ref type;
  dw_die_ref stub;
  unsigned n_refs;
};

/* Hashtable helpers.  */

struct external_ref_hasher : free_ptr_hash <external_ref>
{
  static inline hashval_t hash (const external_ref *);
  static inline bool equal (const external_ref *, const external_ref *);
};

inline hashval_t
external_ref_hasher::hash (const external_ref *r)
{
  dw_die_ref die = r->type;
  hashval_t h = 0;

  /* We can't use the address of the DIE for hashing, because
     that will make the order of the stub DIEs non-deterministic.  */
  if (! die->comdat_type_p)
    /* We have a symbol; use it to compute a hash.  */
    h = htab_hash_string (die->die_id.die_symbol);
  else
    {
      /* We have a type signature; use a subset of the bits as the hash.
	 The 8-byte signature is at least as large as hashval_t.  */
      comdat_type_node *type_node = die->die_id.die_type_node;
      memcpy (&h, type_node->signature, sizeof (h));
    }
  return h;
}

inline bool
external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
{
  return r1->type == r2->type;
}

typedef hash_table<external_ref_hasher> external_ref_hash_type;

/* Return a pointer to the external_ref for references to DIE.  */

static struct external_ref *
lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
{
  struct external_ref ref, *ref_p;
  external_ref **slot;

  ref.type = die;
  slot = map->find_slot (&ref, INSERT);
  if (*slot != HTAB_EMPTY_ENTRY)
    return *slot;

  ref_p = XCNEW (struct external_ref);
  ref_p->type = die;
  *slot = ref_p;
  return ref_p;
}

/* Subroutine of optimize_external_refs, below.

   If we see a type skeleton, record it as our stub.  If we see external
   references, remember how many we've seen.  */

static void
optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;
  struct external_ref *ref_p;

  if (is_type_die (die)
      && (c = get_AT_ref (die, DW_AT_signature)))
    {
      /* This is a local skeleton; use it for local references.  */
      ref_p = lookup_external_ref (map, c);
      ref_p->stub = die;
    }

  /* Scan the DIE references, and remember any that refer to DIEs from
     other CUs (i.e. those which are not marked).  */
  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_die_ref
	&& (c = AT_ref (a))->die_mark == 0
	&& is_type_die (c))
      {
	ref_p = lookup_external_ref (map, c);
	ref_p->n_refs++;
      }

  FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
}

/* htab_traverse callback function for optimize_external_refs, below.  SLOT
   points to an external_ref, DATA is the CU we're processing.  If we don't
   already have a local stub, and we have multiple refs, build a stub.  */

int
dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
{
  struct external_ref *ref_p = *slot;

  if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
    {
      /* We have multiple references to this type, so build a small stub.
	 Both of these forms are a bit dodgy from the perspective of the
	 DWARF standard, since technically they should have names.  */
      dw_die_ref cu = data;
      dw_die_ref type = ref_p->type;
      dw_die_ref stub = NULL;

      if (type->comdat_type_p)
	{
	  /* If we refer to this type via sig8, use AT_signature.  */
	  stub = new_die (type->die_tag, cu, NULL_TREE);
	  add_AT_die_ref (stub, DW_AT_signature, type);
	}
      else
	{
	  /* Otherwise, use a typedef with no name.  */
	  stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
	  add_AT_die_ref (stub, DW_AT_type, type);
	}

      stub->die_mark++;
      ref_p->stub = stub;
    }
  return 1;
}

/* DIE is a unit; look through all the DIE references to see if there are
   any external references to types, and if so, create local stubs for
   them which will be applied in build_abbrev_table.  This is useful because
   references to local DIEs are smaller.  */

static external_ref_hash_type *
optimize_external_refs (dw_die_ref die)
{
  external_ref_hash_type *map = new external_ref_hash_type (10);
  optimize_external_refs_1 (die, map);
  map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
  return map;
}

/* The following 3 variables are temporaries that are computed only during the
   build_abbrev_table call and used and released during the following
   optimize_abbrev_table call.  */

/* First abbrev_id that can be optimized based on usage.  */
static unsigned int abbrev_opt_start;

/* Maximum abbrev_id of a base type plus one (we can't optimize DIEs with
   abbrev_id smaller than this, because they must be already sized
   during build_abbrev_table).  */
static unsigned int abbrev_opt_base_type_end;

/* Vector of usage counts during build_abbrev_table.  Indexed by
   abbrev_id - abbrev_opt_start.  */
static vec<unsigned int> abbrev_usage_count;

/* Vector of all DIEs added with die_abbrev >= abbrev_opt_start.  */
static vec<dw_die_ref> sorted_abbrev_dies;

/* The format of each DIE (and its attribute value pairs) is encoded in an
   abbreviation table.  This routine builds the abbreviation table and assigns
   a unique abbreviation id for each abbreviation entry.  The children of each
   die are visited recursively.  */

static void
build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
{
  unsigned int abbrev_id = 0;
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;
  dw_die_ref abbrev;

  /* Scan the DIE references, and replace any that refer to
     DIEs from other CUs (i.e. those which are not marked) with
     the local stubs we built in optimize_external_refs.  */
  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_die_ref
	&& (c = AT_ref (a))->die_mark == 0)
      {
	struct external_ref *ref_p;
	gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);

	if (is_type_die (c)
	    && (ref_p = lookup_external_ref (extern_map, c))
	    && ref_p->stub && ref_p->stub != die)
	  {
	    gcc_assert (a->dw_attr != DW_AT_signature);
	    change_AT_die_ref (a, ref_p->stub);
	  }
	else
	  /* We aren't changing this reference, so mark it external.  */
	  set_AT_ref_external (a, 1);
      }

  FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
    {
      dw_attr_node *die_a, *abbrev_a;
      unsigned ix;
      bool ok = true;

      if (abbrev_id == 0)
	continue;
      if (abbrev->die_tag != die->die_tag)
	continue;
      if ((abbrev->die_child != NULL) != (die->die_child != NULL))
	continue;

      if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
	continue;

      FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
	{
	  abbrev_a = &(*abbrev->die_attr)[ix];
	  if ((abbrev_a->dw_attr != die_a->dw_attr)
	      || (value_format (abbrev_a) != value_format (die_a)))
	    {
	      ok = false;
	      break;
	    }
	}
      if (ok)
	break;
    }

  if (abbrev_id >= vec_safe_length (abbrev_die_table))
    {
      vec_safe_push (abbrev_die_table, die);
      if (abbrev_opt_start)
	abbrev_usage_count.safe_push (0);
    }
  if (abbrev_opt_start && abbrev_id >= abbrev_opt_start)
    {
      abbrev_usage_count[abbrev_id - abbrev_opt_start]++;
      sorted_abbrev_dies.safe_push (die);
    }

  die->die_abbrev = abbrev_id;
  FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
}

/* Callback function for sorted_abbrev_dies vector sorting.  We sort
   by die_abbrev's usage count, from the most commonly used
   abbreviation to the least.  */

static int
die_abbrev_cmp (const void *p1, const void *p2)
{
  dw_die_ref die1 = *(const dw_die_ref *) p1;
  dw_die_ref die2 = *(const dw_die_ref *) p2;

  gcc_checking_assert (die1->die_abbrev >= abbrev_opt_start);
  gcc_checking_assert (die2->die_abbrev >= abbrev_opt_start);

  if (die1->die_abbrev >= abbrev_opt_base_type_end
      && die2->die_abbrev >= abbrev_opt_base_type_end)
    {
      if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
	  > abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
	return -1;
      if (abbrev_usage_count[die1->die_abbrev - abbrev_opt_start]
	  < abbrev_usage_count[die2->die_abbrev - abbrev_opt_start])
	return 1;
    }

  /* Stabilize the sort.  */
  if (die1->die_abbrev < die2->die_abbrev)
    return -1;
  if (die1->die_abbrev > die2->die_abbrev)
    return 1;

  return 0;
}

/* Convert dw_val_class_const and dw_val_class_unsigned_const class attributes
   of DIEs in between sorted_abbrev_dies[first_id] and abbrev_dies[end_id - 1]
   into dw_val_class_const_implicit or
   dw_val_class_unsigned_const_implicit.  */

static void
optimize_implicit_const (unsigned int first_id, unsigned int end,
			 vec<bool> &implicit_consts)
{
  /* It never makes sense if there is just one DIE using the abbreviation.  */
  if (end < first_id + 2)
    return;

  dw_attr_node *a;
  unsigned ix, i;
  dw_die_ref die = sorted_abbrev_dies[first_id];
  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (implicit_consts[ix])
      {
	enum dw_val_class new_class = dw_val_class_none;
	switch (AT_class (a))
	  {
	  case dw_val_class_unsigned_const:
	    if ((HOST_WIDE_INT) AT_unsigned (a) < 0)
	      continue;

	    /* The .debug_abbrev section will grow by
	       size_of_sleb128 (AT_unsigned (a)) and we avoid the constants
	       in all the DIEs using that abbreviation.  */
	    if (constant_size (AT_unsigned (a)) * (end - first_id)
		<= (unsigned) size_of_sleb128 (AT_unsigned (a)))
	      continue;

	    new_class = dw_val_class_unsigned_const_implicit;
	    break;

	  case dw_val_class_const:
	    new_class = dw_val_class_const_implicit;
	    break;

	  case dw_val_class_file:
	    new_class = dw_val_class_file_implicit;
	    break;

	  default:
	    continue;
	  }
	for (i = first_id; i < end; i++)
	  (*sorted_abbrev_dies[i]->die_attr)[ix].dw_attr_val.val_class
	    = new_class;
      }
}

/* Attempt to optimize abbreviation table from abbrev_opt_start
   abbreviation above.  */

static void
optimize_abbrev_table (void)
{
  if (abbrev_opt_start
      && vec_safe_length (abbrev_die_table) > abbrev_opt_start
      && (dwarf_version >= 5 || vec_safe_length (abbrev_die_table) > 127))
    {
      auto_vec<bool, 32> implicit_consts;
      sorted_abbrev_dies.qsort (die_abbrev_cmp);

      unsigned int abbrev_id = abbrev_opt_start - 1;
      unsigned int first_id = ~0U;
      unsigned int last_abbrev_id = 0;
      unsigned int i;
      dw_die_ref die;
      if (abbrev_opt_base_type_end > abbrev_opt_start)
	abbrev_id = abbrev_opt_base_type_end - 1;
      /* Reassign abbreviation ids from abbrev_opt_start above, so that
	 most commonly used abbreviations come first.  */
      FOR_EACH_VEC_ELT (sorted_abbrev_dies, i, die)
	{
	  dw_attr_node *a;
	  unsigned ix;

	  /* If calc_base_type_die_sizes has been called, the CU and
	     base types after it can't be optimized, because we've already
	     calculated their DIE offsets.  We've sorted them first.  */
	  if (die->die_abbrev < abbrev_opt_base_type_end)
	    continue;
	  if (die->die_abbrev != last_abbrev_id)
	    {
	      last_abbrev_id = die->die_abbrev;
	      if (dwarf_version >= 5 && first_id != ~0U)
		optimize_implicit_const (first_id, i, implicit_consts);
	      abbrev_id++;
	      (*abbrev_die_table)[abbrev_id] = die;
	      if (dwarf_version >= 5)
		{
		  first_id = i;
		  implicit_consts.truncate (0);

		  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
		    switch (AT_class (a))
		      {
		      case dw_val_class_const:
		      case dw_val_class_unsigned_const:
		      case dw_val_class_file:
			implicit_consts.safe_push (true);
			break;
		      default:
			implicit_consts.safe_push (false);
			break;
		      }
		}
	    }
	  else if (dwarf_version >= 5)
	    {
	      FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
		if (!implicit_consts[ix])
		  continue;
		else
		  {
		    dw_attr_node *other_a
		      = &(*(*abbrev_die_table)[abbrev_id]->die_attr)[ix];
		    if (!dw_val_equal_p (&a->dw_attr_val,
					 &other_a->dw_attr_val))
		      implicit_consts[ix] = false;
		  }
	    }
	  die->die_abbrev = abbrev_id;
	}
      gcc_assert (abbrev_id == vec_safe_length (abbrev_die_table) - 1);
      if (dwarf_version >= 5 && first_id != ~0U)
	optimize_implicit_const (first_id, i, implicit_consts);
    }

  abbrev_opt_start = 0;
  abbrev_opt_base_type_end = 0;
  abbrev_usage_count.release ();
  sorted_abbrev_dies.release ();
}

/* Return the power-of-two number of bytes necessary to represent VALUE.  */

static int
constant_size (unsigned HOST_WIDE_INT value)
{
  int log;

  if (value == 0)
    log = 0;
  else
    log = floor_log2 (value);

  log = log / 8;
  log = 1 << (floor_log2 (log) + 1);

  return log;
}

/* Return the size of a DIE as it is represented in the
   .debug_info section.  */

static unsigned long
size_of_die (dw_die_ref die)
{
  unsigned long size = 0;
  dw_attr_node *a;
  unsigned ix;
  enum dwarf_form form;

  size += size_of_uleb128 (die->die_abbrev);
  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      switch (AT_class (a))
	{
	case dw_val_class_addr:
          if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
            {
              gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
              size += size_of_uleb128 (AT_index (a));
            }
          else
            size += DWARF2_ADDR_SIZE;
	  break;
	case dw_val_class_offset:
	  size += dwarf_offset_size;
	  break;
	case dw_val_class_loc:
	  {
	    unsigned long lsize = size_of_locs (AT_loc (a));

	    /* Block length.  */
	    if (dwarf_version >= 4)
	      size += size_of_uleb128 (lsize);
	    else
	      size += constant_size (lsize);
	    size += lsize;
	  }
	  break;
	case dw_val_class_loc_list:
	  if (dwarf_split_debug_info && dwarf_version >= 5)
	    {
	      gcc_assert (AT_loc_list (a)->num_assigned);
	      size += size_of_uleb128 (AT_loc_list (a)->hash);
	    }
          else
            size += dwarf_offset_size;
	  break;
	case dw_val_class_view_list:
	  size += dwarf_offset_size;
	  break;
	case dw_val_class_range_list:
	  if (value_format (a) == DW_FORM_rnglistx)
	    {
	      gcc_assert (rnglist_idx);
	      dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
	      size += size_of_uleb128 (r->idx);
	    }
	  else
	    size += dwarf_offset_size;
	  break;
	case dw_val_class_const:
	  size += size_of_sleb128 (AT_int (a));
	  break;
	case dw_val_class_unsigned_const:
	  {
	    int csize = constant_size (AT_unsigned (a));
	    if (dwarf_version == 3
		&& a->dw_attr == DW_AT_data_member_location
		&& csize >= 4)
	      size += size_of_uleb128 (AT_unsigned (a));
	    else
	      size += csize;
	  }
	  break;
	case dw_val_class_symview:
	  if (symview_upper_bound <= 0xff)
	    size += 1;
	  else if (symview_upper_bound <= 0xffff)
	    size += 2;
	  else if (symview_upper_bound <= 0xffffffff)
	    size += 4;
	  else
	    size += 8;
	  break;
	case dw_val_class_const_implicit:
	case dw_val_class_unsigned_const_implicit:
	case dw_val_class_file_implicit:
	  /* These occupy no size in the DIE, just an extra sleb128 in
	     .debug_abbrev.  */
	  break;
	case dw_val_class_const_double:
	  size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
	  if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
	    size++; /* block */
	  break;
	case dw_val_class_wide_int:
	  size += (get_full_len (*a->dw_attr_val.v.val_wide)
		   * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
	  if (get_full_len (*a->dw_attr_val.v.val_wide)
	      * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
	    size++; /* block */
	  break;
	case dw_val_class_vec:
	  size += constant_size (a->dw_attr_val.v.val_vec.length
				 * a->dw_attr_val.v.val_vec.elt_size)
		  + a->dw_attr_val.v.val_vec.length
		    * a->dw_attr_val.v.val_vec.elt_size; /* block */
	  break;
	case dw_val_class_flag:
	  if (dwarf_version >= 4)
	    /* Currently all add_AT_flag calls pass in 1 as last argument,
	       so DW_FORM_flag_present can be used.  If that ever changes,
	       we'll need to use DW_FORM_flag and have some optimization
	       in build_abbrev_table that will change those to
	       DW_FORM_flag_present if it is set to 1 in all DIEs using
	       the same abbrev entry.  */
	    gcc_assert (a->dw_attr_val.v.val_flag == 1);
	  else
	    size += 1;
	  break;
	case dw_val_class_die_ref:
	  if (AT_ref_external (a))
	    {
	      /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
		 we use DW_FORM_ref_addr.  In DWARF2, DW_FORM_ref_addr
		 is sized by target address length, whereas in DWARF3
		 it's always sized as an offset.  */
	      if (AT_ref (a)->comdat_type_p)
		size += DWARF_TYPE_SIGNATURE_SIZE;
	      else if (dwarf_version == 2)
		size += DWARF2_ADDR_SIZE;
	      else
		size += dwarf_offset_size;
	    }
	  else
	    size += dwarf_offset_size;
	  break;
	case dw_val_class_fde_ref:
	  size += dwarf_offset_size;
	  break;
	case dw_val_class_lbl_id:
          if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
            {
              gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
              size += size_of_uleb128 (AT_index (a));
            }
          else
            size += DWARF2_ADDR_SIZE;
	  break;
	case dw_val_class_lineptr:
	case dw_val_class_macptr:
	case dw_val_class_loclistsptr:
	  size += dwarf_offset_size;
	  break;
	case dw_val_class_str:
          form = AT_string_form (a);
	  if (form == DW_FORM_strp || form == DW_FORM_line_strp)
	    size += dwarf_offset_size;
	  else if (form == dwarf_FORM (DW_FORM_strx))
	    size += size_of_uleb128 (AT_index (a));
	  else
	    size += strlen (a->dw_attr_val.v.val_str->str) + 1;
	  break;
	case dw_val_class_file:
	  size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
	  break;
	case dw_val_class_data8:
	  size += 8;
	  break;
	case dw_val_class_vms_delta:
	  size += dwarf_offset_size;
	  break;
	case dw_val_class_high_pc:
	  size += DWARF2_ADDR_SIZE;
	  break;
	case dw_val_class_discr_value:
	  size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value);
	  break;
	case dw_val_class_discr_list:
	    {
	      unsigned block_size = size_of_discr_list (AT_discr_list (a));

	      /* This is a block, so we have the block length and then its
		 data.  */
	      size += constant_size (block_size) + block_size;
	    }
	  break;
	default:
	  gcc_unreachable ();
	}
    }

  return size;
}

/* Size the debugging information associated with a given DIE.  Visits the
   DIE's children recursively.  Updates the global variable next_die_offset, on
   each time through.  Uses the current value of next_die_offset to update the
   die_offset field in each DIE.  */

static void
calc_die_sizes (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (die->die_offset == 0
	      || (unsigned long int) die->die_offset == next_die_offset);
  die->die_offset = next_die_offset;
  next_die_offset += size_of_die (die);

  FOR_EACH_CHILD (die, c, calc_die_sizes (c));

  if (die->die_child != NULL)
    /* Count the null byte used to terminate sibling lists.  */
    next_die_offset += 1;
}

/* Size just the base type children at the start of the CU.
   This is needed because build_abbrev needs to size locs
   and sizing of type based stack ops needs to know die_offset
   values for the base types.  */

static void
calc_base_type_die_sizes (void)
{
  unsigned long die_offset = (dwarf_split_debug_info
			      ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
			      : DWARF_COMPILE_UNIT_HEADER_SIZE);
  unsigned int i;
  dw_die_ref base_type;
#if ENABLE_ASSERT_CHECKING
  dw_die_ref prev = comp_unit_die ()->die_child;
#endif

  die_offset += size_of_die (comp_unit_die ());
  for (i = 0; base_types.iterate (i, &base_type); i++)
    {
#if ENABLE_ASSERT_CHECKING
      gcc_assert (base_type->die_offset == 0
		  && prev->die_sib == base_type
		  && base_type->die_child == NULL
		  && base_type->die_abbrev);
      prev = base_type;
#endif
      if (abbrev_opt_start
	  && base_type->die_abbrev >= abbrev_opt_base_type_end)
	abbrev_opt_base_type_end = base_type->die_abbrev + 1;
      base_type->die_offset = die_offset;
      die_offset += size_of_die (base_type);
    }
}

/* Set the marks for a die and its children.  We do this so
   that we know whether or not a reference needs to use FORM_ref_addr; only
   DIEs in the same CU will be marked.  We used to clear out the offset
   and use that as the flag, but ran into ordering problems.  */

static void
mark_dies (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (!die->die_mark);

  die->die_mark = 1;
  FOR_EACH_CHILD (die, c, mark_dies (c));
}

/* Clear the marks for a die and its children.  */

static void
unmark_dies (dw_die_ref die)
{
  dw_die_ref c;

  if (! use_debug_types)
    gcc_assert (die->die_mark);

  die->die_mark = 0;
  FOR_EACH_CHILD (die, c, unmark_dies (c));
}

/* Clear the marks for a die, its children and referred dies.  */

static void
unmark_all_dies (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_node *a;
  unsigned ix;

  if (!die->die_mark)
    return;
  die->die_mark = 0;

  FOR_EACH_CHILD (die, c, unmark_all_dies (c));

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_die_ref)
      unmark_all_dies (AT_ref (a));
}

/* Calculate if the entry should appear in the final output file.  It may be
   from a pruned a type.  */

static bool
include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
{
  /* By limiting gnu pubnames to definitions only, gold can generate a
     gdb index without entries for declarations, which don't include
     enough information to be useful.  */
  if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
    return false;

  if (table == pubname_table)
    {
      /* Enumerator names are part of the pubname table, but the
         parent DW_TAG_enumeration_type die may have been pruned.
         Don't output them if that is the case.  */
      if (p->die->die_tag == DW_TAG_enumerator &&
          (p->die->die_parent == NULL
           || !p->die->die_parent->die_perennial_p))
        return false;

      /* Everything else in the pubname table is included.  */
      return true;
    }

  /* The pubtypes table shouldn't include types that have been
     pruned.  */
  return (p->die->die_offset != 0
          || !flag_eliminate_unused_debug_types);
}

/* Return the size of the .debug_pubnames or .debug_pubtypes table
   generated for the compilation unit.  */

static unsigned long
size_of_pubnames (vec<pubname_entry, va_gc> *names)
{
  unsigned long size;
  unsigned i;
  pubname_entry *p;
  int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;

  size = DWARF_PUBNAMES_HEADER_SIZE;
  FOR_EACH_VEC_ELT (*names, i, p)
    if (include_pubname_in_output (names, p))
      size += strlen (p->name) + dwarf_offset_size + 1 + space_for_flags;

  size += dwarf_offset_size;
  return size;
}

/* Return the size of the information in the .debug_aranges section.  */

static unsigned long
size_of_aranges (void)
{
  unsigned long size;

  size = DWARF_ARANGES_HEADER_SIZE;

  /* Count the address/length pair for this compilation unit.  */
  if (switch_text_ranges)
    size += 2 * DWARF2_ADDR_SIZE
	    * (vec_safe_length (switch_text_ranges) / 2 + 1);
  if (switch_cold_ranges)
    size += 2 * DWARF2_ADDR_SIZE
	    * (vec_safe_length (switch_cold_ranges) / 2 + 1);
  if (have_multiple_function_sections)
    {
      unsigned fde_idx;
      dw_fde_ref fde;

      FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
	{
	  if (fde->ignored_debug)
	    continue;
	  if (!fde->in_std_section)
	    size += 2 * DWARF2_ADDR_SIZE;
	  if (fde->dw_fde_second_begin && !fde->second_in_std_section)
	    size += 2 * DWARF2_ADDR_SIZE;
	}
    }

  /* Count the two zero words used to terminated the address range table.  */
  size += 2 * DWARF2_ADDR_SIZE;
  return size;
}

/* Select the encoding of an attribute value.  */

static enum dwarf_form
value_format (dw_attr_node *a)
{
  switch (AT_class (a))
    {
    case dw_val_class_addr:
      /* Only very few attributes allow DW_FORM_addr.  */
      switch (a->dw_attr)
	{
	case DW_AT_low_pc:
	case DW_AT_high_pc:
	case DW_AT_entry_pc:
	case DW_AT_trampoline:
          return (AT_index (a) == NOT_INDEXED
                  ? DW_FORM_addr : dwarf_FORM (DW_FORM_addrx));
	default:
	  break;
	}
      switch (DWARF2_ADDR_SIZE)
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_loc_list:
      if (dwarf_split_debug_info
	  && dwarf_version >= 5
	  && AT_loc_list (a)->num_assigned)
	return DW_FORM_loclistx;
      /* FALLTHRU */
    case dw_val_class_view_list:
    case dw_val_class_range_list:
      /* For range lists in DWARF 5, use DW_FORM_rnglistx from .debug_info.dwo
	 but in .debug_info use DW_FORM_sec_offset, which is shorter if we
	 care about sizes of .debug* sections in shared libraries and
	 executables and don't take into account relocations that affect just
	 relocatable objects - for DW_FORM_rnglistx we'd have to emit offset
	 table in the .debug_rnglists section.  */
      if (dwarf_split_debug_info
	  && dwarf_version >= 5
	  && AT_class (a) == dw_val_class_range_list
	  && rnglist_idx
	  && a->dw_attr_val.val_entry != RELOCATED_OFFSET)
	return DW_FORM_rnglistx;
      if (dwarf_version >= 4)
	return DW_FORM_sec_offset;
      /* FALLTHRU */
    case dw_val_class_vms_delta:
    case dw_val_class_offset:
      switch (dwarf_offset_size)
	{
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_loc:
      if (dwarf_version >= 4)
	return DW_FORM_exprloc;
      switch (constant_size (size_of_locs (AT_loc (a))))
	{
	case 1:
	  return DW_FORM_block1;
	case 2:
	  return DW_FORM_block2;
	case 4:
	  return DW_FORM_block4;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_const:
      return DW_FORM_sdata;
    case dw_val_class_unsigned_const:
      switch (constant_size (AT_unsigned (a)))
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  /* In DWARF3 DW_AT_data_member_location with
	     DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
	     constant, so we need to use DW_FORM_udata if we need
	     a large constant.  */
	  if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
	    return DW_FORM_udata;
	  return DW_FORM_data4;
	case 8:
	  if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
	    return DW_FORM_udata;
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_const_implicit:
    case dw_val_class_unsigned_const_implicit:
    case dw_val_class_file_implicit:
      return DW_FORM_implicit_const;
    case dw_val_class_const_double:
      switch (HOST_BITS_PER_WIDE_INT)
	{
	case 8:
	  return DW_FORM_data2;
	case 16:
	  return DW_FORM_data4;
	case 32:
	  return DW_FORM_data8;
	case 64:
	  if (dwarf_version >= 5)
	    return DW_FORM_data16;
	  /* FALLTHRU */
	default:
	  return DW_FORM_block1;
	}
    case dw_val_class_wide_int:
      switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
	{
	case 8:
	  return DW_FORM_data1;
	case 16:
	  return DW_FORM_data2;
	case 32:
	  return DW_FORM_data4;
	case 64:
	  return DW_FORM_data8;
	case 128:
	  if (dwarf_version >= 5)
	    return DW_FORM_data16;
	  /* FALLTHRU */
	default:
	  return DW_FORM_block1;
	}
    case dw_val_class_symview:
      /* ??? We might use uleb128, but then we'd have to compute
	 .debug_info offsets in the assembler.  */
      if (symview_upper_bound <= 0xff)
	return DW_FORM_data1;
      else if (symview_upper_bound <= 0xffff)
	return DW_FORM_data2;
      else if (symview_upper_bound <= 0xffffffff)
	return DW_FORM_data4;
      else
	return DW_FORM_data8;
    case dw_val_class_vec:
      switch (constant_size (a->dw_attr_val.v.val_vec.length
			     * a->dw_attr_val.v.val_vec.elt_size))
	{
	case 1:
	  return DW_FORM_block1;
	case 2:
	  return DW_FORM_block2;
	case 4:
	  return DW_FORM_block4;
	default:
	  gcc_unreachable ();
	}
    case dw_val_class_flag:
      if (dwarf_version >= 4)
	{
	  /* Currently all add_AT_flag calls pass in 1 as last argument,
	     so DW_FORM_flag_present can be used.  If that ever changes,
	     we'll need to use DW_FORM_flag and have some optimization
	     in build_abbrev_table that will change those to
	     DW_FORM_flag_present if it is set to 1 in all DIEs using
	     the same abbrev entry.  */
	  gcc_assert (a->dw_attr_val.v.val_flag == 1);
	  return DW_FORM_flag_present;
	}
      return DW_FORM_flag;
    case dw_val_class_die_ref:
      if (AT_ref_external (a))
	{
	  if (AT_ref (a)->comdat_type_p)
	    return DW_FORM_ref_sig8;
	  else
	    return DW_FORM_ref_addr;
	}
      else
	return DW_FORM_ref;
    case dw_val_class_fde_ref:
      return DW_FORM_data;
    case dw_val_class_lbl_id:
      return (AT_index (a) == NOT_INDEXED
              ? DW_FORM_addr : dwarf_FORM (DW_FORM_addrx));
    case dw_val_class_lineptr:
    case dw_val_class_macptr:
    case dw_val_class_loclistsptr:
      return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
    case dw_val_class_str:
      return AT_string_form (a);
    case dw_val_class_file:
      switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	default:
	  gcc_unreachable ();
	}

    case dw_val_class_data8:
      return DW_FORM_data8;

    case dw_val_class_high_pc:
      switch (DWARF2_ADDR_SIZE)
	{
	case 1:
	  return DW_FORM_data1;
	case 2:
	  return DW_FORM_data2;
	case 4:
	  return DW_FORM_data4;
	case 8:
	  return DW_FORM_data8;
	default:
	  gcc_unreachable ();
	}

    case dw_val_class_discr_value:
      return (a->dw_attr_val.v.val_discr_value.pos
	      ? DW_FORM_udata
	      : DW_FORM_sdata);
    case dw_val_class_discr_list:
      switch (constant_size (size_of_discr_list (AT_discr_list (a))))
	{
	case 1:
	  return DW_FORM_block1;
	case 2:
	  return DW_FORM_block2;
	case 4:
	  return DW_FORM_block4;
	default:
	  gcc_unreachable ();
	}

    default:
      gcc_unreachable ();
    }
}

/* Output the encoding of an attribute value.  */

static void
output_value_format (dw_attr_node *a)
{
  enum dwarf_form form = value_format (a);

  dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
}

/* Given a die and id, produce the appropriate abbreviations.  */

static void
output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
{
  unsigned ix;
  dw_attr_node *a_attr;

  dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
  dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
                               dwarf_tag_name (abbrev->die_tag));

  if (abbrev->die_child != NULL)
    dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
  else
    dw2_asm_output_data (1, DW_children_no, "DW_children_no");

  for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
    {
      dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
                                   dwarf_attr_name (a_attr->dw_attr));
      output_value_format (a_attr);
      if (value_format (a_attr) == DW_FORM_implicit_const)
	{
	  if (AT_class (a_attr) == dw_val_class_file_implicit)
	    {
	      int f = maybe_emit_file (a_attr->dw_attr_val.v.val_file);
	      const char *filename = a_attr->dw_attr_val.v.val_file->filename;
	      dw2_asm_output_data_sleb128 (f, "(%s)", filename);
	    }
	  else
	    dw2_asm_output_data_sleb128 (a_attr->dw_attr_val.v.val_int, NULL);
	}
    }

  dw2_asm_output_data (1, 0, NULL);
  dw2_asm_output_data (1, 0, NULL);
}


/* Output the .debug_abbrev section which defines the DIE abbreviation
   table.  */

static void
output_abbrev_section (void)
{
  unsigned int abbrev_id;
  dw_die_ref abbrev;

  FOR_EACH_VEC_SAFE_ELT (abbrev_die_table, abbrev_id, abbrev)
    if (abbrev_id != 0)
      output_die_abbrevs (abbrev_id, abbrev);

  /* Terminate the table.  */
  dw2_asm_output_data (1, 0, NULL);
}

/* Return a new location list, given the begin and end range, and the
   expression.  */

static inline dw_loc_list_ref
new_loc_list (dw_loc_descr_ref expr, const char *begin, var_loc_view vbegin,
	      const char *end, var_loc_view vend,
	      const char *section)
{
  dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();

  retlist->begin = begin;
  retlist->begin_entry = NULL;
  retlist->end = end;
  retlist->end_entry = NULL;
  retlist->expr = expr;
  retlist->section = section;
  retlist->vbegin = vbegin;
  retlist->vend = vend;

  return retlist;
}

/* Return true iff there's any nonzero view number in the loc list.

   ??? When views are not enabled, we'll often extend a single range
   to the entire function, so that we emit a single location
   expression rather than a location list.  With views, even with a
   single range, we'll output a list if start or end have a nonzero
   view.  If we change this, we may want to stop splitting a single
   range in dw_loc_list just because of a nonzero view, even if it
   straddles across hot/cold partitions.  */

static bool
loc_list_has_views (dw_loc_list_ref list)
{
  if (!debug_variable_location_views)
    return false;

  for (dw_loc_list_ref loc = list;
       loc != NULL; loc = loc->dw_loc_next)
    if (!ZERO_VIEW_P (loc->vbegin) || !ZERO_VIEW_P (loc->vend))
      return true;

  return false;
}

/* Generate a new internal symbol for this location list node, if it
   hasn't got one yet.  */

static inline void
gen_llsym (dw_loc_list_ref list)
{
  gcc_assert (!list->ll_symbol);
  list->ll_symbol = gen_internal_sym ("LLST");

  if (!loc_list_has_views (list))
    return;

  if (dwarf2out_locviews_in_attribute ())
    {
      /* Use the same label_num for the view list.  */
      label_num--;
      list->vl_symbol = gen_internal_sym ("LVUS");
    }
  else
    list->vl_symbol = list->ll_symbol;
}

/* Generate a symbol for the list, but only if we really want to emit
   it as a list.  */

static inline void
maybe_gen_llsym (dw_loc_list_ref list)
{
  if (!list || (!list->dw_loc_next && !loc_list_has_views (list)))
    return;

  gen_llsym (list);
}

/* Determine whether or not to skip loc_list entry CURR.  If SIZEP is
   NULL, don't consider size of the location expression.  If we're not
   to skip it, and SIZEP is non-null, store the size of CURR->expr's
   representation in *SIZEP.  */

static bool
skip_loc_list_entry (dw_loc_list_ref curr, unsigned long *sizep = NULL)
{
  /* Don't output an entry that starts and ends at the same address.  */
  if (strcmp (curr->begin, curr->end) == 0
      && curr->vbegin == curr->vend && !curr->force)
    return true;

  if (!sizep)
    return false;

  unsigned long size = size_of_locs (curr->expr);

  /* If the expression is too large, drop it on the floor.  We could
     perhaps put it into DW_TAG_dwarf_procedure and refer to that
     in the expression, but >= 64KB expressions for a single value
     in a single range are unlikely very useful.  */
  if (dwarf_version < 5 && size > 0xffff)
    return true;

  *sizep = size;

  return false;
}

/* Output a view pair loclist entry for CURR, if it requires one.  */

static void
dwarf2out_maybe_output_loclist_view_pair (dw_loc_list_ref curr)
{
  if (!dwarf2out_locviews_in_loclist ())
    return;

  if (ZERO_VIEW_P (curr->vbegin) && ZERO_VIEW_P (curr->vend))
    return;

#ifdef DW_LLE_view_pair
  dw2_asm_output_data (1, DW_LLE_view_pair, "DW_LLE_view_pair");

  if (dwarf2out_as_locview_support)
    {
      if (ZERO_VIEW_P (curr->vbegin))
	dw2_asm_output_data_uleb128 (0, "Location view begin");
      else
	{
	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
	  ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vbegin);
	  dw2_asm_output_symname_uleb128 (label, "Location view begin");
	}

      if (ZERO_VIEW_P (curr->vend))
	dw2_asm_output_data_uleb128 (0, "Location view end");
      else
	{
	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
	  ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vend);
	  dw2_asm_output_symname_uleb128 (label, "Location view end");
	}
    }
  else
    {
      dw2_asm_output_data_uleb128 (curr->vbegin, "Location view begin");
      dw2_asm_output_data_uleb128 (curr->vend, "Location view end");
    }
#endif /* DW_LLE_view_pair */

  return;
}

/* Output the location list given to us.  */

static void
output_loc_list (dw_loc_list_ref list_head)
{
  int vcount = 0, lcount = 0;

  if (list_head->emitted)
    return;
  list_head->emitted = true;

  if (list_head->vl_symbol && dwarf2out_locviews_in_attribute ())
    {
      ASM_OUTPUT_LABEL (asm_out_file, list_head->vl_symbol);

      for (dw_loc_list_ref curr = list_head; curr != NULL;
	   curr = curr->dw_loc_next)
	{
	  unsigned long size;

	  if (skip_loc_list_entry (curr, &size))
	    continue;

	  vcount++;

	  /* ?? dwarf_split_debug_info?  */
	  if (dwarf2out_as_locview_support)
	    {
	      char label[MAX_ARTIFICIAL_LABEL_BYTES];

	      if (!ZERO_VIEW_P (curr->vbegin))
		{
		  ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vbegin);
		  dw2_asm_output_symname_uleb128 (label,
						  "View list begin (%s)",
						  list_head->vl_symbol);
		}
	      else
		dw2_asm_output_data_uleb128 (0,
					     "View list begin (%s)",
					     list_head->vl_symbol);

	      if (!ZERO_VIEW_P (curr->vend))
		{
		  ASM_GENERATE_INTERNAL_LABEL (label, "LVU", curr->vend);
		  dw2_asm_output_symname_uleb128 (label,
						  "View list end (%s)",
						  list_head->vl_symbol);
		}
	      else
		dw2_asm_output_data_uleb128 (0,
					     "View list end (%s)",
					     list_head->vl_symbol);
	    }
	  else
	    {
	      dw2_asm_output_data_uleb128 (curr->vbegin,
					   "View list begin (%s)",
					   list_head->vl_symbol);
	      dw2_asm_output_data_uleb128 (curr->vend,
					   "View list end (%s)",
					   list_head->vl_symbol);
	    }
	}
    }

  ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);

  const char *last_section = NULL;
  const char *base_label = NULL;

  /* Walk the location list, and output each range + expression.  */
  for (dw_loc_list_ref curr = list_head; curr != NULL;
       curr = curr->dw_loc_next)
    {
      unsigned long size;

      /* Skip this entry?  If we skip it here, we must skip it in the
	 view list above as well. */
      if (skip_loc_list_entry (curr, &size))
	continue;

      lcount++;

      if (dwarf_version >= 5)
	{
	  if (dwarf_split_debug_info && HAVE_AS_LEB128)
	    {
	      dwarf2out_maybe_output_loclist_view_pair (curr);
	      /* For -gsplit-dwarf, emit DW_LLE_startx_length, which has
		 uleb128 index into .debug_addr and uleb128 length.  */
	      dw2_asm_output_data (1, DW_LLE_startx_length,
				   "DW_LLE_startx_length (%s)",
				   list_head->ll_symbol);
	      dw2_asm_output_data_uleb128 (curr->begin_entry->index,
					   "Location list range start index "
					   "(%s)", curr->begin);
	      dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
					    "Location list length (%s)",
					    list_head->ll_symbol);
	    }
	  else if (dwarf_split_debug_info)
	    {
	      dwarf2out_maybe_output_loclist_view_pair (curr);
	      /* For -gsplit-dwarf without usable .uleb128 support, emit
		 DW_LLE_startx_endx, which has two uleb128 indexes into
		 .debug_addr.  */
	      dw2_asm_output_data (1, DW_LLE_startx_endx,
				   "DW_LLE_startx_endx (%s)",
				   list_head->ll_symbol);
	      dw2_asm_output_data_uleb128 (curr->begin_entry->index,
					   "Location list range start index "
					   "(%s)", curr->begin);
	      dw2_asm_output_data_uleb128 (curr->end_entry->index,
					   "Location list range end index "
					   "(%s)", curr->end);
	    }
	  else if (!have_multiple_function_sections && HAVE_AS_LEB128)
	    {
	      dwarf2out_maybe_output_loclist_view_pair (curr);
	      /* If all code is in .text section, the base address is
		 already provided by the CU attributes.  Use
		 DW_LLE_offset_pair where both addresses are uleb128 encoded
		 offsets against that base.  */
	      dw2_asm_output_data (1, DW_LLE_offset_pair,
				   "DW_LLE_offset_pair (%s)",
				   list_head->ll_symbol);
	      dw2_asm_output_delta_uleb128 (curr->begin, curr->section,
					    "Location list begin address (%s)",
					    list_head->ll_symbol);
	      dw2_asm_output_delta_uleb128 (curr->end, curr->section,
					    "Location list end address (%s)",
					    list_head->ll_symbol);
	    }
	  else if (HAVE_AS_LEB128)
	    {
	      /* Otherwise, find out how many consecutive entries could share
		 the same base entry.  If just one, emit DW_LLE_start_length,
		 otherwise emit DW_LLE_base_address for the base address
		 followed by a series of DW_LLE_offset_pair.  */
	      if (last_section == NULL || curr->section != last_section)
		{
		  dw_loc_list_ref curr2;
		  for (curr2 = curr->dw_loc_next; curr2 != NULL;
		       curr2 = curr2->dw_loc_next)
		    {
		      if (strcmp (curr2->begin, curr2->end) == 0
			  && !curr2->force)
			continue;
		      break;
		    }
		  if (curr2 == NULL || curr->section != curr2->section)
		    last_section = NULL;
		  else
		    {
		      last_section = curr->section;
		      base_label = curr->begin;
		      dw2_asm_output_data (1, DW_LLE_base_address,
					   "DW_LLE_base_address (%s)",
					   list_head->ll_symbol);
		      dw2_asm_output_addr (DWARF2_ADDR_SIZE, base_label,
					   "Base address (%s)",
					   list_head->ll_symbol);
		    }
		}
	      /* Only one entry with the same base address.  Use
		 DW_LLE_start_length with absolute address and uleb128
		 length.  */
	      if (last_section == NULL)
		{
		  dwarf2out_maybe_output_loclist_view_pair (curr);
		  dw2_asm_output_data (1, DW_LLE_start_length,
				       "DW_LLE_start_length (%s)",
				       list_head->ll_symbol);
		  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
				       "Location list begin address (%s)",
				       list_head->ll_symbol);
		  dw2_asm_output_delta_uleb128 (curr->end, curr->begin,
						"Location list length "
						"(%s)", list_head->ll_symbol);
		}
	      /* Otherwise emit DW_LLE_offset_pair, relative to above emitted
		 DW_LLE_base_address.  */
	      else
		{
		  dwarf2out_maybe_output_loclist_view_pair (curr);
		  dw2_asm_output_data (1, DW_LLE_offset_pair,
				       "DW_LLE_offset_pair (%s)",
				       list_head->ll_symbol);
		  dw2_asm_output_delta_uleb128 (curr->begin, base_label,
						"Location list begin address "
						"(%s)", list_head->ll_symbol);
		  dw2_asm_output_delta_uleb128 (curr->end, base_label,
						"Location list end address "
						"(%s)", list_head->ll_symbol);
		}
	    }
	  /* The assembler does not support .uleb128 directive.  Emit
	     DW_LLE_start_end with a pair of absolute addresses.  */
	  else
	    {
	      dwarf2out_maybe_output_loclist_view_pair (curr);
	      dw2_asm_output_data (1, DW_LLE_start_end,
				   "DW_LLE_start_end (%s)",
				   list_head->ll_symbol);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
				   "Location list begin address (%s)",
				   list_head->ll_symbol);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
				   "Location list end address (%s)",
				   list_head->ll_symbol);
	    }
	}
      else if (dwarf_split_debug_info)
	{
	  /* For -gsplit-dwarf -gdwarf-{2,3,4} emit index into .debug_addr
	     and 4 byte length.  */
	  dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
			       "Location list start/length entry (%s)",
			       list_head->ll_symbol);
	  dw2_asm_output_data_uleb128 (curr->begin_entry->index,
				       "Location list range start index (%s)",
				       curr->begin);
	  /* The length field is 4 bytes.  If we ever need to support
	     an 8-byte length, we can add a new DW_LLE code or fall back
	     to DW_LLE_GNU_start_end_entry.  */
	  dw2_asm_output_delta (4, curr->end, curr->begin,
				"Location list range length (%s)",
				list_head->ll_symbol);
	}
      else if (!have_multiple_function_sections)
	{
	  /* Pair of relative addresses against start of text section.  */
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
				"Location list begin address (%s)",
				list_head->ll_symbol);
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
				"Location list end address (%s)",
				list_head->ll_symbol);
	}
      else
	{
	  /* Pair of absolute addresses.  */
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
			       "Location list begin address (%s)",
			       list_head->ll_symbol);
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
			       "Location list end address (%s)",
			       list_head->ll_symbol);
	}

      /* Output the block length for this list of location operations.  */
      if (dwarf_version >= 5)
	dw2_asm_output_data_uleb128 (size, "Location expression size");
      else
	{
	  gcc_assert (size <= 0xffff);
	  dw2_asm_output_data (2, size, "Location expression size");
	}

      output_loc_sequence (curr->expr, -1);
    }

  /* And finally list termination.  */
  if (dwarf_version >= 5)
    dw2_asm_output_data (1, DW_LLE_end_of_list,
			 "DW_LLE_end_of_list (%s)", list_head->ll_symbol);
  else if (dwarf_split_debug_info)
    dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
			 "Location list terminator (%s)",
			 list_head->ll_symbol);
  else
    {
      dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
			   "Location list terminator begin (%s)",
			   list_head->ll_symbol);
      dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
			   "Location list terminator end (%s)",
			   list_head->ll_symbol);
    }

  gcc_assert (!list_head->vl_symbol
	      || vcount == lcount * (dwarf2out_locviews_in_attribute () ? 1 : 0));
}

/* Output a range_list offset into the .debug_ranges or .debug_rnglists
   section.  Emit a relocated reference if val_entry is NULL, otherwise,
   emit an indirect reference.  */

static void
output_range_list_offset (dw_attr_node *a)
{
  const char *name = dwarf_attr_name (a->dw_attr);

  if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
    {
      if (dwarf_version >= 5)
	{
	  dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
	  dw2_asm_output_offset (dwarf_offset_size, r->label,
				 debug_ranges_section, "%s", name);
	}
      else
	{
	  char *p = strchr (ranges_section_label, '\0');
	  sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
		   a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE);
	  dw2_asm_output_offset (dwarf_offset_size, ranges_section_label,
				 debug_ranges_section, "%s", name);
	  *p = '\0';
	}
    }
  else if (dwarf_version >= 5)
    {
      dw_ranges *r = &(*ranges_table)[a->dw_attr_val.v.val_offset];
      gcc_assert (rnglist_idx);
      dw2_asm_output_data_uleb128 (r->idx, "%s", name);
    }
  else
    dw2_asm_output_data (dwarf_offset_size,
			 a->dw_attr_val.v.val_offset * 2 * DWARF2_ADDR_SIZE,
                         "%s (offset from %s)", name, ranges_section_label);
}

/* Output the offset into the debug_loc section.  */

static void
output_loc_list_offset (dw_attr_node *a)
{
  char *sym = AT_loc_list (a)->ll_symbol;

  gcc_assert (sym);
  if (!dwarf_split_debug_info)
    dw2_asm_output_offset (dwarf_offset_size, sym, debug_loc_section,
                           "%s", dwarf_attr_name (a->dw_attr));
  else if (dwarf_version >= 5)
    {
      gcc_assert (AT_loc_list (a)->num_assigned);
      dw2_asm_output_data_uleb128 (AT_loc_list (a)->hash, "%s (%s)",
				   dwarf_attr_name (a->dw_attr),
				   sym);
    }
  else
    dw2_asm_output_delta (dwarf_offset_size, sym, loc_section_label,
			  "%s", dwarf_attr_name (a->dw_attr));
}

/* Output the offset into the debug_loc section.  */

static void
output_view_list_offset (dw_attr_node *a)
{
  char *sym = (*AT_loc_list_ptr (a))->vl_symbol;

  gcc_assert (sym);
  if (dwarf_split_debug_info)
    dw2_asm_output_delta (dwarf_offset_size, sym, loc_section_label,
                          "%s", dwarf_attr_name (a->dw_attr));
  else
    dw2_asm_output_offset (dwarf_offset_size, sym, debug_loc_section,
                           "%s", dwarf_attr_name (a->dw_attr));
}

/* Output an attribute's index or value appropriately.  */

static void
output_attr_index_or_value (dw_attr_node *a)
{
  const char *name = dwarf_attr_name (a->dw_attr);

  if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
    {
      dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
      return;
    }
  switch (AT_class (a))
    {
    case dw_val_class_addr:
      dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
      break;
    case dw_val_class_high_pc:
    case dw_val_class_lbl_id:
      dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
      break;
    default:
      gcc_unreachable ();
    }
}

/* Output a type signature.  */

static inline void
output_signature (const char *sig, const char *name)
{
  int i;

  for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
    dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
}

/* Output a discriminant value.  */

static inline void
output_discr_value (dw_discr_value *discr_value, const char *name)
{
  if (discr_value->pos)
    dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name);
  else
    dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name);
}

/* Output the DIE and its attributes.  Called recursively to generate
   the definitions of each child DIE.  */

static void
output_die (dw_die_ref die)
{
  dw_attr_node *a;
  dw_die_ref c;
  unsigned long size;
  unsigned ix;

  dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
			       (unsigned long)die->die_offset,
			       dwarf_tag_name (die->die_tag));

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      const char *name = dwarf_attr_name (a->dw_attr);

      switch (AT_class (a))
	{
	case dw_val_class_addr:
          output_attr_index_or_value (a);
	  break;

	case dw_val_class_offset:
	  dw2_asm_output_data (dwarf_offset_size, a->dw_attr_val.v.val_offset,
			       "%s", name);
	  break;

	case dw_val_class_range_list:
          output_range_list_offset (a);
	  break;

	case dw_val_class_loc:
	  size = size_of_locs (AT_loc (a));

	  /* Output the block length for this list of location operations.  */
	  if (dwarf_version >= 4)
	    dw2_asm_output_data_uleb128 (size, "%s", name);
	  else
	    dw2_asm_output_data (constant_size (size), size, "%s", name);

	  output_loc_sequence (AT_loc (a), -1);
	  break;

	case dw_val_class_const:
	  /* ??? It would be slightly more efficient to use a scheme like is
	     used for unsigned constants below, but gdb 4.x does not sign
	     extend.  Gdb 5.x does sign extend.  */
	  dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
	  break;

	case dw_val_class_unsigned_const:
	  {
	    int csize = constant_size (AT_unsigned (a));
	    if (dwarf_version == 3
		&& a->dw_attr == DW_AT_data_member_location
		&& csize >= 4)
	      dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
	    else
	      dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
	  }
	  break;

	case dw_val_class_symview:
	  {
	    int vsize;
	    if (symview_upper_bound <= 0xff)
	      vsize = 1;
	    else if (symview_upper_bound <= 0xffff)
	      vsize = 2;
	    else if (symview_upper_bound <= 0xffffffff)
	      vsize = 4;
	    else
	      vsize = 8;
	    dw2_asm_output_addr (vsize, a->dw_attr_val.v.val_symbolic_view,
				 "%s", name);
	  }
	  break;

	case dw_val_class_const_implicit:
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t\t\t%s %s ("
				   HOST_WIDE_INT_PRINT_DEC ")\n",
		     ASM_COMMENT_START, name, AT_int (a));
	  break;

	case dw_val_class_unsigned_const_implicit:
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t\t\t%s %s ("
				   HOST_WIDE_INT_PRINT_HEX ")\n",
		     ASM_COMMENT_START, name, AT_unsigned (a));
	  break;

	case dw_val_class_const_double:
	  {
	    unsigned HOST_WIDE_INT first, second;

	    if (HOST_BITS_PER_WIDE_INT >= DWARF_LARGEST_DATA_FORM_BITS)
	      dw2_asm_output_data (1,
				   HOST_BITS_PER_DOUBLE_INT
				   / HOST_BITS_PER_CHAR,
				   NULL);

	    if (WORDS_BIG_ENDIAN)
	      {
		first = a->dw_attr_val.v.val_double.high;
		second = a->dw_attr_val.v.val_double.low;
	      }
	    else
	      {
		first = a->dw_attr_val.v.val_double.low;
		second = a->dw_attr_val.v.val_double.high;
	      }

	    dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
                                 first, "%s", name);
	    dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
				 second, NULL);
	  }
	  break;

	case dw_val_class_wide_int:
	  {
	    int i;
	    int len = get_full_len (*a->dw_attr_val.v.val_wide);
	    int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
	    if (len * HOST_BITS_PER_WIDE_INT > DWARF_LARGEST_DATA_FORM_BITS)
	      dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide)
				      * l, NULL);

	    if (WORDS_BIG_ENDIAN)
	      for (i = len - 1; i >= 0; --i)
		{
		  dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
				       "%s", name);
		  name = "";
		}
	    else
	      for (i = 0; i < len; ++i)
		{
		  dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
				       "%s", name);
		  name = "";
		}
	  }
	  break;

	case dw_val_class_vec:
	  {
	    unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
	    unsigned int len = a->dw_attr_val.v.val_vec.length;
	    unsigned int i;
	    unsigned char *p;

	    dw2_asm_output_data (constant_size (len * elt_size),
				 len * elt_size, "%s", name);
	    if (elt_size > sizeof (HOST_WIDE_INT))
	      {
		elt_size /= 2;
		len *= 2;
	      }
	    for (i = 0, p = (unsigned char *) a->dw_attr_val.v.val_vec.array;
		 i < len;
		 i++, p += elt_size)
	      dw2_asm_output_data (elt_size, extract_int (p, elt_size),
				   "fp or vector constant word %u", i);
	    break;
	  }

	case dw_val_class_flag:
	  if (dwarf_version >= 4)
	    {
	      /* Currently all add_AT_flag calls pass in 1 as last argument,
		 so DW_FORM_flag_present can be used.  If that ever changes,
		 we'll need to use DW_FORM_flag and have some optimization
		 in build_abbrev_table that will change those to
		 DW_FORM_flag_present if it is set to 1 in all DIEs using
		 the same abbrev entry.  */
	      gcc_assert (AT_flag (a) == 1);
	      if (flag_debug_asm)
		fprintf (asm_out_file, "\t\t\t%s %s\n",
			 ASM_COMMENT_START, name);
	      break;
	    }
	  dw2_asm_output_data (1, AT_flag (a), "%s", name);
	  break;

	case dw_val_class_loc_list:
	  output_loc_list_offset (a);
	  break;

	case dw_val_class_view_list:
	  output_view_list_offset (a);
	  break;

	case dw_val_class_die_ref:
	  if (AT_ref_external (a))
	    {
	      if (AT_ref (a)->comdat_type_p)
	        {
		  comdat_type_node *type_node
		    = AT_ref (a)->die_id.die_type_node;

	          gcc_assert (type_node);
	          output_signature (type_node->signature, name);
	        }
	      else
	        {
		  const char *sym = AT_ref (a)->die_id.die_symbol;
		  int size;

		  gcc_assert (sym);
		  /* In DWARF2, DW_FORM_ref_addr is sized by target address
		     length, whereas in DWARF3 it's always sized as an
		     offset.  */
		  if (dwarf_version == 2)
		    size = DWARF2_ADDR_SIZE;
		  else
		    size = dwarf_offset_size;
		  /* ???  We cannot unconditionally output die_offset if
		     non-zero - others might create references to those
		     DIEs via symbols.
		     And we do not clear its DIE offset after outputting it
		     (and the label refers to the actual DIEs, not the
		     DWARF CU unit header which is when using label + offset
		     would be the correct thing to do).
		     ???  This is the reason for the with_offset flag.  */
		  if (AT_ref (a)->with_offset)
		    dw2_asm_output_offset (size, sym, AT_ref (a)->die_offset,
					   debug_info_section, "%s", name);
		  else
		    dw2_asm_output_offset (size, sym, debug_info_section, "%s",
					   name);
		}
	    }
	  else
	    {
	      gcc_assert (AT_ref (a)->die_offset);
	      dw2_asm_output_data (dwarf_offset_size, AT_ref (a)->die_offset,
				   "%s", name);
	    }
	  break;

	case dw_val_class_fde_ref:
	  {
	    char l1[MAX_ARTIFICIAL_LABEL_BYTES];

	    ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
					 a->dw_attr_val.v.val_fde_index * 2);
	    dw2_asm_output_offset (dwarf_offset_size, l1, debug_frame_section,
				   "%s", name);
	  }
	  break;

	case dw_val_class_vms_delta:
#ifdef ASM_OUTPUT_DWARF_VMS_DELTA
	  dw2_asm_output_vms_delta (dwarf_offset_size,
				    AT_vms_delta2 (a), AT_vms_delta1 (a),
				    "%s", name);
#else
	  dw2_asm_output_delta (dwarf_offset_size,
				AT_vms_delta2 (a), AT_vms_delta1 (a),
				"%s", name);
#endif
	  break;

	case dw_val_class_lbl_id:
	  output_attr_index_or_value (a);
	  break;

	case dw_val_class_lineptr:
	  dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a),
				 debug_line_section, "%s", name);
	  break;

	case dw_val_class_macptr:
	  dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a),
				 debug_macinfo_section, "%s", name);
	  break;

	case dw_val_class_loclistsptr:
	  dw2_asm_output_offset (dwarf_offset_size, AT_lbl (a),
				 debug_loc_section, "%s", name);
	  break;

	case dw_val_class_str:
          if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
            dw2_asm_output_offset (dwarf_offset_size,
                                   a->dw_attr_val.v.val_str->label,
                                   debug_str_section,
                                   "%s: \"%s\"", name, AT_string (a));
	  else if (a->dw_attr_val.v.val_str->form == DW_FORM_line_strp)
	    dw2_asm_output_offset (dwarf_offset_size,
				   a->dw_attr_val.v.val_str->label,
				   debug_line_str_section,
				   "%s: \"%s\"", name, AT_string (a));
          else if (a->dw_attr_val.v.val_str->form == dwarf_FORM (DW_FORM_strx))
            dw2_asm_output_data_uleb128 (AT_index (a),
                                         "%s: \"%s\"", name, AT_string (a));
          else
	    dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
	  break;

	case dw_val_class_file:
	  {
	    int f = maybe_emit_file (a->dw_attr_val.v.val_file);

	    dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
				 a->dw_attr_val.v.val_file->filename);
	    break;
	  }

	case dw_val_class_file_implicit:
	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t\t\t%s %s (%d, %s)\n",
		     ASM_COMMENT_START, name,
		     maybe_emit_file (a->dw_attr_val.v.val_file),
		     a->dw_attr_val.v.val_file->filename);
	  break;

	case dw_val_class_data8:
	  {
	    int i;

	    for (i = 0; i < 8; i++)
	      dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
				   i == 0 ? "%s" : NULL, name);
	    break;
	  }

	case dw_val_class_high_pc:
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
				get_AT_low_pc (die), "DW_AT_high_pc");
	  break;

	case dw_val_class_discr_value:
	  output_discr_value (&a->dw_attr_val.v.val_discr_value, name);
	  break;

	case dw_val_class_discr_list:
	  {
	    dw_discr_list_ref list = AT_discr_list (a);
	    const int size = size_of_discr_list (list);

	    /* This is a block, so output its length first.  */
	    dw2_asm_output_data (constant_size (size), size,
				 "%s: block size", name);

	    for (; list != NULL; list = list->dw_discr_next)
	      {
		/* One byte for the discriminant value descriptor, and then as
		   many LEB128 numbers as required.  */
		if (list->dw_discr_range)
		  dw2_asm_output_data (1, DW_DSC_range,
				       "%s: DW_DSC_range", name);
		else
		  dw2_asm_output_data (1, DW_DSC_label,
				       "%s: DW_DSC_label", name);

		output_discr_value (&list->dw_discr_lower_bound, name);
		if (list->dw_discr_range)
		  output_discr_value (&list->dw_discr_upper_bound, name);
	      }
	    break;
	  }

	default:
	  gcc_unreachable ();
	}
    }

  FOR_EACH_CHILD (die, c, output_die (c));

  /* Add null byte to terminate sibling list.  */
  if (die->die_child != NULL)
    dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
			 (unsigned long) die->die_offset);
}

/* Output the dwarf version number.  */

static void
output_dwarf_version ()
{
  /* ??? For now, if -gdwarf-6 is specified, we output version 5 with
     views in loclist.  That will change eventually.  */
  if (dwarf_version == 6)
    {
      static bool once;
      if (!once)
	{
	  warning (0, "%<-gdwarf-6%> is output as version 5 with "
		   "incompatibilities");
	  once = true;
	}
      dw2_asm_output_data (2, 5, "DWARF version number");
    }
  else
    dw2_asm_output_data (2, dwarf_version, "DWARF version number");
}

/* Output the compilation unit that appears at the beginning of the
   .debug_info section, and precedes the DIE descriptions.  */

static void
output_compilation_unit_header (enum dwarf_unit_type ut)
{
  if (!XCOFF_DEBUGGING_INFO)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	dw2_asm_output_data (4, 0xffffffff,
	  "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_data (dwarf_offset_size,
			   next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
			   "Length of Compilation Unit Info");
    }

  output_dwarf_version ();
  if (dwarf_version >= 5)
    {
      const char *name;
      switch (ut)
	{
	case DW_UT_compile: name = "DW_UT_compile"; break;
	case DW_UT_type: name = "DW_UT_type"; break;
	case DW_UT_split_compile: name = "DW_UT_split_compile"; break;
	case DW_UT_split_type: name = "DW_UT_split_type"; break;
	default: gcc_unreachable ();
	}
      dw2_asm_output_data (1, ut, "%s", name);
      dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
    }
  dw2_asm_output_offset (dwarf_offset_size, abbrev_section_label,
			 debug_abbrev_section,
			 "Offset Into Abbrev. Section");
  if (dwarf_version < 5)
    dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
}

/* Output the compilation unit DIE and its children.  */

static void
output_comp_unit (dw_die_ref die, int output_if_empty,
		  const unsigned char *dwo_id)
{
  const char *secname, *oldsym;
  char *tmp;

  /* Unless we are outputting main CU, we may throw away empty ones.  */
  if (!output_if_empty && die->die_child == NULL)
    return;

  /* Even if there are no children of this DIE, we must output the information
     about the compilation unit.  Otherwise, on an empty translation unit, we
     will generate a present, but empty, .debug_info section.  IRIX 6.5 `nm'
     will then complain when examining the file.  First mark all the DIEs in
     this CU so we know which get local refs.  */
  mark_dies (die);

  external_ref_hash_type *extern_map = optimize_external_refs (die);

  /* For now, optimize only the main CU, in order to optimize the rest
     we'd need to see all of them earlier.  Leave the rest for post-linking
     tools like DWZ.  */
  if (die == comp_unit_die ())
    abbrev_opt_start = vec_safe_length (abbrev_die_table);

  build_abbrev_table (die, extern_map);

  optimize_abbrev_table ();

  delete extern_map;

  /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
  next_die_offset = (dwo_id
		     ? DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
		     : DWARF_COMPILE_UNIT_HEADER_SIZE);
  calc_die_sizes (die);

  oldsym = die->die_id.die_symbol;
  if (oldsym && die->comdat_type_p)
    {
      tmp = XALLOCAVEC (char, strlen (oldsym) + 24);

      sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
      secname = tmp;
      die->die_id.die_symbol = NULL;
      switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
    }
  else
    {
      switch_to_section (debug_info_section);
      ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
      info_section_emitted = true;
    }

  /* For LTO cross unit DIE refs we want a symbol on the start of the
     debuginfo section, not on the CU DIE.  */
  if ((flag_generate_lto || flag_generate_offload) && oldsym)
    {
      /* ???  No way to get visibility assembled without a decl.  */
      tree decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
			      get_identifier (oldsym), char_type_node);
      TREE_PUBLIC (decl) = true;
      TREE_STATIC (decl) = true;
      DECL_ARTIFICIAL (decl) = true;
      DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
      DECL_VISIBILITY_SPECIFIED (decl) = true;
      targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
#ifdef ASM_WEAKEN_LABEL
      /* We prefer a .weak because that handles duplicates from duplicate
         archive members in a graceful way.  */
      ASM_WEAKEN_LABEL (asm_out_file, oldsym);
#else
      targetm.asm_out.globalize_label (asm_out_file, oldsym);
#endif
      ASM_OUTPUT_LABEL (asm_out_file, oldsym);
    }

  /* Output debugging information.  */
  output_compilation_unit_header (dwo_id
				  ? DW_UT_split_compile : DW_UT_compile);
  if (dwarf_version >= 5)
    {
      if (dwo_id != NULL)
	for (int i = 0; i < 8; i++)
	  dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);
    }
  output_die (die);

  /* Leave the marks on the main CU, so we can check them in
     output_pubnames.  */
  if (oldsym)
    {
      unmark_dies (die);
      die->die_id.die_symbol = oldsym;
    }
}

/* Whether to generate the DWARF accelerator tables in .debug_pubnames
   and .debug_pubtypes.  This is configured per-target, but can be
   overridden by the -gpubnames or -gno-pubnames options.  */

static inline bool
want_pubnames (void)
{
  if (debug_info_level <= DINFO_LEVEL_TERSE
      /* Names and types go to the early debug part only.  */
      || in_lto_p)
    return false;
  if (debug_generate_pub_sections != -1)
    return debug_generate_pub_sections;
  return targetm.want_debug_pub_sections;
}

/* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes.  */

static void
add_AT_pubnames (dw_die_ref die)
{
  if (want_pubnames ())
    add_AT_flag (die, DW_AT_GNU_pubnames, 1);
}

/* Add a string attribute value to a skeleton DIE.  */

static inline void
add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
                        const char *str)
{
  dw_attr_node attr;
  struct indirect_string_node *node;

  if (! skeleton_debug_str_hash)
    skeleton_debug_str_hash
      = hash_table<indirect_string_hasher>::create_ggc (10);

  node = find_AT_string_in_table (str, skeleton_debug_str_hash);
  find_string_form (node);
  if (node->form == dwarf_FORM (DW_FORM_strx))
    node->form = DW_FORM_strp;

  attr.dw_attr = attr_kind;
  attr.dw_attr_val.val_class = dw_val_class_str;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_str = node;
  add_dwarf_attr (die, &attr);
}

/* Helper function to generate top-level dies for skeleton debug_info and
   debug_types.  */

static void
add_top_level_skeleton_die_attrs (dw_die_ref die)
{
  const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
  const char *comp_dir = comp_dir_string ();

  add_skeleton_AT_string (die, dwarf_AT (DW_AT_dwo_name), dwo_file_name);
  if (comp_dir != NULL)
    add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
  add_AT_pubnames (die);
  if (addr_index_table != NULL && addr_index_table->size () > 0)
    add_AT_lineptr (die, dwarf_AT (DW_AT_addr_base), debug_addr_section_label);
}

/* Output skeleton debug sections that point to the dwo file.  */

static void
output_skeleton_debug_sections (dw_die_ref comp_unit,
				const unsigned char *dwo_id)
{
  /* These attributes will be found in the full debug_info section.  */
  remove_AT (comp_unit, DW_AT_producer);
  remove_AT (comp_unit, DW_AT_language);

  switch_to_section (debug_skeleton_info_section);
  ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);

  /* Produce the skeleton compilation-unit header.  This one differs enough from
     a normal CU header that it's better not to call output_compilation_unit
     header.  */
  if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
    dw2_asm_output_data (4, 0xffffffff,
			 "Initial length escape value indicating 64-bit "
			 "DWARF extension");

  dw2_asm_output_data (dwarf_offset_size,
		       DWARF_COMPILE_UNIT_SKELETON_HEADER_SIZE
                       - DWARF_INITIAL_LENGTH_SIZE
                       + size_of_die (comp_unit),
                      "Length of Compilation Unit Info");
  output_dwarf_version ();
  if (dwarf_version >= 5)
    {
      dw2_asm_output_data (1, DW_UT_skeleton, "DW_UT_skeleton");
      dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
    }
  dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_abbrev_section_label,
			 debug_skeleton_abbrev_section,
                         "Offset Into Abbrev. Section");
  if (dwarf_version < 5)
    dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
  else
    for (int i = 0; i < 8; i++)
      dw2_asm_output_data (1, dwo_id[i], i == 0 ? "DWO id" : NULL);

  comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
  output_die (comp_unit);

  /* Build the skeleton debug_abbrev section.  */
  switch_to_section (debug_skeleton_abbrev_section);
  ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);

  output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);

  dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
}

/* Output a comdat type unit DIE and its children.  */

static void
output_comdat_type_unit (comdat_type_node *node,
			 bool early_lto_debug ATTRIBUTE_UNUSED)
{
  const char *secname;
  char *tmp;
  int i;
#if defined (OBJECT_FORMAT_ELF)
  tree comdat_key;
#endif

  /* First mark all the DIEs in this CU so we know which get local refs.  */
  mark_dies (node->root_die);

  external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);

  build_abbrev_table (node->root_die, extern_map);

  delete extern_map;
  extern_map = NULL;

  /* Initialize the beginning DIE offset - and calculate sizes/offsets.  */
  next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
  calc_die_sizes (node->root_die);

#if defined (OBJECT_FORMAT_ELF)
  if (dwarf_version >= 5)
    {
      if (!dwarf_split_debug_info)
	secname = early_lto_debug ? DEBUG_LTO_INFO_SECTION : DEBUG_INFO_SECTION;
      else
	secname = (early_lto_debug
		   ? DEBUG_LTO_DWO_INFO_SECTION : DEBUG_DWO_INFO_SECTION);
    }
  else if (!dwarf_split_debug_info)
    secname = early_lto_debug ? ".gnu.debuglto_.debug_types" : ".debug_types";
  else
    secname = (early_lto_debug
	       ? ".gnu.debuglto_.debug_types.dwo" : ".debug_types.dwo");

  tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
  sprintf (tmp, dwarf_version >= 5 ? "wi." : "wt.");
  for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
    sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
  comdat_key = get_identifier (tmp);
  targetm.asm_out.named_section (secname,
                                 SECTION_DEBUG | SECTION_LINKONCE,
                                 comdat_key);
#else
  tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
  sprintf (tmp, (dwarf_version >= 5
		 ? ".gnu.linkonce.wi." : ".gnu.linkonce.wt."));
  for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
    sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
  secname = tmp;
  switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
#endif

  /* Output debugging information.  */
  output_compilation_unit_header (dwarf_split_debug_info
				  ? DW_UT_split_type : DW_UT_type);
  output_signature (node->signature, "Type Signature");
  dw2_asm_output_data (dwarf_offset_size, node->type_die->die_offset,
		       "Offset to Type DIE");
  output_die (node->root_die);

  unmark_dies (node->root_die);
}

/* Return the DWARF2/3 pubname associated with a decl.  */

static const char *
dwarf2_name (tree decl, int scope)
{
  if (DECL_NAMELESS (decl))
    return NULL;
  return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
}

/* Add a new entry to .debug_pubnames if appropriate.  */

static void
add_pubname_string (const char *str, dw_die_ref die)
{
  pubname_entry e;

  e.die = die;
  e.name = xstrdup (str);
  vec_safe_push (pubname_table, e);
}

static void
add_pubname (tree decl, dw_die_ref die)
{
  if (!want_pubnames ())
    return;

  /* Don't add items to the table when we expect that the consumer will have
     just read the enclosing die.  For example, if the consumer is looking at a
     class_member, it will either be inside the class already, or will have just
     looked up the class to find the member.  Either way, searching the class is
     faster than searching the index.  */
  if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
      || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
    {
      const char *name = dwarf2_name (decl, 1);

      if (name)
	add_pubname_string (name, die);
    }
}

/* Add an enumerator to the pubnames section.  */

static void
add_enumerator_pubname (const char *scope_name, dw_die_ref die)
{
  pubname_entry e;

  gcc_assert (scope_name);
  e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
  e.die = die;
  vec_safe_push (pubname_table, e);
}

/* Add a new entry to .debug_pubtypes if appropriate.  */

static void
add_pubtype (tree decl, dw_die_ref die)
{
  pubname_entry e;

  if (!want_pubnames ())
    return;

  if ((TREE_PUBLIC (decl)
       || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
      && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
    {
      tree scope = NULL;
      const char *scope_name = "";
      const char *sep = is_cxx () ? "::" : ".";
      const char *name;

      scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
      if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
        {
          scope_name = lang_hooks.dwarf_name (scope, 1);
          if (scope_name != NULL && scope_name[0] != '\0')
            scope_name = concat (scope_name, sep, NULL);
          else
            scope_name = "";
	}

      if (TYPE_P (decl))
        name = type_tag (decl);
      else
        name = lang_hooks.dwarf_name (decl, 1);

      /* If we don't have a name for the type, there's no point in adding
	 it to the table.  */
      if (name != NULL && name[0] != '\0')
        {
          e.die = die;
          e.name = concat (scope_name, name, NULL);
          vec_safe_push (pubtype_table, e);
        }

      /* Although it might be more consistent to add the pubinfo for the
         enumerators as their dies are created, they should only be added if the
         enum type meets the criteria above.  So rather than re-check the parent
         enum type whenever an enumerator die is created, just output them all
         here.  This isn't protected by the name conditional because anonymous
         enums don't have names.  */
      if (die->die_tag == DW_TAG_enumeration_type)
        {
          dw_die_ref c;

          FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
        }
    }
}

/* Output a single entry in the pubnames table.  */

static void
output_pubname (dw_offset die_offset, pubname_entry *entry)
{
  dw_die_ref die = entry->die;
  int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;

  dw2_asm_output_data (dwarf_offset_size, die_offset, "DIE offset");

  if (debug_generate_pub_sections == 2)
    {
      /* This logic follows gdb's method for determining the value of the flag
         byte.  */
      uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
      switch (die->die_tag)
      {
        case DW_TAG_typedef:
        case DW_TAG_base_type:
        case DW_TAG_subrange_type:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
          GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
          break;
        case DW_TAG_enumerator:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
                                          GDB_INDEX_SYMBOL_KIND_VARIABLE);
	  if (!is_cxx ())
	    GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
          break;
        case DW_TAG_subprogram:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
                                          GDB_INDEX_SYMBOL_KIND_FUNCTION);
          if (!is_ada ())
            GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
          break;
        case DW_TAG_constant:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
                                          GDB_INDEX_SYMBOL_KIND_VARIABLE);
          GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
          break;
        case DW_TAG_variable:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
                                          GDB_INDEX_SYMBOL_KIND_VARIABLE);
          GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
          break;
        case DW_TAG_namespace:
        case DW_TAG_imported_declaration:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
          break;
        case DW_TAG_class_type:
        case DW_TAG_interface_type:
        case DW_TAG_structure_type:
        case DW_TAG_union_type:
        case DW_TAG_enumeration_type:
          GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
	  if (!is_cxx ())
	    GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
          break;
        default:
          /* An unusual tag.  Leave the flag-byte empty.  */
          break;
      }
      dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
                           "GDB-index flags");
    }

  dw2_asm_output_nstring (entry->name, -1, "external name");
}


/* Output the public names table used to speed up access to externally
   visible names; or the public types table used to find type definitions.  */

static void
output_pubnames (vec<pubname_entry, va_gc> *names)
{
  unsigned i;
  unsigned long pubnames_length = size_of_pubnames (names);
  pubname_entry *pub;

  if (!XCOFF_DEBUGGING_INFO)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	dw2_asm_output_data (4, 0xffffffff,
	  "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_data (dwarf_offset_size, pubnames_length,
			   "Pub Info Length");
    }

  /* Version number for pubnames/pubtypes is independent of dwarf version.  */
  dw2_asm_output_data (2, 2, "DWARF pubnames/pubtypes version");

  if (dwarf_split_debug_info)
    dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_info_section_label,
                           debug_skeleton_info_section,
                           "Offset of Compilation Unit Info");
  else
    dw2_asm_output_offset (dwarf_offset_size, debug_info_section_label,
                           debug_info_section,
                           "Offset of Compilation Unit Info");
  dw2_asm_output_data (dwarf_offset_size, next_die_offset,
		       "Compilation Unit Length");

  FOR_EACH_VEC_ELT (*names, i, pub)
    {
      if (include_pubname_in_output (names, pub))
	{
	  dw_offset die_offset = pub->die->die_offset;

          /* We shouldn't see pubnames for DIEs outside of the main CU.  */
          if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
            gcc_assert (pub->die->die_mark);

	  /* If we're putting types in their own .debug_types sections,
	     the .debug_pubtypes table will still point to the compile
	     unit (not the type unit), so we want to use the offset of
	     the skeleton DIE (if there is one).  */
	  if (pub->die->comdat_type_p && names == pubtype_table)
	    {
	      comdat_type_node *type_node = pub->die->die_id.die_type_node;

	      if (type_node != NULL)
	        die_offset = (type_node->skeleton_die != NULL
			      ? type_node->skeleton_die->die_offset
			      : comp_unit_die ()->die_offset);
	    }

          output_pubname (die_offset, pub);
	}
    }

  dw2_asm_output_data (dwarf_offset_size, 0, NULL);
}

/* Output public names and types tables if necessary.  */

static void
output_pubtables (void)
{
  if (!want_pubnames () || !info_section_emitted)
    return;

  switch_to_section (debug_pubnames_section);
  output_pubnames (pubname_table);
  /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
     It shouldn't hurt to emit it always, since pure DWARF2 consumers
     simply won't look for the section.  */
  switch_to_section (debug_pubtypes_section);
  output_pubnames (pubtype_table);
}


/* Output the information that goes into the .debug_aranges table.
   Namely, define the beginning and ending address range of the
   text section generated for this compilation unit.  */

static void
output_aranges (void)
{
  unsigned i;
  unsigned long aranges_length = size_of_aranges ();
  
  if (!XCOFF_DEBUGGING_INFO)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	dw2_asm_output_data (4, 0xffffffff,
	  "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_data (dwarf_offset_size, aranges_length,
			   "Length of Address Ranges Info");
    }

  /* Version number for aranges is still 2, even up to DWARF5.  */
  dw2_asm_output_data (2, 2, "DWARF aranges version");
  if (dwarf_split_debug_info)
    dw2_asm_output_offset (dwarf_offset_size, debug_skeleton_info_section_label,
                           debug_skeleton_info_section,
                           "Offset of Compilation Unit Info");
  else
    dw2_asm_output_offset (dwarf_offset_size, debug_info_section_label,
                           debug_info_section,
                           "Offset of Compilation Unit Info");
  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
  dw2_asm_output_data (1, 0, "Size of Segment Descriptor");

  /* We need to align to twice the pointer size here.  */
  if (DWARF_ARANGES_PAD_SIZE)
    {
      /* Pad using a 2 byte words so that padding is correct for any
	 pointer size.  */
      dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
			   2 * DWARF2_ADDR_SIZE);
      for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
	dw2_asm_output_data (2, 0, NULL);
    }

  /* It is necessary not to output these entries if the sections were
     not used; if the sections were not used, the length will be 0 and
     the address may end up as 0 if the section is discarded by ld
     --gc-sections, leaving an invalid (0, 0) entry that can be
     confused with the terminator.  */
  if (switch_text_ranges)
    {
      const char *prev_loc = text_section_label;
      const char *loc;
      unsigned idx;

      FOR_EACH_VEC_ELT (*switch_text_ranges, idx, loc)
	if (prev_loc)
	  {
	    dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address");
	    dw2_asm_output_delta (DWARF2_ADDR_SIZE, loc, prev_loc, "Length");
	    prev_loc = NULL;
	  }
	else
	  prev_loc = loc;

      if (prev_loc)
	{
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address");
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
				prev_loc, "Length");
	}
    }

  if (switch_cold_ranges)
    {
      const char *prev_loc = cold_text_section_label;
      const char *loc;
      unsigned idx;

      FOR_EACH_VEC_ELT (*switch_cold_ranges, idx, loc)
	if (prev_loc)
	  {
	    dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address");
	    dw2_asm_output_delta (DWARF2_ADDR_SIZE, loc, prev_loc, "Length");
	    prev_loc = NULL;
	  }
	else
	  prev_loc = loc;

      if (prev_loc)
	{
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, prev_loc, "Address");
	  dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
				prev_loc, "Length");
	}
    }

  if (have_multiple_function_sections)
    {
      unsigned fde_idx;
      dw_fde_ref fde;

      FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
	{
	  if (fde->ignored_debug)
	    continue;
	  if (!fde->in_std_section)
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
				   "Address");
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
				    fde->dw_fde_begin, "Length");
	    }
	  if (fde->dw_fde_second_begin && !fde->second_in_std_section)
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
				   "Address");
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
				    fde->dw_fde_second_begin, "Length");
	    }
	}
    }

  /* Output the terminator words.  */
  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
}

/* Add a new entry to .debug_ranges.  Return its index into
   ranges_table vector.  */

static unsigned int
add_ranges_num (int num, bool maybe_new_sec)
{
  dw_ranges r = { NULL, num, 0, maybe_new_sec, NULL, NULL };
  vec_safe_push (ranges_table, r);
  return vec_safe_length (ranges_table) - 1;
}

/* Add a new entry to .debug_ranges corresponding to a block, or a
   range terminator if BLOCK is NULL.  MAYBE_NEW_SEC is true if
   this entry might be in a different section from previous range.  */

static unsigned int
add_ranges (const_tree block, bool maybe_new_sec)
{
  return add_ranges_num (block ? BLOCK_NUMBER (block) : 0, maybe_new_sec);
}

/* Note that (*rnglist_table)[offset] is either a head of a rnglist
   chain, or middle entry of a chain that will be directly referred to.  */

static void
note_rnglist_head (unsigned int offset)
{
  if (dwarf_version < 5 || (*ranges_table)[offset].label)
    return;
  (*ranges_table)[offset].label = gen_internal_sym ("LLRL");
}

/* Add a new entry to .debug_ranges corresponding to a pair of labels.
   When using dwarf_split_debug_info, address attributes in dies destined
   for the final executable should be direct references--setting the
   parameter force_direct ensures this behavior.  */

static void
add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
                      bool *added, bool force_direct)
{
  unsigned int in_use = vec_safe_length (ranges_by_label);
  unsigned int offset;
  dw_ranges_by_label rbl = { begin, end };
  vec_safe_push (ranges_by_label, rbl);
  offset = add_ranges_num (-(int)in_use - 1, true);
  if (!*added)
    {
      add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
      *added = true;
      note_rnglist_head (offset);
      if (dwarf_split_debug_info && force_direct)
	(*ranges_table)[offset].idx = DW_RANGES_IDX_SKELETON;
    }
}

/* Emit .debug_ranges section.  */

static void
output_ranges (void)
{
  unsigned i;
  static const char *const start_fmt = "Offset %#x";
  const char *fmt = start_fmt;
  dw_ranges *r;

  switch_to_section (debug_ranges_section);
  ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
  FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
    {
      int block_num = r->num;

      if (block_num > 0)
	{
	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];

	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);

	  /* If all code is in the text section, then the compilation
	     unit base address defaults to DW_AT_low_pc, which is the
	     base of the text section.  */
	  if (!have_multiple_function_sections)
	    {
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
				    text_section_label,
				    fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
				    text_section_label, NULL);
	    }

	  /* Otherwise, the compilation unit base address is zero,
	     which allows us to use absolute addresses, and not worry
	     about whether the target supports cross-section
	     arithmetic.  */
	  else
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				   fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
	    }

	  fmt = NULL;
	}

      /* Negative block_num stands for an index into ranges_by_label.  */
      else if (block_num < 0)
	{
	  int lab_idx = - block_num - 1;

	  if (!have_multiple_function_sections)
	    {
	      gcc_unreachable ();
#if 0
	      /* If we ever use add_ranges_by_labels () for a single
		 function section, all we have to do is to take out
		 the #if 0 above.  */
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
				    (*ranges_by_label)[lab_idx].begin,
				    text_section_label,
				    fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_delta (DWARF2_ADDR_SIZE,
				    (*ranges_by_label)[lab_idx].end,
				    text_section_label, NULL);
#endif
	    }
	  else
	    {
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
				   (*ranges_by_label)[lab_idx].begin,
				   fmt, i * 2 * DWARF2_ADDR_SIZE);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE,
				   (*ranges_by_label)[lab_idx].end,
				   NULL);
	    }
	}
      else
	{
	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
	  dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
	  fmt = start_fmt;
	}
    }
}

/* Non-zero if .debug_line_str should be used for .debug_line section
   strings or strings that are likely shareable with those.  */
#define DWARF5_USE_DEBUG_LINE_STR \
  (!DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET		\
   && (DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) != 0		\
   /* FIXME: there is no .debug_line_str.dwo section,		\
      for -gsplit-dwarf we should use DW_FORM_strx instead.  */	\
   && !dwarf_split_debug_info)


/* Returns TRUE if we are outputting DWARF5 and the assembler supports
   DWARF5 .debug_line tables using .debug_line_str or we generate
   it ourselves, except for split-dwarf which doesn't have a
   .debug_line_str.  */
static bool
asm_outputs_debug_line_str (void)
{
  if (dwarf_version >= 5
      && ! output_asm_line_debug_info ()
      && DWARF5_USE_DEBUG_LINE_STR)
    return true;
  else
    {
#if defined(HAVE_AS_GDWARF_5_DEBUG_FLAG) && defined(HAVE_AS_WORKING_DWARF_N_FLAG)
      return !dwarf_split_debug_info && dwarf_version >= 5;
#else
      return false;
#endif
    }
}

/* Return true if it is beneficial to use DW_RLE_base_address{,x}.
   I is index of the following range.  */

static bool
use_distinct_base_address_for_range (unsigned int i)
{
  if (i >= vec_safe_length (ranges_table))
    return false;

  dw_ranges *r2 = &(*ranges_table)[i];
  /* Use DW_RLE_base_address{,x} if there is a next range in the
     range list and is guaranteed to be in the same section.  */
  return r2->num != 0 && r2->label == NULL && !r2->maybe_new_sec;
}

/* Assign .debug_rnglists indexes and unique indexes into the debug_addr
   section when needed.  */

static void
index_rnglists (void)
{
  unsigned i;
  dw_ranges *r;
  bool base = false;

  FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
    {
      if (r->label && r->idx != DW_RANGES_IDX_SKELETON)
	r->idx = rnglist_idx++;

      int block_num = r->num;
      if ((HAVE_AS_LEB128 || block_num < 0)
	  && !have_multiple_function_sections)
	continue;
      if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec))
	base = false;
      if (block_num > 0)
	{
	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];

	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);

	  if (HAVE_AS_LEB128)
	    {
	      if (!base && use_distinct_base_address_for_range (i + 1))
		{
		  r->begin_entry = add_addr_table_entry (xstrdup (blabel),
							 ate_kind_label);
		  base = true;
		}
	      if (base)
		/* If we have a base, no need for further
		   begin_entry/end_entry, as DW_RLE_offset_pair will be
		   used.  */
		continue;
	      r->begin_entry
		= add_addr_table_entry (xstrdup (blabel), ate_kind_label);
	      /* No need for end_entry, DW_RLE_start{,x}_length will use
		 length as opposed to a pair of addresses.  */
	    }
	  else
	    {
	      r->begin_entry
		= add_addr_table_entry (xstrdup (blabel), ate_kind_label);
	      r->end_entry
		= add_addr_table_entry (xstrdup (elabel), ate_kind_label);
	    }
	}

      /* Negative block_num stands for an index into ranges_by_label.  */
      else if (block_num < 0)
	{
	  int lab_idx = - block_num - 1;
	  const char *blabel = (*ranges_by_label)[lab_idx].begin;
	  const char *elabel = (*ranges_by_label)[lab_idx].end;

	  r->begin_entry
	    = add_addr_table_entry (xstrdup (blabel), ate_kind_label);
	  if (!HAVE_AS_LEB128)
	    r->end_entry
	      = add_addr_table_entry (xstrdup (elabel), ate_kind_label);
	}
    }
}

/* Emit .debug_rnglists or (when DWO is true) .debug_rnglists.dwo section.  */

static bool
output_rnglists (unsigned generation, bool dwo)
{
  unsigned i;
  dw_ranges *r;
  char l1[MAX_ARTIFICIAL_LABEL_BYTES];
  char l2[MAX_ARTIFICIAL_LABEL_BYTES];
  char basebuf[MAX_ARTIFICIAL_LABEL_BYTES];

  if (dwo)
    switch_to_section (debug_ranges_dwo_section);
  else
    {
      switch_to_section (debug_ranges_section);
      ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
    }
  /* There are up to 4 unique ranges labels per generation.
     See also init_sections_and_labels.  */
  ASM_GENERATE_INTERNAL_LABEL (l1, DEBUG_RANGES_SECTION_LABEL,
			       2 + 2 * dwo + generation * 6);
  ASM_GENERATE_INTERNAL_LABEL (l2, DEBUG_RANGES_SECTION_LABEL,
			       3 + 2 * dwo + generation * 6);
  if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
    dw2_asm_output_data (4, 0xffffffff,
			 "Initial length escape value indicating "
			 "64-bit DWARF extension");
  dw2_asm_output_delta (dwarf_offset_size, l2, l1,
			"Length of Range Lists");
  ASM_OUTPUT_LABEL (asm_out_file, l1);
  output_dwarf_version ();
  dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
  dw2_asm_output_data (1, 0, "Segment Size");
  /* Emit the offset table only for -gsplit-dwarf.  If we don't care
     about relocation sizes and primarily care about the size of .debug*
     sections in linked shared libraries and executables, then
     the offset table plus corresponding DW_FORM_rnglistx uleb128 indexes
     into it are usually larger than just DW_FORM_sec_offset offsets
     into the .debug_rnglists section.  */
  dw2_asm_output_data (4, dwo ? rnglist_idx : 0,
		       "Offset Entry Count");
  if (dwo)
    {
      ASM_OUTPUT_LABEL (asm_out_file, ranges_base_label);
      FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
	if (r->label && r->idx != DW_RANGES_IDX_SKELETON)
	  dw2_asm_output_delta (dwarf_offset_size, r->label,
				ranges_base_label, NULL);
    }

  const char *lab = "";
  const char *base = NULL;
  bool skipping = false;
  bool ret = false;
  FOR_EACH_VEC_SAFE_ELT (ranges_table, i, r)
    {
      int block_num = r->num;

      if (r->label)
	{
	  if (dwarf_split_debug_info
	      && (r->idx == DW_RANGES_IDX_SKELETON) == dwo)
	    {
	      ret = true;
	      skipping = true;
	      continue;
	    }
	  ASM_OUTPUT_LABEL (asm_out_file, r->label);
	  lab = r->label;
	}
      if (skipping)
	{
	  if (block_num == 0)
	    skipping = false;
	  continue;
	}
      if (HAVE_AS_LEB128 && (r->label || r->maybe_new_sec))
	base = NULL;
      if (block_num > 0)
	{
	  char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
	  char elabel[MAX_ARTIFICIAL_LABEL_BYTES];

	  ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
	  ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);

	  if (HAVE_AS_LEB128)
	    {
	      /* If all code is in the text section, then the compilation
		 unit base address defaults to DW_AT_low_pc, which is the
		 base of the text section.  */
	      if (!have_multiple_function_sections)
		{
		  dw2_asm_output_data (1, DW_RLE_offset_pair,
				       "DW_RLE_offset_pair (%s)", lab);
		  dw2_asm_output_delta_uleb128 (blabel, text_section_label,
						"Range begin address (%s)", lab);
		  dw2_asm_output_delta_uleb128 (elabel, text_section_label,
						"Range end address (%s)", lab);
		  continue;
		}
	      if (base == NULL && use_distinct_base_address_for_range (i + 1))
		{
		  if (dwarf_split_debug_info)
		    {
		      dw2_asm_output_data (1, DW_RLE_base_addressx,
					   "DW_RLE_base_addressx (%s)", lab);
		      dw2_asm_output_data_uleb128 (r->begin_entry->index,
						   "Base address index (%s)",
						   blabel);
		    }
		  else
		    {
		      dw2_asm_output_data (1, DW_RLE_base_address,
					   "DW_RLE_base_address (%s)", lab);
		      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
					   "Base address (%s)", lab);
		    }
		  strcpy (basebuf, blabel);
		  base = basebuf;
		}
	      if (base)
		{
		  dw2_asm_output_data (1, DW_RLE_offset_pair,
				       "DW_RLE_offset_pair (%s)", lab);
		  dw2_asm_output_delta_uleb128 (blabel, base,
						"Range begin address (%s)", lab);
		  dw2_asm_output_delta_uleb128 (elabel, base,
						"Range end address (%s)", lab);
		  continue;
		}
	      if (dwarf_split_debug_info)
		{
		  dw2_asm_output_data (1, DW_RLE_startx_length,
				       "DW_RLE_startx_length (%s)", lab);
		  dw2_asm_output_data_uleb128 (r->begin_entry->index,
					       "Range begin address index "
					       "(%s)", blabel);
		}
	      else
		{
		  dw2_asm_output_data (1, DW_RLE_start_length,
				       "DW_RLE_start_length (%s)", lab);
		  dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				       "Range begin address (%s)", lab);
		}
	      dw2_asm_output_delta_uleb128 (elabel, blabel,
					    "Range length (%s)", lab);
	    }
	  else if (dwarf_split_debug_info)
	    {
	      dw2_asm_output_data (1, DW_RLE_startx_endx,
				   "DW_RLE_startx_endx (%s)", lab);
	      dw2_asm_output_data_uleb128 (r->begin_entry->index,
					   "Range begin address index "
					   "(%s)", blabel);
	      dw2_asm_output_data_uleb128 (r->end_entry->index,
					   "Range end address index "
					   "(%s)", elabel);
	    }
	  else
	    {
	      dw2_asm_output_data (1, DW_RLE_start_end,
				   "DW_RLE_start_end (%s)", lab);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				   "Range begin address (%s)", lab);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
				   "Range end address (%s)", lab);
	    }
	}

      /* Negative block_num stands for an index into ranges_by_label.  */
      else if (block_num < 0)
	{
	  int lab_idx = - block_num - 1;
	  const char *blabel = (*ranges_by_label)[lab_idx].begin;
	  const char *elabel = (*ranges_by_label)[lab_idx].end;

	  if (!have_multiple_function_sections)
	    gcc_unreachable ();
	  if (HAVE_AS_LEB128)
	    {
	      if (dwarf_split_debug_info)
		{
		  dw2_asm_output_data (1, DW_RLE_startx_length,
				       "DW_RLE_startx_length (%s)", lab);
		  dw2_asm_output_data_uleb128 (r->begin_entry->index,
					       "Range begin address index "
					       "(%s)", blabel);
		}
	      else
		{
		  dw2_asm_output_data (1, DW_RLE_start_length,
				       "DW_RLE_start_length (%s)", lab);
		  dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				       "Range begin address (%s)", lab);
		}
	      dw2_asm_output_delta_uleb128 (elabel, blabel,
					    "Range length (%s)", lab);
	    }
	  else if (dwarf_split_debug_info)
	    {
	      dw2_asm_output_data (1, DW_RLE_startx_endx,
				   "DW_RLE_startx_endx (%s)", lab);
	      dw2_asm_output_data_uleb128 (r->begin_entry->index,
					   "Range begin address index "
					   "(%s)", blabel);
	      dw2_asm_output_data_uleb128 (r->end_entry->index,
					   "Range end address index "
					   "(%s)", elabel);
	    }
	  else
	    {
	      dw2_asm_output_data (1, DW_RLE_start_end,
				   "DW_RLE_start_end (%s)", lab);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
				   "Range begin address (%s)", lab);
	      dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel,
				   "Range end address (%s)", lab);
	    }
	}
      else
	dw2_asm_output_data (1, DW_RLE_end_of_list,
			     "DW_RLE_end_of_list (%s)", lab);
    }
  ASM_OUTPUT_LABEL (asm_out_file, l2);
  return ret;
}

/* Data structure containing information about input files.  */
struct file_info
{
  const char *path;	/* Complete file name.  */
  const char *fname;	/* File name part.  */
  int length;		/* Length of entire string.  */
  struct dwarf_file_data * file_idx;	/* Index in input file table.  */
  int dir_idx;		/* Index in directory table.  */
};

/* Data structure containing information about directories with source
   files.  */
struct dir_info
{
  const char *path;	/* Path including directory name.  */
  int length;		/* Path length.  */
  int prefix;		/* Index of directory entry which is a prefix.  */
  int count;		/* Number of files in this directory.  */
  int dir_idx;		/* Index of directory used as base.  */
};

/* Callback function for file_info comparison.  We sort by looking at
   the directories in the path.  */

static int
file_info_cmp (const void *p1, const void *p2)
{
  const struct file_info *const s1 = (const struct file_info *) p1;
  const struct file_info *const s2 = (const struct file_info *) p2;
  const unsigned char *cp1;
  const unsigned char *cp2;

  /* Take care of file names without directories.  We need to make sure that
     we return consistent values to qsort since some will get confused if
     we return the same value when identical operands are passed in opposite
     orders.  So if neither has a directory, return 0 and otherwise return
     1 or -1 depending on which one has the directory.  We want the one with
     the directory to sort after the one without, so all no directory files
     are at the start (normally only the compilation unit file).  */
  if ((s1->path == s1->fname || s2->path == s2->fname))
    return (s2->path == s2->fname) - (s1->path == s1->fname);

  cp1 = (const unsigned char *) s1->path;
  cp2 = (const unsigned char *) s2->path;

  while (1)
    {
      ++cp1;
      ++cp2;
      /* Reached the end of the first path?  If so, handle like above,
	 but now we want longer directory prefixes before shorter ones.  */
      if ((cp1 == (const unsigned char *) s1->fname)
	  || (cp2 == (const unsigned char *) s2->fname))
	return ((cp1 == (const unsigned char *) s1->fname)
		- (cp2 == (const unsigned char *) s2->fname));

      /* Character of current path component the same?  */
      else if (*cp1 != *cp2)
	return *cp1 - *cp2;
    }
}

struct file_name_acquire_data
{
  struct file_info *files;
  int used_files;
  int max_files;
};

/* Traversal function for the hash table.  */

int
file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
{
  struct dwarf_file_data *d = *slot;
  struct file_info *fi;
  const char *f;

  gcc_assert (fnad->max_files >= d->emitted_number);

  if (! d->emitted_number)
    return 1;

  gcc_assert (fnad->max_files != fnad->used_files);

  fi = fnad->files + fnad->used_files++;

  f = d->filename;

  /* Skip all leading "./".  */
  while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
    f += 2;

  /* Create a new array entry.  */
  fi->path = f;
  fi->length = strlen (f);
  fi->file_idx = d;

  /* Search for the file name part.  */
  f = strrchr (f, DIR_SEPARATOR);
#if defined (DIR_SEPARATOR_2)
  {
    const char *g = strrchr (fi->path, DIR_SEPARATOR_2);

    if (g != NULL)
      {
	if (f == NULL || f < g)
	  f = g;
      }
  }
#endif

  fi->fname = f == NULL ? fi->path : f + 1;
  return 1;
}

/* Helper function for output_file_names.  Emit a FORM encoded
   string STR, with assembly comment start ENTRY_KIND and
   index IDX */

static void
output_line_string (enum dwarf_form form, const char *str,
		    const char *entry_kind, unsigned int idx)
{
  switch (form)
    {
    case DW_FORM_string:
      dw2_asm_output_nstring (str, -1, "%s: %#x", entry_kind, idx);
      break;
    case DW_FORM_line_strp:
      if (!debug_line_str_hash)
	debug_line_str_hash
	  = hash_table<indirect_string_hasher>::create_ggc (10);

      struct indirect_string_node *node;
      node = find_AT_string_in_table (str, debug_line_str_hash);
      set_indirect_string (node);
      node->form = form;
      dw2_asm_output_offset (dwarf_offset_size, node->label,
			     debug_line_str_section, "%s: %#x: \"%s\"",
			     entry_kind, 0, node->str);
      break;
    default:
      gcc_unreachable ();
    }
}

/* Output the directory table and the file name table.  We try to minimize
   the total amount of memory needed.  A heuristic is used to avoid large
   slowdowns with many input files.  */

static void
output_file_names (void)
{
  struct file_name_acquire_data fnad;
  int numfiles;
  struct file_info *files;
  struct dir_info *dirs;
  int *saved;
  int *savehere;
  int *backmap;
  int ndirs;
  int idx_offset;
  int i;

  if (!last_emitted_file)
    {
      if (dwarf_version >= 5)
	{
	  const char *comp_dir = comp_dir_string ();
	  if (comp_dir == NULL)
	    comp_dir = "";
	  dw2_asm_output_data (1, 1, "Directory entry format count");
	  enum dwarf_form str_form = DW_FORM_string;
	  if (DWARF5_USE_DEBUG_LINE_STR)
	    str_form = DW_FORM_line_strp;
	  dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
	  dw2_asm_output_data_uleb128 (str_form, "%s",
				       get_DW_FORM_name (str_form));
	  dw2_asm_output_data_uleb128 (1, "Directories count");
	  if (str_form == DW_FORM_string)
	    dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0);
	  else
	    output_line_string (str_form, comp_dir, "Directory Entry", 0);
	  const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name);
	  if (filename0 == NULL)
	    filename0 = "";
#ifdef VMS_DEBUGGING_INFO
	  dw2_asm_output_data (1, 4, "File name entry format count");
#else
	  dw2_asm_output_data (1, 2, "File name entry format count");
#endif
	  dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
	  dw2_asm_output_data_uleb128 (str_form, "%s",
				       get_DW_FORM_name (str_form));
	  dw2_asm_output_data_uleb128 (DW_LNCT_directory_index,
				       "DW_LNCT_directory_index");
	  dw2_asm_output_data_uleb128 (DW_FORM_data1, "%s",
				       get_DW_FORM_name (DW_FORM_data1));
#ifdef VMS_DEBUGGING_INFO
	  dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp");
	  dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
	  dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size");
	  dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
#endif
	  dw2_asm_output_data_uleb128 (1, "File names count");

	  output_line_string (str_form, filename0, "File Entry", 0);
	  dw2_asm_output_data (1, 0, NULL);
#ifdef VMS_DEBUGGING_INFO
	  dw2_asm_output_data_uleb128 (0, NULL);
	  dw2_asm_output_data_uleb128 (0, NULL);
#endif
	}
      else
	{
	  dw2_asm_output_data (1, 0, "End directory table");
	  dw2_asm_output_data (1, 0, "End file name table");
	}
      return;
    }

  numfiles = last_emitted_file->emitted_number;

  /* Allocate the various arrays we need.  */
  files = XALLOCAVEC (struct file_info, numfiles);
  dirs = XALLOCAVEC (struct dir_info, numfiles);

  fnad.files = files;
  fnad.used_files = 0;
  fnad.max_files = numfiles;
  file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
  gcc_assert (fnad.used_files == fnad.max_files);

  qsort (files, numfiles, sizeof (files[0]), file_info_cmp);

  /* Find all the different directories used.  */
  dirs[0].path = files[0].path;
  dirs[0].length = files[0].fname - files[0].path;
  dirs[0].prefix = -1;
  dirs[0].count = 1;
  dirs[0].dir_idx = 0;
  files[0].dir_idx = 0;
  ndirs = 1;

  for (i = 1; i < numfiles; i++)
    if (files[i].fname - files[i].path == dirs[ndirs - 1].length
	&& memcmp (dirs[ndirs - 1].path, files[i].path,
		   dirs[ndirs - 1].length) == 0)
      {
	/* Same directory as last entry.  */
	files[i].dir_idx = ndirs - 1;
	++dirs[ndirs - 1].count;
      }
    else
      {
	int j;

	/* This is a new directory.  */
	dirs[ndirs].path = files[i].path;
	dirs[ndirs].length = files[i].fname - files[i].path;
	dirs[ndirs].count = 1;
	dirs[ndirs].dir_idx = ndirs;
	files[i].dir_idx = ndirs;

	/* Search for a prefix.  */
	dirs[ndirs].prefix = -1;
	for (j = 0; j < ndirs; j++)
	  if (dirs[j].length < dirs[ndirs].length
	      && dirs[j].length > 1
	      && (dirs[ndirs].prefix == -1
		  || dirs[j].length > dirs[dirs[ndirs].prefix].length)
	      && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
	    dirs[ndirs].prefix = j;

	++ndirs;
      }

  /* Now to the actual work.  We have to find a subset of the directories which
     allow expressing the file name using references to the directory table
     with the least amount of characters.  We do not do an exhaustive search
     where we would have to check out every combination of every single
     possible prefix.  Instead we use a heuristic which provides nearly optimal
     results in most cases and never is much off.  */
  saved = XALLOCAVEC (int, ndirs);
  savehere = XALLOCAVEC (int, ndirs);

  memset (saved, '\0', ndirs * sizeof (saved[0]));
  for (i = 0; i < ndirs; i++)
    {
      int j;
      int total;

      /* We can always save some space for the current directory.  But this
	 does not mean it will be enough to justify adding the directory.  */
      savehere[i] = dirs[i].length;
      total = (savehere[i] - saved[i]) * dirs[i].count;

      for (j = i + 1; j < ndirs; j++)
	{
	  savehere[j] = 0;
	  if (saved[j] < dirs[i].length)
	    {
	      /* Determine whether the dirs[i] path is a prefix of the
		 dirs[j] path.  */
	      int k;

	      k = dirs[j].prefix;
	      while (k != -1 && k != (int) i)
		k = dirs[k].prefix;

	      if (k == (int) i)
		{
		  /* Yes it is.  We can possibly save some memory by
		     writing the filenames in dirs[j] relative to
		     dirs[i].  */
		  savehere[j] = dirs[i].length;
		  total += (savehere[j] - saved[j]) * dirs[j].count;
		}
	    }
	}

      /* Check whether we can save enough to justify adding the dirs[i]
	 directory.  */
      if (total > dirs[i].length + 1)
	{
	  /* It's worthwhile adding.  */
	  for (j = i; j < ndirs; j++)
	    if (savehere[j] > 0)
	      {
		/* Remember how much we saved for this directory so far.  */
		saved[j] = savehere[j];

		/* Remember the prefix directory.  */
		dirs[j].dir_idx = i;
	      }
	}
    }

  /* Emit the directory name table.  */
  idx_offset = dirs[0].length > 0 ? 1 : 0;
  enum dwarf_form str_form = DW_FORM_string;
  enum dwarf_form idx_form = DW_FORM_udata;
  if (dwarf_version >= 5)
    {
      const char *comp_dir = comp_dir_string ();
      if (comp_dir == NULL)
	comp_dir = "";
      dw2_asm_output_data (1, 1, "Directory entry format count");
      if (DWARF5_USE_DEBUG_LINE_STR)
	str_form = DW_FORM_line_strp;
      dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
      dw2_asm_output_data_uleb128 (str_form, "%s",
				   get_DW_FORM_name (str_form));
      dw2_asm_output_data_uleb128 (ndirs + idx_offset, "Directories count");
      if (str_form == DW_FORM_string)
	{
	  dw2_asm_output_nstring (comp_dir, -1, "Directory Entry: %#x", 0);
	  for (i = 1 - idx_offset; i < ndirs; i++)
	    dw2_asm_output_nstring (dirs[i].path,
				    dirs[i].length
				    - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
				    "Directory Entry: %#x", i + idx_offset);
	}
      else
	{
	  output_line_string (str_form, comp_dir, "Directory Entry", 0);
	  for (i = 1 - idx_offset; i < ndirs; i++)
	    {
	      const char *str
		= ggc_alloc_string (dirs[i].path,
				    dirs[i].length
				    - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR);
	      output_line_string (str_form, str, "Directory Entry",
				  (unsigned) i + idx_offset);
	    }
	}
    }
  else
    {
      for (i = 1 - idx_offset; i < ndirs; i++)
	dw2_asm_output_nstring (dirs[i].path,
				dirs[i].length
				- !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
				"Directory Entry: %#x", i + idx_offset);

      dw2_asm_output_data (1, 0, "End directory table");
    }

  /* We have to emit them in the order of emitted_number since that's
     used in the debug info generation.  To do this efficiently we
     generate a back-mapping of the indices first.  */
  backmap = XALLOCAVEC (int, numfiles);
  for (i = 0; i < numfiles; i++)
    backmap[files[i].file_idx->emitted_number - 1] = i;

  if (dwarf_version >= 5)
    {
      const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name);
      if (filename0 == NULL)
	filename0 = "";
      /* DW_LNCT_directory_index can use DW_FORM_udata, DW_FORM_data1 and
	 DW_FORM_data2.  Choose one based on the number of directories
	 and how much space would they occupy in each encoding.
	 If we have at most 256 directories, all indexes fit into
	 a single byte, so DW_FORM_data1 is most compact (if there
	 are at most 128 directories, DW_FORM_udata would be as
	 compact as that, but not shorter and slower to decode).  */
      if (ndirs + idx_offset <= 256)
	idx_form = DW_FORM_data1;
      /* If there are more than 65536 directories, we have to use
	 DW_FORM_udata, DW_FORM_data2 can't refer to them.
	 Otherwise, compute what space would occupy if all the indexes
	 used DW_FORM_udata - sum - and compare that to how large would
	 be DW_FORM_data2 encoding, and pick the more efficient one.  */
      else if (ndirs + idx_offset <= 65536)
	{
	  unsigned HOST_WIDE_INT sum = 1;
	  for (i = 0; i < numfiles; i++)
	    {
	      int file_idx = backmap[i];
	      int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
	      sum += size_of_uleb128 (dir_idx);
	    }
	  if (sum >= HOST_WIDE_INT_UC (2) * (numfiles + 1))
	    idx_form = DW_FORM_data2;
	}
#ifdef VMS_DEBUGGING_INFO
      dw2_asm_output_data (1, 4, "File name entry format count");
#else
      dw2_asm_output_data (1, 2, "File name entry format count");
#endif
      dw2_asm_output_data_uleb128 (DW_LNCT_path, "DW_LNCT_path");
      dw2_asm_output_data_uleb128 (str_form, "%s",
				   get_DW_FORM_name (str_form));
      dw2_asm_output_data_uleb128 (DW_LNCT_directory_index,
				   "DW_LNCT_directory_index");
      dw2_asm_output_data_uleb128 (idx_form, "%s",
				   get_DW_FORM_name (idx_form));
#ifdef VMS_DEBUGGING_INFO
      dw2_asm_output_data_uleb128 (DW_LNCT_timestamp, "DW_LNCT_timestamp");
      dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
      dw2_asm_output_data_uleb128 (DW_LNCT_size, "DW_LNCT_size");
      dw2_asm_output_data_uleb128 (DW_FORM_udata, "DW_FORM_udata");
#endif
      dw2_asm_output_data_uleb128 (numfiles + 1, "File names count");

      output_line_string (str_form, filename0, "File Entry", 0);

      /* Include directory index.  */
      if (idx_form != DW_FORM_udata)
	dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
			     0, NULL);
      else
	dw2_asm_output_data_uleb128 (0, NULL);

#ifdef VMS_DEBUGGING_INFO
      dw2_asm_output_data_uleb128 (0, NULL);
      dw2_asm_output_data_uleb128 (0, NULL);
#endif
    }

  /* Now write all the file names.  */
  for (i = 0; i < numfiles; i++)
    {
      int file_idx = backmap[i];
      int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;

#ifdef VMS_DEBUGGING_INFO
#define MAX_VMS_VERSION_LEN 6 /* ";32768" */

      /* Setting these fields can lead to debugger miscomparisons,
         but VMS Debug requires them to be set correctly.  */

      int ver;
      long long cdt;
      long siz;
      int maxfilelen = (strlen (files[file_idx].path)
			+ dirs[dir_idx].length
			+ MAX_VMS_VERSION_LEN + 1);
      char *filebuf = XALLOCAVEC (char, maxfilelen);

      vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
      snprintf (filebuf, maxfilelen, "%s;%d",
	        files[file_idx].path + dirs[dir_idx].length, ver);

      output_line_string (str_form, filebuf, "File Entry", (unsigned) i + 1);

      /* Include directory index.  */
      if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
	dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
			     dir_idx + idx_offset, NULL);
      else
	dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);

      /* Modification time.  */
      dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
							 &cdt, 0, 0, 0) == 0)
				   ? cdt : 0, NULL);

      /* File length in bytes.  */
      dw2_asm_output_data_uleb128 ((vms_file_stats_name (files[file_idx].path,
							 0, &siz, 0, 0) == 0)
				   ? siz : 0, NULL);
#else
      output_line_string (str_form,
			  files[file_idx].path + dirs[dir_idx].length,
			  "File Entry", (unsigned) i + 1);

      /* Include directory index.  */
      if (dwarf_version >= 5 && idx_form != DW_FORM_udata)
	dw2_asm_output_data (idx_form == DW_FORM_data1 ? 1 : 2,
			     dir_idx + idx_offset, NULL);
      else
	dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);

      if (dwarf_version >= 5)
	continue;

      /* Modification time.  */
      dw2_asm_output_data_uleb128 (0, NULL);

      /* File length in bytes.  */
      dw2_asm_output_data_uleb128 (0, NULL);
#endif /* VMS_DEBUGGING_INFO */
    }

  if (dwarf_version < 5)
    dw2_asm_output_data (1, 0, "End file name table");
}


/* Output one line number table into the .debug_line section.  */

static void
output_one_line_info_table (dw_line_info_table *table)
{
  char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
  unsigned int current_line = 1;
  bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
  dw_line_info_entry *ent, *prev_addr = NULL;
  size_t i;
  unsigned int view;

  view = 0;

  FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
    {
      switch (ent->opcode)
	{
	case LI_set_address:
	  /* ??? Unfortunately, we have little choice here currently, and
	     must always use the most general form.  GCC does not know the
	     address delta itself, so we can't use DW_LNS_advance_pc.  Many
	     ports do have length attributes which will give an upper bound
	     on the address range.  We could perhaps use length attributes
	     to determine when it is safe to use DW_LNS_fixed_advance_pc.  */
	  ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);

	  view = 0;

	  /* This can handle any delta.  This takes
	     4+DWARF2_ADDR_SIZE bytes.  */
	  dw2_asm_output_data (1, 0, "set address %s%s", line_label,
			       debug_variable_location_views
			       ? ", reset view to 0" : "");
	  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
	  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
	  dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);

	  prev_addr = ent;
	  break;

	case LI_adv_address:
	  {
	    ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
	    char prev_label[MAX_ARTIFICIAL_LABEL_BYTES];
	    ASM_GENERATE_INTERNAL_LABEL (prev_label, LINE_CODE_LABEL, prev_addr->val);

	    view++;

	    dw2_asm_output_data (1, DW_LNS_fixed_advance_pc, "fixed advance PC, increment view to %i", view);
	    dw2_asm_output_delta (2, line_label, prev_label,
				  "from %s to %s", prev_label, line_label);

	    prev_addr = ent;
	    break;
	  }

	case LI_set_line:
	  if (ent->val == current_line)
	    {
	      /* We still need to start a new row, so output a copy insn.  */
	      dw2_asm_output_data (1, DW_LNS_copy,
				   "copy line %u", current_line);
	    }
	  else
	    {
	      int line_offset = ent->val - current_line;
	      int line_delta = line_offset - DWARF_LINE_BASE;

	      current_line = ent->val;
	      if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
		{
		  /* This can handle deltas from -10 to 234, using the current
		     definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
		     This takes 1 byte.  */
		  dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
				       "line %u", current_line);
		}
	      else
		{
		  /* This can handle any delta.  This takes at least 4 bytes,
		     depending on the value being encoded.  */
		  dw2_asm_output_data (1, DW_LNS_advance_line,
				       "advance to line %u", current_line);
		  dw2_asm_output_data_sleb128 (line_offset, NULL);
		  dw2_asm_output_data (1, DW_LNS_copy, NULL);
		}
	    }
	  break;

	case LI_set_file:
	  dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
	  dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
	  break;

	case LI_set_column:
	  dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
	  dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
	  break;

	case LI_negate_stmt:
	  current_is_stmt = !current_is_stmt;
	  dw2_asm_output_data (1, DW_LNS_negate_stmt,
			       "is_stmt %d", current_is_stmt);
	  break;

	case LI_set_prologue_end:
	  dw2_asm_output_data (1, DW_LNS_set_prologue_end,
			       "set prologue end");
	  break;
	  
	case LI_set_epilogue_begin:
	  dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
			       "set epilogue begin");
	  break;

	case LI_set_discriminator:
	  dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
	  dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
	  dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
	  dw2_asm_output_data_uleb128 (ent->val, NULL);
	  break;
	}
    }

  /* Emit debug info for the address of the end of the table.  */
  dw2_asm_output_data (1, 0, "set address %s", table->end_label);
  dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
  dw2_asm_output_data (1, DW_LNE_set_address, NULL);
  dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);

  dw2_asm_output_data (1, 0, "end sequence");
  dw2_asm_output_data_uleb128 (1, NULL);
  dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
}

static unsigned int output_line_info_generation;

/* Output the source line number correspondence information.  This
   information goes into the .debug_line section.  */

static void
output_line_info (bool prologue_only)
{
  char l1[MAX_ARTIFICIAL_LABEL_BYTES], l2[MAX_ARTIFICIAL_LABEL_BYTES];
  char p1[MAX_ARTIFICIAL_LABEL_BYTES], p2[MAX_ARTIFICIAL_LABEL_BYTES];
  bool saw_one = false;
  int opc;

  ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL,
			       output_line_info_generation);
  ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL,
			       output_line_info_generation);
  ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL,
			       output_line_info_generation);
  ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL,
			       output_line_info_generation++);

  if (!XCOFF_DEBUGGING_INFO)
    {
      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	dw2_asm_output_data (4, 0xffffffff,
	  "Initial length escape value indicating 64-bit DWARF extension");
      dw2_asm_output_delta (dwarf_offset_size, l2, l1,
			    "Length of Source Line Info");
    }

  ASM_OUTPUT_LABEL (asm_out_file, l1);

  output_dwarf_version ();
  if (dwarf_version >= 5)
    {
      dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Address Size");
      dw2_asm_output_data (1, 0, "Segment Size");
    }
  dw2_asm_output_delta (dwarf_offset_size, p2, p1, "Prolog Length");
  ASM_OUTPUT_LABEL (asm_out_file, p1);

  /* Define the architecture-dependent minimum instruction length (in bytes).
     In this implementation of DWARF, this field is used for information
     purposes only.  Since GCC generates assembly language, we have no
     a priori knowledge of how many instruction bytes are generated for each
     source line, and therefore can use only the DW_LNE_set_address and
     DW_LNS_fixed_advance_pc line information commands.  Accordingly, we fix
     this as '1', which is "correct enough" for all architectures,
     and don't let the target override.  */
  dw2_asm_output_data (1, 1, "Minimum Instruction Length");

  if (dwarf_version >= 4)
    dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
			 "Maximum Operations Per Instruction");
  dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
		       "Default is_stmt_start flag");
  dw2_asm_output_data (1, DWARF_LINE_BASE,
		       "Line Base Value (Special Opcodes)");
  dw2_asm_output_data (1, DWARF_LINE_RANGE,
		       "Line Range Value (Special Opcodes)");
  dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
		       "Special Opcode Base");

  for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
    {
      int n_op_args;
      switch (opc)
	{
	case DW_LNS_advance_pc:
	case DW_LNS_advance_line:
	case DW_LNS_set_file:
	case DW_LNS_set_column:
	case DW_LNS_fixed_advance_pc:
	case DW_LNS_set_isa:
	  n_op_args = 1;
	  break;
	default:
	  n_op_args = 0;
	  break;
	}

      dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
			   opc, n_op_args);
    }

  /* Write out the information about the files we use.  */
  output_file_names ();
  ASM_OUTPUT_LABEL (asm_out_file, p2);
  if (prologue_only)
    {
      /* Output the marker for the end of the line number info.  */
      ASM_OUTPUT_LABEL (asm_out_file, l2);
      return;
    }

  if (separate_line_info)
    {
      dw_line_info_table *table;
      size_t i;

      FOR_EACH_VEC_ELT (*separate_line_info, i, table)
	if (table->in_use)
	  {
	    output_one_line_info_table (table);
	    saw_one = true;
	  }
    }
  if (cold_text_section_line_info && cold_text_section_line_info->in_use)
    {
      output_one_line_info_table (cold_text_section_line_info);
      saw_one = true;
    }

  /* ??? Some Darwin linkers crash on a .debug_line section with no
     sequences.  Further, merely a DW_LNE_end_sequence entry is not
     sufficient -- the address column must also be initialized.
     Make sure to output at least one set_address/end_sequence pair,
     choosing .text since that section is always present.  */
  if (text_section_line_info->in_use || !saw_one)
    output_one_line_info_table (text_section_line_info);

  /* Output the marker for the end of the line number info.  */
  ASM_OUTPUT_LABEL (asm_out_file, l2);
}

/* Return true if DW_AT_endianity should be emitted according to REVERSE.  */

static inline bool
need_endianity_attribute_p (bool reverse)
{
  return reverse && (dwarf_version >= 3 || !dwarf_strict);
}

/* Given a pointer to a tree node for some base type, return a pointer to
   a DIE that describes the given type.  REVERSE is true if the type is
   to be interpreted in the reverse storage order wrt the target order.

   This routine must only be called for GCC type nodes that correspond to
   Dwarf base (fundamental) types.  */

dw_die_ref
base_type_die (tree type, bool reverse)
{
  dw_die_ref base_type_result;
  enum dwarf_type encoding;
  bool fpt_used = false;
  struct fixed_point_type_info fpt_info;
  tree type_bias = NULL_TREE;

  /* If this is a subtype that should not be emitted as a subrange type,
     use the base type.  See subrange_type_for_debug_p.  */
  if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
    type = TREE_TYPE (type);

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
      if ((dwarf_version >= 4 || !dwarf_strict)
	  && TYPE_NAME (type)
	  && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	  && DECL_IS_UNDECLARED_BUILTIN (TYPE_NAME (type))
	  && DECL_NAME (TYPE_NAME (type)))
	{
	  const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
	  if (strcmp (name, "char16_t") == 0
	      || strcmp (name, "char8_t") == 0
	      || strcmp (name, "char32_t") == 0)
	    {
	      encoding = DW_ATE_UTF;
	      break;
	    }
	}
      if ((dwarf_version >= 3 || !dwarf_strict)
	  && lang_hooks.types.get_fixed_point_type_info)
	{
	  memset (&fpt_info, 0, sizeof (fpt_info));
	  if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info))
	    {
	      fpt_used = true;
	      encoding = ((TYPE_UNSIGNED (type))
			  ? DW_ATE_unsigned_fixed
			  : DW_ATE_signed_fixed);
	      break;
	    }
	}
      if (TYPE_STRING_FLAG (type))
	{
	  if (TYPE_UNSIGNED (type))
	    encoding = DW_ATE_unsigned_char;
	  else
	    encoding = DW_ATE_signed_char;
	}
      else if (TYPE_UNSIGNED (type))
	encoding = DW_ATE_unsigned;
      else
	encoding = DW_ATE_signed;

      if (!dwarf_strict
	  && lang_hooks.types.get_type_bias)
	type_bias = lang_hooks.types.get_type_bias (type);
      break;

    case REAL_TYPE:
      if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
	{
	  if (dwarf_version >= 3 || !dwarf_strict)
	    encoding = DW_ATE_decimal_float;
	  else
	    encoding = DW_ATE_lo_user;
	}
      else
	encoding = DW_ATE_float;
      break;

    case FIXED_POINT_TYPE:
      if (!(dwarf_version >= 3 || !dwarf_strict))
	encoding = DW_ATE_lo_user;
      else if (TYPE_UNSIGNED (type))
	encoding = DW_ATE_unsigned_fixed;
      else
	encoding = DW_ATE_signed_fixed;
      break;

      /* Dwarf2 doesn't know anything about complex ints, so use
	 a user defined type for it.  */
    case COMPLEX_TYPE:
      if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
	encoding = DW_ATE_complex_float;
      else
	encoding = DW_ATE_lo_user;
      break;

    case BOOLEAN_TYPE:
      /* GNU FORTRAN/Ada/C++ BOOLEAN type.  */
      encoding = DW_ATE_boolean;
      break;

    default:
      /* No other TREE_CODEs are Dwarf fundamental types.  */
      gcc_unreachable ();
    }

  base_type_result = new_die_raw (DW_TAG_base_type);

  add_AT_unsigned (base_type_result, DW_AT_byte_size,
		   int_size_in_bytes (type));
  add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);

  if (need_endianity_attribute_p (reverse))
    add_AT_unsigned (base_type_result, DW_AT_endianity,
		     BYTES_BIG_ENDIAN ? DW_END_little : DW_END_big);

  add_alignment_attribute (base_type_result, type);

  if (fpt_used)
    {
      switch (fpt_info.scale_factor_kind)
	{
	case fixed_point_scale_factor_binary:
	  add_AT_int (base_type_result, DW_AT_binary_scale,
		      fpt_info.scale_factor.binary);
	  break;

	case fixed_point_scale_factor_decimal:
	  add_AT_int (base_type_result, DW_AT_decimal_scale,
		      fpt_info.scale_factor.decimal);
	  break;

	case fixed_point_scale_factor_arbitrary:
	  /* Arbitrary scale factors cannot be described in standard DWARF.  */
	  if (!dwarf_strict)
	    {
	      /* Describe the scale factor as a rational constant.  */
	      const dw_die_ref scale_factor
		= new_die (DW_TAG_constant, comp_unit_die (), type);

	      add_scalar_info (scale_factor, DW_AT_GNU_numerator,
			       fpt_info.scale_factor.arbitrary.numerator,
			       dw_scalar_form_constant, NULL);
	      add_scalar_info (scale_factor, DW_AT_GNU_denominator,
			       fpt_info.scale_factor.arbitrary.denominator,
			       dw_scalar_form_constant, NULL);

	      add_AT_die_ref (base_type_result, DW_AT_small, scale_factor);
	    }
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  if (type_bias)
    add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias,
		     dw_scalar_form_constant
		     | dw_scalar_form_exprloc
		     | dw_scalar_form_reference,
		     NULL);

  return base_type_result;
}

/* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
   named 'auto' in its type: return true for it, false otherwise.  */

static inline bool
is_cxx_auto (tree type)
{
  if (is_cxx ())
    {
      tree name = TYPE_IDENTIFIER (type);
      if (name == get_identifier ("auto")
	  || name == get_identifier ("decltype(auto)"))
	return true;
    }
  return false;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
   given input type is a Dwarf "fundamental" type.  Otherwise return null.  */

static inline int
is_base_type (tree type)
{
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
      return 1;

    case VOID_TYPE:
    case OPAQUE_TYPE:
    case ARRAY_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case ENUMERAL_TYPE:
    case FUNCTION_TYPE:
    case METHOD_TYPE:
    case POINTER_TYPE:
    case REFERENCE_TYPE:
    case NULLPTR_TYPE:
    case OFFSET_TYPE:
    case LANG_TYPE:
    case VECTOR_TYPE:
      return 0;

    default:
      if (is_cxx_auto (type))
	return 0;
      gcc_unreachable ();
    }
}

/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
   node, return the size in bits for the type if it is a constant, or else
   return the alignment for the type if the type's size is not constant, or
   else return BITS_PER_WORD if the type actually turns out to be an
   ERROR_MARK node.  */

static inline unsigned HOST_WIDE_INT
simple_type_size_in_bits (const_tree type)
{
  if (TREE_CODE (type) == ERROR_MARK)
    return BITS_PER_WORD;
  else if (TYPE_SIZE (type) == NULL_TREE)
    return 0;
  else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
    return tree_to_uhwi (TYPE_SIZE (type));
  else
    return TYPE_ALIGN (type);
}

/* Similarly, but return an offset_int instead of UHWI.  */

static inline offset_int
offset_int_type_size_in_bits (const_tree type)
{
  if (TREE_CODE (type) == ERROR_MARK)
    return BITS_PER_WORD;
  else if (TYPE_SIZE (type) == NULL_TREE)
    return 0;
  else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
    return wi::to_offset (TYPE_SIZE (type));
  else
    return TYPE_ALIGN (type);
}

/*  Given a pointer to a tree node for a subrange type, return a pointer
    to a DIE that describes the given type.  */

static dw_die_ref
subrange_type_die (tree type, tree low, tree high, tree bias,
		   dw_die_ref context_die)
{
  dw_die_ref subrange_die;
  const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);

  if (context_die == NULL)
    context_die = comp_unit_die ();

  subrange_die = new_die (DW_TAG_subrange_type, context_die, type);

  if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
    {
      /* The size of the subrange type and its base type do not match,
	 so we need to generate a size attribute for the subrange type.  */
      add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
    }

  add_alignment_attribute (subrange_die, type);

  if (low)
    add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
  if (high)
    add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
  if (bias && !dwarf_strict)
    add_scalar_info (subrange_die, DW_AT_GNU_bias, bias,
		     dw_scalar_form_constant
		     | dw_scalar_form_exprloc
		     | dw_scalar_form_reference,
		     NULL);

  return subrange_die;
}

/* Returns the (const and/or volatile) cv_qualifiers associated with
   the decl node.  This will normally be augmented with the
   cv_qualifiers of the underlying type in add_type_attribute.  */

static int
decl_quals (const_tree decl)
{
  return ((TREE_READONLY (decl)
	   /* The C++ front-end correctly marks reference-typed
	      variables as readonly, but from a language (and debug
	      info) standpoint they are not const-qualified.  */
	   && TREE_CODE (TREE_TYPE (decl)) != REFERENCE_TYPE
	   ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
	  | (TREE_THIS_VOLATILE (decl)
	     ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
}

/* Determine the TYPE whose qualifiers match the largest strict subset
   of the given TYPE_QUALS, and return its qualifiers.  Ignore all
   qualifiers outside QUAL_MASK.  */

static int
get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
{
  tree t;
  int best_rank = 0, best_qual = 0, max_rank;

  type_quals &= qual_mask;
  max_rank = popcount_hwi (type_quals) - 1;

  for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
       t = TYPE_NEXT_VARIANT (t))
    {
      int q = TYPE_QUALS (t) & qual_mask;

      if ((q & type_quals) == q && q != type_quals
	  && check_base_type (t, type))
	{
	  int rank = popcount_hwi (q);

	  if (rank > best_rank)
	    {
	      best_rank = rank;
	      best_qual = q;
	    }
	}
    }

  return best_qual;
}

struct dwarf_qual_info_t { int q; enum dwarf_tag t; };
static const dwarf_qual_info_t dwarf_qual_info[] =
{
  { TYPE_QUAL_CONST, DW_TAG_const_type },
  { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
  { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
  { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type }
};
static const unsigned int dwarf_qual_info_size = ARRAY_SIZE (dwarf_qual_info);

/* If DIE is a qualified DIE of some base DIE with the same parent,
   return the base DIE, otherwise return NULL.  Set MASK to the
   qualifiers added compared to the returned DIE.  */

static dw_die_ref
qualified_die_p (dw_die_ref die, int *mask, unsigned int depth)
{
  unsigned int i;
  for (i = 0; i < dwarf_qual_info_size; i++)
    if (die->die_tag == dwarf_qual_info[i].t)
      break;
  if (i == dwarf_qual_info_size)
    return NULL;
  if (vec_safe_length (die->die_attr) != 1)
    return NULL;
  dw_die_ref type = get_AT_ref (die, DW_AT_type);
  if (type == NULL || type->die_parent != die->die_parent)
    return NULL;
  *mask |= dwarf_qual_info[i].q;
  if (depth)
    {
      dw_die_ref ret = qualified_die_p (type, mask, depth - 1);
      if (ret)
	return ret;
    }
  return type;
}

/* If TYPE is long double or complex long double that
   should be emitted as artificial typedef to _Float128 or
   complex _Float128, return the type it should be emitted as.
   This is done in case the target already supports 16-byte
   composite floating point type (ibm_extended_format).  */

static tree
long_double_as_float128 (tree type)
{
  if (type != long_double_type_node
      && type != complex_long_double_type_node)
    return NULL_TREE;

  machine_mode mode, fmode;
  if (TREE_CODE (type) == COMPLEX_TYPE)
    mode = TYPE_MODE (TREE_TYPE (type));
  else
    mode = TYPE_MODE (type);
  if (known_eq (GET_MODE_SIZE (mode), 16) && !MODE_COMPOSITE_P (mode))
    FOR_EACH_MODE_IN_CLASS (fmode, MODE_FLOAT)
      if (known_eq (GET_MODE_SIZE (fmode), 16)
          && MODE_COMPOSITE_P (fmode))
	{
	  if (type == long_double_type_node)
	    {
	      if (float128_type_node
		  && (TYPE_MODE (float128_type_node)
		      == TYPE_MODE (type)))
		return float128_type_node;
	      return NULL_TREE;
	    }
	  for (int i = 0; i < NUM_FLOATN_NX_TYPES; i++)
	    if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE
		&& (TYPE_MODE (COMPLEX_FLOATN_NX_TYPE_NODE (i))
		    == TYPE_MODE (type)))
	      return COMPLEX_FLOATN_NX_TYPE_NODE (i);
	}

  return NULL_TREE;
}

/* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
   entry that chains the modifiers specified by CV_QUALS in front of the
   given type.  REVERSE is true if the type is to be interpreted in the
   reverse storage order wrt the target order.  */

static dw_die_ref
modified_type_die (tree type, int cv_quals, bool reverse,
		   dw_die_ref context_die)
{
  enum tree_code code = TREE_CODE (type);
  dw_die_ref mod_type_die;
  dw_die_ref sub_die = NULL;
  tree item_type = NULL;
  tree qualified_type;
  tree name, low, high;
  dw_die_ref mod_scope;
  struct array_descr_info info;
  /* Only these cv-qualifiers are currently handled.  */
  const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
			    | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC | 
			    ENCODE_QUAL_ADDR_SPACE(~0U));
  const bool reverse_base_type
    = need_endianity_attribute_p (reverse) && is_base_type (type);

  if (code == ERROR_MARK)
    return NULL;

  if (lang_hooks.types.get_debug_type)
    {
      tree debug_type = lang_hooks.types.get_debug_type (type);

      if (debug_type != NULL_TREE && debug_type != type)
	return modified_type_die (debug_type, cv_quals, reverse, context_die);
    }

  cv_quals &= cv_qual_mask;

  /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
     tag modifier (and not an attribute) old consumers won't be able
     to handle it.  */
  if (dwarf_version < 3)
    cv_quals &= ~TYPE_QUAL_RESTRICT;

  /* Likewise for DW_TAG_atomic_type for DWARFv5.  */
  if (dwarf_version < 5)
    cv_quals &= ~TYPE_QUAL_ATOMIC;

  /* See if we already have the appropriately qualified variant of
     this type.  */
  qualified_type = get_qualified_type (type, cv_quals);

  if (qualified_type == sizetype)
    {
      /* Try not to expose the internal sizetype type's name.  */
      if (TYPE_NAME (qualified_type)
	  && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
	{
	  tree t = TREE_TYPE (TYPE_NAME (qualified_type));

	  gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
			       && (TYPE_PRECISION (t)
				   == TYPE_PRECISION (qualified_type))
			       && (TYPE_UNSIGNED (t)
				   == TYPE_UNSIGNED (qualified_type)));
	  qualified_type = t;
	}
      else if (qualified_type == sizetype
	       && TREE_CODE (sizetype) == TREE_CODE (size_type_node)
	       && TYPE_PRECISION (sizetype) == TYPE_PRECISION (size_type_node)
	       && TYPE_UNSIGNED (sizetype) == TYPE_UNSIGNED (size_type_node))
	qualified_type = size_type_node;
      if (type == sizetype)
	type = qualified_type;
    }

  /* If we do, then we can just use its DIE, if it exists.  */
  if (qualified_type)
    {
      mod_type_die = lookup_type_die (qualified_type);

      /* DW_AT_endianity doesn't come from a qualifier on the type, so it is
	 dealt with specially: the DIE with the attribute, if it exists, is
	 placed immediately after the regular DIE for the same base type.  */
      if (mod_type_die
	  && (!reverse_base_type
	      || ((mod_type_die = mod_type_die->die_sib) != NULL
		  && get_AT_unsigned (mod_type_die, DW_AT_endianity))))
	return mod_type_die;
    }

  name = qualified_type ? TYPE_NAME (qualified_type) : NULL;

  /* Handle C typedef types.  */
  if (name
      && TREE_CODE (name) == TYPE_DECL
      && DECL_ORIGINAL_TYPE (name)
      && !DECL_ARTIFICIAL (name))
    {
      tree dtype = TREE_TYPE (name);

      /* Skip the typedef for base types with DW_AT_endianity, no big deal.  */
      if (qualified_type == dtype && !reverse_base_type)
	{
	  tree origin = decl_ultimate_origin (name);

	  /* Typedef variants that have an abstract origin don't get their own
	     type DIE (see gen_typedef_die), so fall back on the ultimate
	     abstract origin instead.  */
	  if (origin != NULL && origin != name)
	    return modified_type_die (TREE_TYPE (origin), cv_quals, reverse,
				      context_die);

	  /* For a named type, use the typedef.  */
	  gen_type_die (qualified_type, context_die);
	  return lookup_type_die (qualified_type);
	}
      else
	{
	  int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
	  dquals &= cv_qual_mask;
	  if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
	      || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
	    /* cv-unqualified version of named type.  Just use
	       the unnamed type to which it refers.  */
	    return modified_type_die (DECL_ORIGINAL_TYPE (name), cv_quals,
				      reverse, context_die);
	  /* Else cv-qualified version of named type; fall through.  */
	}
    }

  mod_scope = scope_die_for (type, context_die);

  if (cv_quals)
    {
      int sub_quals = 0, first_quals = 0;
      unsigned i;
      dw_die_ref first = NULL, last = NULL;

      /* Determine a lesser qualified type that most closely matches
	 this one.  Then generate DW_TAG_* entries for the remaining
	 qualifiers.  */
      sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
						  cv_qual_mask);
      if (sub_quals && use_debug_types)
	{
	  bool needed = false;
	  /* If emitting type units, make sure the order of qualifiers
	     is canonical.  Thus, start from unqualified type if
	     an earlier qualifier is missing in sub_quals, but some later
	     one is present there.  */
	  for (i = 0; i < dwarf_qual_info_size; i++)
	    if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
	      needed = true;
	    else if (needed && (dwarf_qual_info[i].q & cv_quals))
	      {
		sub_quals = 0;
		break;
	      }
	}
      mod_type_die = modified_type_die (type, sub_quals, reverse, context_die);
      if (mod_scope && mod_type_die && mod_type_die->die_parent == mod_scope)
	{
	  /* As not all intermediate qualified DIEs have corresponding
	     tree types, ensure that qualified DIEs in the same scope
	     as their DW_AT_type are emitted after their DW_AT_type,
	     only with other qualified DIEs for the same type possibly
	     in between them.  Determine the range of such qualified
	     DIEs now (first being the base type, last being corresponding
	     last qualified DIE for it).  */
	  unsigned int count = 0;
	  first = qualified_die_p (mod_type_die, &first_quals,
				   dwarf_qual_info_size);
	  if (first == NULL)
	    first = mod_type_die;
	  gcc_assert ((first_quals & ~sub_quals) == 0);
	  for (count = 0, last = first;
	       count < (1U << dwarf_qual_info_size);
	       count++, last = last->die_sib)
	    {
	      int quals = 0;
	      if (last == mod_scope->die_child)
		break;
	      if (qualified_die_p (last->die_sib, &quals, dwarf_qual_info_size)
		  != first)
		break;
	    }
	}

      for (i = 0; i < dwarf_qual_info_size; i++)
	if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
	  {
	    dw_die_ref d;
	    if (first && first != last)
	      {
		for (d = first->die_sib; ; d = d->die_sib)
		  {
		    int quals = 0;
		    qualified_die_p (d, &quals, dwarf_qual_info_size);
		    if (quals == (first_quals | dwarf_qual_info[i].q))
		      break;
		    if (d == last)
		      {
			d = NULL;
			break;
		      }
		  }
		if (d)
		  {
		    mod_type_die = d;
		    continue;
		  }
	      }
	    if (first)
	      {
		d = new_die_raw (dwarf_qual_info[i].t);
		add_child_die_after (mod_scope, d, last);
		last = d;
	      }
	    else
	      d = new_die (dwarf_qual_info[i].t, mod_scope, type);
	    if (mod_type_die)
	      add_AT_die_ref (d, DW_AT_type, mod_type_die);
	    mod_type_die = d;
	    first_quals |= dwarf_qual_info[i].q;
	  }
    }
  else if (code == POINTER_TYPE || code == REFERENCE_TYPE)
    {
      dwarf_tag tag = DW_TAG_pointer_type;
      if (code == REFERENCE_TYPE)
	{
	  if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
	    tag = DW_TAG_rvalue_reference_type;
	  else
	    tag = DW_TAG_reference_type;
	}
      mod_type_die = new_die (tag, mod_scope, type);

      add_AT_unsigned (mod_type_die, DW_AT_byte_size,
		       simple_type_size_in_bits (type) / BITS_PER_UNIT);
      add_alignment_attribute (mod_type_die, type);
      item_type = TREE_TYPE (type);

      addr_space_t as = TYPE_ADDR_SPACE (item_type);
      if (!ADDR_SPACE_GENERIC_P (as))
	{
	  int action = targetm.addr_space.debug (as);
	  if (action >= 0)
	    {
	      /* Positive values indicate an address_class.  */
	      add_AT_unsigned (mod_type_die, DW_AT_address_class, action);
	    }
	  else
	    {
	      /* Negative values indicate an (inverted) segment base reg.  */
	      dw_loc_descr_ref d
		= one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED);
	      add_AT_loc (mod_type_die, DW_AT_segment, d);
	    }
	}
    }
  else if (code == ARRAY_TYPE
	   || (lang_hooks.types.get_array_descr_info
	       && lang_hooks.types.get_array_descr_info (type, &info)))
    {
      gen_type_die (type, context_die);
      return lookup_type_die (type);
    }
  else if (code == INTEGER_TYPE
	   && TREE_TYPE (type) != NULL_TREE
	   && subrange_type_for_debug_p (type, &low, &high))
    {
      tree bias = NULL_TREE;
      if (lang_hooks.types.get_type_bias)
	bias = lang_hooks.types.get_type_bias (type);
      mod_type_die = subrange_type_die (type, low, high, bias, context_die);
      item_type = TREE_TYPE (type);
    }
  else if (is_base_type (type))
    {
      /* If a target supports long double as different floating point
	 modes with the same 16-byte size, use normal DW_TAG_base_type
	 only for the composite (ibm_extended_real_format) type and
	 for the other for the time being emit instead a "_Float128"
	 or "complex _Float128" DW_TAG_base_type and a "long double"
	 or "complex long double" typedef to it.  */
      if (tree other_type = long_double_as_float128 (type))
	{
	  dw_die_ref other_die;
	  if (TYPE_NAME (other_type))
	    other_die
	      = modified_type_die (other_type, TYPE_UNQUALIFIED, reverse,
				   context_die);
	  else
	    {
	      other_die = base_type_die (type, reverse);
	      add_child_die (comp_unit_die (), other_die);
	      add_name_attribute (other_die,
				  TREE_CODE (type) == COMPLEX_TYPE
				  ? "complex _Float128" : "_Float128");
	    }
	  mod_type_die = new_die_raw (DW_TAG_typedef);
	  add_AT_die_ref (mod_type_die, DW_AT_type, other_die);
	}
      else
	mod_type_die = base_type_die (type, reverse);

      /* The DIE with DW_AT_endianity is placed right after the naked DIE.  */
      if (reverse_base_type)
	{
	  dw_die_ref after_die
	    = modified_type_die (type, cv_quals, false, context_die);
	  add_child_die_after (comp_unit_die (), mod_type_die, after_die);
	}
      else
	add_child_die (comp_unit_die (), mod_type_die);

      add_pubtype (type, mod_type_die);
    }
  else
    {
      gen_type_die (type, context_die);

      /* We have to get the type_main_variant here (and pass that to the
	 `lookup_type_die' routine) because the ..._TYPE node we have
	 might simply be a *copy* of some original type node (where the
	 copy was created to help us keep track of typedef names) and
	 that copy might have a different TYPE_UID from the original
	 ..._TYPE node.  */
      if (code == FUNCTION_TYPE || code == METHOD_TYPE)
	{
	  /* For function/method types, can't just use type_main_variant here,
	     because that can have different ref-qualifiers for C++,
	     but try to canonicalize.  */
	  tree main = TYPE_MAIN_VARIANT (type);
	  for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
	    if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
		&& check_base_type (t, main)
		&& check_lang_type (t, type))
	      return lookup_type_die (t);
	  return lookup_type_die (type);
	}
      /* Vectors have the debugging information in the type,
	 not the main variant.  */
      else if (code == VECTOR_TYPE)
	return lookup_type_die (type);
      else
	return lookup_type_die (type_main_variant (type));
    }

  /* Builtin types don't have a DECL_ORIGINAL_TYPE.  For those,
     don't output a DW_TAG_typedef, since there isn't one in the
     user's program; just attach a DW_AT_name to the type.
     Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
     if the base type already has the same name.  */
  if (name
      && ((TREE_CODE (name) != TYPE_DECL
	   && (qualified_type == TYPE_MAIN_VARIANT (type)
	       || (cv_quals == TYPE_UNQUALIFIED)))
	  || (TREE_CODE (name) == TYPE_DECL
	      && TREE_TYPE (name) == qualified_type
	      && DECL_NAME (name))))
    {
      if (TREE_CODE (name) == TYPE_DECL)
	/* Could just call add_name_and_src_coords_attributes here,
	   but since this is a builtin type it doesn't have any
	   useful source coordinates anyway.  */
	name = DECL_NAME (name);
      add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
    }
  /* This probably indicates a bug.  */
  else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
    {
      name = TYPE_IDENTIFIER (type);
      add_name_attribute (mod_type_die,
			  name ? IDENTIFIER_POINTER (name) : "__unknown__");
    }

  if (qualified_type && !reverse_base_type)
    equate_type_number_to_die (qualified_type, mod_type_die);

  if (item_type)
    /* We must do this after the equate_type_number_to_die call, in case
       this is a recursive type.  This ensures that the modified_type_die
       recursion will terminate even if the type is recursive.  Recursive
       types are possible in Ada.  */
    sub_die = modified_type_die (item_type,
				 TYPE_QUALS_NO_ADDR_SPACE (item_type),
				 reverse,
				 context_die);

  if (sub_die != NULL)
    add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);

  add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
  if (TYPE_ARTIFICIAL (type))
    add_AT_flag (mod_type_die, DW_AT_artificial, 1);

  return mod_type_die;
}

/* Generate DIEs for the generic parameters of T.
   T must be either a generic type or a generic function.
   See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more.  */

static void
gen_generic_params_dies (tree t)
{
  tree parms, args;
  int parms_num, i;
  dw_die_ref die = NULL;
  int non_default;

  if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
    return;

  if (TYPE_P (t))
    die = lookup_type_die (t);
  else if (DECL_P (t))
    die = lookup_decl_die (t);

  gcc_assert (die);

  parms = lang_hooks.get_innermost_generic_parms (t);
  if (!parms)
    /* T has no generic parameter. It means T is neither a generic type
       or function. End of story.  */
    return;

  parms_num = TREE_VEC_LENGTH (parms);
  args = lang_hooks.get_innermost_generic_args (t);
  if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
    non_default = int_cst_value (TREE_CHAIN (args));
  else
    non_default = TREE_VEC_LENGTH (args);
  for (i = 0; i < parms_num; i++)
    {
      tree parm, arg, arg_pack_elems;
      dw_die_ref parm_die;

      parm = TREE_VEC_ELT (parms, i);
      arg = TREE_VEC_ELT (args, i);
      arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
      gcc_assert (parm && TREE_VALUE (parm) && arg);

      if (parm && TREE_VALUE (parm) && arg)
	{
	  /* If PARM represents a template parameter pack,
	     emit a DW_TAG_GNU_template_parameter_pack DIE, followed
	     by DW_TAG_template_*_parameter DIEs for the argument
	     pack elements of ARG. Note that ARG would then be
	     an argument pack.  */
	  if (arg_pack_elems)
	    parm_die = template_parameter_pack_die (TREE_VALUE (parm),
						    arg_pack_elems,
						    die);
	  else
	    parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
					      true /* emit name */, die);
	  if (i >= non_default)
	    add_AT_flag (parm_die, DW_AT_default_value, 1);
	}
    }
}

/* Create and return a DIE for PARM which should be
   the representation of a generic type parameter.
   For instance, in the C++ front end, PARM would be a template parameter.
   ARG is the argument to PARM.
   EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
   name of the PARM.
   PARENT_DIE is the parent DIE which the new created DIE should be added to,
   as a child node.  */

static dw_die_ref
generic_parameter_die (tree parm, tree arg,
		       bool emit_name_p,
		       dw_die_ref parent_die)
{
  dw_die_ref tmpl_die = NULL;
  const char *name = NULL;

  /* C++20 accepts class literals as template parameters, and var
     decls with initializers represent them.  The VAR_DECLs would be
     rejected, but we can take the DECL_INITIAL constructor and
     attempt to expand it.  */
  if (arg && VAR_P (arg))
    arg = DECL_INITIAL (arg);

  if (!parm || !DECL_NAME (parm) || !arg)
    return NULL;

  /* We support non-type generic parameters and arguments,
     type generic parameters and arguments, as well as
     generic generic parameters (a.k.a. template template parameters in C++)
     and arguments.  */
  if (TREE_CODE (parm) == PARM_DECL)
    /* PARM is a nontype generic parameter  */
    tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
  else if (TREE_CODE (parm) == TYPE_DECL)
    /* PARM is a type generic parameter.  */
    tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
  else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
    /* PARM is a generic generic parameter.
       Its DIE is a GNU extension. It shall have a
       DW_AT_name attribute to represent the name of the template template
       parameter, and a DW_AT_GNU_template_name attribute to represent the
       name of the template template argument.  */
    tmpl_die = new_die (DW_TAG_GNU_template_template_param,
			parent_die, parm);
  else
    gcc_unreachable ();

  if (tmpl_die)
    {
      tree tmpl_type;

      /* If PARM is a generic parameter pack, it means we are
         emitting debug info for a template argument pack element.
	 In other terms, ARG is a template argument pack element.
	 In that case, we don't emit any DW_AT_name attribute for
	 the die.  */
      if (emit_name_p)
	{
	  name = IDENTIFIER_POINTER (DECL_NAME (parm));
	  gcc_assert (name);
	  add_AT_string (tmpl_die, DW_AT_name, name);
	}

      if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
	{
	  /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
	     TMPL_DIE should have a child DW_AT_type attribute that is set
	     to the type of the argument to PARM, which is ARG.
	     If PARM is a type generic parameter, TMPL_DIE should have a
	     child DW_AT_type that is set to ARG.  */
	  tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
	  add_type_attribute (tmpl_die, tmpl_type,
			      (TREE_THIS_VOLATILE (tmpl_type)
			       ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
			      false, parent_die);
	}
      else
	{
	  /* So TMPL_DIE is a DIE representing a
	     a generic generic template parameter, a.k.a template template
	     parameter in C++ and arg is a template.  */

	  /* The DW_AT_GNU_template_name attribute of the DIE must be set
	     to the name of the argument.  */
	  name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
	  if (name)
	    add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
	}

      if (TREE_CODE (parm) == PARM_DECL)
	/* So PARM is a non-type generic parameter.
	   DWARF3 5.6.8 says we must set a DW_AT_const_value child
	   attribute of TMPL_DIE which value represents the value
	   of ARG.
	   We must be careful here:
	   The value of ARG might reference some function decls.
	   We might currently be emitting debug info for a generic
	   type and types are emitted before function decls, we don't
	   know if the function decls referenced by ARG will actually be
	   emitted after cgraph computations.
	   So must defer the generation of the DW_AT_const_value to
	   after cgraph is ready.  */
	append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
    }

  return tmpl_die;
}

/* Generate and return a  DW_TAG_GNU_template_parameter_pack DIE representing.
   PARM_PACK must be a template parameter pack. The returned DIE
   will be child DIE of PARENT_DIE.  */

static dw_die_ref
template_parameter_pack_die (tree parm_pack,
			     tree parm_pack_args,
			     dw_die_ref parent_die)
{
  dw_die_ref die;
  int j;

  gcc_assert (parent_die && parm_pack);

  die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
  add_name_and_src_coords_attributes (die, parm_pack);
  for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
    generic_parameter_die (parm_pack,
			   TREE_VEC_ELT (parm_pack_args, j),
			   false /* Don't emit DW_AT_name */,
			   die);
  return die;
}

/* Return the debugger register number described by a given RTL node.  */

static unsigned int
debugger_reg_number (const_rtx rtl)
{
  unsigned regno = REGNO (rtl);

  gcc_assert (regno < FIRST_PSEUDO_REGISTER);

#ifdef LEAF_REG_REMAP
  if (crtl->uses_only_leaf_regs)
    {
      int leaf_reg = LEAF_REG_REMAP (regno);
      if (leaf_reg != -1)
	regno = (unsigned) leaf_reg;
    }
#endif

  regno = DEBUGGER_REGNO (regno);
  gcc_assert (regno != INVALID_REGNUM);
  return regno;
}

/* Optionally add a DW_OP_piece term to a location description expression.
   DW_OP_piece is only added if the location description expression already
   doesn't end with DW_OP_piece.  */

static void
add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
{
  dw_loc_descr_ref loc;

  if (*list_head != NULL)
    {
      /* Find the end of the chain.  */
      for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
	;

      if (loc->dw_loc_opc != DW_OP_piece)
	loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
    }
}

/* Return a location descriptor that designates a machine register or
   zero if there is none.  */

static dw_loc_descr_ref
reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
{
  rtx regs;

  if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
    return 0;

  /* We only use "frame base" when we're sure we're talking about the
     post-prologue local stack frame.  We do this by *not* running
     register elimination until this point, and recognizing the special
     argument pointer and soft frame pointer rtx's.
     Use DW_OP_fbreg offset DW_OP_stack_value in this case.  */
  if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
      && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
    {
      dw_loc_descr_ref result = NULL;

      if (dwarf_version >= 4 || !dwarf_strict)
	{
	  result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
				       initialized);
	  if (result)
	    add_loc_descr (&result,
			   new_loc_descr (DW_OP_stack_value, 0, 0));
	}
      return result;
    }

  regs = targetm.dwarf_register_span (rtl);

  if (REG_NREGS (rtl) > 1 || regs)
    return multiple_reg_loc_descriptor (rtl, regs, initialized);
  else
    {
      unsigned int debugger_regnum = debugger_reg_number (rtl);
      if (debugger_regnum == IGNORED_DWARF_REGNUM)
	return 0;
      return one_reg_loc_descriptor (debugger_regnum, initialized);
    }
}

/* Return a location descriptor that designates a machine register for
   a given hard register number.  */

static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
{
  dw_loc_descr_ref reg_loc_descr;

  if (regno <= 31)
    reg_loc_descr
      = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
  else
    reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);

  if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));

  return reg_loc_descr;
}

/* Given an RTL of a register, return a location descriptor that
   designates a value that spans more than one register.  */

static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx rtl, rtx regs,
			     enum var_init_status initialized)
{
  int size, i;
  dw_loc_descr_ref loc_result = NULL;

  /* Simple, contiguous registers.  */
  if (regs == NULL_RTX)
    {
      unsigned reg = REGNO (rtl);
      int nregs;

#ifdef LEAF_REG_REMAP
      if (crtl->uses_only_leaf_regs)
	{
	  int leaf_reg = LEAF_REG_REMAP (reg);
	  if (leaf_reg != -1)
	    reg = (unsigned) leaf_reg;
	}
#endif

      gcc_assert ((unsigned) DEBUGGER_REGNO (reg) == debugger_reg_number (rtl));
      nregs = REG_NREGS (rtl);

      /* At present we only track constant-sized pieces.  */
      if (!GET_MODE_SIZE (GET_MODE (rtl)).is_constant (&size))
	return NULL;
      size /= nregs;

      loc_result = NULL;
      while (nregs--)
	{
	  dw_loc_descr_ref t;

	  t = one_reg_loc_descriptor (DEBUGGER_REGNO (reg),
				      VAR_INIT_STATUS_INITIALIZED);
	  add_loc_descr (&loc_result, t);
	  add_loc_descr_op_piece (&loc_result, size);
	  ++reg;
	}
      return loc_result;
    }

  /* Now onto stupid register sets in non contiguous locations.  */

  gcc_assert (GET_CODE (regs) == PARALLEL);

  /* At present we only track constant-sized pieces.  */
  if (!GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0))).is_constant (&size))
    return NULL;
  loc_result = NULL;

  for (i = 0; i < XVECLEN (regs, 0); ++i)
    {
      dw_loc_descr_ref t;

      t = one_reg_loc_descriptor (debugger_reg_number (XVECEXP (regs, 0, i)),
				  VAR_INIT_STATUS_INITIALIZED);
      add_loc_descr (&loc_result, t);
      add_loc_descr_op_piece (&loc_result, size);
    }

  if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
  return loc_result;
}

static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);

/* Return a location descriptor that designates a constant i,
   as a compound operation from constant (i >> shift), constant shift
   and DW_OP_shl.  */

static dw_loc_descr_ref
int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
{
  dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
  add_loc_descr (&ret, int_loc_descriptor (shift));
  add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
  return ret;
}

/* Return a location descriptor that designates constant POLY_I.  */

static dw_loc_descr_ref
int_loc_descriptor (poly_int64 poly_i)
{
  enum dwarf_location_atom op;

  HOST_WIDE_INT i;
  if (!poly_i.is_constant (&i))
    {
      /* Create location descriptions for the non-constant part and
	 add any constant offset at the end.  */
      dw_loc_descr_ref ret = NULL;
      HOST_WIDE_INT constant = poly_i.coeffs[0];
      for (unsigned int j = 1; j < NUM_POLY_INT_COEFFS; ++j)
	{
	  HOST_WIDE_INT coeff = poly_i.coeffs[j];
	  if (coeff != 0)
	    {
	      dw_loc_descr_ref start = ret;
	      unsigned int factor;
	      int bias;
	      unsigned int regno = targetm.dwarf_poly_indeterminate_value
		(j, &factor, &bias);

	      /* Add COEFF * ((REGNO / FACTOR) - BIAS) to the value:
		 add COEFF * (REGNO / FACTOR) now and subtract
		 COEFF * BIAS from the final constant part.  */
	      constant -= coeff * bias;
	      add_loc_descr (&ret, new_reg_loc_descr (regno, 0));
	      if (coeff % factor == 0)
		coeff /= factor;
	      else
		{
		  int amount = exact_log2 (factor);
		  gcc_assert (amount >= 0);
		  add_loc_descr (&ret, int_loc_descriptor (amount));
		  add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
		}
	      if (coeff != 1)
		{
		  add_loc_descr (&ret, int_loc_descriptor (coeff));
		  add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
		}
	      if (start)
		add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
	    }
	}
      loc_descr_plus_const (&ret, constant);
      return ret;
    }

  /* Pick the smallest representation of a constant, rather than just
     defaulting to the LEB encoding.  */
  if (i >= 0)
    {
      int clz = clz_hwi (i);
      int ctz = ctz_hwi (i);
      if (i <= 31)
	op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
      else if (i <= 0xff)
	op = DW_OP_const1u;
      else if (i <= 0xffff)
	op = DW_OP_const2u;
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
	       && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
	/* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
	   DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
	   while DW_OP_const4u is 5 bytes.  */
	return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
	       && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
	/* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
	   while DW_OP_const4u is 5 bytes.  */
	return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);

      else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
	       && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
		  <= 4)
	{
	  /* As i >= 2**31, the double cast above will yield a negative number.
	     Since wrapping is defined in DWARF expressions we can output big
	     positive integers as small negative ones, regardless of the size
	     of host wide ints.

	     Here, since the evaluator will handle 32-bit values and since i >=
	     2**31, we know it's going to be interpreted as a negative literal:
	     store it this way if we can do better than 5 bytes this way.  */
	  return int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
	}
      else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
	op = DW_OP_const4u;

      /* Past this point, i >= 0x100000000 and thus DW_OP_constu will take at
	 least 6 bytes: see if we can do better before falling back to it.  */
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
	       && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
	/* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes.  */
	return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
	       && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
		  >= HOST_BITS_PER_WIDE_INT)
	/* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
	   DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes.  */
	return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
	       && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
	       && size_of_uleb128 (i) > 6)
	/* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes.  */
	return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
      else
	op = DW_OP_constu;
    }
  else
    {
      if (i >= -0x80)
	op = DW_OP_const1s;
      else if (i >= -0x8000)
	op = DW_OP_const2s;
      else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
	{
	  if (size_of_int_loc_descriptor (i) < 5)
	    {
	      dw_loc_descr_ref ret = int_loc_descriptor (-i);
	      add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
	      return ret;
	    }
	  op = DW_OP_const4s;
	}
      else
	{
	  if (size_of_int_loc_descriptor (i)
	      < (unsigned long) 1 + size_of_sleb128 (i))
	    {
	      dw_loc_descr_ref ret = int_loc_descriptor (-i);
	      add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
	      return ret;
	    }
	  op = DW_OP_consts;
	}
    }

  return new_loc_descr (op, i, 0);
}

/* Likewise, for unsigned constants.  */

static dw_loc_descr_ref
uint_loc_descriptor (unsigned HOST_WIDE_INT i)
{
  const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT);
  const unsigned HOST_WIDE_INT max_uint
    = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT);

  /* If possible, use the clever signed constants handling.  */
  if (i <= max_int)
    return int_loc_descriptor ((HOST_WIDE_INT) i);

  /* Here, we are left with positive numbers that cannot be represented as
     HOST_WIDE_INT, i.e.:
         max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)

     Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
     whereas may be better to output a negative integer: thanks to integer
     wrapping, we know that:
         x = x - 2 ** DWARF2_ADDR_SIZE
	   = x - 2 * (max (HOST_WIDE_INT) + 1)
     So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
     small negative integers.  Let's try that in cases it will clearly improve
     the encoding: there is no gain turning DW_OP_const4u into
     DW_OP_const4s.  */
  if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT
      && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000)
	  || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000)))
    {
      const unsigned HOST_WIDE_INT first_shift = i - max_int - 1;

      /* Now, -1 <  first_shift <= max (HOST_WIDE_INT)
	 i.e.  0 <= first_shift <= max (HOST_WIDE_INT).  */
      const HOST_WIDE_INT second_shift
        = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1;

      /* So we finally have:
	      -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
	 i.e.  min (HOST_WIDE_INT)     <= second_shift <  0.  */
      return int_loc_descriptor (second_shift);
    }

  /* Last chance: fallback to a simple constant operation.  */
  return new_loc_descr
     ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
      ? DW_OP_const4u
      : DW_OP_const8u,
      i, 0);
}

/* Generate and return a location description that computes the unsigned
   comparison of the two stack top entries (a OP b where b is the top-most
   entry and a is the second one).  The KIND of comparison can be LT_EXPR,
   LE_EXPR, GT_EXPR or GE_EXPR.  */

static dw_loc_descr_ref
uint_comparison_loc_list (enum tree_code kind)
{
  enum dwarf_location_atom op, flip_op;
  dw_loc_descr_ref ret, bra_node, jmp_node, tmp;

  switch (kind)
    {
    case LT_EXPR:
      op = DW_OP_lt;
      break;
    case LE_EXPR:
      op = DW_OP_le;
      break;
    case GT_EXPR:
      op = DW_OP_gt;
      break;
    case GE_EXPR:
      op = DW_OP_ge;
      break;
    default:
      gcc_unreachable ();
    }

  bra_node = new_loc_descr (DW_OP_bra, 0, 0);
  jmp_node = new_loc_descr (DW_OP_skip, 0, 0);

  /* Until DWARFv4, operations all work on signed integers.  It is nevertheless
     possible to perform unsigned comparisons: we just have to distinguish
     three cases:

       1. when a and b have the same sign (as signed integers); then we should
	  return: a OP(signed) b;

       2. when a is a negative signed integer while b is a positive one, then a
	  is a greater unsigned integer than b; likewise when a and b's roles
	  are flipped.

     So first, compare the sign of the two operands.  */
  ret = new_loc_descr (DW_OP_over, 0, 0);
  add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0));
  /* If they have different signs (i.e. they have different sign bits), then
     the stack top value has now the sign bit set and thus it's smaller than
     zero.  */
  add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0));
  add_loc_descr (&ret, bra_node);

  /* We are in case 1.  At this point, we know both operands have the same
     sign, to it's safe to use the built-in signed comparison.  */
  add_loc_descr (&ret, new_loc_descr (op, 0, 0));
  add_loc_descr (&ret, jmp_node);

  /* We are in case 2.  Here, we know both operands do not have the same sign,
     so we have to flip the signed comparison.  */
  flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt;
  tmp = new_loc_descr (flip_op, 0, 0);
  bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
  bra_node->dw_loc_oprnd1.v.val_loc = tmp;
  add_loc_descr (&ret, tmp);

  /* This dummy operation is necessary to make the two branches join.  */
  tmp = new_loc_descr (DW_OP_nop, 0, 0);
  jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
  jmp_node->dw_loc_oprnd1.v.val_loc = tmp;
  add_loc_descr (&ret, tmp);

  return ret;
}

/* Likewise, but takes the location description lists (might be destructive on
   them).  Return NULL if either is NULL or if concatenation fails.  */

static dw_loc_list_ref
loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right,
			       enum tree_code kind)
{
  if (left == NULL || right == NULL)
    return NULL;

  add_loc_list (&left, right);
  if (left == NULL)
    return NULL;

  add_loc_descr_to_each (left, uint_comparison_loc_list (kind));
  return left;
}

/* Return size_of_locs (int_shift_loc_descriptor (i, shift))
   without actually allocating it.  */

static unsigned long
size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
{
  return size_of_int_loc_descriptor (i >> shift)
	 + size_of_int_loc_descriptor (shift)
	 + 1;
}

/* Return size_of_locs (int_loc_descriptor (i)) without
   actually allocating it.  */

static unsigned long
size_of_int_loc_descriptor (HOST_WIDE_INT i)
{
  unsigned long s;

  if (i >= 0)
    {
      int clz, ctz;
      if (i <= 31)
	return 1;
      else if (i <= 0xff)
	return 2;
      else if (i <= 0xffff)
	return 3;
      clz = clz_hwi (i);
      ctz = ctz_hwi (i);
      if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
	  && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
	return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
						    - clz - 5);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
	       && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
	return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
						    - clz - 8);
      else if (DWARF2_ADDR_SIZE == 4 && i > 0x7fffffff
	       && size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i)
		  <= 4)
	return size_of_int_loc_descriptor ((HOST_WIDE_INT) (int32_t) i);
      else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
	return 5;
      s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
      if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
	  && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
	return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
						    - clz - 8);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
	       && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
	return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
						    - clz - 16);
      else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
	       && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
	       && s > 6)
	return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
						    - clz - 32);
      else
	return 1 + s;
    }
  else
    {
      if (i >= -0x80)
	return 2;
      else if (i >= -0x8000)
	return 3;
      else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
	{
	  if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
	    {
	      s = size_of_int_loc_descriptor (-i) + 1;
	      if (s < 5)
		return s;
	    }
	  return 5;
	}
      else
	{
	  unsigned long r = 1 + size_of_sleb128 (i);
	  if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
	    {
	      s = size_of_int_loc_descriptor (-i) + 1;
	      if (s < r)
		return s;
	    }
	  return r;
	}
    }
}

/* Return loc description representing "address" of integer value.
   This can appear only as toplevel expression.  */

static dw_loc_descr_ref
address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
{
  int litsize;
  dw_loc_descr_ref loc_result = NULL;

  if (!(dwarf_version >= 4 || !dwarf_strict))
    return NULL;

  litsize = size_of_int_loc_descriptor (i);
  /* Determine if DW_OP_stack_value or DW_OP_implicit_value
     is more compact.  For DW_OP_stack_value we need:
     litsize + 1 (DW_OP_stack_value)
     and for DW_OP_implicit_value:
     1 (DW_OP_implicit_value) + 1 (length) + size.  */
  if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
    {
      loc_result = int_loc_descriptor (i);
      add_loc_descr (&loc_result,
		     new_loc_descr (DW_OP_stack_value, 0, 0));
      return loc_result;
    }

  loc_result = new_loc_descr (DW_OP_implicit_value,
			      size, 0);
  loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
  loc_result->dw_loc_oprnd2.v.val_int = i;
  return loc_result;
}

/* Return a location descriptor that designates a base+offset location.  */

static dw_loc_descr_ref
based_loc_descr (rtx reg, poly_int64 offset,
		 enum var_init_status initialized)
{
  unsigned int regno;
  dw_loc_descr_ref result;
  dw_fde_ref fde = cfun->fde;

  /* We only use "frame base" when we're sure we're talking about the
     post-prologue local stack frame.  We do this by *not* running
     register elimination until this point, and recognizing the special
     argument pointer and soft frame pointer rtx's.  */
  if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
    {
      rtx elim = (ira_use_lra_p
		  ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
		  : eliminate_regs (reg, VOIDmode, NULL_RTX));

      if (elim != reg)
	{
	  /* Allow hard frame pointer here even if frame pointer
	    isn't used since hard frame pointer is encoded with
	    DW_OP_fbreg which uses the DW_AT_frame_base attribute,
	    not hard frame pointer directly.  */
	  elim = strip_offset_and_add (elim, &offset);
	  gcc_assert (elim == hard_frame_pointer_rtx
		      || elim == stack_pointer_rtx);

	  /* If drap register is used to align stack, use frame
	     pointer + offset to access stack variables.  If stack
	     is aligned without drap, use stack pointer + offset to
	     access stack variables.  */
	  if (crtl->stack_realign_tried
	      && reg == frame_pointer_rtx)
	    {
	      int base_reg
		= DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
				      ? HARD_FRAME_POINTER_REGNUM
				      : REGNO (elim));
	      return new_reg_loc_descr (base_reg, offset);
	    }

	  gcc_assert (frame_pointer_fb_offset_valid);
	  offset += frame_pointer_fb_offset;
	  HOST_WIDE_INT const_offset;
	  if (offset.is_constant (&const_offset))
	    return new_loc_descr (DW_OP_fbreg, const_offset, 0);
	  else
	    {
	      dw_loc_descr_ref ret = new_loc_descr (DW_OP_fbreg, 0, 0);
	      loc_descr_plus_const (&ret, offset);
	      return ret;
	    }
	}
    }

  regno = REGNO (reg);
#ifdef LEAF_REG_REMAP
  if (crtl->uses_only_leaf_regs)
    {
      int leaf_reg = LEAF_REG_REMAP (regno);
      if (leaf_reg != -1)
	regno = (unsigned) leaf_reg;
    }
#endif
  regno = DWARF_FRAME_REGNUM (regno);

  HOST_WIDE_INT const_offset;
  if (!optimize && fde
      && (fde->drap_reg == regno || fde->vdrap_reg == regno)
      && offset.is_constant (&const_offset))
    {
      /* Use cfa+offset to represent the location of arguments passed
	 on the stack when drap is used to align stack.
	 Only do this when not optimizing, for optimized code var-tracking
	 is supposed to track where the arguments live and the register
	 used as vdrap or drap in some spot might be used for something
	 else in other part of the routine.  */
      return new_loc_descr (DW_OP_fbreg, const_offset, 0);
    }

  result = new_reg_loc_descr (regno, offset);

  if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));

  return result;
}

/* Return true if this RTL expression describes a base+offset calculation.  */

static inline int
is_based_loc (const_rtx rtl)
{
  return (GET_CODE (rtl) == PLUS
	  && ((REG_P (XEXP (rtl, 0))
	       && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
	       && CONST_INT_P (XEXP (rtl, 1)))));
}

/* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
   failed.  */

static dw_loc_descr_ref
tls_mem_loc_descriptor (rtx mem)
{
  tree base;
  dw_loc_descr_ref loc_result;

  if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
    return NULL;

  base = get_base_address (MEM_EXPR (mem));
  if (base == NULL
      || !VAR_P (base)
      || !DECL_THREAD_LOCAL_P (base))
    return NULL;

  loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
  if (loc_result == NULL)
    return NULL;

  if (maybe_ne (MEM_OFFSET (mem), 0))
    loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));

  return loc_result;
}

/* Output debug info about reason why we failed to expand expression as dwarf
   expression.  */

static void
expansion_failed (tree expr, rtx rtl, char const *reason)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Failed to expand as dwarf: ");
      if (expr)
	print_generic_expr (dump_file, expr, dump_flags);
      if (rtl)
	{
	  fprintf (dump_file, "\n");
	  print_rtl (dump_file, rtl);
	}
      fprintf (dump_file, "\nReason: %s\n", reason);
    }
}

/* Helper function for const_ok_for_output.  */

static bool
const_ok_for_output_1 (rtx rtl)
{
  if (targetm.const_not_ok_for_debug_p (rtl))
    {
      if (GET_CODE (rtl) != UNSPEC)
	{
	  expansion_failed (NULL_TREE, rtl,
			    "Expression rejected for debug by the backend.\n");
	  return false;
	}

      /* If delegitimize_address couldn't do anything with the UNSPEC, and
	 the target hook doesn't explicitly allow it in debug info, assume
	 we can't express it in the debug info.  */
      /* Don't complain about TLS UNSPECs, those are just too hard to
	 delegitimize.  Note this could be a non-decl SYMBOL_REF such as
	 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
	 rather than DECL_THREAD_LOCAL_P is not just an optimization.  */
      if (flag_checking
	  && (XVECLEN (rtl, 0) == 0
	      || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
	      || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE))
	inform (current_function_decl
		? DECL_SOURCE_LOCATION (current_function_decl)
		: UNKNOWN_LOCATION,
#if NUM_UNSPEC_VALUES > 0
		"non-delegitimized UNSPEC %s (%d) found in variable location",
		((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
		 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
#else
		"non-delegitimized UNSPEC %d found in variable location",
#endif
		XINT (rtl, 1));
      expansion_failed (NULL_TREE, rtl,
			"UNSPEC hasn't been delegitimized.\n");
      return false;
    }

  if (CONST_POLY_INT_P (rtl))
    return false;

  /* FIXME: Refer to PR60655. It is possible for simplification
     of rtl expressions in var tracking to produce such expressions.
     We should really identify / validate expressions
     enclosed in CONST that can be handled by assemblers on various
     targets and only handle legitimate cases here.  */
  switch (GET_CODE (rtl))
    {
    case SYMBOL_REF:
      break;
    case NOT:
    case NEG:
      return false;
    case PLUS:
      {
	/* Make sure SYMBOL_REFs/UNSPECs are at most in one of the
	   operands.  */
	subrtx_var_iterator::array_type array;
	bool first = false;
	FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
	  if (SYMBOL_REF_P (*iter)
	      || LABEL_P (*iter)
	      || GET_CODE (*iter) == UNSPEC)
	    {
	      first = true;
	      break;
	    }
	if (!first)
	  return true;
	FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 1), ALL)
	  if (SYMBOL_REF_P (*iter)
	      || LABEL_P (*iter)
	      || GET_CODE (*iter) == UNSPEC)
	    return false;
	return true;
      }
    case MINUS:
      {
	/* Disallow negation of SYMBOL_REFs or UNSPECs when they
	   appear in the second operand of MINUS.  */
	subrtx_var_iterator::array_type array;
	FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 1), ALL)
	  if (SYMBOL_REF_P (*iter)
	      || LABEL_P (*iter)
	      || GET_CODE (*iter) == UNSPEC)
	    return false;
	return true;
      }
    default:
      return true;
    }

  if (CONSTANT_POOL_ADDRESS_P (rtl))
    {
      bool marked;
      get_pool_constant_mark (rtl, &marked);
      /* If all references to this pool constant were optimized away,
	 it was not output and thus we can't represent it.  */
      if (!marked)
	{
	  expansion_failed (NULL_TREE, rtl,
			    "Constant was removed from constant pool.\n");
	  return false;
	}
    }

  if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
    return false;

  /* Avoid references to external symbols in debug info, on several targets
     the linker might even refuse to link when linking a shared library,
     and in many other cases the relocations for .debug_info/.debug_loc are
     dropped, so the address becomes zero anyway.  Hidden symbols, guaranteed
     to be defined within the same shared library or executable are fine.  */
  if (SYMBOL_REF_EXTERNAL_P (rtl))
    {
      tree decl = SYMBOL_REF_DECL (rtl);

      if (decl == NULL || !targetm.binds_local_p (decl))
	{
	  expansion_failed (NULL_TREE, rtl,
			    "Symbol not defined in current TU.\n");
	  return false;
	}
    }

  return true;
}

/* Return true if constant RTL can be emitted in DW_OP_addr or
   DW_AT_const_value.  TLS SYMBOL_REFs, external SYMBOL_REFs or
   non-marked constant pool SYMBOL_REFs can't be referenced in it.  */

static bool
const_ok_for_output (rtx rtl)
{
  if (GET_CODE (rtl) == SYMBOL_REF)
    return const_ok_for_output_1 (rtl);

  if (GET_CODE (rtl) == CONST)
    {
      subrtx_var_iterator::array_type array;
      FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
	if (!const_ok_for_output_1 (*iter))
	  return false;
      return true;
    }

  return true;
}

/* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
   if possible, NULL otherwise.  */

static dw_die_ref
base_type_for_mode (machine_mode mode, bool unsignedp)
{
  dw_die_ref type_die;
  tree type = lang_hooks.types.type_for_mode (mode, unsignedp);

  if (type == NULL)
    return NULL;
  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
    case REAL_TYPE:
      break;
    default:
      return NULL;
    }
  type_die = lookup_type_die (type);
  if (!type_die)
    type_die = modified_type_die (type, TYPE_UNQUALIFIED, false,
				  comp_unit_die ());
  if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
    return NULL;
  return type_die;
}

/* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
   type matching MODE, or, if MODE is narrower than or as wide as
   DWARF2_ADDR_SIZE, untyped.  Return NULL if the conversion is not
   possible.  */

static dw_loc_descr_ref
convert_descriptor_to_mode (scalar_int_mode mode, dw_loc_descr_ref op)
{
  machine_mode outer_mode = mode;
  dw_die_ref type_die;
  dw_loc_descr_ref cvt;

  if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
    {
      add_loc_descr (&op, new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0));
      return op;
    }
  type_die = base_type_for_mode (outer_mode, 1);
  if (type_die == NULL)
    return NULL;
  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr (&op, cvt);
  return op;
}

/* Return location descriptor for comparison OP with operands OP0 and OP1.  */

static dw_loc_descr_ref
compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
			dw_loc_descr_ref op1)
{
  dw_loc_descr_ref ret = op0;
  add_loc_descr (&ret, op1);
  add_loc_descr (&ret, new_loc_descr (op, 0, 0));
  if (STORE_FLAG_VALUE != 1)
    {
      add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
      add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
    }
  return ret;
}

/* Subroutine of scompare_loc_descriptor for the case in which we're
   comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
   and in which OP_MODE is bigger than DWARF2_ADDR_SIZE.  */

static dw_loc_descr_ref
scompare_loc_descriptor_wide (enum dwarf_location_atom op,
			      scalar_int_mode op_mode,
			      dw_loc_descr_ref op0, dw_loc_descr_ref op1)
{
  dw_die_ref type_die = base_type_for_mode (op_mode, 0);
  dw_loc_descr_ref cvt;

  if (type_die == NULL)
    return NULL;
  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr (&op0, cvt);
  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr (&op1, cvt);
  return compare_loc_descriptor (op, op0, op1);
}

/* Subroutine of scompare_loc_descriptor for the case in which we're
   comparing two scalar integer operands OP0 and OP1 that have mode OP_MODE,
   and in which OP_MODE is smaller than DWARF2_ADDR_SIZE.  */

static dw_loc_descr_ref
scompare_loc_descriptor_narrow (enum dwarf_location_atom op, rtx rtl,
				scalar_int_mode op_mode,
				dw_loc_descr_ref op0, dw_loc_descr_ref op1)
{
  int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
  /* For eq/ne, if the operands are known to be zero-extended,
     there is no need to do the fancy shifting up.  */
  if (op == DW_OP_eq || op == DW_OP_ne)
    {
      dw_loc_descr_ref last0, last1;
      for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
	;
      for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
	;
      /* deref_size zero extends, and for constants we can check
	 whether they are zero extended or not.  */
      if (((last0->dw_loc_opc == DW_OP_deref_size
	    && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
	   || (CONST_INT_P (XEXP (rtl, 0))
	       && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
		  == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
	  && ((last1->dw_loc_opc == DW_OP_deref_size
	       && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
	      || (CONST_INT_P (XEXP (rtl, 1))
		  && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
		     == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
	return compare_loc_descriptor (op, op0, op1);

      /* EQ/NE comparison against constant in narrower type than
	 DWARF2_ADDR_SIZE can be performed either as
	 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
	 DW_OP_{eq,ne}
	 or
	 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
	 DW_OP_{eq,ne}.  Pick whatever is shorter.  */
      if (CONST_INT_P (XEXP (rtl, 1))
	  && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
	  && (size_of_int_loc_descriptor (shift) + 1
	      + size_of_int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift)
	      >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
		 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
					       & GET_MODE_MASK (op_mode))))
	{
	  add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
	  add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
	  op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
				    & GET_MODE_MASK (op_mode));
	  return compare_loc_descriptor (op, op0, op1);
	}
    }
  add_loc_descr (&op0, int_loc_descriptor (shift));
  add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
  if (CONST_INT_P (XEXP (rtl, 1)))
    op1 = int_loc_descriptor (UINTVAL (XEXP (rtl, 1)) << shift);
  else
    {
      add_loc_descr (&op1, int_loc_descriptor (shift));
      add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
    }
  return compare_loc_descriptor (op, op0, op1);
}

/* Return location descriptor for signed comparison OP RTL.  */

static dw_loc_descr_ref
scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
			 machine_mode mem_mode)
{
  machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
  dw_loc_descr_ref op0, op1;

  if (op_mode == VOIDmode)
    op_mode = GET_MODE (XEXP (rtl, 1));
  if (op_mode == VOIDmode)
    return NULL;

  scalar_int_mode int_op_mode;
  if (dwarf_strict
      && dwarf_version < 5
      && (!is_a <scalar_int_mode> (op_mode, &int_op_mode)
	  || GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE))
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);

  if (op0 == NULL || op1 == NULL)
    return NULL;

  if (is_a <scalar_int_mode> (op_mode, &int_op_mode))
    {
      if (GET_MODE_SIZE (int_op_mode) < DWARF2_ADDR_SIZE)
	return scompare_loc_descriptor_narrow (op, rtl, int_op_mode, op0, op1);

      if (GET_MODE_SIZE (int_op_mode) > DWARF2_ADDR_SIZE)
	return scompare_loc_descriptor_wide (op, int_op_mode, op0, op1);
    }
  return compare_loc_descriptor (op, op0, op1);
}

/* Return location descriptor for unsigned comparison OP RTL.  */

static dw_loc_descr_ref
ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
			 machine_mode mem_mode)
{
  dw_loc_descr_ref op0, op1;

  machine_mode test_op_mode = GET_MODE (XEXP (rtl, 0));
  if (test_op_mode == VOIDmode)
    test_op_mode = GET_MODE (XEXP (rtl, 1));

  scalar_int_mode op_mode;
  if (!is_a <scalar_int_mode> (test_op_mode, &op_mode))
    return NULL;

  if (dwarf_strict
      && dwarf_version < 5
      && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);

  if (op0 == NULL || op1 == NULL)
    return NULL;

  if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
    {
      HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
      dw_loc_descr_ref last0, last1;
      for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
	;
      for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
	;
      if (CONST_INT_P (XEXP (rtl, 0)))
	op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
      /* deref_size zero extends, so no need to mask it again.  */
      else if (last0->dw_loc_opc != DW_OP_deref_size
	       || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
	{
	  add_loc_descr (&op0, int_loc_descriptor (mask));
	  add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
	}
      if (CONST_INT_P (XEXP (rtl, 1)))
	op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
      /* deref_size zero extends, so no need to mask it again.  */
      else if (last1->dw_loc_opc != DW_OP_deref_size
	       || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
	{
	  add_loc_descr (&op1, int_loc_descriptor (mask));
	  add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
	}
    }
  else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
    {
      HOST_WIDE_INT bias = 1;
      bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
      add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
      if (CONST_INT_P (XEXP (rtl, 1)))
	op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
				  + INTVAL (XEXP (rtl, 1)));
      else
	add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
					    bias, 0));
    }
  return compare_loc_descriptor (op, op0, op1);
}

/* Return location descriptor for {U,S}{MIN,MAX}.  */

static dw_loc_descr_ref
minmax_loc_descriptor (rtx rtl, machine_mode mode,
		       machine_mode mem_mode)
{
  enum dwarf_location_atom op;
  dw_loc_descr_ref op0, op1, ret;
  dw_loc_descr_ref bra_node, drop_node;

  scalar_int_mode int_mode;
  if (dwarf_strict
      && dwarf_version < 5
      && (!is_a <scalar_int_mode> (mode, &int_mode)
	  || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE))
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);

  if (op0 == NULL || op1 == NULL)
    return NULL;

  add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
  add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
  add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
  if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
    {
      /* Checked by the caller.  */
      int_mode = as_a <scalar_int_mode> (mode);
      if (GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
	{
	  HOST_WIDE_INT mask = GET_MODE_MASK (int_mode);
	  add_loc_descr (&op0, int_loc_descriptor (mask));
	  add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
	  add_loc_descr (&op1, int_loc_descriptor (mask));
	  add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
	}
      else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE)
	{
	  HOST_WIDE_INT bias = 1;
	  bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
	  add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
	  add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
	}
    }
  else if (is_a <scalar_int_mode> (mode, &int_mode)
	   && GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
    {
      int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (int_mode)) * BITS_PER_UNIT;
      add_loc_descr (&op0, int_loc_descriptor (shift));
      add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
      add_loc_descr (&op1, int_loc_descriptor (shift));
      add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
    }
  else if (is_a <scalar_int_mode> (mode, &int_mode)
	   && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
    {
      dw_die_ref type_die = base_type_for_mode (int_mode, 0);
      dw_loc_descr_ref cvt;
      if (type_die == NULL)
	return NULL;
      cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
      cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
      cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
      cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
      add_loc_descr (&op0, cvt);
      cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
      cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
      cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
      cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
      add_loc_descr (&op1, cvt);
    }

  if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
    op = DW_OP_lt;
  else
    op = DW_OP_gt;
  ret = op0;
  add_loc_descr (&ret, op1);
  add_loc_descr (&ret, new_loc_descr (op, 0, 0));
  bra_node = new_loc_descr (DW_OP_bra, 0, 0);
  add_loc_descr (&ret, bra_node);
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  drop_node = new_loc_descr (DW_OP_drop, 0, 0);
  add_loc_descr (&ret, drop_node);
  bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
  bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
  if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
      && is_a <scalar_int_mode> (mode, &int_mode)
      && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
    ret = convert_descriptor_to_mode (int_mode, ret);
  return ret;
}

/* Helper function for mem_loc_descriptor.  Perform OP binary op,
   but after converting arguments to type_die, afterwards
   convert back to unsigned.  */

static dw_loc_descr_ref
typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
	     scalar_int_mode mode, machine_mode mem_mode)
{
  dw_loc_descr_ref cvt, op0, op1;

  if (type_die == NULL)
    return NULL;
  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (op0 == NULL || op1 == NULL)
    return NULL;
  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr (&op0, cvt);
  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr (&op1, cvt);
  add_loc_descr (&op0, op1);
  add_loc_descr (&op0, new_loc_descr (op, 0, 0));
  return convert_descriptor_to_mode (mode, op0);
}

/* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
   const0 is DW_OP_lit0 or corresponding typed constant,
   const1 is DW_OP_lit1 or corresponding typed constant
   and constMSB is constant with just the MSB bit set
   for the mode):
       DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
   L1: const0 DW_OP_swap
   L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
       DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
   L3: DW_OP_drop
   L4: DW_OP_nop

   CTZ is similar:
       DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
   L1: const0 DW_OP_swap
   L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
       DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
   L3: DW_OP_drop
   L4: DW_OP_nop

   FFS is similar:
       DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
   L1: const1 DW_OP_swap
   L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
       DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
   L3: DW_OP_drop
   L4: DW_OP_nop  */

static dw_loc_descr_ref
clz_loc_descriptor (rtx rtl, scalar_int_mode mode,
		    machine_mode mem_mode)
{
  dw_loc_descr_ref op0, ret, tmp;
  HOST_WIDE_INT valv;
  dw_loc_descr_ref l1jump, l1label;
  dw_loc_descr_ref l2jump, l2label;
  dw_loc_descr_ref l3jump, l3label;
  dw_loc_descr_ref l4jump, l4label;
  rtx msb;

  if (GET_MODE (XEXP (rtl, 0)) != mode)
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (op0 == NULL)
    return NULL;
  ret = op0;
  if (GET_CODE (rtl) == CLZ)
    {
      if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
	valv = GET_MODE_BITSIZE (mode);
    }
  else if (GET_CODE (rtl) == FFS)
    valv = 0;
  else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
    valv = GET_MODE_BITSIZE (mode);
  add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
  l1jump = new_loc_descr (DW_OP_bra, 0, 0);
  add_loc_descr (&ret, l1jump);
  add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
  tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  l4jump = new_loc_descr (DW_OP_skip, 0, 0);
  add_loc_descr (&ret, l4jump);
  l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
				? const1_rtx : const0_rtx,
				mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);
  if (l1label == NULL)
    return NULL;
  add_loc_descr (&ret, l1label);
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  l2label = new_loc_descr (DW_OP_dup, 0, 0);
  add_loc_descr (&ret, l2label);
  if (GET_CODE (rtl) != CLZ)
    msb = const1_rtx;
  else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    msb = GEN_INT (HOST_WIDE_INT_1U
		   << (GET_MODE_BITSIZE (mode) - 1));
  else
    msb = immed_wide_int_const
      (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
			    GET_MODE_PRECISION (mode)), mode);
  if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
    tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
			 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
			 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
  else
    tmp = mem_loc_descriptor (msb, mode, mem_mode,
			      VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
  l3jump = new_loc_descr (DW_OP_bra, 0, 0);
  add_loc_descr (&ret, l3jump);
  tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
				      ? DW_OP_shl : DW_OP_shr, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  l2jump = new_loc_descr (DW_OP_skip, 0, 0);
  add_loc_descr (&ret, l2jump);
  l3label = new_loc_descr (DW_OP_drop, 0, 0);
  add_loc_descr (&ret, l3label);
  l4label = new_loc_descr (DW_OP_nop, 0, 0);
  add_loc_descr (&ret, l4label);
  l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l1jump->dw_loc_oprnd1.v.val_loc = l1label;
  l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l2jump->dw_loc_oprnd1.v.val_loc = l2label;
  l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l3jump->dw_loc_oprnd1.v.val_loc = l3label;
  l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l4jump->dw_loc_oprnd1.v.val_loc = l4label;
  return ret;
}

/* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
   const1 is DW_OP_lit1 or corresponding typed constant):
       const0 DW_OP_swap
   L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
       DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
   L2: DW_OP_drop

   PARITY is similar:
   L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
       DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
   L2: DW_OP_drop  */

static dw_loc_descr_ref
popcount_loc_descriptor (rtx rtl, scalar_int_mode mode,
			 machine_mode mem_mode)
{
  dw_loc_descr_ref op0, ret, tmp;
  dw_loc_descr_ref l1jump, l1label;
  dw_loc_descr_ref l2jump, l2label;

  if (GET_MODE (XEXP (rtl, 0)) != mode)
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (op0 == NULL)
    return NULL;
  ret = op0;
  tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  l1label = new_loc_descr (DW_OP_dup, 0, 0);
  add_loc_descr (&ret, l1label);
  l2jump = new_loc_descr (DW_OP_bra, 0, 0);
  add_loc_descr (&ret, l2jump);
  add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
  tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
  add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
				      ? DW_OP_plus : DW_OP_xor, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
  l1jump = new_loc_descr (DW_OP_skip, 0, 0);
  add_loc_descr (&ret, l1jump);
  l2label = new_loc_descr (DW_OP_drop, 0, 0);
  add_loc_descr (&ret, l2label);
  l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l1jump->dw_loc_oprnd1.v.val_loc = l1label;
  l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l2jump->dw_loc_oprnd1.v.val_loc = l2label;
  return ret;
}

/* BSWAP (constS is initial shift count, either 56 or 24):
       constS const0
   L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
       const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
       DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
       DW_OP_minus DW_OP_swap DW_OP_skip <L1>
   L2: DW_OP_drop DW_OP_swap DW_OP_drop  */

static dw_loc_descr_ref
bswap_loc_descriptor (rtx rtl, scalar_int_mode mode,
		      machine_mode mem_mode)
{
  dw_loc_descr_ref op0, ret, tmp;
  dw_loc_descr_ref l1jump, l1label;
  dw_loc_descr_ref l2jump, l2label;

  if (BITS_PER_UNIT != 8
      || (GET_MODE_BITSIZE (mode) != 32
	  && GET_MODE_BITSIZE (mode) != 64))
    return NULL;

  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (op0 == NULL)
    return NULL;

  ret = op0;
  tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
			    mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  l1label = new_loc_descr (DW_OP_pick, 2, 0);
  add_loc_descr (&ret, l1label);
  tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
			    mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
  tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (tmp == NULL)
    return NULL;
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
  tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
  l2jump = new_loc_descr (DW_OP_bra, 0, 0);
  add_loc_descr (&ret, l2jump);
  tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  add_loc_descr (&ret, tmp);
  add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  l1jump = new_loc_descr (DW_OP_skip, 0, 0);
  add_loc_descr (&ret, l1jump);
  l2label = new_loc_descr (DW_OP_drop, 0, 0);
  add_loc_descr (&ret, l2label);
  add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
  l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l1jump->dw_loc_oprnd1.v.val_loc = l1label;
  l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
  l2jump->dw_loc_oprnd1.v.val_loc = l2label;
  return ret;
}

/* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
   DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
   [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
   DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or

   ROTATERT is similar:
   DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
   DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
   [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or  */

static dw_loc_descr_ref
rotate_loc_descriptor (rtx rtl, scalar_int_mode mode,
		       machine_mode mem_mode)
{
  rtx rtlop1 = XEXP (rtl, 1);
  dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
  int i;

  if (is_narrower_int_mode (GET_MODE (rtlop1), mode))
    rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
  op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
			    VAR_INIT_STATUS_INITIALIZED);
  if (op0 == NULL || op1 == NULL)
    return NULL;
  if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
    for (i = 0; i < 2; i++)
      {
	if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
	  mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
					mode, mem_mode,
					VAR_INIT_STATUS_INITIALIZED);
	else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
	  mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
				   ? DW_OP_const4u
				   : HOST_BITS_PER_WIDE_INT == 64
				   ? DW_OP_const8u : DW_OP_constu,
				   GET_MODE_MASK (mode), 0);
	else
	  mask[i] = NULL;
	if (mask[i] == NULL)
	  return NULL;
	add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
      }
  ret = op0;
  add_loc_descr (&ret, op1);
  add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
  if (GET_CODE (rtl) == ROTATERT)
    {
      add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
      add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
					  GET_MODE_BITSIZE (mode), 0));
    }
  add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
  if (mask[0] != NULL)
    add_loc_descr (&ret, mask[0]);
  add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
  if (mask[1] != NULL)
    {
      add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
      add_loc_descr (&ret, mask[1]);
      add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
    }
  if (GET_CODE (rtl) == ROTATE)
    {
      add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
      add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
					  GET_MODE_BITSIZE (mode), 0));
    }
  add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
  add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
  return ret;
}

/* Helper function for mem_loc_descriptor.  Return DW_OP_GNU_parameter_ref
   for DEBUG_PARAMETER_REF RTL.  */

static dw_loc_descr_ref
parameter_ref_descriptor (rtx rtl)
{
  dw_loc_descr_ref ret;
  dw_die_ref ref;

  if (dwarf_strict)
    return NULL;
  gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
  /* With LTO during LTRANS we get the late DIE that refers to the early
     DIE, thus we add another indirection here.  This seems to confuse
     gdb enough to make gcc.dg/guality/pr68860-1.c FAIL with LTO.  */
  ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
  ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
  if (ref)
    {
      ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
      ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
      ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
    }
  else
    {
      ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
      ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
    }
  return ret;
}

/* The following routine converts the RTL for a variable or parameter
   (resident in memory) into an equivalent Dwarf representation of a
   mechanism for getting the address of that same variable onto the top of a
   hypothetical "address evaluation" stack.

   When creating memory location descriptors, we are effectively transforming
   the RTL for a memory-resident object into its Dwarf postfix expression
   equivalent.  This routine recursively descends an RTL tree, turning
   it into Dwarf postfix code as it goes.

   MODE is the mode that should be assumed for the rtl if it is VOIDmode.

   MEM_MODE is the mode of the memory reference, needed to handle some
   autoincrement addressing modes.

   Return 0 if we can't represent the location.  */

dw_loc_descr_ref
mem_loc_descriptor (rtx rtl, machine_mode mode,
		    machine_mode mem_mode,
		    enum var_init_status initialized)
{
  dw_loc_descr_ref mem_loc_result = NULL;
  enum dwarf_location_atom op;
  dw_loc_descr_ref op0, op1;
  rtx inner = NULL_RTX;
  poly_int64 offset;

  if (mode == VOIDmode)
    mode = GET_MODE (rtl);

  /* Note that for a dynamically sized array, the location we will generate a
     description of here will be the lowest numbered location which is
     actually within the array.  That's *not* necessarily the same as the
     zeroth element of the array.  */

  rtl = targetm.delegitimize_address (rtl);

  if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
    return NULL;

  scalar_int_mode int_mode = BImode, inner_mode, op1_mode;
  switch (GET_CODE (rtl))
    {
    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
      return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);

    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
	 variable or a formal (register) parameter which doesn't quite fill
	 up an entire register.  For now, just assume that it is
	 legitimate to make the Dwarf info refer to the whole register which
	 contains the given subreg.  */
      if (!subreg_lowpart_p (rtl))
	break;
      inner = SUBREG_REG (rtl);
      /* FALLTHRU */
    case TRUNCATE:
      if (inner == NULL_RTX)
        inner = XEXP (rtl, 0);
      if (is_a <scalar_int_mode> (mode, &int_mode)
	  && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
	  && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
#ifdef POINTERS_EXTEND_UNSIGNED
	      || (int_mode == Pmode && mem_mode != VOIDmode)
#endif
	     )
	  && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE)
	{
	  mem_loc_result = mem_loc_descriptor (inner,
					       inner_mode,
					       mem_mode, initialized);
	  break;
	}
      if (dwarf_strict && dwarf_version < 5)
	break;
      if (is_a <scalar_int_mode> (mode, &int_mode)
	  && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
	  ? GET_MODE_SIZE (int_mode) <= GET_MODE_SIZE (inner_mode)
	  : known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (GET_MODE (inner))))
	{
	  dw_die_ref type_die;
	  dw_loc_descr_ref cvt;

	  mem_loc_result = mem_loc_descriptor (inner,
					       GET_MODE (inner),
					       mem_mode, initialized);
	  if (mem_loc_result == NULL)
	    break;
	  type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
	  if (type_die == NULL)
	    {
	      mem_loc_result = NULL;
	      break;
	    }
	  if (maybe_ne (GET_MODE_SIZE (mode), GET_MODE_SIZE (GET_MODE (inner))))
	    cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	  else
	    cvt = new_loc_descr (dwarf_OP (DW_OP_reinterpret), 0, 0);
	  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  add_loc_descr (&mem_loc_result, cvt);
	  if (is_a <scalar_int_mode> (mode, &int_mode)
	      && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
	    {
	      /* Convert it to untyped afterwards.  */
	      cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	      add_loc_descr (&mem_loc_result, cvt);
	    }
	}
      break;

    case REG:
      if (!is_a <scalar_int_mode> (mode, &int_mode)
	  || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
	      && rtl != arg_pointer_rtx
	      && rtl != frame_pointer_rtx
#ifdef POINTERS_EXTEND_UNSIGNED
	      && (int_mode != Pmode || mem_mode == VOIDmode)
#endif
	      ))
	{
	  dw_die_ref type_die;
	  unsigned int debugger_regnum;

	  if (dwarf_strict && dwarf_version < 5)
	    break;
	  if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
	    break;
	  type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
	  if (type_die == NULL)
	    break;

	  debugger_regnum = debugger_reg_number (rtl);
	  if (debugger_regnum == IGNORED_DWARF_REGNUM)
	    break;
	  mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_regval_type),
					  debugger_regnum, 0);
	  mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
	  mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
	  mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
	  break;
	}
      /* Whenever a register number forms a part of the description of the
	 method for calculating the (dynamic) address of a memory resident
	 object, DWARF rules require the register number be referred to as
	 a "base register".  This distinction is not based in any way upon
	 what category of register the hardware believes the given register
	 belongs to.  This is strictly DWARF terminology we're dealing with
	 here. Note that in cases where the location of a memory-resident
	 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
	 OP_CONST (0)) the actual DWARF location descriptor that we generate
	 may just be OP_BASEREG (basereg).  This may look deceptively like
	 the object in question was allocated to a register (rather than in
	 memory) so DWARF consumers need to be aware of the subtle
	 distinction between OP_REG and OP_BASEREG.  */
      if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
	mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
      else if (stack_realign_drap
	       && crtl->drap_reg
	       && crtl->args.internal_arg_pointer == rtl
	       && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
	{
	  /* If RTL is internal_arg_pointer, which has been optimized
	     out, use DRAP instead.  */
	  mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
					    VAR_INIT_STATUS_INITIALIZED);
	}
      break;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      if (!is_a <scalar_int_mode> (mode, &int_mode)
	  || !is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode))
	break;
      op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
				mem_mode, VAR_INIT_STATUS_INITIALIZED);
      if (op0 == 0)
	break;
      else if (GET_CODE (rtl) == ZERO_EXTEND
	       && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
	       && GET_MODE_BITSIZE (inner_mode) < HOST_BITS_PER_WIDE_INT
	       /* If DW_OP_const{1,2,4}u won't be used, it is shorter
		  to expand zero extend as two shifts instead of
		  masking.  */
	       && GET_MODE_SIZE (inner_mode) <= 4)
	{
	  mem_loc_result = op0;
	  add_loc_descr (&mem_loc_result,
			 int_loc_descriptor (GET_MODE_MASK (inner_mode)));
	  add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
	}
      else if (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE)
	{
	  int shift = DWARF2_ADDR_SIZE - GET_MODE_SIZE (inner_mode);
	  shift *= BITS_PER_UNIT;
	  if (GET_CODE (rtl) == SIGN_EXTEND)
	    op = DW_OP_shra;
	  else
	    op = DW_OP_shr;
	  mem_loc_result = op0;
	  add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
	  add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
	  add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
	  add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
	}
      else if (!dwarf_strict || dwarf_version >= 5)
	{
	  dw_die_ref type_die1, type_die2;
	  dw_loc_descr_ref cvt;

	  type_die1 = base_type_for_mode (inner_mode,
					  GET_CODE (rtl) == ZERO_EXTEND);
	  if (type_die1 == NULL)
	    break;
	  type_die2 = base_type_for_mode (int_mode, 1);
	  if (type_die2 == NULL)
	    break;
	  mem_loc_result = op0;
	  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
	  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  add_loc_descr (&mem_loc_result, cvt);
	  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
	  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  add_loc_descr (&mem_loc_result, cvt);
	}
      break;

    case MEM:
      {
	rtx new_rtl = avoid_constant_pool_reference (rtl);
	if (new_rtl != rtl)
	  {
	    mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
						 initialized);
	    if (mem_loc_result != NULL)
	      return mem_loc_result;
	  }
      }
      mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
					   get_address_mode (rtl), mode,
					   VAR_INIT_STATUS_INITIALIZED);
      if (mem_loc_result == NULL)
	mem_loc_result = tls_mem_loc_descriptor (rtl);
      if (mem_loc_result != NULL)
	{
	  if (!is_a <scalar_int_mode> (mode, &int_mode)
	      || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
	    {
	      dw_die_ref type_die;
	      dw_loc_descr_ref deref;
	      HOST_WIDE_INT size;

	      if (dwarf_strict && dwarf_version < 5)
		return NULL;
	      if (!GET_MODE_SIZE (mode).is_constant (&size))
		return NULL;
	      type_die
		= base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
	      if (type_die == NULL)
		return NULL;
	      deref = new_loc_descr (dwarf_OP (DW_OP_deref_type), size, 0);
	      deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
	      deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
	      deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
	      add_loc_descr (&mem_loc_result, deref);
	    }
	  else if (GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE)
	    add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
	  else
	    add_loc_descr (&mem_loc_result,
			   new_loc_descr (DW_OP_deref_size,
					  GET_MODE_SIZE (int_mode), 0));
	}
      break;

    case LO_SUM:
      return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);

    case LABEL_REF:
      /* Some ports can transform a symbol ref into a label ref, because
	 the symbol ref is too far away and has to be dumped into a constant
	 pool.  */
    case CONST:
    case SYMBOL_REF:
    case UNSPEC:
      if (!is_a <scalar_int_mode> (mode, &int_mode)
	  || (GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE
#ifdef POINTERS_EXTEND_UNSIGNED
	      && (int_mode != Pmode || mem_mode == VOIDmode)
#endif
	      ))
	break;

      if (GET_CODE (rtl) == UNSPEC)
	{
	  /* If delegitimize_address couldn't do anything with the UNSPEC, we
	     can't express it in the debug info.  This can happen e.g. with some
	     TLS UNSPECs.  Allow UNSPECs formerly from CONST that the backend
	     approves.  */
	  bool not_ok = false;
	  subrtx_var_iterator::array_type array;
	  FOR_EACH_SUBRTX_VAR (iter, array, rtl, ALL)
	    if (*iter != rtl && !CONSTANT_P (*iter))
	      {
		not_ok = true;
		break;
	      }

	  if (not_ok)
	    break;

	  FOR_EACH_SUBRTX_VAR (iter, array, rtl, ALL)
	    if (!const_ok_for_output_1 (*iter))
	      {
		not_ok = true;
		break;
	      }

	  if (not_ok)
	    break;

	  rtl = gen_rtx_CONST (GET_MODE (rtl), rtl);
	  goto symref;
	}

      if (GET_CODE (rtl) == SYMBOL_REF
	  && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
	{
	  dw_loc_descr_ref temp;

	  /* If this is not defined, we have no way to emit the data.  */
	  if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
	    break;

          temp = new_addr_loc_descr (rtl, dtprel_true);

	  /* We check for DWARF 5 here because gdb did not implement
	     DW_OP_form_tls_address until after 7.12.  */
	  mem_loc_result = new_loc_descr ((dwarf_version >= 5
					   ? DW_OP_form_tls_address
					   : DW_OP_GNU_push_tls_address),
					  0, 0);
	  add_loc_descr (&mem_loc_result, temp);

	  break;
	}

      if (!const_ok_for_output (rtl))
	{
	  if (GET_CODE (rtl) == CONST)
	    switch (GET_CODE (XEXP (rtl, 0)))
	      {
	      case NOT:
		op = DW_OP_not;
		goto try_const_unop;
	      case NEG:
		op = DW_OP_neg;
		goto try_const_unop;
	      try_const_unop:
		rtx arg;
		arg = XEXP (XEXP (rtl, 0), 0);
		if (!CONSTANT_P (arg))
		  arg = gen_rtx_CONST (int_mode, arg);
		op0 = mem_loc_descriptor (arg, int_mode, mem_mode,
					  initialized);
		if (op0)
		  {
		    mem_loc_result = op0;
		    add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
		  }
		break;
	      default:
		mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), int_mode,
						     mem_mode, initialized);
		break;
	      }
	  break;
	}

    symref:
      mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
      vec_safe_push (used_rtx_array, rtl);
      break;

    case CONCAT:
    case CONCATN:
    case VAR_LOCATION:
    case DEBUG_IMPLICIT_PTR:
      expansion_failed (NULL_TREE, rtl,
			"CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
      return 0;

    case ENTRY_VALUE:
      if (dwarf_strict && dwarf_version < 5)
	return NULL;
      if (REG_P (ENTRY_VALUE_EXP (rtl)))
	{
	  if (!is_a <scalar_int_mode> (mode, &int_mode)
	      || GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
	    op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
				      VOIDmode, VAR_INIT_STATUS_INITIALIZED);
	  else
	    {
	      unsigned int debugger_regnum = debugger_reg_number (ENTRY_VALUE_EXP (rtl));
	      if (debugger_regnum == IGNORED_DWARF_REGNUM)
		return NULL;
	      op0 = one_reg_loc_descriptor (debugger_regnum,
					    VAR_INIT_STATUS_INITIALIZED);
	    }
	}
      else if (MEM_P (ENTRY_VALUE_EXP (rtl))
	       && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
	{
	  op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
				    VOIDmode, VAR_INIT_STATUS_INITIALIZED);
	  if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
	    return NULL;
	}
      else
	gcc_unreachable ();
      if (op0 == NULL)
	return NULL;
      mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_entry_value), 0, 0);
      mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
      mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
      break;

    case DEBUG_PARAMETER_REF:
      mem_loc_result = parameter_ref_descriptor (rtl);
      break;

    case PRE_MODIFY:
      /* Extract the PLUS expression nested inside and fall into
	 PLUS code below.  */
      rtl = XEXP (rtl, 1);
      goto plus;

    case PRE_INC:
    case PRE_DEC:
      /* Turn these into a PLUS expression and fall into the PLUS code
	 below.  */
      rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
			  gen_int_mode (GET_CODE (rtl) == PRE_INC
					? GET_MODE_UNIT_SIZE (mem_mode)
					: -GET_MODE_UNIT_SIZE (mem_mode),
					mode));

      /* fall through */

    case PLUS:
    plus:
      if (is_based_loc (rtl)
	  && is_a <scalar_int_mode> (mode, &int_mode)
	  && (GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
	      || XEXP (rtl, 0) == arg_pointer_rtx
	      || XEXP (rtl, 0) == frame_pointer_rtx))
	mem_loc_result = based_loc_descr (XEXP (rtl, 0),
					  INTVAL (XEXP (rtl, 1)),
					  VAR_INIT_STATUS_INITIALIZED);
      else
	{
	  mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
					       VAR_INIT_STATUS_INITIALIZED);
	  if (mem_loc_result == 0)
	    break;

	  if (CONST_INT_P (XEXP (rtl, 1))
	      && (GET_MODE_SIZE (as_a <scalar_int_mode> (mode))
		  <= DWARF2_ADDR_SIZE))
	    loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
	  else
	    {
	      op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
					VAR_INIT_STATUS_INITIALIZED);
	      if (op1 == 0)
		return NULL;
	      add_loc_descr (&mem_loc_result, op1);
	      add_loc_descr (&mem_loc_result,
			     new_loc_descr (DW_OP_plus, 0, 0));
	    }
	}
      break;

    /* If a pseudo-reg is optimized away, it is possible for it to
       be replaced with a MEM containing a multiply or shift.  */
    case MINUS:
      op = DW_OP_minus;
      goto do_binop;

    case MULT:
      op = DW_OP_mul;
      goto do_binop;

    case DIV:
      if ((!dwarf_strict || dwarf_version >= 5)
	  && is_a <scalar_int_mode> (mode, &int_mode)
	  && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
	{
	  mem_loc_result = typed_binop (DW_OP_div, rtl,
					base_type_for_mode (mode, 0),
					int_mode, mem_mode);
	  break;
	}
      op = DW_OP_div;
      goto do_binop;

    case UMOD:
      op = DW_OP_mod;
      goto do_binop;

    case ASHIFT:
      op = DW_OP_shl;
      goto do_shift;

    case ASHIFTRT:
      op = DW_OP_shra;
      goto do_shift;

    case LSHIFTRT:
      op = DW_OP_shr;
      goto do_shift;

    do_shift:
      if (!is_a <scalar_int_mode> (mode, &int_mode))
	break;
      op0 = mem_loc_descriptor (XEXP (rtl, 0), int_mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);
      {
	rtx rtlop1 = XEXP (rtl, 1);
	if (is_a <scalar_int_mode> (GET_MODE (rtlop1), &op1_mode)
	    && GET_MODE_BITSIZE (op1_mode) < GET_MODE_BITSIZE (int_mode))
	  rtlop1 = gen_rtx_ZERO_EXTEND (int_mode, rtlop1);
	op1 = mem_loc_descriptor (rtlop1, int_mode, mem_mode,
				  VAR_INIT_STATUS_INITIALIZED);
      }

      if (op0 == 0 || op1 == 0)
	break;

      mem_loc_result = op0;
      add_loc_descr (&mem_loc_result, op1);
      add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
      break;

    case AND:
      op = DW_OP_and;
      goto do_binop;

    case IOR:
      op = DW_OP_or;
      goto do_binop;

    case XOR:
      op = DW_OP_xor;
      goto do_binop;

    do_binop:
      op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);
      if (XEXP (rtl, 0) == XEXP (rtl, 1))
	{
	  if (op0 == 0)
	    break;
	  mem_loc_result = op0;
	  add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_dup, 0, 0));
	  add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
	  break;
	}
      op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);

      if (op0 == 0 || op1 == 0)
	break;

      mem_loc_result = op0;
      add_loc_descr (&mem_loc_result, op1);
      add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
      break;

    case MOD:
      if ((!dwarf_strict || dwarf_version >= 5)
	  && is_a <scalar_int_mode> (mode, &int_mode)
	  && GET_MODE_SIZE (int_mode) > DWARF2_ADDR_SIZE)
	{
	  mem_loc_result = typed_binop (DW_OP_mod, rtl,
					base_type_for_mode (mode, 0),
					int_mode, mem_mode);
	  break;
	}

      op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);
      op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);

      if (op0 == 0 || op1 == 0)
	break;

      mem_loc_result = op0;
      add_loc_descr (&mem_loc_result, op1);
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
      break;

    case UDIV:
      if ((!dwarf_strict || dwarf_version >= 5)
	  && is_a <scalar_int_mode> (mode, &int_mode))
	{
	  /* We can use a signed divide if the sign bit is not set.  */
	  if (GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
	    {
	      op = DW_OP_div;
	      goto do_binop;
	    }

	  mem_loc_result = typed_binop (DW_OP_div, rtl,
					base_type_for_mode (int_mode, 1),
					int_mode, mem_mode);
	}
      break;

    case NOT:
      op = DW_OP_not;
      goto do_unop;

    case ABS:
      op = DW_OP_abs;
      goto do_unop;

    case NEG:
      op = DW_OP_neg;
      goto do_unop;

    do_unop:
      op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
				VAR_INIT_STATUS_INITIALIZED);

      if (op0 == 0)
	break;

      mem_loc_result = op0;
      add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
      break;

    case CONST_INT:
      if (!is_a <scalar_int_mode> (mode, &int_mode)
	  || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
#ifdef POINTERS_EXTEND_UNSIGNED
	  || (int_mode == Pmode
	      && mem_mode != VOIDmode
	      && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
#endif
	  )
	{
	  mem_loc_result = int_loc_descriptor (INTVAL (rtl));
	  break;
	}
      if ((!dwarf_strict || dwarf_version >= 5)
	  && (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT
	      || GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_DOUBLE_INT))
	{
	  dw_die_ref type_die = base_type_for_mode (int_mode, 1);
	  scalar_int_mode amode;
	  if (type_die == NULL)
	    return NULL;
	  if (INTVAL (rtl) >= 0
	      && (int_mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT, 0)
		  .exists (&amode))
	      && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
	      /* const DW_OP_convert <XXX> vs.
		 DW_OP_const_type <XXX, 1, const>.  */
	      && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
		 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (int_mode))
	    {
	      mem_loc_result = int_loc_descriptor (INTVAL (rtl));
	      op0 = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	      op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	      op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	      op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
	      add_loc_descr (&mem_loc_result, op0);
	      return mem_loc_result;
	    }
	  mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0,
					  INTVAL (rtl));
	  mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  if (GET_MODE_BITSIZE (int_mode) == HOST_BITS_PER_WIDE_INT)
	    mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
	  else
	    {
	      mem_loc_result->dw_loc_oprnd2.val_class
		= dw_val_class_const_double;
	      mem_loc_result->dw_loc_oprnd2.v.val_double
		= double_int::from_shwi (INTVAL (rtl));
	    }
	}
      break;

    case CONST_DOUBLE:
      if (!dwarf_strict || dwarf_version >= 5)
	{
	  dw_die_ref type_die;

	  /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
	     CONST_DOUBLE rtx could represent either a large integer
	     or a floating-point constant.  If TARGET_SUPPORTS_WIDE_INT != 0,
	     the value is always a floating point constant.

	     When it is an integer, a CONST_DOUBLE is used whenever
	     the constant requires 2 HWIs to be adequately represented.
	     We output CONST_DOUBLEs as blocks.  */
	  if (mode == VOIDmode
	      || (GET_MODE (rtl) == VOIDmode
		  && maybe_ne (GET_MODE_BITSIZE (mode),
			       HOST_BITS_PER_DOUBLE_INT)))
	    break;
	  type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
	  if (type_die == NULL)
	    return NULL;
	  mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
	  mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
#if TARGET_SUPPORTS_WIDE_INT == 0
	  if (!SCALAR_FLOAT_MODE_P (mode))
	    {
	      mem_loc_result->dw_loc_oprnd2.val_class
		= dw_val_class_const_double;
	      mem_loc_result->dw_loc_oprnd2.v.val_double
		= rtx_to_double_int (rtl);
	    }
	  else
#endif
	    {
	      scalar_float_mode float_mode = as_a <scalar_float_mode> (mode);
	      unsigned int length = GET_MODE_SIZE (float_mode);
	      unsigned char *array = ggc_vec_alloc<unsigned char> (length);
	      unsigned int elt_size = insert_float (rtl, array);

	      mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
	      mem_loc_result->dw_loc_oprnd2.v.val_vec.length
		= length / elt_size;
	      mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
	      mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
	    }
	}
      break;

    case CONST_WIDE_INT:
      if (!dwarf_strict || dwarf_version >= 5)
	{
	  dw_die_ref type_die;

	  type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
	  if (type_die == NULL)
	    return NULL;
	  mem_loc_result = new_loc_descr (dwarf_OP (DW_OP_const_type), 0, 0);
	  mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	  mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  mem_loc_result->dw_loc_oprnd2.val_class
	    = dw_val_class_wide_int;
	  mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
	  *mem_loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, mode);
	}
      break;

    case CONST_POLY_INT:
      mem_loc_result = int_loc_descriptor (rtx_to_poly_int64 (rtl));
      break;

    case EQ:
      mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
      break;

    case GE:
      mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
      break;

    case GT:
      mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
      break;

    case LE:
      mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
      break;

    case LT:
      mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
      break;

    case NE:
      mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
      break;

    case GEU:
      mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
      break;

    case GTU:
      mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
      break;

    case LEU:
      mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
      break;

    case LTU:
      mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
      break;

    case UMIN:
    case UMAX:
      if (!SCALAR_INT_MODE_P (mode))
	break;
      /* FALLTHRU */
    case SMIN:
    case SMAX:
      mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
      break;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      if (CONST_INT_P (XEXP (rtl, 1))
	  && CONST_INT_P (XEXP (rtl, 2))
	  && is_a <scalar_int_mode> (mode, &int_mode)
	  && is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &inner_mode)
	  && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
	  && GET_MODE_SIZE (inner_mode) <= DWARF2_ADDR_SIZE
	  && ((unsigned) INTVAL (XEXP (rtl, 1))
	      + (unsigned) INTVAL (XEXP (rtl, 2))
	      <= GET_MODE_BITSIZE (int_mode)))
	{
	  int shift, size;
	  op0 = mem_loc_descriptor (XEXP (rtl, 0), inner_mode,
				    mem_mode, VAR_INIT_STATUS_INITIALIZED);
	  if (op0 == 0)
	    break;
	  if (GET_CODE (rtl) == SIGN_EXTRACT)
	    op = DW_OP_shra;
	  else
	    op = DW_OP_shr;
	  mem_loc_result = op0;
	  size = INTVAL (XEXP (rtl, 1));
	  shift = INTVAL (XEXP (rtl, 2));
	  if (BITS_BIG_ENDIAN)
	    shift = GET_MODE_BITSIZE (inner_mode) - shift - size;
	  if (shift + size != (int) DWARF2_ADDR_SIZE)
	    {
	      add_loc_descr (&mem_loc_result,
			     int_loc_descriptor (DWARF2_ADDR_SIZE
						 - shift - size));
	      add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
	    }
	  if (size != (int) DWARF2_ADDR_SIZE)
	    {
	      add_loc_descr (&mem_loc_result,
			     int_loc_descriptor (DWARF2_ADDR_SIZE - size));
	      add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
	    }
	}
      break;

    case IF_THEN_ELSE:
      {
	dw_loc_descr_ref op2, bra_node, drop_node;
	op0 = mem_loc_descriptor (XEXP (rtl, 0),
				  GET_MODE (XEXP (rtl, 0)) == VOIDmode
				  ? word_mode : GET_MODE (XEXP (rtl, 0)),
				  mem_mode, VAR_INIT_STATUS_INITIALIZED);
	op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
				  VAR_INIT_STATUS_INITIALIZED);
	op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
				  VAR_INIT_STATUS_INITIALIZED);
	if (op0 == NULL || op1 == NULL || op2 == NULL)
	  break;

	mem_loc_result = op1;
	add_loc_descr (&mem_loc_result, op2);
	add_loc_descr (&mem_loc_result, op0);
	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
	add_loc_descr (&mem_loc_result, bra_node);
	add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
	drop_node = new_loc_descr (DW_OP_drop, 0, 0);
	add_loc_descr (&mem_loc_result, drop_node);
	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
	bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
      }
      break;

    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case UNSIGNED_FIX:
      if (!dwarf_strict || dwarf_version >= 5)
	{
	  dw_die_ref type_die;
	  dw_loc_descr_ref cvt;

	  op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
				    mem_mode, VAR_INIT_STATUS_INITIALIZED);
	  if (op0 == NULL)
	    break;
	  if (is_a <scalar_int_mode> (GET_MODE (XEXP (rtl, 0)), &int_mode)
	      && (GET_CODE (rtl) == FLOAT
		  || GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE))
	    {
	      type_die = base_type_for_mode (int_mode,
					     GET_CODE (rtl) == UNSIGNED_FLOAT);
	      if (type_die == NULL)
		break;
	      cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	      cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	      cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	      cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
	      add_loc_descr (&op0, cvt);
	    }
	  type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
	  if (type_die == NULL)
	    break;
	  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
	  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
	  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  add_loc_descr (&op0, cvt);
	  if (is_a <scalar_int_mode> (mode, &int_mode)
	      && (GET_CODE (rtl) == FIX
		  || GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE))
	    {
	      op0 = convert_descriptor_to_mode (int_mode, op0);
	      if (op0 == NULL)
		break;
	    }
	  mem_loc_result = op0;
	}
      break;

    case CLZ:
    case CTZ:
    case FFS:
      if (is_a <scalar_int_mode> (mode, &int_mode))
	mem_loc_result = clz_loc_descriptor (rtl, int_mode, mem_mode);
      break;

    case POPCOUNT:
    case PARITY:
      if (is_a <scalar_int_mode> (mode, &int_mode))
	mem_loc_result = popcount_loc_descriptor (rtl, int_mode, mem_mode);
      break;

    case BSWAP:
      if (is_a <scalar_int_mode> (mode, &int_mode))
	mem_loc_result = bswap_loc_descriptor (rtl, int_mode, mem_mode);
      break;

    case ROTATE:
    case ROTATERT:
      if (is_a <scalar_int_mode> (mode, &int_mode))
	mem_loc_result = rotate_loc_descriptor (rtl, int_mode, mem_mode);
      break;

    case COMPARE:
      /* In theory, we could implement the above.  */
      /* DWARF cannot represent the unsigned compare operations
	 natively.  */
    case SS_MULT:
    case US_MULT:
    case SS_DIV:
    case US_DIV:
    case SS_PLUS:
    case US_PLUS:
    case SS_MINUS:
    case US_MINUS:
    case SS_NEG:
    case US_NEG:
    case SS_ABS:
    case SS_ASHIFT:
    case US_ASHIFT:
    case SS_TRUNCATE:
    case US_TRUNCATE:
    case UNORDERED:
    case ORDERED:
    case UNEQ:
    case UNGE:
    case UNGT:
    case UNLE:
    case UNLT:
    case LTGT:
    case FRACT_CONVERT:
    case UNSIGNED_FRACT_CONVERT:
    case SAT_FRACT:
    case UNSIGNED_SAT_FRACT:
    case SQRT:
    case ASM_OPERANDS:
    case VEC_MERGE:
    case VEC_SELECT:
    case VEC_CONCAT:
    case VEC_DUPLICATE:
    case VEC_SERIES:
    case HIGH:
    case FMA:
    case STRICT_LOW_PART:
    case CONST_VECTOR:
    case CONST_FIXED:
    case CLRSB:
    case CLOBBER:
    case SMUL_HIGHPART:
    case UMUL_HIGHPART:
      break;

    case CONST_STRING:
      resolve_one_addr (&rtl);
      goto symref;

    /* RTL sequences inside PARALLEL record a series of DWARF operations for
       the expression.  An UNSPEC rtx represents a raw DWARF operation,
       new_loc_descr is called for it to build the operation directly.
       Otherwise mem_loc_descriptor is called recursively.  */
    case PARALLEL:
      {
	int index = 0;
	dw_loc_descr_ref exp_result = NULL;

	for (; index < XVECLEN (rtl, 0); index++)
	  {
	    rtx elem = XVECEXP (rtl, 0, index);
	    if (GET_CODE (elem) == UNSPEC)
	      {
		/* Each DWARF operation UNSPEC contain two operands, if
		   one operand is not used for the operation, const0_rtx is
		   passed.  */
		gcc_assert (XVECLEN (elem, 0) == 2);

		HOST_WIDE_INT dw_op = XINT (elem, 1);
		HOST_WIDE_INT oprnd1 = INTVAL (XVECEXP (elem, 0, 0));
		HOST_WIDE_INT oprnd2 = INTVAL (XVECEXP (elem, 0, 1));
		exp_result
		  = new_loc_descr ((enum dwarf_location_atom) dw_op, oprnd1,
				   oprnd2);
	      }
	    else
	      exp_result
		= mem_loc_descriptor (elem, mode, mem_mode,
				      VAR_INIT_STATUS_INITIALIZED);

	    if (!mem_loc_result)
	      mem_loc_result = exp_result;
	    else
	      add_loc_descr (&mem_loc_result, exp_result);
	  }

	break;
      }

    default:
      if (flag_checking)
	{
	  print_rtl (stderr, rtl);
	  gcc_unreachable ();
	}
      break;
    }

  if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));

  return mem_loc_result;
}

/* Return a descriptor that describes the concatenation of two locations.
   This is typically a complex variable.  */

static dw_loc_descr_ref
concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
{
  /* At present we only track constant-sized pieces.  */
  unsigned int size0, size1;
  if (!GET_MODE_SIZE (GET_MODE (x0)).is_constant (&size0)
      || !GET_MODE_SIZE (GET_MODE (x1)).is_constant (&size1))
    return 0;

  dw_loc_descr_ref cc_loc_result = NULL;
  dw_loc_descr_ref x0_ref
    = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
  dw_loc_descr_ref x1_ref
    = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);

  if (x0_ref == 0 || x1_ref == 0)
    return 0;

  cc_loc_result = x0_ref;
  add_loc_descr_op_piece (&cc_loc_result, size0);

  add_loc_descr (&cc_loc_result, x1_ref);
  add_loc_descr_op_piece (&cc_loc_result, size1);

  if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));

  return cc_loc_result;
}

/* Return a descriptor that describes the concatenation of N
   locations.  */

static dw_loc_descr_ref
concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
{
  unsigned int i;
  dw_loc_descr_ref cc_loc_result = NULL;
  unsigned int n = XVECLEN (concatn, 0);
  unsigned int size;

  for (i = 0; i < n; ++i)
    {
      dw_loc_descr_ref ref;
      rtx x = XVECEXP (concatn, 0, i);

      /* At present we only track constant-sized pieces.  */
      if (!GET_MODE_SIZE (GET_MODE (x)).is_constant (&size))
	return NULL;

      ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
      if (ref == NULL)
	return NULL;

      add_loc_descr (&cc_loc_result, ref);
      add_loc_descr_op_piece (&cc_loc_result, size);
    }

  if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
    add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));

  return cc_loc_result;
}

/* Helper function for loc_descriptor.  Return DW_OP_implicit_pointer
   for DEBUG_IMPLICIT_PTR RTL.  */

static dw_loc_descr_ref
implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
{
  dw_loc_descr_ref ret;
  dw_die_ref ref;

  if (dwarf_strict && dwarf_version < 5)
    return NULL;
  gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
	      || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
	      || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
  ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
  ret = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
  ret->dw_loc_oprnd2.val_class = dw_val_class_const;
  if (ref)
    {
      ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
      ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
      ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
    }
  else
    {
      ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
      ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
    }
  return ret;
}

/* Output a proper Dwarf location descriptor for a variable or parameter
   which is either allocated in a register or in a memory location.  For a
   register, we just generate an OP_REG and the register number.  For a
   memory location we provide a Dwarf postfix expression describing how to
   generate the (dynamic) address of the object onto the address stack.

   MODE is mode of the decl if this loc_descriptor is going to be used in
   .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
   allowed, VOIDmode otherwise.

   If we don't know how to describe it, return 0.  */

static dw_loc_descr_ref
loc_descriptor (rtx rtl, machine_mode mode,
		enum var_init_status initialized)
{
  dw_loc_descr_ref loc_result = NULL;
  scalar_int_mode int_mode;

  switch (GET_CODE (rtl))
    {
    case SUBREG:
      /* The case of a subreg may arise when we have a local (register)
	 variable or a formal (register) parameter which doesn't quite fill
	 up an entire register.  For now, just assume that it is
	 legitimate to make the Dwarf info refer to the whole register which
	 contains the given subreg.  */
      if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
	loc_result = loc_descriptor (SUBREG_REG (rtl),
				     GET_MODE (SUBREG_REG (rtl)), initialized);
      else
	goto do_default;
      break;

    case REG:
      loc_result = reg_loc_descriptor (rtl, initialized);
      break;

    case MEM:
      loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
				       GET_MODE (rtl), initialized);
      if (loc_result == NULL)
	loc_result = tls_mem_loc_descriptor (rtl);
      if (loc_result == NULL)
	{
	  rtx new_rtl = avoid_constant_pool_reference (rtl);
	  if (new_rtl != rtl)
	    loc_result = loc_descriptor (new_rtl, mode, initialized);
	}
      break;

    case CONCAT:
      loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
					  initialized);
      break;

    case CONCATN:
      loc_result = concatn_loc_descriptor (rtl, initialized);
      break;

    case VAR_LOCATION:
      /* Single part.  */
      if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
	{
	  rtx loc = PAT_VAR_LOCATION_LOC (rtl);
	  if (GET_CODE (loc) == EXPR_LIST)
	    loc = XEXP (loc, 0);
	  loc_result = loc_descriptor (loc, mode, initialized);
	  break;
	}

      rtl = XEXP (rtl, 1);
      /* FALLTHRU */

    case PARALLEL:
      {
	rtvec par_elems = XVEC (rtl, 0);
	int num_elem = GET_NUM_ELEM (par_elems);
	machine_mode mode;
	int i, size;

	/* Create the first one, so we have something to add to.  */
	loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
				     VOIDmode, initialized);
	if (loc_result == NULL)
	  return NULL;
	mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
	/* At present we only track constant-sized pieces.  */
	if (!GET_MODE_SIZE (mode).is_constant (&size))
	  return NULL;
	add_loc_descr_op_piece (&loc_result, size);
	for (i = 1; i < num_elem; i++)
	  {
	    dw_loc_descr_ref temp;

	    temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
				   VOIDmode, initialized);
	    if (temp == NULL)
	      return NULL;
	    add_loc_descr (&loc_result, temp);
	    mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
	    /* At present we only track constant-sized pieces.  */
	    if (!GET_MODE_SIZE (mode).is_constant (&size))
	      return NULL;
	    add_loc_descr_op_piece (&loc_result, size);
	  }
      }
      break;

    case CONST_INT:
      if (mode != VOIDmode && mode != BLKmode)
	{
	  int_mode = as_a <scalar_int_mode> (mode);
	  loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (int_mode),
						      INTVAL (rtl));
	}
      break;

    case CONST_DOUBLE:
      if (mode == VOIDmode)
	mode = GET_MODE (rtl);

      if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
	{
	  gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));

	  /* Note that a CONST_DOUBLE rtx could represent either an integer
	     or a floating-point constant.  A CONST_DOUBLE is used whenever
	     the constant requires more than one word in order to be
	     adequately represented.  We output CONST_DOUBLEs as blocks.  */
	  scalar_mode smode = as_a <scalar_mode> (mode);
	  loc_result = new_loc_descr (DW_OP_implicit_value,
				      GET_MODE_SIZE (smode), 0);
#if TARGET_SUPPORTS_WIDE_INT == 0
	  if (!SCALAR_FLOAT_MODE_P (smode))
	    {
	      loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
	      loc_result->dw_loc_oprnd2.v.val_double
	        = rtx_to_double_int (rtl);
	    }
	  else
#endif
	    {
	      unsigned int length = GET_MODE_SIZE (smode);
	      unsigned char *array = ggc_vec_alloc<unsigned char> (length);
	      unsigned int elt_size = insert_float (rtl, array);

	      loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
	      loc_result->dw_loc_oprnd2.v.val_vec.length = length / elt_size;
	      loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
	      loc_result->dw_loc_oprnd2.v.val_vec.array = array;
	    }
	}
      break;

    case CONST_WIDE_INT:
      if (mode == VOIDmode)
	mode = GET_MODE (rtl);

      if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
	{
	  int_mode = as_a <scalar_int_mode> (mode);
	  loc_result = new_loc_descr (DW_OP_implicit_value,
				      GET_MODE_SIZE (int_mode), 0);
	  loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
	  loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
	  *loc_result->dw_loc_oprnd2.v.val_wide = rtx_mode_t (rtl, int_mode);
	}
      break;

    case CONST_VECTOR:
      if (mode == VOIDmode)
	mode = GET_MODE (rtl);

      if (mode != VOIDmode
	  /* The combination of a length and byte elt_size doesn't extend
	     naturally to boolean vectors, where several elements are packed
	     into the same byte.  */
	  && GET_MODE_CLASS (mode) != MODE_VECTOR_BOOL
	  && (dwarf_version >= 4 || !dwarf_strict))
	{
	  unsigned int length;
	  if (!CONST_VECTOR_NUNITS (rtl).is_constant (&length))
	    return NULL;

	  unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
	  unsigned char *array
	    = ggc_vec_alloc<unsigned char> (length * elt_size);
	  unsigned int i;
	  unsigned char *p;
	  machine_mode imode = GET_MODE_INNER (mode);

	  gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
	  switch (GET_MODE_CLASS (mode))
	    {
	    case MODE_VECTOR_INT:
	      for (i = 0, p = array; i < length; i++, p += elt_size)
		{
		  rtx elt = CONST_VECTOR_ELT (rtl, i);
		  insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
		}
	      break;

	    case MODE_VECTOR_FLOAT:
	      for (i = 0, p = array; i < length; i++, p += elt_size)
		{
		  rtx elt = CONST_VECTOR_ELT (rtl, i);
		  insert_float (elt, p);
		}
	      break;

	    default:
	      gcc_unreachable ();
	    }

	  loc_result = new_loc_descr (DW_OP_implicit_value,
				      length * elt_size, 0);
	  loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
	  loc_result->dw_loc_oprnd2.v.val_vec.length = length;
	  loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
	  loc_result->dw_loc_oprnd2.v.val_vec.array = array;
	}
      break;

    case CONST:
      if (mode == VOIDmode
	  || CONST_SCALAR_INT_P (XEXP (rtl, 0))
	  || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
	  || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
	{
	  loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
	  break;
	}
      /* FALLTHROUGH */
    case SYMBOL_REF:
      if (!const_ok_for_output (rtl))
	break;
      /* FALLTHROUGH */
    case LABEL_REF:
      if (is_a <scalar_int_mode> (mode, &int_mode)
	  && GET_MODE_SIZE (int_mode) == DWARF2_ADDR_SIZE
	  && (dwarf_version >= 4 || !dwarf_strict))
	{
         loc_result = new_addr_loc_descr (rtl, dtprel_false);
	  add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
	  vec_safe_push (used_rtx_array, rtl);
	}
      break;

    case DEBUG_IMPLICIT_PTR:
      loc_result = implicit_ptr_descriptor (rtl, 0);
      break;

    case PLUS:
      if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
	  && CONST_INT_P (XEXP (rtl, 1)))
	{
	  loc_result
	    = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
	  break;
	}
      /* FALLTHRU */
    do_default:
    default:
      if ((is_a <scalar_int_mode> (mode, &int_mode)
	   && GET_MODE (rtl) == int_mode
	   && GET_MODE_SIZE (int_mode) <= DWARF2_ADDR_SIZE
	   && dwarf_version >= 4)
	  || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
	{
	  /* Value expression.  */
	  loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
	  if (loc_result)
	    add_loc_descr (&loc_result,
			   new_loc_descr (DW_OP_stack_value, 0, 0));
	}
      break;
    }

  return loc_result;
}

/* We need to figure out what section we should use as the base for the
   address ranges where a given location is valid.
   1. If this particular DECL has a section associated with it, use that.
   2. If this function has a section associated with it, use that.
   3. Otherwise, use the text section.
   XXX: If you split a variable across multiple sections, we won't notice.  */

static const char *
secname_for_decl (const_tree decl)
{
  const char *secname;

  if (VAR_OR_FUNCTION_DECL_P (decl)
      && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
      && DECL_SECTION_NAME (decl))
    secname = DECL_SECTION_NAME (decl);
  else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
    {
      if (in_cold_section_p)
	{
	  section *sec = current_function_section ();
	  if (sec->common.flags & SECTION_NAMED)
	    return sec->named.name;
	}
      secname = DECL_SECTION_NAME (current_function_decl);
    }
  else if (cfun && in_cold_section_p)
    secname = crtl->subsections.cold_section_label;
  else
    secname = text_section_label;

  return secname;
}

/* Return true when DECL_BY_REFERENCE is defined and set for DECL.  */

static bool
decl_by_reference_p (tree decl)
{
  return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
  	   || VAR_P (decl))
	  && DECL_BY_REFERENCE (decl));
}

/* Helper function for dw_loc_list.  Compute proper Dwarf location descriptor
   for VARLOC.  */

static dw_loc_descr_ref
dw_loc_list_1 (tree loc, rtx varloc, int want_address,
	       enum var_init_status initialized)
{
  int have_address = 0;
  dw_loc_descr_ref descr;
  machine_mode mode;

  if (want_address != 2)
    {
      gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
      /* Single part.  */
      if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
	{
	  varloc = PAT_VAR_LOCATION_LOC (varloc);
	  if (GET_CODE (varloc) == EXPR_LIST)
	    varloc = XEXP (varloc, 0);
	  mode = GET_MODE (varloc);
	  if (MEM_P (varloc))
	    {
	      rtx addr = XEXP (varloc, 0);
	      descr = mem_loc_descriptor (addr, get_address_mode (varloc),
					  mode, initialized);
	      if (descr)
		have_address = 1;
	      else
		{
		  rtx x = avoid_constant_pool_reference (varloc);
		  if (x != varloc)
		    descr = mem_loc_descriptor (x, mode, VOIDmode,
						initialized);
		}
	    }
	  else
	    descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
	}
      else
	return 0;
    }
  else
    {
      if (GET_CODE (varloc) == VAR_LOCATION)
	mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
      else
	mode = DECL_MODE (loc);
      descr = loc_descriptor (varloc, mode, initialized);
      have_address = 1;
    }

  if (!descr)
    return 0;

  if (want_address == 2 && !have_address
      && (dwarf_version >= 4 || !dwarf_strict))
    {
      if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
	{
	  expansion_failed (loc, NULL_RTX,
			    "DWARF address size mismatch");
	  return 0;
	}
      add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
      have_address = 1;
    }
  /* Show if we can't fill the request for an address.  */
  if (want_address && !have_address)
    {
      expansion_failed (loc, NULL_RTX,
			"Want address and only have value");
      return 0;
    }

  /* If we've got an address and don't want one, dereference.  */
  if (!want_address && have_address)
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
      enum dwarf_location_atom op;

      if (size > DWARF2_ADDR_SIZE || size == -1)
	{
	  expansion_failed (loc, NULL_RTX,
			    "DWARF address size mismatch");
	  return 0;
	}
      else if (size == DWARF2_ADDR_SIZE)
	op = DW_OP_deref;
      else
	op = DW_OP_deref_size;

      add_loc_descr (&descr, new_loc_descr (op, size, 0));
    }

  return descr;
}

/* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
   if it is not possible.  */

static dw_loc_descr_ref
new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
{
  if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
    return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
  else if (dwarf_version >= 3 || !dwarf_strict)
    return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
  else
    return NULL;
}

/* Helper function for dw_loc_list.  Compute proper Dwarf location descriptor
   for VAR_LOC_NOTE for variable DECL that has been optimized by SRA.  */

static dw_loc_descr_ref
dw_sra_loc_expr (tree decl, rtx loc)
{
  rtx p;
  unsigned HOST_WIDE_INT padsize = 0;
  dw_loc_descr_ref descr, *descr_tail;
  unsigned HOST_WIDE_INT decl_size;
  rtx varloc;
  enum var_init_status initialized;

  if (DECL_SIZE (decl) == NULL
      || !tree_fits_uhwi_p (DECL_SIZE (decl)))
    return NULL;

  decl_size = tree_to_uhwi (DECL_SIZE (decl));
  descr = NULL;
  descr_tail = &descr;

  for (p = loc; p; p = XEXP (p, 1))
    {
      unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
      rtx loc_note = *decl_piece_varloc_ptr (p);
      dw_loc_descr_ref cur_descr;
      dw_loc_descr_ref *tail, last = NULL;
      unsigned HOST_WIDE_INT opsize = 0;

      if (loc_note == NULL_RTX
	  || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
	{
	  padsize += bitsize;
	  continue;
	}
      initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
      varloc = NOTE_VAR_LOCATION (loc_note);
      cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
      if (cur_descr == NULL)
	{
	  padsize += bitsize;
	  continue;
	}

      /* Check that cur_descr either doesn't use
	 DW_OP_*piece operations, or their sum is equal
	 to bitsize.  Otherwise we can't embed it.  */
      for (tail = &cur_descr; *tail != NULL;
	   tail = &(*tail)->dw_loc_next)
	if ((*tail)->dw_loc_opc == DW_OP_piece)
	  {
	    opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
		      * BITS_PER_UNIT;
	    last = *tail;
	  }
	else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
	  {
	    opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
	    last = *tail;
	  }

      if (last != NULL && opsize != bitsize)
	{
	  padsize += bitsize;
	  /* Discard the current piece of the descriptor and release any
	     addr_table entries it uses.  */
	  remove_loc_list_addr_table_entries (cur_descr);
	  continue;
	}

      /* If there is a hole, add DW_OP_*piece after empty DWARF
	 expression, which means that those bits are optimized out.  */
      if (padsize)
	{
	  if (padsize > decl_size)
	    {
	      remove_loc_list_addr_table_entries (cur_descr);
	      goto discard_descr;
	    }
	  decl_size -= padsize;
	  *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
	  if (*descr_tail == NULL)
	    {
	      remove_loc_list_addr_table_entries (cur_descr);
	      goto discard_descr;
	    }
	  descr_tail = &(*descr_tail)->dw_loc_next;
	  padsize = 0;
	}
      *descr_tail = cur_descr;
      descr_tail = tail;
      if (bitsize > decl_size)
	goto discard_descr;
      decl_size -= bitsize;
      if (last == NULL)
	{
	  HOST_WIDE_INT offset = 0;
	  if (GET_CODE (varloc) == VAR_LOCATION
	      && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
	    {
	      varloc = PAT_VAR_LOCATION_LOC (varloc);
	      if (GET_CODE (varloc) == EXPR_LIST)
		varloc = XEXP (varloc, 0);
	    }
	  do 
	    {
	      if (GET_CODE (varloc) == CONST
		  || GET_CODE (varloc) == SIGN_EXTEND
		  || GET_CODE (varloc) == ZERO_EXTEND)
		varloc = XEXP (varloc, 0);
	      else if (GET_CODE (varloc) == SUBREG)
		varloc = SUBREG_REG (varloc);
	      else
		break;
	    }
	  while (1);
	  /* DW_OP_bit_size offset should be zero for register
	     or implicit location descriptions and empty location
	     descriptions, but for memory addresses needs big endian
	     adjustment.  */
	  if (MEM_P (varloc))
	    {
	      unsigned HOST_WIDE_INT memsize;
	      if (!poly_uint64 (MEM_SIZE (varloc)).is_constant (&memsize))
		goto discard_descr;
	      memsize *= BITS_PER_UNIT;
	      if (memsize != bitsize)
		{
		  if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
		      && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
		    goto discard_descr;
		  if (memsize < bitsize)
		    goto discard_descr;
		  if (BITS_BIG_ENDIAN)
		    offset = memsize - bitsize;
		}
	    }

	  *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
	  if (*descr_tail == NULL)
	    goto discard_descr;
	  descr_tail = &(*descr_tail)->dw_loc_next;
	}
    }

  /* If there were any non-empty expressions, add padding till the end of
     the decl.  */
  if (descr != NULL && decl_size != 0)
    {
      *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
      if (*descr_tail == NULL)
	goto discard_descr;
    }
  return descr;

discard_descr:
  /* Discard the descriptor and release any addr_table entries it uses.  */
  remove_loc_list_addr_table_entries (descr);
  return NULL;
}

/* Return the dwarf representation of the location list LOC_LIST of
   DECL.  WANT_ADDRESS has the same meaning as in loc_list_from_tree
   function.  */

static dw_loc_list_ref
dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
{
  const char *endname, *secname;
  var_loc_view endview;
  rtx varloc;
  enum var_init_status initialized;
  struct var_loc_node *node;
  dw_loc_descr_ref descr;
  char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
  dw_loc_list_ref list = NULL;
  dw_loc_list_ref *listp = &list;

  /* Now that we know what section we are using for a base,
     actually construct the list of locations.
     The first location information is what is passed to the
     function that creates the location list, and the remaining
     locations just get added on to that list.
     Note that we only know the start address for a location
     (IE location changes), so to build the range, we use
     the range [current location start, next location start].
     This means we have to special case the last node, and generate
     a range of [last location start, end of function label].  */

  if (cfun && crtl->has_bb_partition)
    {
      bool save_in_cold_section_p = in_cold_section_p;
      in_cold_section_p = first_function_block_is_cold;
      if (loc_list->last_before_switch == NULL)
	in_cold_section_p = !in_cold_section_p;
      secname = secname_for_decl (decl);
      in_cold_section_p = save_in_cold_section_p;
    }
  else
    secname = secname_for_decl (decl);

  for (node = loc_list->first; node; node = node->next)
    {
      bool range_across_switch = false;
      if (GET_CODE (node->loc) == EXPR_LIST
	  || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
	{
	  if (GET_CODE (node->loc) == EXPR_LIST)
	    {
	      descr = NULL;
	      /* This requires DW_OP_{,bit_}piece, which is not usable
		 inside DWARF expressions.  */
	      if (want_address == 2)
		descr = dw_sra_loc_expr (decl, node->loc);
	    }
	  else
	    {
	      initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
	      varloc = NOTE_VAR_LOCATION (node->loc);
	      descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
	    }
	  if (descr)
	    {
	      /* If section switch happens in between node->label
		 and node->next->label (or end of function) and
		 we can't emit it as a single entry list,
		 emit two ranges, first one ending at the end
		 of first partition and second one starting at the
		 beginning of second partition.  */
	      if (node == loc_list->last_before_switch
		  && (node != loc_list->first || loc_list->first->next
		      /* If we are to emit a view number, we will emit
			 a loclist rather than a single location
			 expression for the entire function (see
			 loc_list_has_views), so we have to split the
			 range that straddles across partitions.  */
		      || !ZERO_VIEW_P (node->view))
		  && current_function_decl)
		{
		  endname = cfun->fde->dw_fde_end;
		  endview = 0;
		  range_across_switch = true;
		}
	      /* The variable has a location between NODE->LABEL and
		 NODE->NEXT->LABEL.  */
	      else if (node->next)
		endname = node->next->label, endview = node->next->view;
	      /* If the variable has a location at the last label
		 it keeps its location until the end of function.  */
	      else if (!current_function_decl)
		endname = text_end_label, endview = 0;
	      else
		{
		  ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
					       current_function_funcdef_no);
		  endname = ggc_strdup (label_id);
		  endview = 0;
		}

	      *listp = new_loc_list (descr, node->label, node->view,
				     endname, endview, secname);
	      if (TREE_CODE (decl) == PARM_DECL
		  && node == loc_list->first
		  && NOTE_P (node->loc)
		  && strcmp (node->label, endname) == 0)
		(*listp)->force = true;
	      listp = &(*listp)->dw_loc_next;
	    }
	}

      if (cfun
	  && crtl->has_bb_partition
	  && node == loc_list->last_before_switch)
	{
	  bool save_in_cold_section_p = in_cold_section_p;
	  in_cold_section_p = !first_function_block_is_cold;
	  secname = secname_for_decl (decl);
	  in_cold_section_p = save_in_cold_section_p;
	}

      if (range_across_switch)
	{
	  if (GET_CODE (node->loc) == EXPR_LIST)
	    descr = dw_sra_loc_expr (decl, node->loc);
	  else
	    {
	      initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
	      varloc = NOTE_VAR_LOCATION (node->loc);
	      descr = dw_loc_list_1 (decl, varloc, want_address,
				     initialized);
	    }
	  gcc_assert (descr);
	  /* The variable has a location between NODE->LABEL and
	     NODE->NEXT->LABEL.  */
	  if (node->next)
	    endname = node->next->label, endview = node->next->view;
	  else
	    endname = cfun->fde->dw_fde_second_end, endview = 0;
	  *listp = new_loc_list (descr, cfun->fde->dw_fde_second_begin, 0,
				 endname, endview, secname);
	  listp = &(*listp)->dw_loc_next;
	}
    }

  /* Try to avoid the overhead of a location list emitting a location
     expression instead, but only if we didn't have more than one
     location entry in the first place.  If some entries were not
     representable, we don't want to pretend a single entry that was
     applies to the entire scope in which the variable is
     available.  */
  if (list && loc_list->first->next)
    gen_llsym (list);
  else
    maybe_gen_llsym (list);

  return list;
}

/* Return if the loc_list has only single element and thus can be represented
   as location description.   */

static bool
single_element_loc_list_p (dw_loc_list_ref list)
{
  gcc_assert (!list->dw_loc_next || list->ll_symbol);
  return !list->ll_symbol;
}

/* Duplicate a single element of location list.  */

static inline dw_loc_descr_ref
copy_loc_descr (dw_loc_descr_ref ref)
{
  dw_loc_descr_ref copy = ggc_alloc<dw_loc_descr_node> ();
  memcpy (copy, ref, sizeof (dw_loc_descr_node));
  return copy;
}

/* To each location in list LIST append loc descr REF.  */

static void
add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
{
  dw_loc_descr_ref copy;
  add_loc_descr (&list->expr, ref);
  list = list->dw_loc_next;
  while (list)
    {
      copy = copy_loc_descr (ref);
      add_loc_descr (&list->expr, copy);
      while (copy->dw_loc_next)
	copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
      list = list->dw_loc_next;
    }
}

/* To each location in list LIST prepend loc descr REF.  */

static void
prepend_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
{
  dw_loc_descr_ref copy;
  dw_loc_descr_ref ref_end = list->expr;
  add_loc_descr (&ref, list->expr);
  list->expr = ref;
  list = list->dw_loc_next;
  while (list)
    {
      dw_loc_descr_ref end = list->expr;
      list->expr = copy = copy_loc_descr (ref);
      while (copy->dw_loc_next != ref_end)
	copy = copy->dw_loc_next = copy_loc_descr (copy->dw_loc_next);
      copy->dw_loc_next = end;
      list = list->dw_loc_next;
    }
}

/* Given two lists RET and LIST
   produce location list that is result of adding expression in LIST
   to expression in RET on each position in program.
   Might be destructive on both RET and LIST.

   TODO: We handle only simple cases of RET or LIST having at most one
   element.  General case would involve sorting the lists in program order
   and merging them that will need some additional work.
   Adding that will improve quality of debug info especially for SRA-ed
   structures.  */

static void
add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
{
  if (!list)
    return;
  if (!*ret)
    {
      *ret = list;
      return;
    }
  if (!list->dw_loc_next)
    {
      add_loc_descr_to_each (*ret, list->expr);
      return;
    }
  if (!(*ret)->dw_loc_next)
    {
      prepend_loc_descr_to_each (list, (*ret)->expr);
      *ret = list;
      return;
    }
  expansion_failed (NULL_TREE, NULL_RTX,
		    "Don't know how to merge two non-trivial"
		    " location lists.\n");
  *ret = NULL;
  return;
}

/* LOC is constant expression.  Try a luck, look it up in constant
   pool and return its loc_descr of its address.  */

static dw_loc_descr_ref
cst_pool_loc_descr (tree loc)
{
  /* Get an RTL for this, if something has been emitted.  */
  rtx rtl = lookup_constant_def (loc);

  if (!rtl || !MEM_P (rtl))
    {
      gcc_assert (!rtl);
      return 0;
    }
  gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);

  /* TODO: We might get more coverage if we was actually delaying expansion
     of all expressions till end of compilation when constant pools are fully
     populated.  */
  if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
    {
      expansion_failed (loc, NULL_RTX,
			"CST value in contant pool but not marked.");
      return 0;
    }
  return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
			     GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
}

/* Return dw_loc_list representing address of addr_expr LOC
   by looking for inner INDIRECT_REF expression and turning
   it into simple arithmetics.

   See loc_list_from_tree for the meaning of CONTEXT.  */

static dw_loc_list_ref
loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
						   loc_descr_context *context)
{
  tree obj, offset;
  poly_int64 bitsize, bitpos, bytepos;
  machine_mode mode;
  int unsignedp, reversep, volatilep = 0;
  dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;

  obj = get_inner_reference (TREE_OPERAND (loc, 0),
			     &bitsize, &bitpos, &offset, &mode,
			     &unsignedp, &reversep, &volatilep);
  STRIP_NOPS (obj);
  if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
    {
      expansion_failed (loc, NULL_RTX, "bitfield access");
      return 0;
    }
  if (!INDIRECT_REF_P (obj))
    {
      expansion_failed (obj,
			NULL_RTX, "no indirect ref in inner refrence");
      return 0;
    }
  if (!offset && known_eq (bitpos, 0))
    list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
				   context);
  else if (toplev
	   && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
	   && (dwarf_version >= 4 || !dwarf_strict))
    {
      list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
      if (!list_ret)
	return 0;
      if (offset)
	{
	  /* Variable offset.  */
	  list_ret1 = loc_list_from_tree (offset, 0, context);
	  if (list_ret1 == 0)
	    return 0;
	  add_loc_list (&list_ret, list_ret1);
	  if (!list_ret)
	    return 0;
	  add_loc_descr_to_each (list_ret,
				 new_loc_descr (DW_OP_plus, 0, 0));
	}
      HOST_WIDE_INT value;
      if (bytepos.is_constant (&value) && value > 0)
	add_loc_descr_to_each (list_ret,
			       new_loc_descr (DW_OP_plus_uconst, value, 0));
      else if (maybe_ne (bytepos, 0))
	loc_list_plus_const (list_ret, bytepos);
      add_loc_descr_to_each (list_ret,
			     new_loc_descr (DW_OP_stack_value, 0, 0));
    }
  return list_ret;
}

/* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
   all operations from LOC are nops, move to the last one.  Insert in NOPS all
   operations that are skipped.  */

static void
loc_descr_to_next_no_nop (dw_loc_descr_ref &loc,
			  hash_set<dw_loc_descr_ref> &nops)
{
  while (loc->dw_loc_next != NULL && loc->dw_loc_opc == DW_OP_nop)
    {
      nops.add (loc);
      loc = loc->dw_loc_next;
    }
}

/* Helper for loc_descr_without_nops: free the location description operation
   P.  */

bool
free_loc_descr (const dw_loc_descr_ref &loc, void *data ATTRIBUTE_UNUSED)
{
  ggc_free (loc);
  return true;
}

/* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
   finishes LOC.  */

static void
loc_descr_without_nops (dw_loc_descr_ref &loc)
{
  if (loc->dw_loc_opc == DW_OP_nop && loc->dw_loc_next == NULL)
    return;

  /* Set of all DW_OP_nop operations we remove.  */
  hash_set<dw_loc_descr_ref> nops;

  /* First, strip all prefix NOP operations in order to keep the head of the
     operations list.  */
  loc_descr_to_next_no_nop (loc, nops);

  for (dw_loc_descr_ref cur = loc; cur != NULL;)
    {
      /* For control flow operations: strip "prefix" nops in destination
	 labels.  */
      if (cur->dw_loc_oprnd1.val_class == dw_val_class_loc)
	loc_descr_to_next_no_nop (cur->dw_loc_oprnd1.v.val_loc, nops);
      if (cur->dw_loc_oprnd2.val_class == dw_val_class_loc)
	loc_descr_to_next_no_nop (cur->dw_loc_oprnd2.v.val_loc, nops);

      /* Do the same for the operations that follow, then move to the next
	 iteration.  */
      if (cur->dw_loc_next != NULL)
	loc_descr_to_next_no_nop (cur->dw_loc_next, nops);
      cur = cur->dw_loc_next;
    }

  nops.traverse<void *, free_loc_descr> (NULL);
}


struct dwarf_procedure_info;

/* Helper structure for location descriptions generation.  */
struct loc_descr_context
{
  /* The type that is implicitly referenced by DW_OP_push_object_address, or
     NULL_TREE if DW_OP_push_object_address in invalid for this location
     description.  This is used when processing PLACEHOLDER_EXPR nodes.  */
  tree context_type;
  /* The ..._DECL node that should be translated as a
     DW_OP_push_object_address operation.  */
  tree base_decl;
  /* Information about the DWARF procedure we are currently generating. NULL if
     we are not generating a DWARF procedure.  */
  struct dwarf_procedure_info *dpi;
  /* True if integral PLACEHOLDER_EXPR stands for the first argument passed
     by consumer.  Used for DW_TAG_generic_subrange attributes.  */
  bool placeholder_arg;
  /* True if PLACEHOLDER_EXPR has been seen.  */
  bool placeholder_seen;
  /* True if strict preservation of signedness has been requested.  */
  bool strict_signedness;
};

/* DWARF procedures generation

   DWARF expressions (aka. location descriptions) are used to encode variable
   things such as sizes or offsets.  Such computations can have redundant parts
   that can be factorized in order to reduce the size of the output debug
   information.  This is the whole point of DWARF procedures.

   Thanks to stor-layout.cc, size and offset expressions in GENERIC trees are
   already factorized into functions ("size functions") in order to handle very
   big and complex types.  Such functions are quite simple: they have integral
   arguments, they return an integral result and their body contains only a
   return statement with arithmetic expressions.  This is the only kind of
   function we are interested in translating into DWARF procedures, here.

   DWARF expressions and DWARF procedure are executed using a stack, so we have
   to define some calling convention for them to interact.  Let's say that:

   - Before calling a DWARF procedure, DWARF expressions must push on the stack
     all arguments in reverse order (right-to-left) so that when the DWARF
     procedure execution starts, the first argument is the top of the stack.

   - Then, when returning, the DWARF procedure must have consumed all arguments
     on the stack, must have pushed the result and touched nothing else.

   - Each integral argument and the result are integral types can be hold in a
     single stack slot.

   - We call "frame offset" the number of stack slots that are "under DWARF
     procedure control": it includes the arguments slots, the temporaries and
     the result slot. Thus, it is equal to the number of arguments when the
     procedure execution starts and must be equal to one (the result) when it
     returns.  */

/* Helper structure used when generating operations for a DWARF procedure.  */
struct dwarf_procedure_info
{
  /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
     currently translated.  */
  tree fndecl;
  /* The number of arguments FNDECL takes.  */
  unsigned args_count;
};

/* Return a pointer to a newly created DIE node for a DWARF procedure.  Add
   LOCATION as its DW_AT_location attribute.  If FNDECL is not NULL_TREE,
   equate it to this DIE.  */

static dw_die_ref
new_dwarf_proc_die (dw_loc_descr_ref location, tree fndecl,
		    dw_die_ref parent_die)
{
  dw_die_ref dwarf_proc_die;

  if ((dwarf_version < 3 && dwarf_strict)
      || location == NULL)
    return NULL;

  dwarf_proc_die = new_die (DW_TAG_dwarf_procedure, parent_die, fndecl);
  if (fndecl)
    equate_decl_number_to_die (fndecl, dwarf_proc_die);
  add_AT_loc (dwarf_proc_die, DW_AT_location, location);
  return dwarf_proc_die;
}

/* Return whether TYPE is a supported type as a DWARF procedure argument
   type or return type (we handle only scalar types and pointer types that
   aren't wider than the DWARF expression evaluation stack).  */

static bool
is_handled_procedure_type (tree type)
{
  return ((INTEGRAL_TYPE_P (type)
	   || TREE_CODE (type) == OFFSET_TYPE
	   || TREE_CODE (type) == POINTER_TYPE)
	  && int_size_in_bytes (type) <= DWARF2_ADDR_SIZE);
}

/* Helper for resolve_args_picking: do the same but stop when coming across
   visited nodes.  For each node we visit, register in FRAME_OFFSETS the frame
   offset *before* evaluating the corresponding operation.  */

static bool
resolve_args_picking_1 (dw_loc_descr_ref loc, unsigned initial_frame_offset,
			struct dwarf_procedure_info *dpi,
			hash_map<dw_loc_descr_ref, unsigned> &frame_offsets)
{
  /* The "frame_offset" identifier is already used to name a macro... */
  unsigned frame_offset_ = initial_frame_offset;
  dw_loc_descr_ref l;

  for (l = loc; l != NULL;)
    {
      bool existed;
      unsigned &l_frame_offset = frame_offsets.get_or_insert (l, &existed);

      /* If we already met this node, there is nothing to compute anymore.  */
      if (existed)
	{
	  /* Make sure that the stack size is consistent wherever the execution
	     flow comes from.  */
	  gcc_assert ((unsigned) l_frame_offset == frame_offset_);
	  break;
	}
      l_frame_offset = frame_offset_;

      /* If needed, relocate the picking offset with respect to the frame
	 offset. */
      if (l->frame_offset_rel)
	{
	  unsigned HOST_WIDE_INT off;
	  switch (l->dw_loc_opc)
	    {
	    case DW_OP_pick:
	      off = l->dw_loc_oprnd1.v.val_unsigned;
	      break;
	    case DW_OP_dup:
	      off = 0;
	      break;
	    case DW_OP_over:
	      off = 1;
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  /* frame_offset_ is the size of the current stack frame, including
	     incoming arguments. Besides, the arguments are pushed
	     right-to-left.  Thus, in order to access the Nth argument from
	     this operation node, the picking has to skip temporaries *plus*
	     one stack slot per argument (0 for the first one, 1 for the second
	     one, etc.).

	     The targetted argument number (N) is already set as the operand,
	     and the number of temporaries can be computed with:
	       frame_offsets_ - dpi->args_count */
	  off += frame_offset_ - dpi->args_count;

	  /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)...  */
	  if (off > 255)
	    return false;

	  if (off == 0)
	    {
	      l->dw_loc_opc = DW_OP_dup;
	      l->dw_loc_oprnd1.v.val_unsigned = 0;
	    }
	  else if (off == 1)
	    {
	      l->dw_loc_opc = DW_OP_over;
	      l->dw_loc_oprnd1.v.val_unsigned = 0;
	    }
	  else
	    {
	      l->dw_loc_opc = DW_OP_pick;
	      l->dw_loc_oprnd1.v.val_unsigned = off;
	    }
	}

      /* Update frame_offset according to the effect the current operation has
	 on the stack.  */
      switch (l->dw_loc_opc)
	{
	case DW_OP_deref:
	case DW_OP_swap:
	case DW_OP_rot:
	case DW_OP_abs:
	case DW_OP_neg:
	case DW_OP_not:
	case DW_OP_plus_uconst:
	case DW_OP_skip:
	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	case DW_OP_bregx:
	case DW_OP_piece:
	case DW_OP_deref_size:
	case DW_OP_nop:
	case DW_OP_bit_piece:
	case DW_OP_implicit_value:
	case DW_OP_stack_value:
	case DW_OP_deref_type:
	case DW_OP_convert:
	case DW_OP_reinterpret:
	case DW_OP_GNU_deref_type:
	case DW_OP_GNU_convert:
	case DW_OP_GNU_reinterpret:
	  break;

	case DW_OP_addr:
	case DW_OP_const1u:
	case DW_OP_const1s:
	case DW_OP_const2u:
	case DW_OP_const2s:
	case DW_OP_const4u:
	case DW_OP_const4s:
	case DW_OP_const8u:
	case DW_OP_const8s:
	case DW_OP_constu:
	case DW_OP_consts:
	case DW_OP_dup:
	case DW_OP_over:
	case DW_OP_pick:
	case DW_OP_lit0:
	case DW_OP_lit1:
	case DW_OP_lit2:
	case DW_OP_lit3:
	case DW_OP_lit4:
	case DW_OP_lit5:
	case DW_OP_lit6:
	case DW_OP_lit7:
	case DW_OP_lit8:
	case DW_OP_lit9:
	case DW_OP_lit10:
	case DW_OP_lit11:
	case DW_OP_lit12:
	case DW_OP_lit13:
	case DW_OP_lit14:
	case DW_OP_lit15:
	case DW_OP_lit16:
	case DW_OP_lit17:
	case DW_OP_lit18:
	case DW_OP_lit19:
	case DW_OP_lit20:
	case DW_OP_lit21:
	case DW_OP_lit22:
	case DW_OP_lit23:
	case DW_OP_lit24:
	case DW_OP_lit25:
	case DW_OP_lit26:
	case DW_OP_lit27:
	case DW_OP_lit28:
	case DW_OP_lit29:
	case DW_OP_lit30:
	case DW_OP_lit31:
	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	case DW_OP_fbreg:
	case DW_OP_push_object_address:
	case DW_OP_call_frame_cfa:
	case DW_OP_GNU_variable_value:
	case DW_OP_GNU_addr_index:
	case DW_OP_GNU_const_index:
	  ++frame_offset_;
	  break;

	case DW_OP_drop:
	case DW_OP_xderef:
	case DW_OP_and:
	case DW_OP_div:
	case DW_OP_minus:
	case DW_OP_mod:
	case DW_OP_mul:
	case DW_OP_or:
	case DW_OP_plus:
	case DW_OP_shl:
	case DW_OP_shr:
	case DW_OP_shra:
	case DW_OP_xor:
	case DW_OP_bra:
	case DW_OP_eq:
	case DW_OP_ge:
	case DW_OP_gt:
	case DW_OP_le:
	case DW_OP_lt:
	case DW_OP_ne:
	case DW_OP_regx:
	case DW_OP_xderef_size:
	  --frame_offset_;
	  break;

	case DW_OP_call2:
	case DW_OP_call4:
	case DW_OP_call_ref:
	  {
	    dw_die_ref dwarf_proc = l->dw_loc_oprnd1.v.val_die_ref.die;
	    int *stack_usage = dwarf_proc_stack_usage_map->get (dwarf_proc);

	    if (stack_usage == NULL)
	      return false;
	    frame_offset_ += *stack_usage;
	    break;
	  }

	case DW_OP_implicit_pointer:
	case DW_OP_entry_value:
	case DW_OP_const_type:
	case DW_OP_regval_type:
	case DW_OP_form_tls_address:
	case DW_OP_GNU_push_tls_address:
	case DW_OP_GNU_uninit:
	case DW_OP_GNU_encoded_addr:
	case DW_OP_GNU_implicit_pointer:
	case DW_OP_GNU_entry_value:
	case DW_OP_GNU_const_type:
	case DW_OP_GNU_regval_type:
	case DW_OP_GNU_parameter_ref:
	  /* loc_list_from_tree will probably not output these operations for
	     size functions, so assume they will not appear here.  */
	  /* Fall through...  */

	default:
	  gcc_unreachable ();
	}

      /* Now, follow the control flow (except subroutine calls).  */
      switch (l->dw_loc_opc)
	{
	case DW_OP_bra:
	  if (!resolve_args_picking_1 (l->dw_loc_next, frame_offset_, dpi,
				       frame_offsets))
	    return false;
	  /* Fall through. */

	case DW_OP_skip:
	  l = l->dw_loc_oprnd1.v.val_loc;
	  break;

	case DW_OP_stack_value:
	  return true;

	default:
	  l = l->dw_loc_next;
	  break;
	}
    }

  return true;
}

/* Make a DFS over operations reachable through LOC (i.e. follow branch
   operations) in order to resolve the operand of DW_OP_pick operations that
   target DWARF procedure arguments (DPI).  INITIAL_FRAME_OFFSET is the frame
   offset *before* LOC is executed.  Return if all relocations were
   successful.  */

static bool
resolve_args_picking (dw_loc_descr_ref loc, unsigned initial_frame_offset,
		      struct dwarf_procedure_info *dpi)
{
  /* Associate to all visited operations the frame offset *before* evaluating
     this operation.  */
  hash_map<dw_loc_descr_ref, unsigned> frame_offsets;

  return
    resolve_args_picking_1 (loc, initial_frame_offset, dpi, frame_offsets);
}

/* Try to generate a DWARF procedure that computes the same result as FNDECL.
   Return NULL if it is not possible.  */

static dw_die_ref
function_to_dwarf_procedure (tree fndecl)
{
  struct dwarf_procedure_info dpi;
  struct loc_descr_context ctx = {
    NULL_TREE,	/* context_type */
    NULL_TREE,	/* base_decl */
    &dpi,	/* dpi */
    false,      /* placeholder_arg */
    false,      /* placeholder_seen */
    true	/* strict_signedness */
  };
  dw_die_ref dwarf_proc_die;
  tree tree_body = DECL_SAVED_TREE (fndecl);
  dw_loc_descr_ref loc_body, epilogue;

  tree cursor;
  unsigned i;

  /* Do not generate multiple DWARF procedures for the same function
     declaration.  */
  dwarf_proc_die = lookup_decl_die (fndecl);
  if (dwarf_proc_die != NULL)
    return dwarf_proc_die;

  /* DWARF procedures are available starting with the DWARFv3 standard.  */
  if (dwarf_version < 3 && dwarf_strict)
    return NULL;

  /* We handle only functions for which we still have a body, that return a
     supported type and that takes arguments with supported types.  Note that
     there is no point translating functions that return nothing.  */
  if (tree_body == NULL_TREE
      || DECL_RESULT (fndecl) == NULL_TREE
      || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl))))
    return NULL;

  for (cursor = DECL_ARGUMENTS (fndecl);
       cursor != NULL_TREE;
       cursor = TREE_CHAIN (cursor))
    if (!is_handled_procedure_type (TREE_TYPE (cursor)))
      return NULL;

  /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)).  */
  if (TREE_CODE (tree_body) != RETURN_EXPR)
    return NULL;
  tree_body = TREE_OPERAND (tree_body, 0);
  if (TREE_CODE (tree_body) != MODIFY_EXPR
      || TREE_OPERAND (tree_body, 0) != DECL_RESULT (fndecl))
    return NULL;
  tree_body = TREE_OPERAND (tree_body, 1);

  /* Try to translate the body expression itself.  Note that this will probably
     cause an infinite recursion if its call graph has a cycle.  This is very
     unlikely for size functions, however, so don't bother with such things at
     the moment.  */
  dpi.fndecl = fndecl;
  dpi.args_count = list_length (DECL_ARGUMENTS (fndecl));
  loc_body = loc_descriptor_from_tree (tree_body, 0, &ctx);
  if (!loc_body)
    return NULL;

  /* After evaluating all operands in "loc_body", we should still have on the
     stack all arguments plus the desired function result (top of the stack).
     Generate code in order to keep only the result in our stack frame.  */
  epilogue = NULL;
  for (i = 0; i < dpi.args_count; ++i)
    {
      dw_loc_descr_ref op_couple = new_loc_descr (DW_OP_swap, 0, 0);
      op_couple->dw_loc_next = new_loc_descr (DW_OP_drop, 0, 0);
      op_couple->dw_loc_next->dw_loc_next = epilogue;
      epilogue = op_couple;
    }
  add_loc_descr (&loc_body, epilogue);
  if (!resolve_args_picking (loc_body, dpi.args_count, &dpi))
    return NULL;

  /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
     because they are considered useful.  Now there is an epilogue, they are
     not anymore, so give it another try.   */
  loc_descr_without_nops (loc_body);

  /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
     a DW_TAG_dwarf_procedure, so we may have a conflict, here.  It's unlikely,
     though, given that size functions do not come from source, so they should
     not have a dedicated DW_TAG_subprogram DIE.  */
  dwarf_proc_die
    = new_dwarf_proc_die (loc_body, fndecl,
			  get_context_die (DECL_CONTEXT (fndecl)));

  /* The called DWARF procedure consumes one stack slot per argument and
     returns one stack slot.  */
  dwarf_proc_stack_usage_map->put (dwarf_proc_die, 1 - dpi.args_count);

  return dwarf_proc_die;
}

/* Helper function for loc_list_from_tree.  Perform OP binary op,
   but after converting arguments to type_die, afterwards convert
   back to unsigned.  */

static dw_loc_list_ref
typed_binop_from_tree (enum dwarf_location_atom op, tree loc,
		       dw_die_ref type_die, scalar_int_mode mode,
		       struct loc_descr_context *context)
{
  dw_loc_list_ref op0, op1;
  dw_loc_descr_ref cvt, binop;

  if (type_die == NULL)
    return NULL;

  op0 = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
  op1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
  if (op0 == NULL || op1 == NULL)
    return NULL;

  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr_to_each (op0, cvt);

  cvt = new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0);
  cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
  cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
  cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
  add_loc_descr_to_each (op1, cvt);

  add_loc_list (&op0, op1);
  if (op0 == NULL)
    return NULL;

  binop = new_loc_descr (op, 0, 0);
  convert_descriptor_to_mode (mode, binop);
  add_loc_descr_to_each (op0, binop);

  return op0;
}

/* Generate Dwarf location list representing LOC.
   If WANT_ADDRESS is false, expression computing LOC will be computed
   If WANT_ADDRESS is 1, expression computing address of LOC will be returned
   if WANT_ADDRESS is 2, expression computing address useable in location
     will be returned (i.e. DW_OP_reg can be used
     to refer to register values).

   CONTEXT provides information to customize the location descriptions
   generation.  Its context_type field specifies what type is implicitly
   referenced by DW_OP_push_object_address.  If it is NULL_TREE, this operation
   will not be generated.

   Its DPI field determines whether we are generating a DWARF expression for a
   DWARF procedure, so PARM_DECL references are processed specifically.

   If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
   and dpi fields were null.  */

static dw_loc_list_ref
loc_list_from_tree_1 (tree loc, int want_address,
		      struct loc_descr_context *context)
{
  dw_loc_descr_ref ret = NULL, ret1 = NULL;
  dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
  int have_address = 0;
  enum dwarf_location_atom op;

  /* ??? Most of the time we do not take proper care for sign/zero
     extending the values properly.  Hopefully this won't be a real
     problem...  */

  if (context != NULL
      && context->base_decl == loc
      && want_address == 0)
    {
      if (dwarf_version >= 3 || !dwarf_strict)
	return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
			     NULL, 0, NULL, 0, NULL);
      else
	return NULL;
    }

  switch (TREE_CODE (loc))
    {
    case ERROR_MARK:
      expansion_failed (loc, NULL_RTX, "ERROR_MARK");
      return 0;

    case PLACEHOLDER_EXPR:
      /* This case involves extracting fields from an object to determine the
	 position of other fields. It is supposed to appear only as the first
	 operand of COMPONENT_REF nodes and to reference precisely the type
	 that the context allows or its enclosing type.  */
      if (context != NULL
	  && (TREE_TYPE (loc) == context->context_type
	      || TREE_TYPE (loc) == TYPE_CONTEXT (context->context_type))
	  && want_address >= 1)
	{
	  if (dwarf_version >= 3 || !dwarf_strict)
	    {
	      ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
	      have_address = 1;
	      break;
	    }
	  else
	    return NULL;
	}
      /* For DW_TAG_generic_subrange attributes, PLACEHOLDER_EXPR stands for
	 the single argument passed by consumer.  */
      else if (context != NULL
	       && context->placeholder_arg
	       && INTEGRAL_TYPE_P (TREE_TYPE (loc))
	       && want_address == 0)
	{
	  ret = new_loc_descr (DW_OP_pick, 0, 0);
	  ret->frame_offset_rel = 1;
	  context->placeholder_seen = true;
	  break;
	}
      else
	expansion_failed (loc, NULL_RTX,
			  "PLACEHOLDER_EXPR for an unexpected type");
      break;

    case CALL_EXPR:
	{
	  tree callee = get_callee_fndecl (loc);
	  dw_die_ref dwarf_proc;

	  if (callee
	      && is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee)))
	      && (dwarf_proc = function_to_dwarf_procedure (callee)))
	    {
	      /* DWARF procedures are used for size functions, which are built
		 when size expressions contain conditional constructs, so we
		 request strict preservation of signedness for comparisons.  */
	      bool old_strict_signedness;
	      if (context)
		{
		  old_strict_signedness = context->strict_signedness;
		  context->strict_signedness = true;
		}

	      /* Evaluate arguments right-to-left so that the first argument
		 will be the top-most one on the stack.  */
	      for (int i = call_expr_nargs (loc) - 1; i >= 0; --i)
		{
		  tree arg = CALL_EXPR_ARG (loc, i);
		  ret1 = loc_descriptor_from_tree (arg, 0, context);
		  if (!ret1)
		    {
		      expansion_failed (arg, NULL_RTX, "CALL_EXPR argument");
		      return NULL;
		    }
		  add_loc_descr (&ret, ret1);
		}

	      ret1 = new_loc_descr (DW_OP_call4, 0, 0);
	      ret1->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	      ret1->dw_loc_oprnd1.v.val_die_ref.die = dwarf_proc;
	      ret1->dw_loc_oprnd1.v.val_die_ref.external = 0;
	      add_loc_descr (&ret, ret1);
	      if (context)
		context->strict_signedness = old_strict_signedness;
	    }
	  else
	    expansion_failed (loc, NULL_RTX, "CALL_EXPR target");
	  break;
	}

    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
      /* There are no opcodes for these operations.  */
      return 0;

    case ADDR_EXPR:
      /* If we already want an address, see if there is INDIRECT_REF inside
         e.g. for &this->field.  */
      if (want_address)
	{
	  list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
		       (loc, want_address == 2, context);
	  if (list_ret)
	    have_address = 1;
	  else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
	  	   && (ret = cst_pool_loc_descr (loc)))
	    have_address = 1;
	}
        /* Otherwise, process the argument and look for the address.  */
      if (!list_ret && !ret)
        list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 1, context);
      else
	{
	  if (want_address)
	    expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
	  return NULL;
	}
      break;

    case VAR_DECL:
      if (DECL_THREAD_LOCAL_P (loc))
	{
	  rtx rtl;
         enum dwarf_location_atom tls_op;
         enum dtprel_bool dtprel = dtprel_false;

	  if (targetm.have_tls)
	    {
	      /* If this is not defined, we have no way to emit the
		 data.  */
	      if (!targetm.asm_out.output_dwarf_dtprel)
		return 0;

	       /* The way DW_OP_GNU_push_tls_address is specified, we
	     	  can only look up addresses of objects in the current
	     	  module.  We used DW_OP_addr as first op, but that's
		  wrong, because DW_OP_addr is relocated by the debug
		  info consumer, while DW_OP_GNU_push_tls_address
		  operand shouldn't be.  */
	      if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
		return 0;
	      dtprel = dtprel_true;
	      /* We check for DWARF 5 here because gdb did not implement
		 DW_OP_form_tls_address until after 7.12.  */
	      tls_op = (dwarf_version >= 5 ? DW_OP_form_tls_address
			: DW_OP_GNU_push_tls_address);
	    }
	  else
	    {
	      if (!targetm.emutls.debug_form_tls_address
		  || !(dwarf_version >= 3 || !dwarf_strict))
		return 0;
	      /* We stuffed the control variable into the DECL_VALUE_EXPR
		 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
		 no longer appear in gimple code.  We used the control
		 variable in specific so that we could pick it up here.  */
	      loc = DECL_VALUE_EXPR (loc);
              tls_op = DW_OP_form_tls_address;
	    }

	  rtl = rtl_for_decl_location (loc);
	  if (rtl == NULL_RTX)
	    return 0;

	  if (!MEM_P (rtl))
	    return 0;
	  rtl = XEXP (rtl, 0);
	  if (! CONSTANT_P (rtl))
	    return 0;

          ret = new_addr_loc_descr (rtl, dtprel);
          ret1 = new_loc_descr (tls_op, 0, 0);
	  add_loc_descr (&ret, ret1);

	  have_address = 1;
	  break;
	}
      /* FALLTHRU */

    case PARM_DECL:
      if (context != NULL && context->dpi != NULL
	  && DECL_CONTEXT (loc) == context->dpi->fndecl)
	{
	  /* We are generating code for a DWARF procedure and we want to access
	     one of its arguments: find the appropriate argument offset and let
	     the resolve_args_picking pass compute the offset that complies
	     with the stack frame size.  */
	  unsigned i = 0;
	  tree cursor;

	  for (cursor = DECL_ARGUMENTS (context->dpi->fndecl);
	       cursor != NULL_TREE && cursor != loc;
	       cursor = TREE_CHAIN (cursor), ++i)
	    ;
	  /* If we are translating a DWARF procedure, all referenced parameters
	     must belong to the current function.  */
	  gcc_assert (cursor != NULL_TREE);

	  ret = new_loc_descr (DW_OP_pick, i, 0);
	  ret->frame_offset_rel = 1;
	  break;
	}
      /* FALLTHRU */

    case RESULT_DECL:
      if (DECL_HAS_VALUE_EXPR_P (loc))
	{
	  tree value_expr = DECL_VALUE_EXPR (loc);

	  /* Non-local frame structures are DECL_IGNORED_P variables so we need
	     to wait until they get an RTX in order to reference them.  */
	  if (early_dwarf
	      && TREE_CODE (value_expr) == COMPONENT_REF
	      && VAR_P (TREE_OPERAND (value_expr, 0))
	      && DECL_NONLOCAL_FRAME (TREE_OPERAND (value_expr, 0)))
	    ;
	  else
	    return loc_list_from_tree_1 (value_expr, want_address, context);
	}

      /* FALLTHRU */

    case FUNCTION_DECL:
      {
	rtx rtl;
	var_loc_list *loc_list = lookup_decl_loc (loc);

	if (loc_list && loc_list->first)
	  {
	    list_ret = dw_loc_list (loc_list, loc, want_address);
	    have_address = want_address != 0;
	    break;
	  }
	rtl = rtl_for_decl_location (loc);
	if (rtl == NULL_RTX)
	  {
	    if (TREE_CODE (loc) != FUNCTION_DECL
		&& early_dwarf
		&& want_address != 1
		&& ! DECL_IGNORED_P (loc)
		&& (INTEGRAL_TYPE_P (TREE_TYPE (loc))
		    || POINTER_TYPE_P (TREE_TYPE (loc)))
		&& (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (loc)))
		    <= DWARF2_ADDR_SIZE))
	      {
		dw_die_ref ref = lookup_decl_die (loc);
		if (ref)
		  {
		    ret = new_loc_descr (DW_OP_GNU_variable_value, 0, 0);
		    ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
		    ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
		    ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
		  }
		else if (current_function_decl
			 && DECL_CONTEXT (loc) == current_function_decl)
		  {
		    ret = new_loc_descr (DW_OP_GNU_variable_value, 0, 0);
		    ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
		    ret->dw_loc_oprnd1.v.val_decl_ref = loc;
		  }
		break;
	      }
	    expansion_failed (loc, NULL_RTX, "DECL has no RTL");
	    return 0;
	  }
	else if (CONST_INT_P (rtl))
	  {
	    HOST_WIDE_INT val = INTVAL (rtl);
	    if (TYPE_UNSIGNED (TREE_TYPE (loc)))
	      val &= GET_MODE_MASK (DECL_MODE (loc));
	    ret = int_loc_descriptor (val);
	  }
	else if (GET_CODE (rtl) == CONST_STRING)
	  {
	    expansion_failed (loc, NULL_RTX, "CONST_STRING");
	    return 0;
	  }
	else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
          ret = new_addr_loc_descr (rtl, dtprel_false);
	else
	  {
	    machine_mode mode, mem_mode;

	    /* Certain constructs can only be represented at top-level.  */
	    if (want_address == 2)
	      {
		ret = loc_descriptor (rtl, VOIDmode,
				      VAR_INIT_STATUS_INITIALIZED);
		have_address = 1;
	      }
	    else
	      {
		mode = GET_MODE (rtl);
		mem_mode = VOIDmode;
		if (MEM_P (rtl))
		  {
		    mem_mode = mode;
		    mode = get_address_mode (rtl);
		    rtl = XEXP (rtl, 0);
		    have_address = 1;
		  }
		ret = mem_loc_descriptor (rtl, mode, mem_mode,
					  VAR_INIT_STATUS_INITIALIZED);
	      }
	    if (!ret)
	      expansion_failed (loc, rtl,
				"failed to produce loc descriptor for rtl");
	  }
      }
      break;

    case MEM_REF:
      if (!integer_zerop (TREE_OPERAND (loc, 1)))
	{
	  have_address = 1;
	  goto do_plus;
	}
      /* Fallthru.  */
    case INDIRECT_REF:
      list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
      have_address = 1;
      break;

    case TARGET_MEM_REF:
    case SSA_NAME:
    case DEBUG_EXPR_DECL:
      return NULL;

    case COMPOUND_EXPR:
      return loc_list_from_tree_1 (TREE_OPERAND (loc, 1), want_address,
				   context);

    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
    case SAVE_EXPR:
    case MODIFY_EXPR:
    case NON_LVALUE_EXPR:
      return loc_list_from_tree_1 (TREE_OPERAND (loc, 0), want_address,
				   context);

    case COMPONENT_REF:
    case BIT_FIELD_REF:
    case ARRAY_REF:
    case ARRAY_RANGE_REF:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      {
	tree obj, offset;
	poly_int64 bitsize, bitpos, bytepos;
	machine_mode mode;
	int unsignedp, reversep, volatilep = 0;

	obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
				   &unsignedp, &reversep, &volatilep);

	gcc_assert (obj != loc);

	list_ret = loc_list_from_tree_1 (obj,
					 want_address == 2
					 && known_eq (bitpos, 0)
					 && !offset ? 2 : 1,
					 context);
	/* TODO: We can extract value of the small expression via shifting even
	   for nonzero bitpos.  */
	if (list_ret == 0)
	  return 0;
	if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
	    || !multiple_p (bitsize, BITS_PER_UNIT))
	  {
	    expansion_failed (loc, NULL_RTX,
			      "bitfield access");
	    return 0;
	  }

	if (offset != NULL_TREE)
	  {
	    /* Variable offset.  */
	    list_ret1 = loc_list_from_tree_1 (offset, 0, context);
	    if (list_ret1 == 0)
	      return 0;
	    add_loc_list (&list_ret, list_ret1);
	    if (!list_ret)
	      return 0;
	    add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
	  }

	HOST_WIDE_INT value;
	if (bytepos.is_constant (&value) && value > 0)
	  add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst,
							  value, 0));
	else if (maybe_ne (bytepos, 0))
	  loc_list_plus_const (list_ret, bytepos);

	have_address = 1;
	break;
      }

    case INTEGER_CST:
      if ((want_address || !tree_fits_shwi_p (loc))
	  && (ret = cst_pool_loc_descr (loc)))
	have_address = 1;
      else if (want_address == 2
	       && tree_fits_shwi_p (loc)
	       && (ret = address_of_int_loc_descriptor
	       		   (int_size_in_bytes (TREE_TYPE (loc)),
	       		    tree_to_shwi (loc))))
	have_address = 1;
      else if (tree_fits_shwi_p (loc))
	ret = int_loc_descriptor (tree_to_shwi (loc));
      else if (tree_fits_uhwi_p (loc))
	ret = uint_loc_descriptor (tree_to_uhwi (loc));
      else
	{
	  expansion_failed (loc, NULL_RTX,
			    "Integer operand is not host integer");
	  return 0;
	}
      break;

    case POLY_INT_CST:
      {
	if (want_address)
	  {
	    expansion_failed (loc, NULL_RTX,
			      "constant address with a runtime component");
	    return 0;
	  }
	poly_int64 value;
	if (!poly_int_tree_p (loc, &value))
	  {
	    expansion_failed (loc, NULL_RTX, "constant too big");
	    return 0;
	  }
	ret = int_loc_descriptor (value);
      }
      break;

    case CONSTRUCTOR:
    case REAL_CST:
    case STRING_CST:
    case COMPLEX_CST:
      if ((ret = cst_pool_loc_descr (loc)))
	have_address = 1;
      else if (TREE_CODE (loc) == CONSTRUCTOR)
	{
	  tree type = TREE_TYPE (loc);
	  unsigned HOST_WIDE_INT size = int_size_in_bytes (type);
	  unsigned HOST_WIDE_INT offset = 0;
	  unsigned HOST_WIDE_INT cnt;
	  constructor_elt *ce;

	  if (TREE_CODE (type) == RECORD_TYPE)
	    {
	      /* This is very limited, but it's enough to output
		 pointers to member functions, as long as the
		 referenced function is defined in the current
		 translation unit.  */
	      FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc), cnt, ce)
		{
		  tree val = ce->value;

		  tree field = ce->index;

		  if (val)
		    STRIP_NOPS (val);

		  if (!field || DECL_BIT_FIELD (field))
		    {
		      expansion_failed (loc, NULL_RTX,
					"bitfield in record type constructor");
		      size = offset = (unsigned HOST_WIDE_INT)-1;
		      ret = NULL;
		      break;
		    }

		  HOST_WIDE_INT fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
		  unsigned HOST_WIDE_INT pos = int_byte_position (field);
		  gcc_assert (pos + fieldsize <= size);
		  if (pos < offset)
		    {
		      expansion_failed (loc, NULL_RTX,
					"out-of-order fields in record constructor");
		      size = offset = (unsigned HOST_WIDE_INT)-1;
		      ret = NULL;
		      break;
		    }
		  if (pos > offset)
		    {
		      ret1 = new_loc_descr (DW_OP_piece, pos - offset, 0);
		      add_loc_descr (&ret, ret1);
		      offset = pos;
		    }
		  if (val && fieldsize != 0)
		    {
		      ret1 = loc_descriptor_from_tree (val, want_address, context);
		      if (!ret1)
			{
			  expansion_failed (loc, NULL_RTX,
					    "unsupported expression in field");
			  size = offset = (unsigned HOST_WIDE_INT)-1;
			  ret = NULL;
			  break;
			}
		      add_loc_descr (&ret, ret1);
		    }
		  if (fieldsize)
		    {
		      ret1 = new_loc_descr (DW_OP_piece, fieldsize, 0);
		      add_loc_descr (&ret, ret1);
		      offset = pos + fieldsize;
		    }
		}

	      if (offset != size)
		{
		  ret1 = new_loc_descr (DW_OP_piece, size - offset, 0);
		  add_loc_descr (&ret, ret1);
		  offset = size;
		}

	      have_address = !!want_address;
	    }
	  else
	    expansion_failed (loc, NULL_RTX,
			      "constructor of non-record type");
	}
      else
      /* We can construct small constants here using int_loc_descriptor.  */
	expansion_failed (loc, NULL_RTX,
			  "constructor or constant not in constant pool");
      break;

    case TRUTH_AND_EXPR:
    case TRUTH_ANDIF_EXPR:
    case BIT_AND_EXPR:
      op = DW_OP_and;
      goto do_binop;

    case TRUTH_XOR_EXPR:
    case BIT_XOR_EXPR:
      op = DW_OP_xor;
      goto do_binop;

    case TRUTH_OR_EXPR:
    case TRUTH_ORIF_EXPR:
    case BIT_IOR_EXPR:
      op = DW_OP_or;
      goto do_binop;

    case EXACT_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case TRUNC_DIV_EXPR:
      /* Turn a divide by a power of 2 into a shift when possible.  */
      if (TYPE_UNSIGNED (TREE_TYPE (loc))
	  && tree_fits_uhwi_p (TREE_OPERAND (loc, 1)))
	{
	  const int log2 = exact_log2 (tree_to_uhwi (TREE_OPERAND (loc, 1)));
	  if (log2 > 0)
	    {
	      list_ret
		= loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
	      if (list_ret == 0)
		return 0;

	      add_loc_descr_to_each (list_ret, uint_loc_descriptor (log2));
	      add_loc_descr_to_each (list_ret,
				     new_loc_descr (DW_OP_shr, 0, 0));
	      break;
	    }
	}

      /* fall through */

    case CEIL_DIV_EXPR:
    case ROUND_DIV_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (loc)))
	{
	  enum machine_mode mode = TYPE_MODE (TREE_TYPE (loc));
	  scalar_int_mode int_mode;

	  if ((dwarf_strict && dwarf_version < 5)
	      || !is_a <scalar_int_mode> (mode, &int_mode))
	    return 0;

	  /* We can use a signed divide if the sign bit is not set.  */
	  if (GET_MODE_SIZE (int_mode) < DWARF2_ADDR_SIZE)
	    {
	      op = DW_OP_div;
	      goto do_binop;
	    }

	  list_ret = typed_binop_from_tree (DW_OP_div, loc,
					    base_type_for_mode (int_mode, 1),
					    int_mode, context);
	  break;
	}
      op = DW_OP_div;
      goto do_binop;

    case MINUS_EXPR:
      op = DW_OP_minus;
      goto do_binop;

    case FLOOR_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      if (TYPE_UNSIGNED (TREE_TYPE (loc)))
	{
	  op = DW_OP_mod;
	  goto do_binop;
	}
      list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
      list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
      if (list_ret == 0 || list_ret1 == 0)
	return 0;

      add_loc_list (&list_ret, list_ret1);
      if (list_ret == 0)
	return 0;
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
      break;

    case MULT_EXPR:
      op = DW_OP_mul;
      goto do_binop;

    case LSHIFT_EXPR:
      op = DW_OP_shl;
      goto do_binop;

    case RSHIFT_EXPR:
      op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
      goto do_binop;

    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
    do_plus:
      if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
	{
	  /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
	     smarter to encode their opposite.  The DW_OP_plus_uconst operation
	     takes 1 + X bytes, X being the size of the ULEB128 addend.  On the
	     other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
	     bytes, Y being the size of the operation that pushes the opposite
	     of the addend.  So let's choose the smallest representation.  */
	  const tree tree_addend = TREE_OPERAND (loc, 1);
	  offset_int wi_addend;
	  HOST_WIDE_INT shwi_addend;
	  dw_loc_descr_ref loc_naddend;

	  list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
	  if (list_ret == 0)
	    return 0;

	  /* Try to get the literal to push.  It is the opposite of the addend,
	     so as we rely on wrapping during DWARF evaluation, first decode
	     the literal as a "DWARF-sized" signed number.  */
	  wi_addend = wi::to_offset (tree_addend);
	  wi_addend = wi::sext (wi_addend, DWARF2_ADDR_SIZE * 8);
	  shwi_addend = wi_addend.to_shwi ();
	  loc_naddend = (shwi_addend != INTTYPE_MINIMUM (HOST_WIDE_INT))
			? int_loc_descriptor (-shwi_addend)
			: NULL;

	  if (loc_naddend != NULL
	      && ((unsigned) size_of_uleb128 (shwi_addend)
	          > size_of_loc_descr (loc_naddend)))
	    {
	      add_loc_descr_to_each (list_ret, loc_naddend);
	      add_loc_descr_to_each (list_ret,
				     new_loc_descr (DW_OP_minus, 0, 0));
	    }
	  else
	    {
	      for (dw_loc_descr_ref loc_cur = loc_naddend; loc_cur != NULL; )
		{
		  loc_naddend = loc_cur;
		  loc_cur = loc_cur->dw_loc_next;
		  ggc_free (loc_naddend);
		}
	      loc_list_plus_const (list_ret, wi_addend.to_shwi ());
	    }
	  break;
	}

      op = DW_OP_plus;
      goto do_binop;

    case LE_EXPR:
      op = DW_OP_le;
      goto do_comp_binop;

    case GE_EXPR:
      op = DW_OP_ge;
      goto do_comp_binop;

    case LT_EXPR:
      op = DW_OP_lt;
      goto do_comp_binop;

    case GT_EXPR:
      op = DW_OP_gt;
      goto do_comp_binop;

    do_comp_binop:
      if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
	{
	  list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
	  list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
	  list_ret = loc_list_from_uint_comparison (list_ret, list_ret1,
						    TREE_CODE (loc));
	  break;
	}
      else
	goto do_binop;

    case EQ_EXPR:
      op = DW_OP_eq;
      goto do_binop;

    case NE_EXPR:
      op = DW_OP_ne;
      goto do_binop;

    do_binop:
      list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
      list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
      if (list_ret == 0 || list_ret1 == 0)
	return 0;

      add_loc_list (&list_ret, list_ret1);
      if (list_ret == 0)
	return 0;
      add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
      break;

    case TRUTH_NOT_EXPR:
      list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
      if (list_ret == 0)
	return 0;

      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_lit0, 0, 0));
      add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_eq, 0, 0));
      break;

    case BIT_NOT_EXPR:
      op = DW_OP_not;
      goto do_unop;

    case ABS_EXPR:
      op = DW_OP_abs;
      goto do_unop;

    case NEGATE_EXPR:
      op = DW_OP_neg;
      goto do_unop;

    do_unop:
      list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
      if (list_ret == 0)
	return 0;

      add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
      break;

    case MIN_EXPR:
    case MAX_EXPR:
      {
	const enum tree_code code =
	  TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;

	loc = build3 (COND_EXPR, TREE_TYPE (loc),
		      build2 (code, integer_type_node,
			      TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
		      TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
      }

      /* fall through */

    case COND_EXPR:
      {
	dw_loc_descr_ref lhs
	  = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
	dw_loc_list_ref rhs
	  = loc_list_from_tree_1 (TREE_OPERAND (loc, 2), 0, context);
	dw_loc_descr_ref bra_node, jump_node, tmp;

	/* DW_OP_bra is branch-on-nonzero so avoid doing useless work.  */
	if (TREE_CODE (TREE_OPERAND (loc, 0)) == NE_EXPR
	    && integer_zerop (TREE_OPERAND (TREE_OPERAND (loc, 0), 1)))
	  list_ret
	    = loc_list_from_tree_1 (TREE_OPERAND (TREE_OPERAND (loc, 0), 0),
				    0, context);
	/* Likewise, swap the operands for a logically negated condition.  */
	else if (TREE_CODE (TREE_OPERAND (loc, 0)) == TRUTH_NOT_EXPR)
	  {
	    lhs = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0, context);
	    rhs = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
	    list_ret
	      = loc_list_from_tree_1 (TREE_OPERAND (TREE_OPERAND (loc, 0), 0),
				      0, context);
	  }
	else
	  list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
	if (list_ret == 0 || lhs == 0 || rhs == 0)
	  return 0;

	bra_node = new_loc_descr (DW_OP_bra, 0, 0);
	add_loc_descr_to_each (list_ret, bra_node);

	add_loc_list (&list_ret, rhs);
	jump_node = new_loc_descr (DW_OP_skip, 0, 0);
	add_loc_descr_to_each (list_ret, jump_node);

	add_loc_descr_to_each (list_ret, lhs);
	bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
	bra_node->dw_loc_oprnd1.v.val_loc = lhs;

	/* ??? Need a node to point the skip at.  Use a nop.  */
	tmp = new_loc_descr (DW_OP_nop, 0, 0);
	add_loc_descr_to_each (list_ret, tmp);
	jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
	jump_node->dw_loc_oprnd1.v.val_loc = tmp;
      }
      break;

    case FIX_TRUNC_EXPR:
      return 0;

    case COMPOUND_LITERAL_EXPR:
      return loc_list_from_tree_1 (COMPOUND_LITERAL_EXPR_DECL (loc),
				   0, context);

    default:
      /* Leave front-end specific codes as simply unknown.  This comes
	 up, for instance, with the C STMT_EXPR.  */
      if ((unsigned int) TREE_CODE (loc)
	  >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
	{
	  expansion_failed (loc, NULL_RTX,
			    "language specific tree node");
	  return 0;
	}

      /* Otherwise this is a generic code; we should just lists all of
	 these explicitly.  We forgot one.  */
      if (flag_checking)
	gcc_unreachable ();

      /* In a release build, we want to degrade gracefully: better to
	 generate incomplete debugging information than to crash.  */
      return NULL;
    }

  if (!ret && !list_ret)
    return 0;

  if (want_address == 2 && !have_address
      && (dwarf_version >= 4 || !dwarf_strict))
    {
      if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
	{
	  expansion_failed (loc, NULL_RTX,
			    "DWARF address size mismatch");
	  return 0;
	}
      if (ret)
	add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
      else
	add_loc_descr_to_each (list_ret,
			       new_loc_descr (DW_OP_stack_value, 0, 0));
      have_address = 1;
    }
  /* Show if we can't fill the request for an address.  */
  if (want_address && !have_address)
    {
      expansion_failed (loc, NULL_RTX,
			"Want address and only have value");
      return 0;
    }

  gcc_assert (!ret || !list_ret);

  /* If we've got an address and don't want one, dereference.  */
  if (!want_address && have_address)
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
      enum machine_mode mode = TYPE_MODE (TREE_TYPE (loc));
      scalar_int_mode int_mode;
      dw_die_ref type_die;
      dw_loc_descr_ref deref;

      /* If the size is greater than DWARF2_ADDR_SIZE, bail out.  */
      if (size > DWARF2_ADDR_SIZE || size == -1)
	{
	  expansion_failed (loc, NULL_RTX,
			    "DWARF address size mismatch");
	  return 0;
	}

      /* If it is equal to DWARF2_ADDR_SIZE, extension does not matter.  */
      else if (size == DWARF2_ADDR_SIZE)
	deref = new_loc_descr (DW_OP_deref, size, 0);

      /* If it is lower than DWARF2_ADDR_SIZE, DW_OP_deref_size will zero-
	 extend the value, which is really OK for unsigned types only.  */
      else if (!(context && context->strict_signedness)
	       || TYPE_UNSIGNED (TREE_TYPE (loc))
	       || (dwarf_strict && dwarf_version < 5)
	       || !is_a <scalar_int_mode> (mode, &int_mode)
	       || !(type_die = base_type_for_mode (mode, false)))
	deref = new_loc_descr (DW_OP_deref_size, size, 0);

      /* Use DW_OP_deref_type for signed integral types if possible, but
	 convert back to the generic type to avoid type mismatches later.  */
      else
	{
	  deref = new_loc_descr (dwarf_OP (DW_OP_deref_type), size, 0);
	  deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
	  deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
	  deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
	  add_loc_descr (&deref,
			 new_loc_descr (dwarf_OP (DW_OP_convert), 0, 0));
	}

      if (ret)
	add_loc_descr (&ret, deref);
      else
	add_loc_descr_to_each (list_ret, deref);
    }

  if (ret)
    list_ret = new_loc_list (ret, NULL, 0, NULL, 0, NULL);

  return list_ret;
}

/* Likewise, but strip useless DW_OP_nop operations in the resulting
   expressions.  */

static dw_loc_list_ref
loc_list_from_tree (tree loc, int want_address,
		    struct loc_descr_context *context)
{
  dw_loc_list_ref result = loc_list_from_tree_1 (loc, want_address, context);

  for (dw_loc_list_ref loc_cur = result;
       loc_cur != NULL; loc_cur = loc_cur->dw_loc_next)
    loc_descr_without_nops (loc_cur->expr);
  return result;
}

/* Same as above but return only single location expression.  */
static dw_loc_descr_ref
loc_descriptor_from_tree (tree loc, int want_address,
			  struct loc_descr_context *context)
{
  dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
  if (!ret)
    return NULL;
  if (ret->dw_loc_next)
    {
      expansion_failed (loc, NULL_RTX,
			"Location list where only loc descriptor needed");
      return NULL;
    }
  return ret->expr;
}

/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
   pointer to the declared type for the relevant field variable, or return
   `integer_type_node' if the given node turns out to be an
   ERROR_MARK node.  */

static inline tree
field_type (const_tree decl)
{
  tree type;

  if (TREE_CODE (decl) == ERROR_MARK)
    return integer_type_node;

  type = DECL_BIT_FIELD_TYPE (decl);
  if (type == NULL_TREE)
    type = TREE_TYPE (decl);

  return type;
}

/* Given a pointer to a tree node, return the alignment in bits for
   it, or else return BITS_PER_WORD if the node actually turns out to
   be an ERROR_MARK node.  */

static inline unsigned
simple_type_align_in_bits (const_tree type)
{
  return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
}

static inline unsigned
simple_decl_align_in_bits (const_tree decl)
{
  return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
}

/* Return the result of rounding T up to ALIGN.  */

static inline offset_int
round_up_to_align (const offset_int &t, unsigned int align)
{
  return wi::udiv_trunc (t + align - 1, align) * align;
}

/* Helper structure for RECORD_TYPE processing.  */
struct vlr_context
{
  /* Root RECORD_TYPE.  It is needed to generate data member location
     descriptions in variable-length records (VLR), but also to cope with
     variants, which are composed of nested structures multiplexed with
     QUAL_UNION_TYPE nodes.  Each time such a structure is passed to a
     function processing a FIELD_DECL, it is required to be non null.  */
  tree struct_type;

  /* When generating a variant part in a RECORD_TYPE (i.e. a nested
     QUAL_UNION_TYPE), this holds an expression that computes the offset for
     this variant part as part of the root record (in storage units).  For
     regular records, it must be NULL_TREE.  */
  tree variant_part_offset;
};

/* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
   addressed byte of the "containing object" for the given FIELD_DECL. If
   possible, return a native constant through CST_OFFSET (in which case NULL is
   returned); otherwise return a DWARF expression that computes the offset.

   Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
   that offset is, either because the argument turns out to be a pointer to an
   ERROR_MARK node, or because the offset expression is too complex for us.

   CTX is required: see the comment for VLR_CONTEXT.  */

static dw_loc_descr_ref
field_byte_offset (const_tree decl, struct vlr_context *ctx,
		   HOST_WIDE_INT *cst_offset)
{
  tree tree_result;
  dw_loc_list_ref loc_result;

  *cst_offset = 0;

  if (TREE_CODE (decl) == ERROR_MARK)
    return NULL;
  else
    gcc_assert (TREE_CODE (decl) == FIELD_DECL);

  /* We cannot handle variable bit offsets at the moment, so abort if it's the
     case.  */
  if (TREE_CODE (DECL_FIELD_BIT_OFFSET (decl)) != INTEGER_CST)
    return NULL;

  /* We used to handle only constant offsets in all cases.  Now, we handle
     properly dynamic byte offsets only when PCC bitfield type doesn't
     matter.  */
  if (PCC_BITFIELD_TYPE_MATTERS
      && DECL_BIT_FIELD_TYPE (decl)
      && TREE_CODE (DECL_FIELD_OFFSET (decl)) == INTEGER_CST)
    {
      offset_int object_offset_in_bits;
      offset_int object_offset_in_bytes;
      offset_int bitpos_int;
      tree type;
      tree field_size_tree;
      offset_int deepest_bitpos;
      offset_int field_size_in_bits;
      unsigned int type_align_in_bits;
      unsigned int decl_align_in_bits;
      offset_int type_size_in_bits;

      bitpos_int = wi::to_offset (bit_position (decl));
      type = field_type (decl);
      type_size_in_bits = offset_int_type_size_in_bits (type);
      type_align_in_bits = simple_type_align_in_bits (type);

      field_size_tree = DECL_SIZE (decl);

      /* The size could be unspecified if there was an error, or for
	 a flexible array member.  */
      if (!field_size_tree)
	field_size_tree = bitsize_zero_node;

      /* If the size of the field is not constant, use the type size.  */
      if (TREE_CODE (field_size_tree) == INTEGER_CST)
	field_size_in_bits = wi::to_offset (field_size_tree);
      else
	field_size_in_bits = type_size_in_bits;

      decl_align_in_bits = simple_decl_align_in_bits (decl);

      /* The GCC front-end doesn't make any attempt to keep track of the
	 starting bit offset (relative to the start of the containing
	 structure type) of the hypothetical "containing object" for a
	 bit-field.  Thus, when computing the byte offset value for the
	 start of the "containing object" of a bit-field, we must deduce
	 this information on our own. This can be rather tricky to do in
	 some cases.  For example, handling the following structure type
	 definition when compiling for an i386/i486 target (which only
	 aligns long long's to 32-bit boundaries) can be very tricky:

	 struct S { int field1; long long field2:31; };

	 Fortunately, there is a simple rule-of-thumb which can be used
	 in such cases.  When compiling for an i386/i486, GCC will
	 allocate 8 bytes for the structure shown above.  It decides to
	 do this based upon one simple rule for bit-field allocation.
	 GCC allocates each "containing object" for each bit-field at
	 the first (i.e. lowest addressed) legitimate alignment boundary
	 (based upon the required minimum alignment for the declared
	 type of the field) which it can possibly use, subject to the
	 condition that there is still enough available space remaining
	 in the containing object (when allocated at the selected point)
	 to fully accommodate all of the bits of the bit-field itself.

	 This simple rule makes it obvious why GCC allocates 8 bytes for
	 each object of the structure type shown above.  When looking
	 for a place to allocate the "containing object" for `field2',
	 the compiler simply tries to allocate a 64-bit "containing
	 object" at each successive 32-bit boundary (starting at zero)
	 until it finds a place to allocate that 64- bit field such that
	 at least 31 contiguous (and previously unallocated) bits remain
	 within that selected 64 bit field.  (As it turns out, for the
	 example above, the compiler finds it is OK to allocate the
	 "containing object" 64-bit field at bit-offset zero within the
	 structure type.)

	 Here we attempt to work backwards from the limited set of facts
	 we're given, and we try to deduce from those facts, where GCC
	 must have believed that the containing object started (within
	 the structure type). The value we deduce is then used (by the
	 callers of this routine) to generate DW_AT_location and
	 DW_AT_bit_offset attributes for fields (both bit-fields and, in
	 the case of DW_AT_location, regular fields as well).  */

      /* Figure out the bit-distance from the start of the structure to
	 the "deepest" bit of the bit-field.  */
      deepest_bitpos = bitpos_int + field_size_in_bits;

      /* This is the tricky part.  Use some fancy footwork to deduce
	 where the lowest addressed bit of the containing object must
	 be.  */
      object_offset_in_bits = deepest_bitpos - type_size_in_bits;

      /* Round up to type_align by default.  This works best for
	 bitfields.  */
      object_offset_in_bits
	= round_up_to_align (object_offset_in_bits, type_align_in_bits);

      if (wi::gtu_p (object_offset_in_bits, bitpos_int))
	{
	  object_offset_in_bits = deepest_bitpos - type_size_in_bits;

	  /* Round up to decl_align instead.  */
	  object_offset_in_bits
	    = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
	}

      object_offset_in_bytes
	= wi::lrshift (object_offset_in_bits, LOG2_BITS_PER_UNIT);
      if (ctx->variant_part_offset == NULL_TREE)
	{
	  *cst_offset = object_offset_in_bytes.to_shwi ();
	  return NULL;
	}
      tree_result = wide_int_to_tree (sizetype, object_offset_in_bytes);
    }
  else
    tree_result = byte_position (decl);

  if (ctx->variant_part_offset != NULL_TREE)
    tree_result = fold_build2 (PLUS_EXPR, TREE_TYPE (tree_result),
			       ctx->variant_part_offset, tree_result);

  /* If the byte offset is a constant, it's simplier to handle a native
     constant rather than a DWARF expression.  */
  if (TREE_CODE (tree_result) == INTEGER_CST)
    {
      *cst_offset = wi::to_offset (tree_result).to_shwi ();
      return NULL;
    }

  struct loc_descr_context loc_ctx = {
    ctx->struct_type, /* context_type */
    NULL_TREE,	      /* base_decl */
    NULL,	      /* dpi */
    false,	      /* placeholder_arg */
    false,	      /* placeholder_seen */
    false	      /* strict_signedness */
  };
  loc_result = loc_list_from_tree (tree_result, 0, &loc_ctx);

  /* We want a DWARF expression: abort if we only have a location list with
     multiple elements.  */
  if (!loc_result || !single_element_loc_list_p (loc_result))
    return NULL;
  else
    return loc_result->expr;
}

/* The following routines define various Dwarf attributes and any data
   associated with them.  */

/* Add a location description attribute value to a DIE.

   This emits location attributes suitable for whole variables and
   whole parameters.  Note that the location attributes for struct fields are
   generated by the routine `data_member_location_attribute' below.  */

static inline void
add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
			     dw_loc_list_ref descr)
{
  bool check_no_locviews = true;
  if (descr == 0)
    return;
  if (single_element_loc_list_p (descr))
    add_AT_loc (die, attr_kind, descr->expr);
  else
    {
      add_AT_loc_list (die, attr_kind, descr);
      gcc_assert (descr->ll_symbol);
      if (attr_kind == DW_AT_location && descr->vl_symbol
	  && dwarf2out_locviews_in_attribute ())
	{
	  add_AT_view_list (die, DW_AT_GNU_locviews);
	  check_no_locviews = false;
	}
    }

  if (check_no_locviews)
    gcc_assert (!get_AT (die, DW_AT_GNU_locviews));
}

/* Add DW_AT_accessibility attribute to DIE if needed.  */

static void
add_accessibility_attribute (dw_die_ref die, tree decl)
{
  /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
     children, otherwise the default is DW_ACCESS_public.  In DWARF2
     the default has always been DW_ACCESS_public.  */
  if (TREE_PROTECTED (decl))
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
  else if (TREE_PRIVATE (decl))
    {
      if (dwarf_version == 2
	  || die->die_parent == NULL
	  || die->die_parent->die_tag != DW_TAG_class_type)
	add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
    }
  else if (dwarf_version > 2
	   && die->die_parent
	   && die->die_parent->die_tag == DW_TAG_class_type)
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
}

/* Attach the specialized form of location attribute used for data members of
   struct and union types.  In the special case of a FIELD_DECL node which
   represents a bit-field, the "offset" part of this special location
   descriptor must indicate the distance in bytes from the lowest-addressed
   byte of the containing struct or union type to the lowest-addressed byte of
   the "containing object" for the bit-field.  (See the `field_byte_offset'
   function above).

   For any given bit-field, the "containing object" is a hypothetical object
   (of some integral or enum type) within which the given bit-field lives.  The
   type of this hypothetical "containing object" is always the same as the
   declared type of the individual bit-field itself (for GCC anyway... the
   DWARF spec doesn't actually mandate this).  Note that it is the size (in
   bytes) of the hypothetical "containing object" which will be given in the
   DW_AT_byte_size attribute for this bit-field.  (See the
   `byte_size_attribute' function below.)  It is also used when calculating the
   value of the DW_AT_bit_offset attribute.  (See the `bit_offset_attribute'
   function below.)

   CTX is required: see the comment for VLR_CONTEXT.  */

static void
add_data_member_location_attribute (dw_die_ref die,
				    tree decl,
				    struct vlr_context *ctx)
{
  HOST_WIDE_INT offset;
  dw_loc_descr_ref loc_descr = 0;

  if (TREE_CODE (decl) == TREE_BINFO)
    {
      /* We're working on the TAG_inheritance for a base class.  */
      if (BINFO_VIRTUAL_P (decl) && is_cxx ())
	{
	  /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
	     aren't at a fixed offset from all (sub)objects of the same
	     type.  We need to extract the appropriate offset from our
	     vtable.  The following dwarf expression means

	       BaseAddr = ObAddr + *((*ObAddr) - Offset)

	     This is specific to the V3 ABI, of course.  */

	  dw_loc_descr_ref tmp;

	  /* Make a copy of the object address.  */
	  tmp = new_loc_descr (DW_OP_dup, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Extract the vtable address.  */
	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Calculate the address of the offset.  */
	  offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
	  gcc_assert (offset < 0);

	  tmp = int_loc_descriptor (-offset);
	  add_loc_descr (&loc_descr, tmp);
	  tmp = new_loc_descr (DW_OP_minus, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Extract the offset.  */
	  tmp = new_loc_descr (DW_OP_deref, 0, 0);
	  add_loc_descr (&loc_descr, tmp);

	  /* Add it to the object address.  */
	  tmp = new_loc_descr (DW_OP_plus, 0, 0);
	  add_loc_descr (&loc_descr, tmp);
	}
      else
	offset = tree_to_shwi (BINFO_OFFSET (decl));
    }
  else
    {
      loc_descr = field_byte_offset (decl, ctx, &offset);

      if (!loc_descr)
	;

      /* If loc_descr is available, then we know the offset is dynamic.  */
      else if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
	{
	  loc_descr = NULL;
	  offset = 0;
	}

      /* Data member location evaluation starts with the base address on the
	 stack.  Compute the field offset and add it to this base address.  */
      else
	add_loc_descr (&loc_descr, new_loc_descr (DW_OP_plus, 0, 0));
    }

  if (!loc_descr)
    {
      /* While DW_AT_data_bit_offset has been added already in DWARF4,
	 e.g. GDB only added support to it in November 2016.  For DWARF5
	 we need newer debug info consumers anyway.  We might change this
	 to dwarf_version >= 4 once most consumers catched up.  */
      if (dwarf_version >= 5
	  && TREE_CODE (decl) == FIELD_DECL
	  && DECL_BIT_FIELD_TYPE (decl)
	  && (ctx->variant_part_offset == NULL_TREE
	      || TREE_CODE (ctx->variant_part_offset) == INTEGER_CST))
	{
	  tree off = bit_position (decl);
	  if (ctx->variant_part_offset)
	    off = bit_from_pos (ctx->variant_part_offset, off);
	  if (tree_fits_uhwi_p (off) && get_AT (die, DW_AT_bit_size))
	    {
	      remove_AT (die, DW_AT_byte_size);
	      remove_AT (die, DW_AT_bit_offset);
	      add_AT_unsigned (die, DW_AT_data_bit_offset, tree_to_uhwi (off));
	      return;
	    }
	}
      if (dwarf_version > 2)
	{
	  /* Don't need to output a location expression, just the constant. */
	  if (offset < 0)
	    add_AT_int (die, DW_AT_data_member_location, offset);
	  else
	    add_AT_unsigned (die, DW_AT_data_member_location, offset);
	  return;
	}
      else
	{
	  enum dwarf_location_atom op;

	  /* The DWARF2 standard says that we should assume that the structure
	     address is already on the stack, so we can specify a structure
	     field address by using DW_OP_plus_uconst.  */
	  op = DW_OP_plus_uconst;
	  loc_descr = new_loc_descr (op, offset, 0);
	}
    }

  add_AT_loc (die, DW_AT_data_member_location, loc_descr);
}

/* Writes integer values to dw_vec_const array.  */

static void
insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
{
  while (size != 0)
    {
      *dest++ = val & 0xff;
      val >>= 8;
      --size;
    }
}

/* Reads integers from dw_vec_const array.  Inverse of insert_int.  */

static HOST_WIDE_INT
extract_int (const unsigned char *src, unsigned int size)
{
  HOST_WIDE_INT val = 0;

  src += size;
  while (size != 0)
    {
      val <<= 8;
      val |= *--src & 0xff;
      --size;
    }
  return val;
}

/* Writes wide_int values to dw_vec_const array.  */

static void
insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
{
  int i;

  if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
    {
      insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
      return;
    }

  /* We'd have to extend this code to support odd sizes.  */
  gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);

  int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);

  if (WORDS_BIG_ENDIAN)
    for (i = n - 1; i >= 0; i--)
      {
	insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
	dest += sizeof (HOST_WIDE_INT);
      }
  else
    for (i = 0; i < n; i++)
      {
	insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
	dest += sizeof (HOST_WIDE_INT);
      }
}

/* Writes floating point values to dw_vec_const array.  */

static unsigned
insert_float (const_rtx rtl, unsigned char *array)
{
  long val[4];
  int i;
  scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));

  real_to_target (val, CONST_DOUBLE_REAL_VALUE (rtl), mode);

  /* real_to_target puts 32-bit pieces in each long.  Pack them.  */
  if (GET_MODE_SIZE (mode) < 4)
    {
      gcc_assert (GET_MODE_SIZE (mode) == 2);
      insert_int (val[0], 2, array);
      return 2;
    }

  for (i = 0; i < GET_MODE_SIZE (mode) / 4; i++)
    {
      insert_int (val[i], 4, array);
      array += 4;
    }
  return 4;
}

/* Attach a DW_AT_const_value attribute for a variable or a parameter which
   does not have a "location" either in memory or in a register.  These
   things can arise in GNU C when a constant is passed as an actual parameter
   to an inlined function.  They can also arise in C++ where declared
   constants do not necessarily get memory "homes".  */

static bool
add_const_value_attribute (dw_die_ref die, machine_mode mode, rtx rtl)
{
  scalar_mode int_mode;

  switch (GET_CODE (rtl))
    {
    case CONST_INT:
      {
	HOST_WIDE_INT val = INTVAL (rtl);

	if (val < 0)
	  add_AT_int (die, DW_AT_const_value, val);
	else
	  add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
      }
      return true;

    case CONST_WIDE_INT:
      if (is_int_mode (mode, &int_mode)
	  && (GET_MODE_PRECISION (int_mode)
	      & (HOST_BITS_PER_WIDE_INT - 1)) == 0)
	{
	  wide_int w = rtx_mode_t (rtl, int_mode);
	  add_AT_wide (die, DW_AT_const_value, w);
	  return true;
	}
      return false;

    case CONST_DOUBLE:
      /* Note that a CONST_DOUBLE rtx could represent either an integer or a
	 floating-point constant.  A CONST_DOUBLE is used whenever the
	 constant requires more than one word in order to be adequately
	 represented.  */
      if (TARGET_SUPPORTS_WIDE_INT == 0
	  && !SCALAR_FLOAT_MODE_P (GET_MODE (rtl)))
	add_AT_double (die, DW_AT_const_value,
		       CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
      else
	{
	  scalar_float_mode mode = as_a <scalar_float_mode> (GET_MODE (rtl));
	  unsigned int length = GET_MODE_SIZE (mode);
	  unsigned char *array = ggc_vec_alloc<unsigned char> (length);
	  unsigned int elt_size = insert_float (rtl, array);

	  add_AT_vec (die, DW_AT_const_value, length / elt_size, elt_size,
		      array);
	}
      return true;

    case CONST_VECTOR:
      {
	unsigned int length;
	if (!CONST_VECTOR_NUNITS (rtl).is_constant (&length))
	  return false;

	machine_mode mode = GET_MODE (rtl);
	/* The combination of a length and byte elt_size doesn't extend
	   naturally to boolean vectors, where several elements are packed
	   into the same byte.  */
	if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
	  return false;

	unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
	unsigned char *array
	  = ggc_vec_alloc<unsigned char> (length * elt_size);
	unsigned int i;
	unsigned char *p;
	machine_mode imode = GET_MODE_INNER (mode);

	switch (GET_MODE_CLASS (mode))
	  {
	  case MODE_VECTOR_INT:
	    for (i = 0, p = array; i < length; i++, p += elt_size)
	      {
		rtx elt = CONST_VECTOR_ELT (rtl, i);
		insert_wide_int (rtx_mode_t (elt, imode), p, elt_size);
	      }
	    break;

	  case MODE_VECTOR_FLOAT:
	    for (i = 0, p = array; i < length; i++, p += elt_size)
	      {
		rtx elt = CONST_VECTOR_ELT (rtl, i);
		insert_float (elt, p);
	      }
	    break;

	  default:
	    gcc_unreachable ();
	  }

	add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
      }
      return true;

    case CONST_STRING:
      if (dwarf_version >= 4 || !dwarf_strict)
	{
	  dw_loc_descr_ref loc_result;
	  resolve_one_addr (&rtl);
	rtl_addr:
          loc_result = new_addr_loc_descr (rtl, dtprel_false);
	  add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
	  add_AT_loc (die, DW_AT_location, loc_result);
	  vec_safe_push (used_rtx_array, rtl);
	  return true;
	}
      return false;

    case CONST:
      if (CONSTANT_P (XEXP (rtl, 0)))
	return add_const_value_attribute (die, mode, XEXP (rtl, 0));
      /* FALLTHROUGH */
    case SYMBOL_REF:
      if (!const_ok_for_output (rtl))
	return false;
      /* FALLTHROUGH */
    case LABEL_REF:
      if (dwarf_version >= 4 || !dwarf_strict)
	goto rtl_addr;
      return false;

    case PLUS:
      /* In cases where an inlined instance of an inline function is passed
	 the address of an `auto' variable (which is local to the caller) we
	 can get a situation where the DECL_RTL of the artificial local
	 variable (for the inlining) which acts as a stand-in for the
	 corresponding formal parameter (of the inline function) will look
	 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).  This is not
	 exactly a compile-time constant expression, but it isn't the address
	 of the (artificial) local variable either.  Rather, it represents the
	 *value* which the artificial local variable always has during its
	 lifetime.  We currently have no way to represent such quasi-constant
	 values in Dwarf, so for now we just punt and generate nothing.  */
      return false;

    case HIGH:
    case CONST_FIXED:
    case MINUS:
    case SIGN_EXTEND:
    case ZERO_EXTEND:
    case CONST_POLY_INT:
      return false;

    case MEM:
      if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
	  && MEM_READONLY_P (rtl)
	  && GET_MODE (rtl) == BLKmode)
	{
	  add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
	  return true;
	}
      return false;

    default:
      /* No other kinds of rtx should be possible here.  */
      gcc_unreachable ();
    }
}

/* Determine whether the evaluation of EXPR references any variables
   or functions which aren't otherwise used (and therefore may not be
   output).  */
static tree
reference_to_unused (tree * tp, int * walk_subtrees,
		     void * data ATTRIBUTE_UNUSED)
{
  if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
    *walk_subtrees = 0;

  if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
      && ! TREE_ASM_WRITTEN (*tp))
    return *tp;
  /* ???  The C++ FE emits debug information for using decls, so
     putting gcc_unreachable here falls over.  See PR31899.  For now
     be conservative.  */
  else if (!symtab->global_info_ready && VAR_P (*tp))
    return *tp;
  else if (VAR_P (*tp))
    {
      varpool_node *node = varpool_node::get (*tp);
      if (!node || !node->definition)
	return *tp;
    }
  else if (TREE_CODE (*tp) == FUNCTION_DECL
	   && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
    {
      /* The call graph machinery must have finished analyzing,
         optimizing and gimplifying the CU by now.
	 So if *TP has no call graph node associated
	 to it, it means *TP will not be emitted.  */
      if (!symtab->global_info_ready || !cgraph_node::get (*tp))
	return *tp;
    }
  else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
    return *tp;

  return NULL_TREE;
}

/* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
   for use in a later add_const_value_attribute call.  */

static rtx
rtl_for_decl_init (tree init, tree type)
{
  rtx rtl = NULL_RTX;

  STRIP_NOPS (init);

  /* If a variable is initialized with a string constant without embedded
     zeros, build CONST_STRING.  */
  if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
    {
      tree enttype = TREE_TYPE (type);
      tree domain = TYPE_DOMAIN (type);
      scalar_int_mode mode;

      if (is_int_mode (TYPE_MODE (enttype), &mode)
	  && GET_MODE_SIZE (mode) == 1
	  && domain
	  && TYPE_MAX_VALUE (domain)
	  && TREE_CODE (TYPE_MAX_VALUE (domain)) == INTEGER_CST
	  && integer_zerop (TYPE_MIN_VALUE (domain))
	  && compare_tree_int (TYPE_MAX_VALUE (domain),
			       TREE_STRING_LENGTH (init) - 1) == 0
	  && ((size_t) TREE_STRING_LENGTH (init)
	      == strlen (TREE_STRING_POINTER (init)) + 1))
	{
	  rtl = gen_rtx_CONST_STRING (VOIDmode,
				      ggc_strdup (TREE_STRING_POINTER (init)));
	  rtl = gen_rtx_MEM (BLKmode, rtl);
	  MEM_READONLY_P (rtl) = 1;
	}
    }
  /* Other aggregates, and complex values, could be represented using
     CONCAT: FIXME!
     If this changes, please adjust tree_add_const_value_attribute
     so that for early_dwarf it will for such initializers mangle referenced
     decls.  */
  else if (AGGREGATE_TYPE_P (type)
	   || (TREE_CODE (init) == VIEW_CONVERT_EXPR
	       && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
	   || TREE_CODE (type) == COMPLEX_TYPE)
    ;
  /* Vectors only work if their mode is supported by the target.
     FIXME: generic vectors ought to work too.  */
  else if (TREE_CODE (type) == VECTOR_TYPE
	   && !VECTOR_MODE_P (TYPE_MODE (type)))
    ;
  /* If the initializer is something that we know will expand into an
     immediate RTL constant, expand it now.  We must be careful not to
     reference variables which won't be output.  */
  else if (initializer_constant_valid_p (init, type)
	   && ! walk_tree (&init, reference_to_unused, NULL, NULL))
    {
      /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
	 possible.  */
      if (TREE_CODE (type) == VECTOR_TYPE)
	switch (TREE_CODE (init))
	  {
	  case VECTOR_CST:
	    break;
	  case CONSTRUCTOR:
	    if (TREE_CONSTANT (init))
	      {
		vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
		bool constant_p = true;
		tree value;
		unsigned HOST_WIDE_INT ix;

		/* Even when ctor is constant, it might contain non-*_CST
		   elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
		   belong into VECTOR_CST nodes.  */
		FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
		  if (!CONSTANT_CLASS_P (value))
		    {
		      constant_p = false;
		      break;
		    }

		if (constant_p)
		  {
		    init = build_vector_from_ctor (type, elts);
		    break;
		  }
	      }
	    /* FALLTHRU */

	  default:
	    return NULL;
	  }

      rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);

      /* If expand_expr returns a MEM, it wasn't immediate.  */
      gcc_assert (!rtl || !MEM_P (rtl));
    }

  return rtl;
}

/* Generate RTL for the variable DECL to represent its location.  */

static rtx
rtl_for_decl_location (tree decl)
{
  rtx rtl;

  /* Here we have to decide where we are going to say the parameter "lives"
     (as far as the debugger is concerned).  We only have a couple of
     choices.  GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.

     DECL_RTL normally indicates where the parameter lives during most of the
     activation of the function.  If optimization is enabled however, this
     could be either NULL or else a pseudo-reg.  Both of those cases indicate
     that the parameter doesn't really live anywhere (as far as the code
     generation parts of GCC are concerned) during most of the function's
     activation.  That will happen (for example) if the parameter is never
     referenced within the function.

     We could just generate a location descriptor here for all non-NULL
     non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
     a little nicer than that if we also consider DECL_INCOMING_RTL in cases
     where DECL_RTL is NULL or is a pseudo-reg.

     Note however that we can only get away with using DECL_INCOMING_RTL as
     a backup substitute for DECL_RTL in certain limited cases.  In cases
     where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
     we can be sure that the parameter was passed using the same type as it is
     declared to have within the function, and that its DECL_INCOMING_RTL
     points us to a place where a value of that type is passed.

     In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
     we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
     because in these cases DECL_INCOMING_RTL points us to a value of some
     type which is *different* from the type of the parameter itself.  Thus,
     if we tried to use DECL_INCOMING_RTL to generate a location attribute in
     such cases, the debugger would end up (for example) trying to fetch a
     `float' from a place which actually contains the first part of a
     `double'.  That would lead to really incorrect and confusing
     output at debug-time.

     So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
     in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl).  There
     are a couple of exceptions however.  On little-endian machines we can
     get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
     not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
     an integral type that is smaller than TREE_TYPE (decl). These cases arise
     when (on a little-endian machine) a non-prototyped function has a
     parameter declared to be of type `short' or `char'.  In such cases,
     TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
     be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
     passed `int' value.  If the debugger then uses that address to fetch
     a `short' or a `char' (on a little-endian machine) the result will be
     the correct data, so we allow for such exceptional cases below.

     Note that our goal here is to describe the place where the given formal
     parameter lives during most of the function's activation (i.e. between the
     end of the prologue and the start of the epilogue).  We'll do that as best
     as we can. Note however that if the given formal parameter is modified
     sometime during the execution of the function, then a stack backtrace (at
     debug-time) will show the function as having been called with the *new*
     value rather than the value which was originally passed in.  This happens
     rarely enough that it is not a major problem, but it *is* a problem, and
     I'd like to fix it.

     A future version of dwarf2out.cc may generate two additional attributes for
     any given DW_TAG_formal_parameter DIE which will describe the "passed
     type" and the "passed location" for the given formal parameter in addition
     to the attributes we now generate to indicate the "declared type" and the
     "active location" for each parameter.  This additional set of attributes
     could be used by debuggers for stack backtraces. Separately, note that
     sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
     This happens (for example) for inlined-instances of inline function formal
     parameters which are never referenced.  This really shouldn't be
     happening.  All PARM_DECL nodes should get valid non-NULL
     DECL_INCOMING_RTL values.  FIXME.  */

  /* Use DECL_RTL as the "location" unless we find something better.  */
  rtl = DECL_RTL_IF_SET (decl);

  /* When generating abstract instances, ignore everything except
     constants, symbols living in memory, and symbols living in
     fixed registers.  */
  if (! reload_completed)
    {
      if (rtl
	  && (CONSTANT_P (rtl)
	      || (MEM_P (rtl)
	          && CONSTANT_P (XEXP (rtl, 0)))
	      || (REG_P (rtl)
	          && VAR_P (decl)
		  && TREE_STATIC (decl))))
	{
	  rtl = targetm.delegitimize_address (rtl);
	  return rtl;
	}
      rtl = NULL_RTX;
    }
  else if (TREE_CODE (decl) == PARM_DECL)
    {
      if (rtl == NULL_RTX
	  || is_pseudo_reg (rtl)
	  || (MEM_P (rtl)
	      && is_pseudo_reg (XEXP (rtl, 0))
	      && DECL_INCOMING_RTL (decl)
	      && MEM_P (DECL_INCOMING_RTL (decl))
	      && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
	{
	  tree declared_type = TREE_TYPE (decl);
	  tree passed_type = DECL_ARG_TYPE (decl);
	  machine_mode dmode = TYPE_MODE (declared_type);
	  machine_mode pmode = TYPE_MODE (passed_type);

	  /* This decl represents a formal parameter which was optimized out.
	     Note that DECL_INCOMING_RTL may be NULL in here, but we handle
	     all cases where (rtl == NULL_RTX) just below.  */
	  if (dmode == pmode)
	    rtl = DECL_INCOMING_RTL (decl);
	  else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
		   && SCALAR_INT_MODE_P (dmode)
		   && known_le (GET_MODE_SIZE (dmode), GET_MODE_SIZE (pmode))
		   && DECL_INCOMING_RTL (decl))
	    {
	      rtx inc = DECL_INCOMING_RTL (decl);
	      if (REG_P (inc))
		rtl = inc;
	      else if (MEM_P (inc))
		{
		  if (BYTES_BIG_ENDIAN)
		    rtl = adjust_address_nv (inc, dmode,
					     GET_MODE_SIZE (pmode)
					     - GET_MODE_SIZE (dmode));
		  else
		    rtl = inc;
		}
	    }
	}

      /* If the parm was passed in registers, but lives on the stack, then
	 make a big endian correction if the mode of the type of the
	 parameter is not the same as the mode of the rtl.  */
      /* ??? This is the same series of checks that are made in dbxout.cc before
	 we reach the big endian correction code there.  It isn't clear if all
	 of these checks are necessary here, but keeping them all is the safe
	 thing to do.  */
      else if (MEM_P (rtl)
	       && XEXP (rtl, 0) != const0_rtx
	       && ! CONSTANT_P (XEXP (rtl, 0))
	       /* Not passed in memory.  */
	       && !MEM_P (DECL_INCOMING_RTL (decl))
	       /* Not passed by invisible reference.  */
	       && (!REG_P (XEXP (rtl, 0))
		   || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
		   || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
#if !HARD_FRAME_POINTER_IS_ARG_POINTER
		   || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
#endif
		     )
	       /* Big endian correction check.  */
	       && BYTES_BIG_ENDIAN
	       && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
	       && known_lt (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))),
			    UNITS_PER_WORD))
	{
	  machine_mode addr_mode = get_address_mode (rtl);
	  poly_int64 offset = (UNITS_PER_WORD
			       - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));

	  rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
			     plus_constant (addr_mode, XEXP (rtl, 0), offset));
	}
    }
  else if (VAR_P (decl)
	   && rtl
	   && MEM_P (rtl)
	   && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl)))
    {
      machine_mode addr_mode = get_address_mode (rtl);
      poly_int64 offset = byte_lowpart_offset (TYPE_MODE (TREE_TYPE (decl)),
					       GET_MODE (rtl));

      /* If a variable is declared "register" yet is smaller than
	 a register, then if we store the variable to memory, it
	 looks like we're storing a register-sized value, when in
	 fact we are not.  We need to adjust the offset of the
	 storage location to reflect the actual value's bytes,
	 else gdb will not be able to display it.  */
      if (maybe_ne (offset, 0))
	rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
			   plus_constant (addr_mode, XEXP (rtl, 0), offset));
    }

  /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
     and will have been substituted directly into all expressions that use it.
     C does not have such a concept, but C++ and other languages do.  */
  if (!rtl && VAR_P (decl) && DECL_INITIAL (decl))
    rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));

  if (rtl)
    rtl = targetm.delegitimize_address (rtl);

  /* If we don't look past the constant pool, we risk emitting a
     reference to a constant pool entry that isn't referenced from
     code, and thus is not emitted.  */
  if (rtl)
    rtl = avoid_constant_pool_reference (rtl);

  /* Try harder to get a rtl.  If this symbol ends up not being emitted
     in the current CU, resolve_addr will remove the expression referencing
     it.  */
  if (rtl == NULL_RTX
      && !(early_dwarf && (flag_generate_lto || flag_generate_offload))
      && VAR_P (decl)
      && !DECL_EXTERNAL (decl)
      && TREE_STATIC (decl)
      && DECL_NAME (decl)
      && !DECL_HARD_REGISTER (decl)
      && DECL_MODE (decl) != VOIDmode)
    {
      rtl = make_decl_rtl_for_debug (decl);
      if (!MEM_P (rtl)
	  || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
	  || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
	rtl = NULL_RTX;
    }

  return rtl;
}

/* Check whether decl is a Fortran COMMON symbol.  If not, NULL_TREE is
   returned.  If so, the decl for the COMMON block is returned, and the
   value is the offset into the common block for the symbol.  */

static tree
fortran_common (tree decl, HOST_WIDE_INT *value)
{
  tree val_expr, cvar;
  machine_mode mode;
  poly_int64 bitsize, bitpos;
  tree offset;
  HOST_WIDE_INT cbitpos;
  int unsignedp, reversep, volatilep = 0;

  /* If the decl isn't a VAR_DECL, or if it isn't static, or if
     it does not have a value (the offset into the common area), or if it
     is thread local (as opposed to global) then it isn't common, and shouldn't
     be handled as such.  */
  if (!VAR_P (decl)
      || !TREE_STATIC (decl)
      || !DECL_HAS_VALUE_EXPR_P (decl)
      || !is_fortran ())
    return NULL_TREE;

  val_expr = DECL_VALUE_EXPR (decl);
  if (TREE_CODE (val_expr) != COMPONENT_REF)
    return NULL_TREE;

  cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset, &mode,
			      &unsignedp, &reversep, &volatilep);

  if (cvar == NULL_TREE
      || !VAR_P (cvar)
      || DECL_ARTIFICIAL (cvar)
      || !TREE_PUBLIC (cvar)
      /* We don't expect to have to cope with variable offsets,
	 since at present all static data must have a constant size.  */
      || !bitpos.is_constant (&cbitpos))
    return NULL_TREE;

  *value = 0;
  if (offset != NULL)
    {
      if (!tree_fits_shwi_p (offset))
	return NULL_TREE;
      *value = tree_to_shwi (offset);
    }
  if (cbitpos != 0)
    *value += cbitpos / BITS_PER_UNIT;

  return cvar;
}

/* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
   data attribute for a variable or a parameter.  We generate the
   DW_AT_const_value attribute only in those cases where the given variable
   or parameter does not have a true "location" either in memory or in a
   register.  This can happen (for example) when a constant is passed as an
   actual argument in a call to an inline function.  (It's possible that
   these things can crop up in other ways also.)  Note that one type of
   constant value which can be passed into an inlined function is a constant
   pointer.  This can happen for example if an actual argument in an inlined
   function call evaluates to a compile-time constant address.

   CACHE_P is true if it is worth caching the location list for DECL,
   so that future calls can reuse it rather than regenerate it from scratch.
   This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
   since we will need to refer to them each time the function is inlined.  */

static bool
add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p)
{
  rtx rtl;
  dw_loc_list_ref list;
  var_loc_list *loc_list;
  cached_dw_loc_list *cache;

  if (early_dwarf)
    return false;

  if (TREE_CODE (decl) == ERROR_MARK)
    return false;

  if (get_AT (die, DW_AT_location)
      || get_AT (die, DW_AT_const_value))
    return true;

  gcc_assert (VAR_P (decl) || TREE_CODE (decl) == PARM_DECL
	      || TREE_CODE (decl) == RESULT_DECL);

  /* Try to get some constant RTL for this decl, and use that as the value of
     the location.  */

  rtl = rtl_for_decl_location (decl);
  if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
      && add_const_value_attribute (die, DECL_MODE (decl), rtl))
    return true;

  /* See if we have single element location list that is equivalent to
     a constant value.  That way we are better to use add_const_value_attribute
     rather than expanding constant value equivalent.  */
  loc_list = lookup_decl_loc (decl);
  if (loc_list
      && loc_list->first
      && loc_list->first->next == NULL
      && NOTE_P (loc_list->first->loc)
      && NOTE_VAR_LOCATION (loc_list->first->loc)
      && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
    {
      struct var_loc_node *node;

      node = loc_list->first;
      rtl = NOTE_VAR_LOCATION_LOC (node->loc);
      if (GET_CODE (rtl) == EXPR_LIST)
	rtl = XEXP (rtl, 0);
      if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
	  && add_const_value_attribute (die, DECL_MODE (decl), rtl))
	 return true;
    }
  /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
     list several times.  See if we've already cached the contents.  */
  list = NULL;
  if (loc_list == NULL || cached_dw_loc_list_table == NULL)
    cache_p = false;
  if (cache_p)
    {
      cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
      if (cache)
	list = cache->loc_list;
    }
  if (list == NULL)
    {
      list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
				 NULL);
      /* It is usually worth caching this result if the decl is from
	 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements.  */
      if (cache_p && list && list->dw_loc_next)
	{
	  cached_dw_loc_list **slot
	    = cached_dw_loc_list_table->find_slot_with_hash (decl,
							     DECL_UID (decl),
							     INSERT);
	  cache = ggc_cleared_alloc<cached_dw_loc_list> ();
	  cache->decl_id = DECL_UID (decl);
	  cache->loc_list = list;
	  *slot = cache;
	}
    }
  if (list)
    {
      add_AT_location_description (die, DW_AT_location, list);
      return true;
    }
  /* None of that worked, so it must not really have a location;
     try adding a constant value attribute from the DECL_INITIAL.  */
  return tree_add_const_value_attribute_for_decl (die, decl);
}

/* Mangle referenced decls.  */
static tree
mangle_referenced_decls (tree *tp, int *walk_subtrees, void *)
{
  if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
    *walk_subtrees = 0;

  if (VAR_OR_FUNCTION_DECL_P (*tp))
    assign_assembler_name_if_needed (*tp);

  return NULL_TREE;
}

/* Attach a DW_AT_const_value attribute to DIE. The value of the
   attribute is the const value T.  */

static bool
tree_add_const_value_attribute (dw_die_ref die, tree t)
{
  tree init;
  tree type = TREE_TYPE (t);

  if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
    return false;

  init = t;
  gcc_assert (!DECL_P (init));

  if (TREE_CODE (init) == INTEGER_CST)
    {
      if (tree_fits_uhwi_p (init))
	{
	  add_AT_unsigned (die, DW_AT_const_value, tree_to_uhwi (init));
	  return true;
	}
      if (tree_fits_shwi_p (init))
	{
	  add_AT_int (die, DW_AT_const_value, tree_to_shwi (init));
	  return true;
	}
    }
  if (!early_dwarf)
    {
      rtx rtl = rtl_for_decl_init (init, type);
      if (rtl)
	return add_const_value_attribute (die, TYPE_MODE (type), rtl);
    }
  else
    {
      /* For early_dwarf force mangling of all referenced symbols.  */
      tree initializer = init;
      STRIP_NOPS (initializer);
      /* rtl_for_decl_init punts on other aggregates, and complex values.  */
      if (AGGREGATE_TYPE_P (type)
	  || (TREE_CODE (initializer) == VIEW_CONVERT_EXPR
	      && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (initializer, 0))))
	  || TREE_CODE (type) == COMPLEX_TYPE)
	;
      else if (initializer_constant_valid_p (initializer, type))
	walk_tree (&initializer, mangle_referenced_decls, NULL, NULL);
    }
  /* If the host and target are sane, try harder.  */
  if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
      && initializer_constant_valid_p (init, type))
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
      if (size > 0 && (int) size == size)
	{
	  unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);

	  if (native_encode_initializer (init, array, size) == size)
	    {
	      add_AT_vec (die, DW_AT_const_value, size, 1, array);
	      return true;
	    }
	  ggc_free (array);
	}
    }
  return false;
}

/* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
   attribute is the const value of T, where T is an integral constant
   variable with static storage duration
   (so it can't be a PARM_DECL or a RESULT_DECL).  */

static bool
tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
{

  if (!decl
      || (!VAR_P (decl) && TREE_CODE (decl) != CONST_DECL)
      || (VAR_P (decl) && !TREE_STATIC (decl)))
    return false;

  if (TREE_READONLY (decl)
      && ! TREE_THIS_VOLATILE (decl)
      && DECL_INITIAL (decl))
    /* OK */;
  else
    return false;

  /* Don't add DW_AT_const_value if abstract origin already has one.  */
  if (get_AT (var_die, DW_AT_const_value))
    return false;

  return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
}

/* Convert the CFI instructions for the current function into a
   location list.  This is used for DW_AT_frame_base when we targeting
   a dwarf2 consumer that does not support the dwarf3
   DW_OP_call_frame_cfa.  OFFSET is a constant to be added to all CFA
   expressions.  */

static dw_loc_list_ref
convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
{
  int ix;
  dw_fde_ref fde;
  dw_loc_list_ref list, *list_tail;
  dw_cfi_ref cfi;
  dw_cfa_location last_cfa, next_cfa;
  const char *start_label, *last_label, *section;
  dw_cfa_location remember;

  fde = cfun->fde;
  gcc_assert (fde != NULL);

  section = secname_for_decl (current_function_decl);
  list_tail = &list;
  list = NULL;

  memset (&next_cfa, 0, sizeof (next_cfa));
  next_cfa.reg.set_by_dwreg (INVALID_REGNUM);
  remember = next_cfa;

  start_label = fde->dw_fde_begin;

  /* ??? Bald assumption that the CIE opcode list does not contain
     advance opcodes.  */
  FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
    lookup_cfa_1 (cfi, &next_cfa, &remember);

  last_cfa = next_cfa;
  last_label = start_label;

  if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
    {
      /* If the first partition contained no CFI adjustments, the
	 CIE opcodes apply to the whole first partition.  */
      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
				 fde->dw_fde_begin, 0, fde->dw_fde_end, 0, section);
      list_tail =&(*list_tail)->dw_loc_next;
      start_label = last_label = fde->dw_fde_second_begin;
    }

  FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
    {
      switch (cfi->dw_cfi_opc)
	{
	case DW_CFA_set_loc:
	case DW_CFA_advance_loc1:
	case DW_CFA_advance_loc2:
	case DW_CFA_advance_loc4:
	  if (!cfa_equal_p (&last_cfa, &next_cfa))
	    {
	      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
					 start_label, 0, last_label, 0, section);

	      list_tail = &(*list_tail)->dw_loc_next;
	      last_cfa = next_cfa;
	      start_label = last_label;
	    }
	  last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
	  break;

	case DW_CFA_advance_loc:
	  /* The encoding is complex enough that we should never emit this.  */
	  gcc_unreachable ();

	default:
	  lookup_cfa_1 (cfi, &next_cfa, &remember);
	  break;
	}
      if (ix + 1 == fde->dw_fde_switch_cfi_index)
	{
	  if (!cfa_equal_p (&last_cfa, &next_cfa))
	    {
	      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
					 start_label, 0, last_label, 0, section);

	      list_tail = &(*list_tail)->dw_loc_next;
	      last_cfa = next_cfa;
	      start_label = last_label;
	    }
	  *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
				     start_label, 0, fde->dw_fde_end, 0, section);
	  list_tail = &(*list_tail)->dw_loc_next;
	  start_label = last_label = fde->dw_fde_second_begin;
	}
    }

  if (!cfa_equal_p (&last_cfa, &next_cfa))
    {
      *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
				 start_label, 0, last_label, 0, section);
      list_tail = &(*list_tail)->dw_loc_next;
      start_label = last_label;
    }

  *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
			     start_label, 0,
			     fde->dw_fde_second_begin
			     ? fde->dw_fde_second_end : fde->dw_fde_end, 0,
			     section);

  maybe_gen_llsym (list);

  return list;
}

/* Compute a displacement from the "steady-state frame pointer" to the
   frame base (often the same as the CFA), and store it in
   frame_pointer_fb_offset.  OFFSET is added to the displacement
   before the latter is negated.  */

static void
compute_frame_pointer_to_fb_displacement (poly_int64 offset)
{
  rtx reg, elim;

#ifdef FRAME_POINTER_CFA_OFFSET
  reg = frame_pointer_rtx;
  offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
  reg = arg_pointer_rtx;
  offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif

  elim = (ira_use_lra_p
	  ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
	  : eliminate_regs (reg, VOIDmode, NULL_RTX));
  elim = strip_offset_and_add (elim, &offset);

  frame_pointer_fb_offset = -offset;

  /* ??? AVR doesn't set up valid eliminations when there is no stack frame
     in which to eliminate.  This is because it's stack pointer isn't 
     directly accessible as a register within the ISA.  To work around
     this, assume that while we cannot provide a proper value for
     frame_pointer_fb_offset, we won't need one either.  We can use
     hard frame pointer in debug info even if frame pointer isn't used
     since hard frame pointer in debug info is encoded with DW_OP_fbreg
     which uses the DW_AT_frame_base attribute, not hard frame pointer
     directly.  */
  frame_pointer_fb_offset_valid
    = (elim == hard_frame_pointer_rtx || elim == stack_pointer_rtx);
}

/* Generate a DW_AT_name attribute given some string value to be included as
   the value of the attribute.  */

void
add_name_attribute (dw_die_ref die, const char *name_string)
{
  if (name_string != NULL && *name_string != 0)
    {
      if (demangle_name_func)
	name_string = (*demangle_name_func) (name_string);

      add_AT_string (die, DW_AT_name, name_string);
    }
}

/* Generate a DW_AT_name attribute given some string value representing a
   file or filepath to be included as value of the attribute.  */
static void
add_filename_attribute (dw_die_ref die, const char *name_string)
{
  if (name_string != NULL && *name_string != 0)
    add_filepath_AT_string (die, DW_AT_name, name_string);
}

/* Generate a DW_AT_description attribute given some string value to be included
   as the value of the attribute.  */

static void
add_desc_attribute (dw_die_ref die, const char *name_string)
{
  if (!flag_describe_dies || (dwarf_version < 3 && dwarf_strict))
    return;

  if (name_string == NULL || *name_string == 0)
    return;

  if (demangle_name_func)
    name_string = (*demangle_name_func) (name_string);

  add_AT_string (die, DW_AT_description, name_string);
}

/* Generate a DW_AT_description attribute given some decl to be included
   as the value of the attribute.  */

static void
add_desc_attribute (dw_die_ref die, tree decl)
{
  tree decl_name;

  if (!flag_describe_dies || (dwarf_version < 3 && dwarf_strict))
    return;

  if (decl == NULL_TREE || !DECL_P (decl))
    return;
  decl_name = DECL_NAME (decl);

  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
    {
      const char *name = dwarf2_name (decl, 0);
      add_desc_attribute (die, name ? name : IDENTIFIER_POINTER (decl_name));
    }
  else
    {
      char *desc = print_generic_expr_to_str (decl);
      add_desc_attribute (die, desc);
      free (desc);
    }
}

/* Retrieve the descriptive type of TYPE, if any, make sure it has a
   DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
   of TYPE accordingly.

   ??? This is a temporary measure until after we're able to generate
   regular DWARF for the complex Ada type system.  */

static void 
add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
				     dw_die_ref context_die)
{
  tree dtype;
  dw_die_ref dtype_die;

  if (!lang_hooks.types.descriptive_type)
    return;

  dtype = lang_hooks.types.descriptive_type (type);
  if (!dtype)
    return;

  dtype_die = lookup_type_die (dtype);
  if (!dtype_die)
    {
      gen_type_die (dtype, context_die);
      dtype_die = lookup_type_die (dtype);
      gcc_assert (dtype_die);
    }

  add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
}

/* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir.  */

static const char *
comp_dir_string (void)
{
  const char *wd;
  char *wd_plus_sep = NULL;
  static const char *cached_wd = NULL;

  if (cached_wd != NULL)
    return cached_wd;

  wd = get_src_pwd ();
  if (wd == NULL)
    return NULL;

  if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
    {
      size_t wdlen = strlen (wd);
      wd_plus_sep = XNEWVEC (char, wdlen + 2);
      strcpy (wd_plus_sep, wd);
      wd_plus_sep [wdlen] = DIR_SEPARATOR;
      wd_plus_sep [wdlen + 1] = 0;
      wd = wd_plus_sep;
    }

  cached_wd = remap_debug_filename (wd);

  /* remap_debug_filename can just pass through wd or return a new gc string.
     These two types can't be both stored in a GTY(())-tagged string, but since
     the cached value lives forever just copy it if needed.  */
  if (cached_wd != wd)
    {
      cached_wd = xstrdup (cached_wd);
      if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR && wd_plus_sep != NULL)
        free (wd_plus_sep);
    }

  return cached_wd;
}

/* Generate a DW_AT_comp_dir attribute for DIE.  */

static void
add_comp_dir_attribute (dw_die_ref die)
{
  const char * wd = comp_dir_string ();
  if (wd != NULL)
    add_filepath_AT_string (die, DW_AT_comp_dir, wd);
}

/* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
   pointer computation, ...), output a representation for that bound according
   to the accepted FORMS (see enum dw_scalar_form) and add it to DIE.  See
   loc_list_from_tree for the meaning of CONTEXT.  */

static void
add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
		 int forms, struct loc_descr_context *context)
{
  dw_die_ref context_die, decl_die = NULL;
  dw_loc_list_ref list;
  bool strip_conversions = true;
  bool placeholder_seen = false;

  while (strip_conversions)
    switch (TREE_CODE (value))
      {
      case ERROR_MARK:
      case SAVE_EXPR:
	return;

      CASE_CONVERT:
      case VIEW_CONVERT_EXPR:
	value = TREE_OPERAND (value, 0);
	break;

      default:
	strip_conversions = false;
	break;
      }

  /* If possible and permitted, output the attribute as a constant.  */
  if ((forms & dw_scalar_form_constant) != 0
      && TREE_CODE (value) == INTEGER_CST)
    {
      unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));

      /* If HOST_WIDE_INT is big enough then represent the bound as
	 a constant value.  We need to choose a form based on
	 whether the type is signed or unsigned.  We cannot just
	 call add_AT_unsigned if the value itself is positive
	 (add_AT_unsigned might add the unsigned value encoded as
	 DW_FORM_data[1248]).  Some DWARF consumers will lookup the
	 bounds type and then sign extend any unsigned values found
	 for signed types.  This is needed only for
	 DW_AT_{lower,upper}_bound, since for most other attributes,
	 consumers will treat DW_FORM_data[1248] as unsigned values,
	 regardless of the underlying type.  */
      if (prec <= HOST_BITS_PER_WIDE_INT
	  || tree_fits_uhwi_p (value))
	{
	  if (TYPE_UNSIGNED (TREE_TYPE (value)))
	    add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
	  else
	    add_AT_int (die, attr, TREE_INT_CST_LOW (value));
	}
      else if (dwarf_version >= 5
	       && TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (value))) == 128)
	/* Otherwise represent the bound as an unsigned value with
	   the precision of its type.  The precision and signedness
	   of the type will be necessary to re-interpret it
	   unambiguously.  */
	add_AT_wide (die, attr, wi::to_wide (value));
      else
	{
	  rtx v = immed_wide_int_const (wi::to_wide (value),
					TYPE_MODE (TREE_TYPE (value)));
	  dw_loc_descr_ref loc
	    = loc_descriptor (v, TYPE_MODE (TREE_TYPE (value)),
			      VAR_INIT_STATUS_INITIALIZED);
	  if (loc)
	    add_AT_loc (die, attr, loc);
	}
      return;
    }

  /* Otherwise, if it's possible and permitted too, output a reference to
     another DIE.  */
  if ((forms & dw_scalar_form_reference) != 0)
    {
      tree decl = NULL_TREE;

      /* Some type attributes reference an outer type.  For instance, the upper
	 bound of an array may reference an embedding record (this happens in
	 Ada).  */
      if (TREE_CODE (value) == COMPONENT_REF
	  && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
	  && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
	decl = TREE_OPERAND (value, 1);

      else if (VAR_P (value)
	       || TREE_CODE (value) == PARM_DECL
	       || TREE_CODE (value) == RESULT_DECL)
	decl = value;

      if (decl != NULL_TREE)
	{
	  decl_die = lookup_decl_die (decl);

	  /* ??? Can this happen, or should the variable have been bound
	     first?  Probably it can, since I imagine that we try to create
	     the types of parameters in the order in which they exist in
	     the list, and won't have created a forward reference to a
	     later parameter.  */
	  if (decl_die != NULL)
	    {
	      if (get_AT (decl_die, DW_AT_location)
		  || get_AT (decl_die, DW_AT_data_member_location)
		  || get_AT (decl_die, DW_AT_data_bit_offset)
		  || get_AT (decl_die, DW_AT_const_value))
		{
		  add_AT_die_ref (die, attr, decl_die);
		  return;
		}
	    }
	}
    }

  /* Last chance: try to create a stack operation procedure to evaluate the
     value.  Do nothing if even that is not possible or permitted.  */
  if ((forms & dw_scalar_form_exprloc) == 0)
    return;

  list = loc_list_from_tree (value, 2, context);
  if (context && context->placeholder_arg)
    {
      placeholder_seen = context->placeholder_seen;
      context->placeholder_seen = false;
    }
  if (list == NULL || single_element_loc_list_p (list))
    {
      /* If this attribute is not a reference nor constant, it is
	 a DWARF expression rather than location description.  For that
	 loc_list_from_tree (value, 0, &context) is needed.  */
      dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
      if (list2 && single_element_loc_list_p (list2))
	{
	  if (placeholder_seen)
	    {
	      struct dwarf_procedure_info dpi;
	      dpi.fndecl = NULL_TREE;
	      dpi.args_count = 1;
	      if (!resolve_args_picking (list2->expr, 1, &dpi))
		return;
	    }
	  add_AT_loc (die, attr, list2->expr);
	  return;
	}
    }

  /* If that failed to give a single element location list, fall back to
     outputting this as a reference... still if permitted.  */
  if (list == NULL
      || (forms & dw_scalar_form_reference) == 0
      || placeholder_seen)
    return;

  if (!decl_die)
    {
      if (current_function_decl == 0)
	context_die = comp_unit_die ();
      else
	context_die = lookup_decl_die (current_function_decl);

      decl_die = new_die (DW_TAG_variable, context_die, value);
      add_AT_flag (decl_die, DW_AT_artificial, 1);
      add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, false,
			  context_die);
    }

  add_AT_location_description (decl_die, DW_AT_location, list);
  add_AT_die_ref (die, attr, decl_die);
}

/* Return the default for DW_AT_lower_bound, or -1 if there is not any
   default.  */

static int
lower_bound_default (void)
{
  switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
    {
    case DW_LANG_C:
    case DW_LANG_C89:
    case DW_LANG_C99:
    case DW_LANG_C11:
    case DW_LANG_C_plus_plus:
    case DW_LANG_C_plus_plus_11:
    case DW_LANG_C_plus_plus_14:
    case DW_LANG_ObjC:
    case DW_LANG_ObjC_plus_plus:
      return 0;
    case DW_LANG_Fortran77:
    case DW_LANG_Fortran90:
    case DW_LANG_Fortran95:
    case DW_LANG_Fortran03:
    case DW_LANG_Fortran08:
      return 1;
    case DW_LANG_UPC:
    case DW_LANG_D:
    case DW_LANG_Python:
      return dwarf_version >= 4 ? 0 : -1;
    case DW_LANG_Ada95:
    case DW_LANG_Ada83:
    case DW_LANG_Cobol74:
    case DW_LANG_Cobol85:
    case DW_LANG_Modula2:
    case DW_LANG_PLI:
      return dwarf_version >= 4 ? 1 : -1;
    default:
      return -1;
    }
}

/* Given a tree node describing an array bound (either lower or upper) output
   a representation for that bound.  */

static void
add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
		tree bound, struct loc_descr_context *context)
{
  int dflt;

  while (1)
    switch (TREE_CODE (bound))
      {
      /* Strip all conversions.  */
      CASE_CONVERT:
      case VIEW_CONVERT_EXPR:
	bound = TREE_OPERAND (bound, 0);
	break;

      /* All fixed-bounds are represented by INTEGER_CST nodes.  Lower bounds
	 are even omitted when they are the default.  */
      case INTEGER_CST:
	/* If the value for this bound is the default one, we can even omit the
	   attribute.  */
	if (bound_attr == DW_AT_lower_bound
	    && tree_fits_shwi_p (bound)
	    && (dflt = lower_bound_default ()) != -1
	    && tree_to_shwi (bound) == dflt)
	  return;

	/* FALLTHRU */

      default:
	/* Let GNAT encodings do the magic for self-referential bounds.  */
	if (is_ada ()
	    && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL
	    && contains_placeholder_p (bound))
	  return;

	add_scalar_info (subrange_die, bound_attr, bound,
			 dw_scalar_form_constant
			 | dw_scalar_form_exprloc
			 | dw_scalar_form_reference,
			 context);
	return;
      }
}

/* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
   possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.

   This function reuses previously set type and bound information if
   available.  */

static void
add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
{
  dw_die_ref child = type_die->die_child;
  struct array_descr_info info;
  int dimension_number;

  if (lang_hooks.types.get_array_descr_info)
    {
      memset (&info, 0, sizeof (info));
      if (lang_hooks.types.get_array_descr_info (type, &info))
	/* Fortran sometimes emits array types with no dimension.  */
	gcc_assert (info.ndimensions >= 0
		    && info.ndimensions
		       <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN);
    }
  else
    info.ndimensions = 0;

  for (dimension_number = 0;
       TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
       type = TREE_TYPE (type), dimension_number++)
    {
      tree domain = TYPE_DOMAIN (type);

      if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
	break;

      /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
	 and (in GNU C only) variable bounds.  Handle all three forms
	 here.  */

      /* Find and reuse a previously generated DW_TAG_subrange_type if
	 available.

         For multi-dimensional arrays, as we iterate through the
         various dimensions in the enclosing for loop above, we also
         iterate through the DIE children and pick at each
         DW_TAG_subrange_type previously generated (if available).
         Each child DW_TAG_subrange_type DIE describes the range of
         the current dimension.  At this point we should have as many
         DW_TAG_subrange_type's as we have dimensions in the
         array.  */
      dw_die_ref subrange_die = NULL;
      if (child)
	while (1)
	  {
	    child = child->die_sib;
	    if (child->die_tag == DW_TAG_subrange_type)
	      subrange_die = child;
	    if (child == type_die->die_child)
	      {
		/* If we wrapped around, stop looking next time.  */
		child = NULL;
		break;
	      }
	    if (child->die_tag == DW_TAG_subrange_type)
	      break;
	  }
      if (!subrange_die)
	subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);

      if (domain)
	{
	  /* We have an array type with specified bounds.  */
	  tree lower = TYPE_MIN_VALUE (domain);
	  tree upper = TYPE_MAX_VALUE (domain);
	  tree index_type = TREE_TYPE (domain);

	  if (dimension_number <= info.ndimensions - 1)
	    {
	      lower = info.dimen[dimension_number].lower_bound;
	      upper = info.dimen[dimension_number].upper_bound;
	      index_type = info.dimen[dimension_number].bounds_type;
	    }

	  /* Define the index type.  */
	  if (index_type && !get_AT (subrange_die, DW_AT_type))
	    add_type_attribute (subrange_die, index_type, TYPE_UNQUALIFIED,
				false, type_die);

	  /* ??? If upper is NULL, the array has unspecified length,
	     but it does have a lower bound.  This happens with Fortran
	       dimension arr(N:*)
	     Since the debugger is definitely going to need to know N
	     to produce useful results, go ahead and output the lower
	     bound solo, and hope the debugger can cope.  */

	  if (lower && !get_AT (subrange_die, DW_AT_lower_bound))
	    add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);

	  if (!get_AT (subrange_die, DW_AT_upper_bound)
	      && !get_AT (subrange_die, DW_AT_count))
	    {
	      if (upper)
		add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
	      else if ((is_c () || is_cxx ()) && COMPLETE_TYPE_P (type))
		/* Zero-length array.  */
		add_bound_info (subrange_die, DW_AT_count,
				build_int_cst (TREE_TYPE (lower), 0), NULL);
	    }
	}

      /* Otherwise we have an array type with an unspecified length.  The
	 DWARF-2 spec does not say how to handle this; let's just leave out the
	 bounds.  */
    }
}

/* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size.  */

static void
add_byte_size_attribute (dw_die_ref die, tree tree_node)
{
  dw_die_ref decl_die;
  HOST_WIDE_INT size;

  switch (TREE_CODE (tree_node))
    {
    case ERROR_MARK:
      size = 0;
      break;
    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
	  && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
	{
	  add_AT_die_ref (die, DW_AT_byte_size, decl_die);
	  return;
	}
      size = int_size_in_bytes (tree_node);
      break;
    case FIELD_DECL:
      /* For a data member of a struct or union, the DW_AT_byte_size is
	 generally given as the number of bytes normally allocated for an
	 object of the *declared* type of the member itself.  This is true
	 even for bit-fields.  */
      size = int_size_in_bytes (field_type (tree_node));
      break;
    default:
      gcc_unreachable ();
    }

  /* Note that `size' might be -1 when we get to this point.  If it is, that
     indicates that the byte size of the entity in question is variable.  */
  if (size >= 0)
    add_AT_unsigned (die, DW_AT_byte_size, size);

  /* Support for dynamically-sized objects was introduced in DWARF3.  */
  else if (TYPE_P (tree_node)
	   && (dwarf_version >= 3 || !dwarf_strict)
	   && gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
    {
      struct loc_descr_context ctx = {
	const_cast<tree> (tree_node),	/* context_type */
	NULL_TREE,	      		/* base_decl */
	NULL,	      		/* dpi */
	false,	      		/* placeholder_arg */
	false,	      		/* placeholder_seen */
	false	      		/* strict_signedness */
      };

      tree tree_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (tree_node));
      add_scalar_info (die, DW_AT_byte_size, tree_size,
		       dw_scalar_form_constant
		       | dw_scalar_form_exprloc
		       | dw_scalar_form_reference,
		       &ctx);
    }
}

/* Add a DW_AT_alignment attribute to DIE with TREE_NODE's non-default
   alignment.  */

static void
add_alignment_attribute (dw_die_ref die, tree tree_node)
{
  if (dwarf_version < 5 && dwarf_strict)
    return;

  unsigned align;

  if (DECL_P (tree_node))
    {
      if (!DECL_USER_ALIGN (tree_node))
	return;

      align = DECL_ALIGN_UNIT (tree_node);
    }
  else if (TYPE_P (tree_node))
    {
      if (!TYPE_USER_ALIGN (tree_node))
	return;

      align = TYPE_ALIGN_UNIT (tree_node);
    }
  else
    gcc_unreachable ();

  add_AT_unsigned (die, DW_AT_alignment, align);
}

/* For a FIELD_DECL node which represents a bit-field, output an attribute
   which specifies the distance in bits from the highest order bit of the
   "containing object" for the bit-field to the highest order bit of the
   bit-field itself.

   For any given bit-field, the "containing object" is a hypothetical object
   (of some integral or enum type) within which the given bit-field lives.  The
   type of this hypothetical "containing object" is always the same as the
   declared type of the individual bit-field itself.  The determination of the
   exact location of the "containing object" for a bit-field is rather
   complicated.  It's handled by the `field_byte_offset' function (above).

   Note that it is the size (in bytes) of the hypothetical "containing object"
   which will be given in the DW_AT_byte_size attribute for this bit-field.
   (See `byte_size_attribute' above).  */

static inline void
add_bit_offset_attribute (dw_die_ref die, tree decl)
{
  HOST_WIDE_INT object_offset_in_bytes;
  tree original_type = DECL_BIT_FIELD_TYPE (decl);
  HOST_WIDE_INT bitpos_int;
  HOST_WIDE_INT highest_order_object_bit_offset;
  HOST_WIDE_INT highest_order_field_bit_offset;
  HOST_WIDE_INT bit_offset;

  /* The containing object is within the DECL_CONTEXT.  */
  struct vlr_context ctx = { DECL_CONTEXT (decl), NULL_TREE };

  field_byte_offset (decl, &ctx, &object_offset_in_bytes);

  /* Must be a field and a bit field.  */
  gcc_assert (original_type && TREE_CODE (decl) == FIELD_DECL);

  /* We can't yet handle bit-fields whose offsets are variable, so if we
     encounter such things, just return without generating any attribute
     whatsoever.  Likewise for variable or too large size.  */
  if (! tree_fits_shwi_p (bit_position (decl))
      || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
    return;

  bitpos_int = int_bit_position (decl);

  /* Note that the bit offset is always the distance (in bits) from the
     highest-order bit of the "containing object" to the highest-order bit of
     the bit-field itself.  Since the "high-order end" of any object or field
     is different on big-endian and little-endian machines, the computation
     below must take account of these differences.  */
  highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
  highest_order_field_bit_offset = bitpos_int;

  if (! BYTES_BIG_ENDIAN)
    {
      highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
      highest_order_object_bit_offset +=
        simple_type_size_in_bits (original_type);
    }

  bit_offset
    = (! BYTES_BIG_ENDIAN
       ? highest_order_object_bit_offset - highest_order_field_bit_offset
       : highest_order_field_bit_offset - highest_order_object_bit_offset);

  if (bit_offset < 0)
    add_AT_int (die, DW_AT_bit_offset, bit_offset);
  else
    add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
}

/* For a FIELD_DECL node which represents a bit field, output an attribute
   which specifies the length in bits of the given field.  */

static inline void
add_bit_size_attribute (dw_die_ref die, tree decl)
{
  /* Must be a field and a bit field.  */
  gcc_assert (TREE_CODE (decl) == FIELD_DECL
	      && DECL_BIT_FIELD_TYPE (decl));

  if (tree_fits_uhwi_p (DECL_SIZE (decl)))
    add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
}

/* If the compiled language is ANSI C, then add a 'prototyped'
   attribute, if arg types are given for the parameters of a function.  */

static inline void
add_prototyped_attribute (dw_die_ref die, tree func_type)
{
  switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
    {
    case DW_LANG_C:
    case DW_LANG_C89:
    case DW_LANG_C99:
    case DW_LANG_C11:
    case DW_LANG_ObjC:
      if (prototype_p (func_type))
	add_AT_flag (die, DW_AT_prototyped, 1);
      break;
    default:
      break;
    }
}

/* Add an 'abstract_origin' attribute below a given DIE.  The DIE is found
   by looking in the type declaration, the object declaration equate table or
   the block mapping.  */

static inline void
add_abstract_origin_attribute (dw_die_ref die, tree origin)
{
  dw_die_ref origin_die = NULL;

  /* For late LTO debug output we want to refer directly to the abstract
     DIE in the early debug rather to the possibly existing concrete
     instance and avoid creating that just for this purpose.  */
  sym_off_pair *desc;
  if (in_lto_p
      && external_die_map
      && (desc = external_die_map->get (origin)))
    {
      add_AT_external_die_ref (die, DW_AT_abstract_origin,
			       desc->sym, desc->off);
      return;
    }

  if (DECL_P (origin))
    origin_die = lookup_decl_die (origin);
  else if (TYPE_P (origin))
    origin_die = lookup_type_die (origin);
  else if (TREE_CODE (origin) == BLOCK)
    origin_die = lookup_block_die (origin);

  /* XXX: Functions that are never lowered don't always have correct block
     trees (in the case of java, they simply have no block tree, in some other
     languages).  For these functions, there is nothing we can really do to
     output correct debug info for inlined functions in all cases.  Rather
     than die, we'll just produce deficient debug info now, in that we will
     have variables without a proper abstract origin.  In the future, when all
     functions are lowered, we should re-add a gcc_assert (origin_die)
     here.  */

  if (origin_die)
    {
      dw_attr_node *a;
      /* Like above, if we already created a concrete instance DIE
	 do not use that for the abstract origin but the early DIE
	 if present.  */
      if (in_lto_p
	  && (a = get_AT (origin_die, DW_AT_abstract_origin)))
	origin_die = AT_ref (a);
      add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
    }
}

/* We do not currently support the pure_virtual attribute.  */

static inline void
add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
{
  if (DECL_VINDEX (func_decl))
    {
      add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);

      if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
	add_AT_loc (die, DW_AT_vtable_elem_location,
		    new_loc_descr (DW_OP_constu,
				   tree_to_shwi (DECL_VINDEX (func_decl)),
				   0));

      /* GNU extension: Record what type this method came from originally.  */
      if (debug_info_level > DINFO_LEVEL_TERSE
	  && DECL_CONTEXT (func_decl))
	add_AT_die_ref (die, DW_AT_containing_type,
			lookup_type_die (DECL_CONTEXT (func_decl)));
    }
}

/* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
   given decl.  This used to be a vendor extension until after DWARF 4
   standardized it.  */

static void
add_linkage_attr (dw_die_ref die, tree decl)
{
  const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));

  /* Mimic what assemble_name_raw does with a leading '*'.  */
  if (name[0] == '*')
    name = &name[1];

  if (dwarf_version >= 4)
    add_AT_string (die, DW_AT_linkage_name, name);
  else
    add_AT_string (die, DW_AT_MIPS_linkage_name, name);
}

/* Add source coordinate attributes for the given decl.  */

static void
add_src_coords_attributes (dw_die_ref die, tree decl)
{
  expanded_location s;

  if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
    return;
  s = expand_location (DECL_SOURCE_LOCATION (decl));
  add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
  add_AT_unsigned (die, DW_AT_decl_line, s.line);
  if (debug_column_info && s.column)
    add_AT_unsigned (die, DW_AT_decl_column, s.column);
}

/* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl.  */

static void
add_linkage_name_raw (dw_die_ref die, tree decl)
{
  /* Defer until we have an assembler name set.  */
  if (!DECL_ASSEMBLER_NAME_SET_P (decl))
    {
      limbo_die_node *asm_name;

      asm_name = ggc_cleared_alloc<limbo_die_node> ();
      asm_name->die = die;
      asm_name->created_for = decl;
      asm_name->next = deferred_asm_name;
      deferred_asm_name = asm_name;
    }
  else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
    add_linkage_attr (die, decl);
}

/* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired.  */

static void
add_linkage_name (dw_die_ref die, tree decl)
{
  if (debug_info_level > DINFO_LEVEL_NONE
      && VAR_OR_FUNCTION_DECL_P (decl)
      && TREE_PUBLIC (decl)
      && !(VAR_P (decl) && DECL_REGISTER (decl))
      && die->die_tag != DW_TAG_member)
    add_linkage_name_raw (die, decl);
}

/* Add a DW_AT_name attribute and source coordinate attribute for the
   given decl, but only if it actually has a name.  */

static void
add_name_and_src_coords_attributes (dw_die_ref die, tree decl,
				    bool no_linkage_name)
{
  tree decl_name;

  decl_name = DECL_NAME (decl);
  if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
    {
      const char *name = dwarf2_name (decl, 0);
      if (name)
	add_name_attribute (die, name);
      else
	add_desc_attribute (die, decl);

      if (! DECL_ARTIFICIAL (decl))
	add_src_coords_attributes (die, decl);

      if (!no_linkage_name)
	add_linkage_name (die, decl);
    }
  else
    add_desc_attribute (die, decl);

#ifdef VMS_DEBUGGING_INFO
  /* Get the function's name, as described by its RTL.  This may be different
     from the DECL_NAME name used in the source file.  */
  if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
    {
      add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
                  XEXP (DECL_RTL (decl), 0), false);
      vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
    }
#endif /* VMS_DEBUGGING_INFO */
}

/* Add VALUE as a DW_AT_discr_value attribute to DIE.  */

static void
add_discr_value (dw_die_ref die, dw_discr_value *value)
{
  dw_attr_node attr;

  attr.dw_attr = DW_AT_discr_value;
  attr.dw_attr_val.val_class = dw_val_class_discr_value;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_discr_value.pos = value->pos;
  if (value->pos)
    attr.dw_attr_val.v.val_discr_value.v.uval = value->v.uval;
  else
    attr.dw_attr_val.v.val_discr_value.v.sval = value->v.sval;
  add_dwarf_attr (die, &attr);
}

/* Add DISCR_LIST as a DW_AT_discr_list to DIE.  */

static void
add_discr_list (dw_die_ref die, dw_discr_list_ref discr_list)
{
  dw_attr_node attr;

  attr.dw_attr = DW_AT_discr_list;
  attr.dw_attr_val.val_class = dw_val_class_discr_list;
  attr.dw_attr_val.val_entry = NULL;
  attr.dw_attr_val.v.val_discr_list = discr_list;
  add_dwarf_attr (die, &attr);
}

static inline dw_discr_list_ref
AT_discr_list (dw_attr_node *attr)
{
  return attr->dw_attr_val.v.val_discr_list;
}

#ifdef VMS_DEBUGGING_INFO
/* Output the debug main pointer die for VMS */

void
dwarf2out_vms_debug_main_pointer (void)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  dw_die_ref die;

  /* Allocate the VMS debug main subprogram die.  */
  die = new_die_raw (DW_TAG_subprogram);
  add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
  ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
			       current_function_funcdef_no);
  add_AT_lbl_id (die, DW_AT_entry_pc, label);

  /* Make it the first child of comp_unit_die ().  */
  die->die_parent = comp_unit_die ();
  if (comp_unit_die ()->die_child)
    {
      die->die_sib = comp_unit_die ()->die_child->die_sib;
      comp_unit_die ()->die_child->die_sib = die;
    }
  else
    {
      die->die_sib = die;
      comp_unit_die ()->die_child = die;
    }
}
#endif /* VMS_DEBUGGING_INFO */

/* walk_tree helper function for uses_local_type, below.  */

static tree
uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  if (!TYPE_P (*tp))
    *walk_subtrees = 0;
  else
    {
      tree name = TYPE_NAME (*tp);
      if (name && DECL_P (name) && decl_function_context (name))
	return *tp;
    }
  return NULL_TREE;
}

/* If TYPE involves a function-local type (including a local typedef to a
   non-local type), returns that type; otherwise returns NULL_TREE.  */

static tree
uses_local_type (tree type)
{
  tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
  return used;
}

/* Return the DIE for the scope that immediately contains this type.
   Non-named types that do not involve a function-local type get global
   scope.  Named types nested in namespaces or other types get their
   containing scope.  All other types (i.e. function-local named types) get
   the current active scope.  */

static dw_die_ref
scope_die_for (tree t, dw_die_ref context_die)
{
  dw_die_ref scope_die = NULL;
  tree containing_scope;

  /* Non-types always go in the current scope.  */
  gcc_assert (TYPE_P (t));

  /* Use the scope of the typedef, rather than the scope of the type
     it refers to.  */
  if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
    containing_scope = DECL_CONTEXT (TYPE_NAME (t));
  else
    containing_scope = TYPE_CONTEXT (t);

  /* Use the containing namespace if there is one.  */
  if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
    {
      if (context_die == lookup_decl_die (containing_scope))
	/* OK */;
      else if (debug_info_level > DINFO_LEVEL_TERSE)
	context_die = get_context_die (containing_scope);
      else
	containing_scope = NULL_TREE;
    }

  /* Ignore function type "scopes" from the C frontend.  They mean that
     a tagged type is local to a parmlist of a function declarator, but
     that isn't useful to DWARF.  */
  if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
    containing_scope = NULL_TREE;

  if (SCOPE_FILE_SCOPE_P (containing_scope))
    {
      /* If T uses a local type keep it local as well, to avoid references
	 to function-local DIEs from outside the function.  */
      if (current_function_decl && uses_local_type (t))
	scope_die = context_die;
      else
	scope_die = comp_unit_die ();
    }
  else if (TYPE_P (containing_scope))
    {
      /* For types, we can just look up the appropriate DIE.  */
      if (debug_info_level > DINFO_LEVEL_TERSE)
	scope_die = get_context_die (containing_scope);
      else
	{
	  scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
	  if (scope_die == NULL)
	    scope_die = comp_unit_die ();
	}
    }
  else
    scope_die = context_die;

  return scope_die;
}

/* Returns nonzero if CONTEXT_DIE is internal to a function.  */

static inline int
local_scope_p (dw_die_ref context_die)
{
  for (; context_die; context_die = context_die->die_parent)
    if (context_die->die_tag == DW_TAG_inlined_subroutine
	|| context_die->die_tag == DW_TAG_subprogram)
      return 1;

  return 0;
}

/* Returns nonzero if CONTEXT_DIE is a class.  */

static inline int
class_scope_p (dw_die_ref context_die)
{
  return (context_die
	  && (context_die->die_tag == DW_TAG_structure_type
	      || context_die->die_tag == DW_TAG_class_type
	      || context_die->die_tag == DW_TAG_interface_type
	      || context_die->die_tag == DW_TAG_union_type));
}

/* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
   whether or not to treat a DIE in this context as a declaration.  */

static inline int
class_or_namespace_scope_p (dw_die_ref context_die)
{
  return (class_scope_p (context_die)
	  || (context_die && context_die->die_tag == DW_TAG_namespace));
}

/* Many forms of DIEs require a "type description" attribute.  This
   routine locates the proper "type descriptor" die for the type given
   by 'type' plus any additional qualifiers given by 'cv_quals', and
   adds a DW_AT_type attribute below the given die.  */

static void
add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
		    bool reverse, dw_die_ref context_die)
{
  enum tree_code code  = TREE_CODE (type);
  dw_die_ref type_die  = NULL;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return;

  /* ??? If this type is an unnamed subrange type of an integral, floating-point
     or fixed-point type, use the inner type.  This is because we have no
     support for unnamed types in base_type_die.  This can happen if this is
     an Ada subrange type.  Correct solution is emit a subrange type die.  */
  if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
      && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
    type = TREE_TYPE (type), code = TREE_CODE (type);

  if (code == ERROR_MARK
      /* Handle a special case.  For functions whose return type is void, we
	 generate *no* type attribute.  (Note that no object may have type
	 `void', so this only applies to function return types).  */
      || code == VOID_TYPE)
    return;

  type_die = modified_type_die (type,
				cv_quals | TYPE_QUALS (type),
				reverse,
				context_die);

  if (type_die != NULL)
    add_AT_die_ref (object_die, DW_AT_type, type_die);
}

/* Given an object die, add the calling convention attribute for the
   function call type.  */
static void
add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
{
  enum dwarf_calling_convention value = DW_CC_normal;

  value = ((enum dwarf_calling_convention)
	   targetm.dwarf_calling_convention (TREE_TYPE (decl)));

  if (is_fortran ()
      && id_equal (DECL_ASSEMBLER_NAME (decl), "MAIN__"))
    {
      /* DWARF 2 doesn't provide a way to identify a program's source-level
	entry point.  DW_AT_calling_convention attributes are only meant
	to describe functions' calling conventions.  However, lacking a
	better way to signal the Fortran main program, we used this for 
	a long time, following existing custom.  Now, DWARF 4 has 
	DW_AT_main_subprogram, which we add below, but some tools still
	rely on the old way, which we thus keep.  */
      value = DW_CC_program;

      if (dwarf_version >= 4 || !dwarf_strict)
	add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
    }

  /* Only add the attribute if the backend requests it, and
     is not DW_CC_normal.  */
  if (value && (value != DW_CC_normal))
    add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
}

/* Given a tree pointer to a struct, class, union, or enum type node, return
   a pointer to the (string) tag name for the given type, or zero if the type
   was declared without a tag.  */

static const char *
type_tag (const_tree type)
{
  const char *name = 0;

  if (TYPE_NAME (type) != 0)
    {
      tree t = 0;

      /* Find the IDENTIFIER_NODE for the type name.  */
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
	  && !TYPE_NAMELESS (type))
	t = TYPE_NAME (type);

      /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
	 a TYPE_DECL node, regardless of whether or not a `typedef' was
	 involved.  */
      else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
	{
	  /* We want to be extra verbose.  Don't call dwarf_name if
	     DECL_NAME isn't set.  The default hook for decl_printable_name
	     doesn't like that, and in this context it's correct to return
	     0, instead of "<anonymous>" or the like.  */
	  if (DECL_NAME (TYPE_NAME (type))
	      && !DECL_NAMELESS (TYPE_NAME (type)))
	    name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
	}

      /* Now get the name as a string, or invent one.  */
      if (!name && t != 0)
	name = IDENTIFIER_POINTER (t);
    }

  return (name == 0 || *name == '\0') ? 0 : name;
}

/* Return the type associated with a data member, make a special check
   for bit field types.  */

static inline tree
member_declared_type (const_tree member)
{
  return (DECL_BIT_FIELD_TYPE (member)
	  ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
}

/* Get the decl's label, as described by its RTL. This may be different
   from the DECL_NAME name used in the source file.  */

#if 0
static const char *
decl_start_label (tree decl)
{
  rtx x;
  const char *fnname;

  x = DECL_RTL (decl);
  gcc_assert (MEM_P (x));

  x = XEXP (x, 0);
  gcc_assert (GET_CODE (x) == SYMBOL_REF);

  fnname = XSTR (x, 0);
  return fnname;
}
#endif

/* For variable-length arrays that have been previously generated, but
   may be incomplete due to missing subscript info, fill the subscript
   info.  Return TRUE if this is one of those cases.  */

static bool
fill_variable_array_bounds (tree type)
{
  if (TREE_ASM_WRITTEN (type)
      && TREE_CODE (type) == ARRAY_TYPE
      && variably_modified_type_p (type, NULL))
    {
      dw_die_ref array_die = lookup_type_die (type);
      if (!array_die)
	return false;
      add_subscript_info (array_die, type, !is_ada ());
      return true;
    }
  return false;
}

/* These routines generate the internal representation of the DIE's for
   the compilation unit.  Debugging information is collected by walking
   the declaration trees passed in from dwarf2out_decl().  */

static void
gen_array_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref array_die;

  /* GNU compilers represent multidimensional array types as sequences of one
     dimensional array types whose element types are themselves array types.
     We sometimes squish that down to a single array_type DIE with multiple
     subscripts in the Dwarf debugging info.  The draft Dwarf specification
     say that we are allowed to do this kind of compression in C, because
     there is no difference between an array of arrays and a multidimensional
     array.  We don't do this for Ada to remain as close as possible to the
     actual representation, which is especially important against the language
     flexibilty wrt arrays of variable size.  */

  bool collapse_nested_arrays = !is_ada ();

  if (fill_variable_array_bounds (type))
    return;

  dw_die_ref scope_die = scope_die_for (type, context_die);
  tree element_type;

  /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
     DW_TAG_string_type doesn't have DW_AT_type attribute).  */
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_STRING_FLAG (type)
      && is_fortran ()
      && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
    {
      HOST_WIDE_INT size;

      array_die = new_die (DW_TAG_string_type, scope_die, type);
      add_name_attribute (array_die, type_tag (type));
      equate_type_number_to_die (type, array_die);
      size = int_size_in_bytes (type);
      if (size >= 0)
	add_AT_unsigned (array_die, DW_AT_byte_size, size);
      /* ???  We can't annotate types late, but for LTO we may not
	 generate a location early either (gfortran.dg/save_6.f90).  */
      else if (! (early_dwarf && (flag_generate_lto || flag_generate_offload))
	       && TYPE_DOMAIN (type) != NULL_TREE
	       && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE)
	{
	  tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
	  tree rszdecl = szdecl;

	  size = int_size_in_bytes (TREE_TYPE (szdecl));
	  if (!DECL_P (szdecl))
	    {
	      if (TREE_CODE (szdecl) == INDIRECT_REF
		  && DECL_P (TREE_OPERAND (szdecl, 0)))
		{
		  rszdecl = TREE_OPERAND (szdecl, 0);
		  if (int_size_in_bytes (TREE_TYPE (rszdecl))
		      != DWARF2_ADDR_SIZE)
		    size = 0;
		}
	      else
		size = 0;
	    }
	  if (size > 0)
	    {
	      dw_loc_list_ref loc
		= loc_list_from_tree (rszdecl, szdecl == rszdecl ? 2 : 0,
				      NULL);
	      if (loc)
		{
		  add_AT_location_description (array_die, DW_AT_string_length,
					       loc);
		  if (size != DWARF2_ADDR_SIZE)
		    add_AT_unsigned (array_die, dwarf_version >= 5
						? DW_AT_string_length_byte_size
						: DW_AT_byte_size, size);
		}
	    }
	}
      return;
    }

  array_die = new_die (DW_TAG_array_type, scope_die, type);
  add_name_attribute (array_die, type_tag (type));
  equate_type_number_to_die (type, array_die);

  if (TREE_CODE (type) == VECTOR_TYPE)
    add_AT_flag (array_die, DW_AT_GNU_vector, 1);

  /* For Fortran multidimensional arrays use DW_ORD_col_major ordering.  */
  if (is_fortran ()
      && TREE_CODE (type) == ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
      && !TYPE_STRING_FLAG (TREE_TYPE (type)))
    add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);

#if 0
  /* We default the array ordering.  Debuggers will probably do the right
     things even if DW_AT_ordering is not present.  It's not even an issue
     until we start to get into multidimensional arrays anyway.  If a debugger
     is ever caught doing the Wrong Thing for multi-dimensional arrays,
     then we'll have to put the DW_AT_ordering attribute back in.  (But if
     and when we find out that we need to put these in, we will only do so
     for multidimensional arrays.  */
  add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
#endif

  if (TREE_CODE (type) == VECTOR_TYPE)
    {
      /* For VECTOR_TYPEs we use an array DIE with appropriate bounds.  */
      dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
      int lb = lower_bound_default ();
      if (lb == -1)
	lb = 0;
      add_bound_info (subrange_die, DW_AT_lower_bound, size_int (lb), NULL);
      add_bound_info (subrange_die, DW_AT_upper_bound,
		      size_int (lb + TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
    }
  else
    add_subscript_info (array_die, type, collapse_nested_arrays);

  /* Add representation of the type of the elements of this array type and
     emit the corresponding DIE if we haven't done it already.  */
  element_type = TREE_TYPE (type);
  if (collapse_nested_arrays)
    while (TREE_CODE (element_type) == ARRAY_TYPE)
      {
	if (TYPE_STRING_FLAG (element_type) && is_fortran ())
	  break;
	element_type = TREE_TYPE (element_type);
      }

  add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED,
		      TREE_CODE (type) == ARRAY_TYPE
		      && TYPE_REVERSE_STORAGE_ORDER (type),
		      context_die);

  add_gnat_descriptive_type_attribute (array_die, type, context_die);
  if (TYPE_ARTIFICIAL (type))
    add_AT_flag (array_die, DW_AT_artificial, 1);

  if (get_AT (array_die, DW_AT_name))
    add_pubtype (type, array_die);

  add_alignment_attribute (array_die, type);
}

/* This routine generates DIE for array with hidden descriptor, details
   are filled into *info by a langhook.  */

static void
gen_descr_array_type_die (tree type, struct array_descr_info *info,
			  dw_die_ref context_die)
{
  const dw_die_ref scope_die = scope_die_for (type, context_die);
  const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
  struct loc_descr_context context = {
    type, 		/* context_type */
    info->base_decl,	/* base_decl */
    NULL,		/* dpi */
    false,		/* placeholder_arg */
    false,		/* placeholder_seen */
    false		/* strict_signedness */
  };
  enum dwarf_tag subrange_tag = DW_TAG_subrange_type;
  int dim;

  add_name_attribute (array_die, type_tag (type));
  equate_type_number_to_die (type, array_die);

  if (info->ndimensions > 1)
    switch (info->ordering)
      {
      case array_descr_ordering_row_major:
	add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
	break;
      case array_descr_ordering_column_major:
	add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
	break;
      default:
	break;
      }

  if (dwarf_version >= 3 || !dwarf_strict)
    {
      if (info->data_location)
	add_scalar_info (array_die, DW_AT_data_location, info->data_location,
			 dw_scalar_form_exprloc, &context);
      if (info->associated)
	add_scalar_info (array_die, DW_AT_associated, info->associated,
			 dw_scalar_form_constant
			 | dw_scalar_form_exprloc
			 | dw_scalar_form_reference, &context);
      if (info->allocated)
	add_scalar_info (array_die, DW_AT_allocated, info->allocated,
			 dw_scalar_form_constant
			 | dw_scalar_form_exprloc
			 | dw_scalar_form_reference, &context);
      if (info->stride)
	{
	  const enum dwarf_attribute attr
	    = (info->stride_in_bits) ? DW_AT_bit_stride : DW_AT_byte_stride;
	  const int forms
	    = (info->stride_in_bits)
	      ? dw_scalar_form_constant
	      : (dw_scalar_form_constant
		 | dw_scalar_form_exprloc
		 | dw_scalar_form_reference);

	  add_scalar_info (array_die, attr, info->stride, forms, &context);
	}
    }
  if (dwarf_version >= 5)
    {
      if (info->rank)
	{
	  add_scalar_info (array_die, DW_AT_rank, info->rank,
			   dw_scalar_form_constant
			   | dw_scalar_form_exprloc, &context);
	  subrange_tag = DW_TAG_generic_subrange;
	  context.placeholder_arg = true;
	}
    }

  add_gnat_descriptive_type_attribute (array_die, type, context_die);

  for (dim = 0; dim < info->ndimensions; dim++)
    {
      dw_die_ref subrange_die = new_die (subrange_tag, array_die, NULL);

      if (info->dimen[dim].bounds_type)
	add_type_attribute (subrange_die,
			    info->dimen[dim].bounds_type, TYPE_UNQUALIFIED,
			    false, context_die);
      if (info->dimen[dim].lower_bound)
	add_bound_info (subrange_die, DW_AT_lower_bound,
			info->dimen[dim].lower_bound, &context);
      if (info->dimen[dim].upper_bound)
	add_bound_info (subrange_die, DW_AT_upper_bound,
			info->dimen[dim].upper_bound, &context);
      if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
	add_scalar_info (subrange_die, DW_AT_byte_stride,
			 info->dimen[dim].stride,
			 dw_scalar_form_constant
			 | dw_scalar_form_exprloc
			 | dw_scalar_form_reference,
			 &context);
    }

  gen_type_die (info->element_type, context_die);
  add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
		      TREE_CODE (type) == ARRAY_TYPE
		      && TYPE_REVERSE_STORAGE_ORDER (type),
		      context_die);

  if (get_AT (array_die, DW_AT_name))
    add_pubtype (type, array_die);

  add_alignment_attribute (array_die, type);
}

#if 0
static void
gen_entry_point_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);

  if (origin != NULL)
    add_abstract_origin_attribute (decl_die, origin);
  else
    {
      add_name_and_src_coords_attributes (decl_die, decl);
      add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
			  TYPE_UNQUALIFIED, false, context_die);
    }

  if (DECL_ABSTRACT_P (decl))
    equate_decl_number_to_die (decl, decl_die);
  else
    add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
}
#endif

/* Walk through the list of incomplete types again, trying once more to
   emit full debugging info for them.  */

static void
retry_incomplete_types (void)
{
  set_early_dwarf s;
  int i;

  for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
    if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
      gen_type_die ((*incomplete_types)[i], comp_unit_die ());
  vec_safe_truncate (incomplete_types, 0);
}

/* Determine what tag to use for a record type.  */

static enum dwarf_tag
record_type_tag (tree type)
{
  if (! lang_hooks.types.classify_record)
    return DW_TAG_structure_type;

  switch (lang_hooks.types.classify_record (type))
    {
    case RECORD_IS_STRUCT:
      return DW_TAG_structure_type;

    case RECORD_IS_CLASS:
      return DW_TAG_class_type;

    case RECORD_IS_INTERFACE:
      if (dwarf_version >= 3 || !dwarf_strict)
	return DW_TAG_interface_type;
      return DW_TAG_structure_type;

    default:
      gcc_unreachable ();
    }
}

/* Generate a DIE to represent an enumeration type.  Note that these DIEs
   include all of the information about the enumeration values also. Each
   enumerated type name/value is listed as a child of the enumerated type
   DIE.  */

static dw_die_ref
gen_enumeration_type_die (tree type, dw_die_ref context_die)
{
  dw_die_ref type_die = lookup_type_die (type);
  dw_die_ref orig_type_die = type_die;

  if (type_die == NULL)
    {
      type_die = new_die (DW_TAG_enumeration_type,
			  scope_die_for (type, context_die), type);
      equate_type_number_to_die (type, type_die);
      add_name_attribute (type_die, type_tag (type));
      if ((dwarf_version >= 4 || !dwarf_strict)
	  && ENUM_IS_SCOPED (type))
	add_AT_flag (type_die, DW_AT_enum_class, 1);
      if (ENUM_IS_OPAQUE (type) && TYPE_SIZE (type))
	add_AT_flag (type_die, DW_AT_declaration, 1);
      if (!dwarf_strict)
	add_AT_unsigned (type_die, DW_AT_encoding,
			 TYPE_UNSIGNED (type)
			 ? DW_ATE_unsigned
			 : DW_ATE_signed);
    }
  else if (! TYPE_SIZE (type) || ENUM_IS_OPAQUE (type))
    return type_die;
  else
    remove_AT (type_die, DW_AT_declaration);

  /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
     given enum type is incomplete, do not generate the DW_AT_byte_size
     attribute or the DW_AT_element_list attribute.  */
  if (TYPE_SIZE (type))
    {
      tree link;

      if (!ENUM_IS_OPAQUE (type))
	TREE_ASM_WRITTEN (type) = 1;
      if (!orig_type_die || !get_AT (type_die, DW_AT_byte_size))
	add_byte_size_attribute (type_die, type);
      if (!orig_type_die || !get_AT (type_die, DW_AT_alignment))
	add_alignment_attribute (type_die, type);
      if ((dwarf_version >= 3 || !dwarf_strict)
	  && (!orig_type_die || !get_AT (type_die, DW_AT_type)))
	{
	  tree underlying = lang_hooks.types.enum_underlying_base_type (type);
	  add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED, false,
			      context_die);
	}
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	{
	  if (!orig_type_die || !get_AT (type_die, DW_AT_decl_file))
	    add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
	  if (!orig_type_die || !get_AT (type_die, DW_AT_accessibility))
	    add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
	}

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die_for (type, context_die), type_die);

      for (link = TYPE_VALUES (type);
	   link != NULL; link = TREE_CHAIN (link))
	{
	  dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
	  tree value = TREE_VALUE (link);

	  if (DECL_P (value))
	    equate_decl_number_to_die (value, enum_die);

	  gcc_assert (!ENUM_IS_OPAQUE (type));
	  add_name_attribute (enum_die,
			      IDENTIFIER_POINTER (TREE_PURPOSE (link)));

	  if (TREE_CODE (value) == CONST_DECL)
	    value = DECL_INITIAL (value);

	  if (simple_type_size_in_bits (TREE_TYPE (value))
	      <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
	    {
	      /* For constant forms created by add_AT_unsigned DWARF
		 consumers (GDB, elfutils, etc.) always zero extend
		 the value.  Only when the actual value is negative
		 do we need to use add_AT_int to generate a constant
		 form that can represent negative values.  */
	      HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
	      if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
		add_AT_unsigned (enum_die, DW_AT_const_value,
				 (unsigned HOST_WIDE_INT) val);
	      else
		add_AT_int (enum_die, DW_AT_const_value, val);
	    }
	  else
	    /* Enumeration constants may be wider than HOST_WIDE_INT.  Handle
	       that here.  TODO: This should be re-worked to use correct
	       signed/unsigned double tags for all cases.  */
	    add_AT_wide (enum_die, DW_AT_const_value, wi::to_wide (value));
	}

      add_gnat_descriptive_type_attribute (type_die, type, context_die);
      if (TYPE_ARTIFICIAL (type)
	  && (!orig_type_die || !get_AT (type_die, DW_AT_artificial)))
	add_AT_flag (type_die, DW_AT_artificial, 1);
    }
  else
    add_AT_flag (type_die, DW_AT_declaration, 1);

  add_pubtype (type, type_die);

  return type_die;
}

/* Generate a DIE to represent either a real live formal parameter decl or to
   represent just the type of some formal parameter position in some function
   type.

   Note that this routine is a bit unusual because its argument may be a
   ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
   represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
   node.  If it's the former then this function is being called to output a
   DIE to represent a formal parameter object (or some inlining thereof).  If
   it's the latter, then this function is only being called to output a
   DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
   argument type of some subprogram type.
   If EMIT_NAME_P is true, name and source coordinate attributes
   are emitted.  */

static dw_die_ref
gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
			  dw_die_ref context_die)
{
  tree node_or_origin = node ? node : origin;
  tree ultimate_origin;
  dw_die_ref parm_die = NULL;
  
  if (DECL_P (node_or_origin))
    {
      parm_die = lookup_decl_die (node);

      /* If the contexts differ, we may not be talking about the same
	 thing.
	 ???  When in LTO the DIE parent is the "abstract" copy and the
	 context_die is the specification "copy".  */
      if (parm_die
	  && parm_die->die_parent != context_die
	  && (parm_die->die_parent->die_tag != DW_TAG_GNU_formal_parameter_pack
	      || parm_die->die_parent->die_parent != context_die)
	  && !in_lto_p)
	{
	  gcc_assert (!DECL_ABSTRACT_P (node));
	  /* This can happen when creating a concrete instance, in
	     which case we need to create a new DIE that will get
	     annotated with DW_AT_abstract_origin.  */
	  parm_die = NULL;
	}

      if (parm_die && parm_die->die_parent == NULL)
	{
	  /* Check that parm_die already has the right attributes that
	     we would have added below.  If any attributes are
	     missing, fall through to add them.  */
	  if (! DECL_ABSTRACT_P (node_or_origin)
	      && !get_AT (parm_die, DW_AT_location)
	      && !get_AT (parm_die, DW_AT_const_value))
	    /* We are missing  location info, and are about to add it.  */
	    ;
	  else
	    {
	      add_child_die (context_die, parm_die);
	      return parm_die;
	    }
	}
    }

  /* If we have a previously generated DIE, use it, unless this is an
     concrete instance (origin != NULL), in which case we need a new
     DIE with a corresponding DW_AT_abstract_origin.  */
  bool reusing_die;
  if (parm_die && origin == NULL)
    reusing_die = true;
  else
    {
      parm_die = new_die (DW_TAG_formal_parameter, context_die, node);
      reusing_die = false;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
    {
    case tcc_declaration:
      ultimate_origin = decl_ultimate_origin (node_or_origin);
      if (node || ultimate_origin)
	origin = ultimate_origin;

      if (reusing_die)
	goto add_location;

      if (origin != NULL)
	add_abstract_origin_attribute (parm_die, origin);
      else if (emit_name_p)
	add_name_and_src_coords_attributes (parm_die, node);
      if (origin == NULL
	  || (! DECL_ABSTRACT_P (node_or_origin)
	      && variably_modified_type_p (TREE_TYPE (node_or_origin),
					   decl_function_context
							    (node_or_origin))))
	{
	  tree type = TREE_TYPE (node_or_origin);
	  if (decl_by_reference_p (node_or_origin))
	    add_type_attribute (parm_die, TREE_TYPE (type),
				TYPE_UNQUALIFIED,
				false, context_die);
	  else
	    add_type_attribute (parm_die, type,
				decl_quals (node_or_origin),
				false, context_die);
	}
      if (origin == NULL && DECL_ARTIFICIAL (node))
	add_AT_flag (parm_die, DW_AT_artificial, 1);
    add_location:
      if (node && node != origin)
        equate_decl_number_to_die (node, parm_die);
      if (! DECL_ABSTRACT_P (node_or_origin))
	add_location_or_const_value_attribute (parm_die, node_or_origin,
					       node == NULL);

      break;

    case tcc_type:
      /* We were called with some kind of a ..._TYPE node.  */
      add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED, false,
			  context_die);
      break;

    default:
      gcc_unreachable ();
    }

  return parm_die;
}

/* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
   children DW_TAG_formal_parameter DIEs representing the arguments of the
   parameter pack.

   PARM_PACK must be a function parameter pack.
   PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
   must point to the subsequent arguments of the function PACK_ARG belongs to.
   SUBR_DIE is the DIE of the function PACK_ARG belongs to.
   If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
   following the last one for which a DIE was generated.  */

static dw_die_ref
gen_formal_parameter_pack_die  (tree parm_pack,
				tree pack_arg,
				dw_die_ref subr_die,
				tree *next_arg)
{
  tree arg;
  dw_die_ref parm_pack_die;

  gcc_assert (parm_pack
	      && lang_hooks.function_parameter_pack_p (parm_pack)
	      && subr_die);

  parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
  add_src_coords_attributes (parm_pack_die, parm_pack);

  for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
    {
      if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
								 parm_pack))
	break;
      gen_formal_parameter_die (arg, NULL,
				false /* Don't emit name attribute.  */,
				parm_pack_die);
    }
  if (next_arg)
    *next_arg = arg;
  return parm_pack_die;
}

/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
   at the end of an (ANSI prototyped) formal parameters list.  */

static void
gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
{
  new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
}

/* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
   DW_TAG_unspecified_parameters DIE) to represent the types of the formal
   parameters as specified in some function type specification (except for
   those which appear as part of a function *definition*).  */

static void
gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
{
  tree link;
  tree formal_type = NULL;
  tree first_parm_type;
  tree arg;

  if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
    {
      arg = DECL_ARGUMENTS (function_or_method_type);
      function_or_method_type = TREE_TYPE (function_or_method_type);
    }
  else
    arg = NULL_TREE;

  first_parm_type = TYPE_ARG_TYPES (function_or_method_type);

  /* Make our first pass over the list of formal parameter types and output a
     DW_TAG_formal_parameter DIE for each one.  */
  for (link = first_parm_type; link; )
    {
      dw_die_ref parm_die;

      formal_type = TREE_VALUE (link);
      if (formal_type == void_type_node)
	break;

      /* Output a (nameless) DIE to represent the formal parameter itself.  */
      parm_die = gen_formal_parameter_die (formal_type, NULL,
					   true /* Emit name attribute.  */,
					   context_die);
      if (TREE_CODE (function_or_method_type) == METHOD_TYPE
	  && link == first_parm_type)
	{
	  add_AT_flag (parm_die, DW_AT_artificial, 1);
	  if (dwarf_version >= 3 || !dwarf_strict)
	    add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
	}
      else if (arg && DECL_ARTIFICIAL (arg))
	add_AT_flag (parm_die, DW_AT_artificial, 1);

      link = TREE_CHAIN (link);
      if (arg)
	arg = DECL_CHAIN (arg);
    }

  /* If this function type has an ellipsis, add a
     DW_TAG_unspecified_parameters DIE to the end of the parameter list.  */
  if (formal_type != void_type_node)
    gen_unspecified_parameters_die (function_or_method_type, context_die);

  /* Make our second (and final) pass over the list of formal parameter types
     and output DIEs to represent those types (as necessary).  */
  for (link = TYPE_ARG_TYPES (function_or_method_type);
       link && TREE_VALUE (link);
       link = TREE_CHAIN (link))
    gen_type_die (TREE_VALUE (link), context_die);
}

/* We want to generate the DIE for TYPE so that we can generate the
   die for MEMBER, which has been defined; we will need to refer back
   to the member declaration nested within TYPE.  If we're trying to
   generate minimal debug info for TYPE, processing TYPE won't do the
   trick; we need to attach the member declaration by hand.  */

static void
gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
{
  gen_type_die (type, context_die);

  /* If we're trying to avoid duplicate debug info, we may not have
     emitted the member decl for this function.  Emit it now.  */
  if (TYPE_STUB_DECL (type)
      && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
      && ! lookup_decl_die (member))
    {
      dw_die_ref type_die;
      gcc_assert (!decl_ultimate_origin (member));

      type_die = lookup_type_die_strip_naming_typedef (type);
      if (TREE_CODE (member) == FUNCTION_DECL)
	gen_subprogram_die (member, type_die);
      else if (TREE_CODE (member) == FIELD_DECL)
	{
	  /* Ignore the nameless fields that are used to skip bits but handle
	     C++ anonymous unions and structs.  */
	  if (DECL_NAME (member) != NULL_TREE
	      || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
	      || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
	    {
	      struct vlr_context vlr_ctx = {
		DECL_CONTEXT (member), /* struct_type */
		NULL_TREE /* variant_part_offset */
	      };
	      gen_type_die (member_declared_type (member), type_die);
	      gen_field_die (member, &vlr_ctx, type_die);
	    }
	}
      else
	gen_variable_die (member, NULL_TREE, type_die);
    }
}

/* Forward declare these functions, because they are mutually recursive
  with their set_block_* pairing functions.  */
static void set_decl_origin_self (tree);

/* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
   given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
   that it points to the node itself, thus indicating that the node is its
   own (abstract) origin.  Additionally, if the BLOCK_ABSTRACT_ORIGIN for
   the given node is NULL, recursively descend the decl/block tree which
   it is the root of, and for each other ..._DECL or BLOCK node contained
   therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
   still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
   values to point to themselves.  */

static void
set_block_origin_self (tree stmt)
{
  if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
    {
      BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;

      {
	tree local_decl;

	for (local_decl = BLOCK_VARS (stmt);
	     local_decl != NULL_TREE;
	     local_decl = DECL_CHAIN (local_decl))
	  /* Do not recurse on nested functions since the inlining status
	     of parent and child can be different as per the DWARF spec.  */
	  if (TREE_CODE (local_decl) != FUNCTION_DECL
	      && !DECL_EXTERNAL (local_decl))
	    set_decl_origin_self (local_decl);
      }

      {
	tree subblock;

	for (subblock = BLOCK_SUBBLOCKS (stmt);
	     subblock != NULL_TREE;
	     subblock = BLOCK_CHAIN (subblock))
	  set_block_origin_self (subblock);	/* Recurse.  */
      }
    }
}

/* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
   the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
   node to so that it points to the node itself, thus indicating that the
   node represents its own (abstract) origin.  Additionally, if the
   DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
   the decl/block tree of which the given node is the root of, and for
   each other ..._DECL or BLOCK node contained therein whose
   DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
   set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
   point to themselves.  */

static void
set_decl_origin_self (tree decl)
{
  if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
    {
      DECL_ABSTRACT_ORIGIN (decl) = decl;
      if (TREE_CODE (decl) == FUNCTION_DECL)
	{
	  tree arg;

	  for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
	    DECL_ABSTRACT_ORIGIN (arg) = arg;
	  if (DECL_INITIAL (decl) != NULL_TREE
	      && DECL_INITIAL (decl) != error_mark_node)
	    set_block_origin_self (DECL_INITIAL (decl));
	}
    }
}

/* Mark the early DIE for DECL as the abstract instance.  */

static void
dwarf2out_abstract_function (tree decl)
{
  dw_die_ref old_die;

  /* Make sure we have the actual abstract inline, not a clone.  */
  decl = DECL_ORIGIN (decl);

  if (DECL_IGNORED_P (decl))
    return;

  /* In LTO we're all set.  We already created abstract instances
     early and we want to avoid creating a concrete instance of that
     if we don't output it.  */
  if (in_lto_p)
    return;

  old_die = lookup_decl_die (decl);
  gcc_assert (old_die != NULL);
  if (get_AT (old_die, DW_AT_inline))
    /* We've already generated the abstract instance.  */
    return;

  /* Go ahead and put DW_AT_inline on the DIE.  */
  if (DECL_DECLARED_INLINE_P (decl))
    {
      if (cgraph_function_possibly_inlined_p (decl))
	add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_inlined);
      else
	add_AT_unsigned (old_die, DW_AT_inline, DW_INL_declared_not_inlined);
    }
  else
    {
      if (cgraph_function_possibly_inlined_p (decl))
	add_AT_unsigned (old_die, DW_AT_inline, DW_INL_inlined);
      else
	add_AT_unsigned (old_die, DW_AT_inline, DW_INL_not_inlined);
    }

  if (DECL_DECLARED_INLINE_P (decl)
      && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
    add_AT_flag (old_die, DW_AT_artificial, 1);

  set_decl_origin_self (decl);
}

/* Helper function of premark_used_types() which gets called through
   htab_traverse.

   Marks the DIE of a given type in *SLOT as perennial, so it never gets
   marked as unused by prune_unused_types.  */

bool
premark_used_types_helper (tree const &type, void *)
{
  dw_die_ref die;

  die = lookup_type_die (type);
  if (die != NULL)
    die->die_perennial_p = 1;
  return true;
}

/* Helper function of premark_types_used_by_global_vars which gets called
   through htab_traverse.

   Marks the DIE of a given type in *SLOT as perennial, so it never gets
   marked as unused by prune_unused_types. The DIE of the type is marked
   only if the global variable using the type will actually be emitted.  */

int
premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
					  void *)
{
  struct types_used_by_vars_entry *entry;
  dw_die_ref die;

  entry = (struct types_used_by_vars_entry *) *slot;
  gcc_assert (entry->type != NULL
	      && entry->var_decl != NULL);
  die = lookup_type_die (entry->type);
  if (die)
    {
      /* Ask cgraph if the global variable really is to be emitted.
         If yes, then we'll keep the DIE of ENTRY->TYPE.  */
      varpool_node *node = varpool_node::get (entry->var_decl);
      if (node && node->definition)
	{
	  die->die_perennial_p = 1;
	  /* Keep the parent DIEs as well.  */
	  while ((die = die->die_parent) && die->die_perennial_p == 0)
	    die->die_perennial_p = 1;
	}
    }
  return 1;
}

/* Mark all members of used_types_hash as perennial.  */

static void
premark_used_types (struct function *fun)
{
  if (fun && fun->used_types_hash)
    fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
}

/* Mark all members of types_used_by_vars_entry as perennial.  */

static void
premark_types_used_by_global_vars (void)
{
  if (types_used_by_vars_hash)
    types_used_by_vars_hash
      ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
}

/* Mark all variables used by the symtab as perennial.  */

static void
premark_used_variables (void)
{
  /* Mark DIEs in the symtab as used.  */
  varpool_node *var;
  FOR_EACH_VARIABLE (var)
    {
      dw_die_ref die = lookup_decl_die (var->decl);
      if (die)
	die->die_perennial_p = 1;
    }
}

/* Generate a DW_TAG_call_site DIE in function DECL under SUBR_DIE
   for CA_LOC call arg loc node.  */

static dw_die_ref
gen_call_site_die (tree decl, dw_die_ref subr_die,
		   struct call_arg_loc_node *ca_loc)
{
  dw_die_ref stmt_die = NULL, die;
  tree block = ca_loc->block;

  while (block
	 && block != DECL_INITIAL (decl)
	 && TREE_CODE (block) == BLOCK)
    {
      stmt_die = lookup_block_die (block);
      if (stmt_die)
	break;
      block = BLOCK_SUPERCONTEXT (block);
    }
  if (stmt_die == NULL)
    stmt_die = subr_die;
  die = new_die (dwarf_TAG (DW_TAG_call_site), stmt_die, NULL_TREE);
  add_AT_lbl_id (die, dwarf_AT (DW_AT_call_return_pc), ca_loc->label);
  if (ca_loc->tail_call_p)
    add_AT_flag (die, dwarf_AT (DW_AT_call_tail_call), 1);
  if (ca_loc->symbol_ref)
    {
      dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
      if (tdie)
	add_AT_die_ref (die, dwarf_AT (DW_AT_call_origin), tdie);
      else
	add_AT_addr (die, dwarf_AT (DW_AT_call_origin), ca_loc->symbol_ref,
		     false);
    }
  return die;
}

/* Generate a DIE to represent a declared function (either file-scope or
   block-local).  */

static void
gen_subprogram_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref subr_die;
  dw_die_ref old_die = lookup_decl_die (decl);
  bool old_die_had_no_children = false;

  /* This function gets called multiple times for different stages of
     the debug process.  For example, for func() in this code:

	namespace S
	{
	  void func() { ... }
	}

     ...we get called 4 times.  Twice in early debug and twice in
     late debug:

     Early debug
     -----------

       1. Once while generating func() within the namespace.  This is
          the declaration.  The declaration bit below is set, as the
          context is the namespace.

	  A new DIE will be generated with DW_AT_declaration set.

       2. Once for func() itself.  This is the specification.  The
          declaration bit below is clear as the context is the CU.

	  We will use the cached DIE from (1) to create a new DIE with
	  DW_AT_specification pointing to the declaration in (1).

     Late debug via rest_of_handle_final()
     -------------------------------------

       3. Once generating func() within the namespace.  This is also the
          declaration, as in (1), but this time we will early exit below
          as we have a cached DIE and a declaration needs no additional
          annotations (no locations), as the source declaration line
          info is enough.

       4. Once for func() itself.  As in (2), this is the specification,
          but this time we will re-use the cached DIE, and just annotate
          it with the location information that should now be available.

     For something without namespaces, but with abstract instances, we
     are also called a multiple times:

        class Base
	{
	public:
	  Base ();	  // constructor declaration (1)
	};

	Base::Base () { } // constructor specification (2)

    Early debug
    -----------

       1. Once for the Base() constructor by virtue of it being a
          member of the Base class.  This is done via
          rest_of_type_compilation.

	  This is a declaration, so a new DIE will be created with
	  DW_AT_declaration.

       2. Once for the Base() constructor definition, but this time
          while generating the abstract instance of the base
          constructor (__base_ctor) which is being generated via early
          debug of reachable functions.

	  Even though we have a cached version of the declaration (1),
	  we will create a DW_AT_specification of the declaration DIE
	  in (1).

       3. Once for the __base_ctor itself, but this time, we generate
          an DW_AT_abstract_origin version of the DW_AT_specification in
	  (2).

    Late debug via rest_of_handle_final
    -----------------------------------

       4. One final time for the __base_ctor (which will have a cached
          DIE with DW_AT_abstract_origin created in (3).  This time,
          we will just annotate the location information now
          available.
  */
  int declaration = (current_function_decl != decl
		     || (!DECL_INITIAL (decl) && !origin)
		     || class_or_namespace_scope_p (context_die));

  /* A declaration that has been previously dumped needs no
     additional information.  */
  if (old_die && declaration)
    return;

  if (in_lto_p && old_die && old_die->die_child == NULL)
    old_die_had_no_children = true;

  /* Now that the C++ front end lazily declares artificial member fns, we
     might need to retrofit the declaration into its class.  */
  if (!declaration && !origin && !old_die
      && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
      && !class_or_namespace_scope_p (context_die)
      && debug_info_level > DINFO_LEVEL_TERSE)
    old_die = force_decl_die (decl);

  /* A concrete instance, tag a new DIE with DW_AT_abstract_origin.  */
  if (origin != NULL)
    {
      gcc_assert (!declaration || local_scope_p (context_die));

      /* Fixup die_parent for the abstract instance of a nested
	 inline function.  */
      if (old_die && old_die->die_parent == NULL)
	add_child_die (context_die, old_die);

      if (old_die && get_AT_ref (old_die, DW_AT_abstract_origin))
	{
	  /* If we have a DW_AT_abstract_origin we have a working
	     cached version.  */
	  subr_die = old_die;
	}
      else
	{
	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
	  add_abstract_origin_attribute (subr_die, origin);
	  /*  This is where the actual code for a cloned function is.
	      Let's emit linkage name attribute for it.  This helps
	      debuggers to e.g, set breakpoints into
	      constructors/destructors when the user asks "break
	      K::K".  */
	  add_linkage_name (subr_die, decl);
	}
    }
  /* A cached copy, possibly from early dwarf generation.  Reuse as
     much as possible.  */
  else if (old_die)
    {
      if (!get_AT_flag (old_die, DW_AT_declaration)
	  /* We can have a normal definition following an inline one in the
	     case of redefinition of GNU C extern inlines.
	     It seems reasonable to use AT_specification in this case.  */
	  && !get_AT (old_die, DW_AT_inline))
	{
	  /* Detect and ignore this case, where we are trying to output
	     something we have already output.  */
	  if (get_AT (old_die, DW_AT_low_pc)
	      || get_AT (old_die, DW_AT_ranges))
	    return;

	  /* If we have no location information, this must be a
	     partially generated DIE from early dwarf generation.
	     Fall through and generate it.  */
	}

      /* If the definition comes from the same place as the declaration,
	 maybe use the old DIE.  We always want the DIE for this function
	 that has the *_pc attributes to be under comp_unit_die so the
	 debugger can find it.  We also need to do this for abstract
	 instances of inlines, since the spec requires the out-of-line copy
	 to have the same parent.  For local class methods, this doesn't
	 apply; we just use the old DIE.  */
      expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
      struct dwarf_file_data * file_index = lookup_filename (s.file);
      if (((is_unit_die (old_die->die_parent)
	    /* This condition fixes the inconsistency/ICE with the
	       following Fortran test (or some derivative thereof) while
	       building libgfortran:

		  module some_m
		  contains
		     logical function funky (FLAG)
		       funky = .true.
		    end function
		  end module
	     */
	    || (old_die->die_parent
		&& old_die->die_parent->die_tag == DW_TAG_module)
	    || local_scope_p (old_die->die_parent)
	    || context_die == NULL)
	   && (DECL_ARTIFICIAL (decl)
	       || (get_AT_file (old_die, DW_AT_decl_file) == file_index
		   && (get_AT_unsigned (old_die, DW_AT_decl_line)
		       == (unsigned) s.line)
		   && (!debug_column_info
		       || s.column == 0
		       || (get_AT_unsigned (old_die, DW_AT_decl_column)
			   == (unsigned) s.column)))))
	  /* With LTO if there's an abstract instance for
	     the old DIE, this is a concrete instance and
	     thus re-use the DIE.  */
	  || get_AT (old_die, DW_AT_abstract_origin))
	{
	  subr_die = old_die;

	  /* Clear out the declaration attribute, but leave the
	     parameters so they can be augmented with location
	     information later.  Unless this was a declaration, in
	     which case, wipe out the nameless parameters and recreate
	     them further down.  */
	  if (remove_AT (subr_die, DW_AT_declaration))
	    {

	      remove_AT (subr_die, DW_AT_object_pointer);
	      remove_child_TAG (subr_die, DW_TAG_formal_parameter);
	    }
	}
      /* Make a specification pointing to the previously built
	 declaration.  */
      else
	{
	  subr_die = new_die (DW_TAG_subprogram, context_die, decl);
	  add_AT_specification (subr_die, old_die);
          add_pubname (decl, subr_die);
	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
	    add_AT_file (subr_die, DW_AT_decl_file, file_index);
	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
	    add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
	  if (debug_column_info
	      && s.column
	      && (get_AT_unsigned (old_die, DW_AT_decl_column)
		  != (unsigned) s.column))
	    add_AT_unsigned (subr_die, DW_AT_decl_column, s.column);

	  /* If the prototype had an 'auto' or 'decltype(auto)' in
	     the return type, emit the real type on the definition die.  */
	  if (is_cxx () && debug_info_level > DINFO_LEVEL_TERSE)
	    {
	      dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
	      while (die
		     && (die->die_tag == DW_TAG_reference_type
			 || die->die_tag == DW_TAG_rvalue_reference_type
			 || die->die_tag == DW_TAG_pointer_type
			 || die->die_tag == DW_TAG_const_type
			 || die->die_tag == DW_TAG_volatile_type
			 || die->die_tag == DW_TAG_restrict_type
			 || die->die_tag == DW_TAG_array_type
			 || die->die_tag == DW_TAG_ptr_to_member_type
			 || die->die_tag == DW_TAG_subroutine_type))
		die = get_AT_ref (die, DW_AT_type);
	      if (die == auto_die || die == decltype_auto_die)
		add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
				    TYPE_UNQUALIFIED, false, context_die);
	    }

	  /* When we process the method declaration, we haven't seen
	     the out-of-class defaulted definition yet, so we have to
	     recheck now.  */
	  if ((dwarf_version >= 5 || ! dwarf_strict)
	      && !get_AT (subr_die, DW_AT_defaulted))
	    {
	      int defaulted
		= lang_hooks.decls.decl_dwarf_attribute (decl,
							 DW_AT_defaulted);
	      if (defaulted != -1)
		{
		  /* Other values must have been handled before.  */
		  gcc_assert (defaulted == DW_DEFAULTED_out_of_class);
		  add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
		}
	    }
	}
    }
  /* Create a fresh DIE for anything else.  */
  else
    {
      subr_die = new_die (DW_TAG_subprogram, context_die, decl);

      if (TREE_PUBLIC (decl))
	add_AT_flag (subr_die, DW_AT_external, 1);

      add_name_and_src_coords_attributes (subr_die, decl);
      add_pubname (decl, subr_die);
      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  add_prototyped_attribute (subr_die, TREE_TYPE (decl));
	  add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
			      TYPE_UNQUALIFIED, false, context_die);
	}

      add_pure_or_virtual_attribute (subr_die, decl);
      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (subr_die, DW_AT_artificial, 1);

      if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
	add_AT_flag (subr_die, DW_AT_noreturn, 1);

      add_alignment_attribute (subr_die, decl);

      add_accessibility_attribute (subr_die, decl);
    }

  /* Unless we have an existing non-declaration DIE, equate the new
     DIE.  */
  if (!old_die || is_declaration_die (old_die))
    equate_decl_number_to_die (decl, subr_die);

  if (declaration)
    {
      if (!old_die || !get_AT (old_die, DW_AT_inline))
	{
	  add_AT_flag (subr_die, DW_AT_declaration, 1);

	  /* If this is an explicit function declaration then generate
	     a DW_AT_explicit attribute.  */
	  if ((dwarf_version >= 3 || !dwarf_strict)
	      && lang_hooks.decls.decl_dwarf_attribute (decl,
							DW_AT_explicit) == 1)
	    add_AT_flag (subr_die, DW_AT_explicit, 1);

	  /* If this is a C++11 deleted special function member then generate
	     a DW_AT_deleted attribute.  */
	  if ((dwarf_version >= 5 || !dwarf_strict)
	      && lang_hooks.decls.decl_dwarf_attribute (decl,
							DW_AT_deleted) == 1)
	    add_AT_flag (subr_die, DW_AT_deleted, 1);

	  /* If this is a C++11 defaulted special function member then
	     generate a DW_AT_defaulted attribute.  */
	  if (dwarf_version >= 5 || !dwarf_strict)
	    {
	      int defaulted
		= lang_hooks.decls.decl_dwarf_attribute (decl,
							 DW_AT_defaulted);
	      if (defaulted != -1)
		add_AT_unsigned (subr_die, DW_AT_defaulted, defaulted);
	    }

	  /* If this is a C++11 non-static member function with & ref-qualifier
	     then generate a DW_AT_reference attribute.  */
	  if ((dwarf_version >= 5 || !dwarf_strict)
	      && lang_hooks.decls.decl_dwarf_attribute (decl,
							DW_AT_reference) == 1)
	    add_AT_flag (subr_die, DW_AT_reference, 1);

	  /* If this is a C++11 non-static member function with &&
	     ref-qualifier then generate a DW_AT_reference attribute.  */
	  if ((dwarf_version >= 5 || !dwarf_strict)
	      && lang_hooks.decls.decl_dwarf_attribute (decl,
							DW_AT_rvalue_reference)
		 == 1)
	    add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
	}
    }
  /* For non DECL_EXTERNALs, if range information is available, fill
     the DIE with it.  */
  else if (!DECL_EXTERNAL (decl) && !early_dwarf)
    {
      HOST_WIDE_INT cfa_fb_offset;

      struct function *fun = DECL_STRUCT_FUNCTION (decl);

      if (!crtl->has_bb_partition)
	{
	  dw_fde_ref fde = fun->fde;
	  if (fde->dw_fde_begin)
	    {
	      /* We have already generated the labels.  */
             add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
                                 fde->dw_fde_end, false);
	    }
	  else
	    {
	      /* Create start/end labels and add the range.  */
	      char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
	      char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
	      ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
					   current_function_funcdef_no);
	      ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
					   current_function_funcdef_no);
             add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
                                 false);
	    }

#if VMS_DEBUGGING_INFO
      /* HP OpenVMS Industry Standard 64: DWARF Extensions
	 Section 2.3 Prologue and Epilogue Attributes:
	 When a breakpoint is set on entry to a function, it is generally
	 desirable for execution to be suspended, not on the very first
	 instruction of the function, but rather at a point after the
	 function's frame has been set up, after any language defined local
	 declaration processing has been completed, and before execution of
	 the first statement of the function begins. Debuggers generally
	 cannot properly determine where this point is.  Similarly for a
	 breakpoint set on exit from a function. The prologue and epilogue
	 attributes allow a compiler to communicate the location(s) to use.  */

      {
        if (fde->dw_fde_vms_end_prologue)
          add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
	    fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);

        if (fde->dw_fde_vms_begin_epilogue)
          add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
	    fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
      }
#endif

	}
      else
	{
	  /* Generate pubnames entries for the split function code ranges.  */
	  dw_fde_ref fde = fun->fde;

	  if (fde->dw_fde_second_begin)
	    {
	      if (dwarf_version >= 3 || !dwarf_strict)
		{
		  /* We should use ranges for non-contiguous code section 
		     addresses.  Use the actual code range for the initial
		     section, since the HOT/COLD labels might precede an 
		     alignment offset.  */
		  bool range_list_added = false;
		  add_ranges_by_labels (subr_die, fde->dw_fde_begin,
					fde->dw_fde_end, &range_list_added,
					false);
		  add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
					fde->dw_fde_second_end,
					&range_list_added, false);
		  if (range_list_added)
		    add_ranges (NULL);
		}
	      else
		{
		  /* There is no real support in DW2 for this .. so we make
		     a work-around.  First, emit the pub name for the segment
		     containing the function label.  Then make and emit a
		     simplified subprogram DIE for the second segment with the
		     name pre-fixed by __hot/cold_sect_of_.  We use the same
		     linkage name for the second die so that gdb will find both
		     sections when given "b foo".  */
		  const char *name = NULL;
		  tree decl_name = DECL_NAME (decl);
		  dw_die_ref seg_die;

		  /* Do the 'primary' section.   */
		  add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
                                      fde->dw_fde_end, false);

		  /* Build a minimal DIE for the secondary section.  */
		  seg_die = new_die (DW_TAG_subprogram,
				     subr_die->die_parent, decl);

		  if (TREE_PUBLIC (decl))
		    add_AT_flag (seg_die, DW_AT_external, 1);

		  if (decl_name != NULL 
		      && IDENTIFIER_POINTER (decl_name) != NULL)
		    {
		      name = dwarf2_name (decl, 1);
		      if (! DECL_ARTIFICIAL (decl))
			add_src_coords_attributes (seg_die, decl);

		      add_linkage_name (seg_die, decl);
		    }
		  gcc_assert (name != NULL);
		  add_pure_or_virtual_attribute (seg_die, decl);
		  if (DECL_ARTIFICIAL (decl))
		    add_AT_flag (seg_die, DW_AT_artificial, 1);

		  name = concat ("__second_sect_of_", name, NULL); 
		  add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
                                      fde->dw_fde_second_end, false);
		  add_name_attribute (seg_die, name);
		  if (want_pubnames ())
		    add_pubname_string (name, seg_die);
		}
	    }
	  else
           add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
                               false);
	}

      cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);

      /* We define the "frame base" as the function's CFA.  This is more
	 convenient for several reasons: (1) It's stable across the prologue
	 and epilogue, which makes it better than just a frame pointer,
	 (2) With dwarf3, there exists a one-byte encoding that allows us
	 to reference the .debug_frame data by proxy, but failing that,
	 (3) We can at least reuse the code inspection and interpretation
	 code that determines the CFA position at various points in the
	 function.  */
      if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
	{
	  dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
	  add_AT_loc (subr_die, DW_AT_frame_base, op);
	}
      else
	{
	  dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
	  if (list->dw_loc_next)
	    add_AT_loc_list (subr_die, DW_AT_frame_base, list);
	  else
	    add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
	}

      /* Compute a displacement from the "steady-state frame pointer" to
	 the CFA.  The former is what all stack slots and argument slots
	 will reference in the rtl; the latter is what we've told the
	 debugger about.  We'll need to adjust all frame_base references
	 by this displacement.  */
      compute_frame_pointer_to_fb_displacement (cfa_fb_offset);

      if (fun->static_chain_decl)
	{
	  /* DWARF requires here a location expression that computes the
	     address of the enclosing subprogram's frame base.  The machinery
	     in tree-nested.cc is supposed to store this specific address in the
	     last field of the FRAME record.  */
	  const tree frame_type
	    = TREE_TYPE (TREE_TYPE (fun->static_chain_decl));
	  const tree fb_decl = tree_last (TYPE_FIELDS (frame_type));

	  tree fb_expr
	    = build1 (INDIRECT_REF, frame_type, fun->static_chain_decl);
	  fb_expr = build3 (COMPONENT_REF, TREE_TYPE (fb_decl),
			    fb_expr, fb_decl, NULL_TREE);

	  add_AT_location_description (subr_die, DW_AT_static_link,
				       loc_list_from_tree (fb_expr, 0, NULL));
	}

      resolve_variable_values ();
    }

  /* Generate child dies for template parameters.  */
  if (early_dwarf && debug_info_level > DINFO_LEVEL_TERSE)
    gen_generic_params_dies (decl);

  /* Now output descriptions of the arguments for this function. This gets
     (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
     for a FUNCTION_DECL doesn't indicate cases where there was a trailing
     `...' at the end of the formal parameter list.  In order to find out if
     there was a trailing ellipsis or not, we must instead look at the type
     associated with the FUNCTION_DECL.  This will be a node of type
     FUNCTION_TYPE. If the chain of type nodes hanging off of this
     FUNCTION_TYPE node ends with a void_type_node then there should *not* be
     an ellipsis at the end.  */

  /* In the case where we are describing a mere function declaration, all we
     need to do here (and all we *can* do here) is to describe the *types* of
     its formal parameters.  */
  if (debug_info_level <= DINFO_LEVEL_TERSE)
    ;
  else if (declaration)
    gen_formal_types_die (decl, subr_die);
  else
    {
      /* Generate DIEs to represent all known formal parameters.  */
      tree parm = DECL_ARGUMENTS (decl);
      tree generic_decl = early_dwarf
	? lang_hooks.decls.get_generic_function_decl (decl) : NULL;
      tree generic_decl_parm = generic_decl
				? DECL_ARGUMENTS (generic_decl)
				: NULL;

      /* Now we want to walk the list of parameters of the function and
	 emit their relevant DIEs.

	 We consider the case of DECL being an instance of a generic function
	 as well as it being a normal function.

	 If DECL is an instance of a generic function we walk the
	 parameters of the generic function declaration _and_ the parameters of
	 DECL itself. This is useful because we want to emit specific DIEs for
	 function parameter packs and those are declared as part of the
	 generic function declaration. In that particular case,
	 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
	 That DIE has children DIEs representing the set of arguments
	 of the pack. Note that the set of pack arguments can be empty.
	 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
	 children DIE.

	 Otherwise, we just consider the parameters of DECL.  */
      while (generic_decl_parm || parm)
	{
	  if (generic_decl_parm
	      && lang_hooks.function_parameter_pack_p (generic_decl_parm))
	    gen_formal_parameter_pack_die (generic_decl_parm,
					   parm, subr_die,
					   &parm);
	  else if (parm)
	    {
	      dw_die_ref parm_die = gen_decl_die (parm, NULL, NULL, subr_die);

	      if (early_dwarf
		  && parm == DECL_ARGUMENTS (decl)
		  && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
		  && parm_die
		  && (dwarf_version >= 3 || !dwarf_strict))
		add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);

	      parm = DECL_CHAIN (parm);
	    }

	  if (generic_decl_parm)
	    generic_decl_parm = DECL_CHAIN (generic_decl_parm);
	}

      /* Decide whether we need an unspecified_parameters DIE at the end.
	 There are 2 more cases to do this for: 1) the ansi ... declaration -
	 this is detectable when the end of the arg list is not a
	 void_type_node 2) an unprototyped function declaration (not a
	 definition).  This just means that we have no info about the
	 parameters at all.  */
      if (early_dwarf)
	{
	  if (prototype_p (TREE_TYPE (decl)))
	    {
	      /* This is the prototyped case, check for....  */
	      if (stdarg_p (TREE_TYPE (decl)))
		gen_unspecified_parameters_die (decl, subr_die);
	    }
	  else if (DECL_INITIAL (decl) == NULL_TREE)
	    gen_unspecified_parameters_die (decl, subr_die);
	}
      else if ((subr_die != old_die || old_die_had_no_children)
	       && prototype_p (TREE_TYPE (decl))
	       && stdarg_p (TREE_TYPE (decl)))
	gen_unspecified_parameters_die (decl, subr_die);
    }

  if (subr_die != old_die)
    /* Add the calling convention attribute if requested.  */
    add_calling_convention_attribute (subr_die, decl);

  /* Output Dwarf info for all of the stuff within the body of the function
     (if it has one - it may be just a declaration).

     OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
     a function.  This BLOCK actually represents the outermost binding contour
     for the function, i.e. the contour in which the function's formal
     parameters and labels get declared. Curiously, it appears that the front
     end doesn't actually put the PARM_DECL nodes for the current function onto
     the BLOCK_VARS list for this outer scope, but are strung off of the
     DECL_ARGUMENTS list for the function instead.

     The BLOCK_VARS list for the `outer_scope' does provide us with a list of
     the LABEL_DECL nodes for the function however, and we output DWARF info
     for those in decls_for_scope.  Just within the `outer_scope' there will be
     a BLOCK node representing the function's outermost pair of curly braces,
     and any blocks used for the base and member initializers of a C++
     constructor function.  */
  tree outer_scope = DECL_INITIAL (decl);
  if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
    {
      int call_site_note_count = 0;
      int tail_call_site_note_count = 0;

      /* Emit a DW_TAG_variable DIE for a named return value.  */
      if (DECL_NAME (DECL_RESULT (decl)))
	gen_decl_die (DECL_RESULT (decl), NULL, NULL, subr_die);

      /* The first time through decls_for_scope we will generate the
	 DIEs for the locals.  The second time, we fill in the
	 location info.  */
      decls_for_scope (outer_scope, subr_die);

      if (call_arg_locations && (!dwarf_strict || dwarf_version >= 5))
	{
	  struct call_arg_loc_node *ca_loc;
	  for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
	    {
	      dw_die_ref die = NULL;
	      rtx tloc = NULL_RTX, tlocc = NULL_RTX;
	      rtx arg, next_arg;
	      tree arg_decl = NULL_TREE;

	      for (arg = (ca_loc->call_arg_loc_note != NULL_RTX
			  ? XEXP (ca_loc->call_arg_loc_note, 0)
			  : NULL_RTX);
		   arg; arg = next_arg)
		{
		  dw_loc_descr_ref reg, val;
		  machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
		  dw_die_ref cdie, tdie = NULL;

		  next_arg = XEXP (arg, 1);
		  if (REG_P (XEXP (XEXP (arg, 0), 0))
		      && next_arg
		      && MEM_P (XEXP (XEXP (next_arg, 0), 0))
		      && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
		      && REGNO (XEXP (XEXP (arg, 0), 0))
			 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
		    next_arg = XEXP (next_arg, 1);
		  if (mode == VOIDmode)
		    {
		      mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
		      if (mode == VOIDmode)
			mode = GET_MODE (XEXP (arg, 0));
		    }
		  if (mode == VOIDmode || mode == BLKmode)
		    continue;
		  /* Get dynamic information about call target only if we
		     have no static information: we cannot generate both
		     DW_AT_call_origin and DW_AT_call_target
		     attributes.  */
		  if (ca_loc->symbol_ref == NULL_RTX)
		    {
		      if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
			{
			  tloc = XEXP (XEXP (arg, 0), 1);
			  continue;
			}
		      else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
			       && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
			{
			  tlocc = XEXP (XEXP (arg, 0), 1);
			  continue;
			}
		    }
		  reg = NULL;
		  if (REG_P (XEXP (XEXP (arg, 0), 0)))
		    reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
					      VAR_INIT_STATUS_INITIALIZED);
		  else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
		    {
		      rtx mem = XEXP (XEXP (arg, 0), 0);
		      reg = mem_loc_descriptor (XEXP (mem, 0),
						get_address_mode (mem),
						GET_MODE (mem),
						VAR_INIT_STATUS_INITIALIZED);
		    }
		  else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
			   == DEBUG_PARAMETER_REF)
		    {
		      tree tdecl
			= DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
		      tdie = lookup_decl_die (tdecl);
		      if (tdie == NULL)
			continue;
		      arg_decl = tdecl;
		    }
		  else
		    continue;
		  if (reg == NULL
		      && GET_CODE (XEXP (XEXP (arg, 0), 0))
			 != DEBUG_PARAMETER_REF)
		    continue;
		  val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
					    VOIDmode,
					    VAR_INIT_STATUS_INITIALIZED);
		  if (val == NULL)
		    continue;
		  if (die == NULL)
		    die = gen_call_site_die (decl, subr_die, ca_loc);
		  cdie = new_die (dwarf_TAG (DW_TAG_call_site_parameter), die,
				  NULL_TREE);
		  add_desc_attribute (cdie, arg_decl);
		  if (reg != NULL)
		    add_AT_loc (cdie, DW_AT_location, reg);
		  else if (tdie != NULL)
		    add_AT_die_ref (cdie, dwarf_AT (DW_AT_call_parameter),
				    tdie);
		  add_AT_loc (cdie, dwarf_AT (DW_AT_call_value), val);
		  if (next_arg != XEXP (arg, 1))
		    {
		      mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
		      if (mode == VOIDmode)
			mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
		      val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
							    0), 1),
						mode, VOIDmode,
						VAR_INIT_STATUS_INITIALIZED);
		      if (val != NULL)
			add_AT_loc (cdie, dwarf_AT (DW_AT_call_data_value),
				    val);
		    }
		}
	      if (die == NULL
		  && (ca_loc->symbol_ref || tloc))
		die = gen_call_site_die (decl, subr_die, ca_loc);
	      if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
		{
		  dw_loc_descr_ref tval = NULL;

		  if (tloc != NULL_RTX)
		    tval = mem_loc_descriptor (tloc,
					       GET_MODE (tloc) == VOIDmode
					       ? Pmode : GET_MODE (tloc),
					       VOIDmode,
					       VAR_INIT_STATUS_INITIALIZED);
		  if (tval)
		    add_AT_loc (die, dwarf_AT (DW_AT_call_target), tval);
		  else if (tlocc != NULL_RTX)
		    {
		      tval = mem_loc_descriptor (tlocc,
						 GET_MODE (tlocc) == VOIDmode
						 ? Pmode : GET_MODE (tlocc),
						 VOIDmode,
						 VAR_INIT_STATUS_INITIALIZED);
		      if (tval)
			add_AT_loc (die,
				    dwarf_AT (DW_AT_call_target_clobbered),
				    tval);
		    }
		}
	      if (die != NULL)
		{
		  call_site_note_count++;
		  if (ca_loc->tail_call_p)
		    tail_call_site_note_count++;
		}
	    }
	}
      call_arg_locations = NULL;
      call_arg_loc_last = NULL;
      if (tail_call_site_count >= 0
	  && tail_call_site_count == tail_call_site_note_count
	  && (!dwarf_strict || dwarf_version >= 5))
	{
	  if (call_site_count >= 0
	      && call_site_count == call_site_note_count)
	    add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_calls), 1);
	  else
	    add_AT_flag (subr_die, dwarf_AT (DW_AT_call_all_tail_calls), 1);
	}
      call_site_count = -1;
      tail_call_site_count = -1;
    }

  /* Mark used types after we have created DIEs for the functions scopes.  */
  premark_used_types (DECL_STRUCT_FUNCTION (decl));
}

/* Returns a hash value for X (which really is a die_struct).  */

hashval_t
block_die_hasher::hash (die_struct *d)
{
  return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
}

/* Return nonzero if decl_id and die_parent of die_struct X is the same
   as decl_id and die_parent of die_struct Y.  */

bool
block_die_hasher::equal (die_struct *x, die_struct *y)
{
  return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
}

/* Hold information about markers for inlined entry points.  */
struct GTY ((for_user)) inline_entry_data
{
  /* The block that's the inlined_function_outer_scope for an inlined
     function.  */
  tree block;

  /* The label at the inlined entry point.  */
  const char *label_pfx;
  unsigned int label_num;

  /* The view number to be used as the inlined entry point.  */
  var_loc_view view;
};

struct inline_entry_data_hasher : ggc_ptr_hash <inline_entry_data>
{
  typedef tree compare_type;
  static inline hashval_t hash (const inline_entry_data *);
  static inline bool equal (const inline_entry_data *, const_tree);
};

/* Hash table routines for inline_entry_data.  */

inline hashval_t
inline_entry_data_hasher::hash (const inline_entry_data *data)
{
  return htab_hash_pointer (data->block);
}

inline bool
inline_entry_data_hasher::equal (const inline_entry_data *data,
				 const_tree block)
{
  return data->block == block;
}

/* Inlined entry points pending DIE creation in this compilation unit.  */

static GTY(()) hash_table<inline_entry_data_hasher> *inline_entry_data_table;


/* Return TRUE if DECL, which may have been previously generated as
   OLD_DIE, is a candidate for a DW_AT_specification.  DECLARATION is
   true if decl (or its origin) is either an extern declaration or a
   class/namespace scoped declaration.

   The declare_in_namespace support causes us to get two DIEs for one
   variable, both of which are declarations.  We want to avoid
   considering one to be a specification, so we must test for
   DECLARATION and DW_AT_declaration.  */
static inline bool
decl_will_get_specification_p (dw_die_ref old_die, tree decl, bool declaration)
{
  return (old_die && TREE_STATIC (decl) && !declaration
	  && get_AT_flag (old_die, DW_AT_declaration) == 1);
}

/* Return true if DECL is a local static.  */

static inline bool
local_function_static (tree decl)
{
  gcc_assert (VAR_P (decl));
  return TREE_STATIC (decl)
    && DECL_CONTEXT (decl)
    && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL;
}

/* Return true iff DECL overrides (presumably completes) the type of
   OLD_DIE within CONTEXT_DIE.  */

static bool
override_type_for_decl_p (tree decl, dw_die_ref old_die,
			  dw_die_ref context_die)
{
  tree type = TREE_TYPE (decl);
  int cv_quals;

  if (decl_by_reference_p (decl))
    {
      type = TREE_TYPE (type);
      cv_quals = TYPE_UNQUALIFIED;
    }
  else
    cv_quals = decl_quals (decl);

  dw_die_ref type_die = modified_type_die (type,
					   cv_quals | TYPE_QUALS (type),
					   false,
					   context_die);

  dw_die_ref old_type_die = get_AT_ref (old_die, DW_AT_type);

  return type_die != old_type_die;
}

/* Generate a DIE to represent a declared data object.
   Either DECL or ORIGIN must be non-null.  */

static void
gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
{
  HOST_WIDE_INT off = 0;
  tree com_decl;
  tree decl_or_origin = decl ? decl : origin;
  tree ultimate_origin;
  dw_die_ref var_die;
  dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
  bool declaration = (DECL_EXTERNAL (decl_or_origin)
		      || class_or_namespace_scope_p (context_die));
  bool specialization_p = false;
  bool no_linkage_name = false;

  /* While C++ inline static data members have definitions inside of the
     class, force the first DIE to be a declaration, then let gen_member_die
     reparent it to the class context and call gen_variable_die again
     to create the outside of the class DIE for the definition.  */
  if (!declaration
      && old_die == NULL
      && decl
      && DECL_CONTEXT (decl)
      && TYPE_P (DECL_CONTEXT (decl))
      && lang_hooks.decls.decl_dwarf_attribute (decl, DW_AT_inline) != -1)
    {
      declaration = true;
      if (dwarf_version < 5)
	no_linkage_name = true;
    }

  ultimate_origin = decl_ultimate_origin (decl_or_origin);
  if (decl || ultimate_origin)
    origin = ultimate_origin;
  com_decl = fortran_common (decl_or_origin, &off);

  /* Symbol in common gets emitted as a child of the common block, in the form
     of a data member.  */
  if (com_decl)
    {
      dw_die_ref com_die;
      dw_loc_list_ref loc = NULL;
      die_node com_die_arg;

      var_die = lookup_decl_die (decl_or_origin);
      if (var_die)
	{
	  if (! early_dwarf && get_AT (var_die, DW_AT_location) == NULL)
	    {
	      loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
	      if (loc)
		{
		  if (off)
		    {
		      /* Optimize the common case.  */
		      if (single_element_loc_list_p (loc)
			  && loc->expr->dw_loc_opc == DW_OP_addr
			  && loc->expr->dw_loc_next == NULL
			  && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
			     == SYMBOL_REF)
			{
			  rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
			  loc->expr->dw_loc_oprnd1.v.val_addr
			    = plus_constant (GET_MODE (x), x , off);
			}
		      else
			loc_list_plus_const (loc, off);
		    }
		  add_AT_location_description (var_die, DW_AT_location, loc);
		  remove_AT (var_die, DW_AT_declaration);
		}
	    }
	  return;
	}

      if (common_block_die_table == NULL)
	common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);

      com_die_arg.decl_id = DECL_UID (com_decl);
      com_die_arg.die_parent = context_die;
      com_die = common_block_die_table->find (&com_die_arg);
      if (! early_dwarf)
	loc = loc_list_from_tree (com_decl, 2, NULL);
      if (com_die == NULL)
	{
	  const char *cnam
	    = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
	  die_node **slot;

	  com_die = new_die (DW_TAG_common_block, context_die, decl);
	  add_name_and_src_coords_attributes (com_die, com_decl);
	  if (loc)
	    {
	      add_AT_location_description (com_die, DW_AT_location, loc);
	      /* Avoid sharing the same loc descriptor between
		 DW_TAG_common_block and DW_TAG_variable.  */
	      loc = loc_list_from_tree (com_decl, 2, NULL);
	    }
	  else if (DECL_EXTERNAL (decl_or_origin))
	    add_AT_flag (com_die, DW_AT_declaration, 1);
	  if (want_pubnames ())
	    add_pubname_string (cnam, com_die); /* ??? needed? */
	  com_die->decl_id = DECL_UID (com_decl);
	  slot = common_block_die_table->find_slot (com_die, INSERT);
	  *slot = com_die;
	}
      else if (get_AT (com_die, DW_AT_location) == NULL && loc)
	{
	  add_AT_location_description (com_die, DW_AT_location, loc);
	  loc = loc_list_from_tree (com_decl, 2, NULL);
	  remove_AT (com_die, DW_AT_declaration);
	}
      var_die = new_die (DW_TAG_variable, com_die, decl);
      add_name_and_src_coords_attributes (var_die, decl_or_origin);
      add_type_attribute (var_die, TREE_TYPE (decl_or_origin),
			  decl_quals (decl_or_origin), false,
			  context_die);
      add_alignment_attribute (var_die, decl);
      add_AT_flag (var_die, DW_AT_external, 1);
      if (loc)
	{
	  if (off)
	    {
	      /* Optimize the common case.  */
	      if (single_element_loc_list_p (loc)
                  && loc->expr->dw_loc_opc == DW_OP_addr
		  && loc->expr->dw_loc_next == NULL
		  && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
		{
		  rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
		  loc->expr->dw_loc_oprnd1.v.val_addr
		    = plus_constant (GET_MODE (x), x, off);
		}
	      else
		loc_list_plus_const (loc, off);
	    }
	  add_AT_location_description (var_die, DW_AT_location, loc);
	}
      else if (DECL_EXTERNAL (decl_or_origin))
	add_AT_flag (var_die, DW_AT_declaration, 1);
      if (decl)
	equate_decl_number_to_die (decl, var_die);
      return;
    }

  if (old_die)
    {
      if (declaration)
	{
	  /* A declaration that has been previously dumped, needs no
	     further annotations, since it doesn't need location on
	     the second pass.  */
	  return;
	}
      else if (decl_will_get_specification_p (old_die, decl, declaration)
	       && !get_AT (old_die, DW_AT_specification))
	{
	  /* Fall-thru so we can make a new variable die along with a
	     DW_AT_specification.  */
	}
      else if (origin && old_die->die_parent != context_die)
	{
	  /* If we will be creating an inlined instance, we need a
	     new DIE that will get annotated with
	     DW_AT_abstract_origin.  */
	  gcc_assert (!DECL_ABSTRACT_P (decl));
	}
      else
	{
	  /* If a DIE was dumped early, it still needs location info.
	     Skip to where we fill the location bits.  */
	  var_die = old_die;

	  /* ???  In LTRANS we cannot annotate early created variably
	     modified type DIEs without copying them and adjusting all
	     references to them.  Thus we dumped them again.  Also add a
	     reference to them but beware of -g0 compile and -g link
	     in which case the reference will be already present.  */
	  tree type = TREE_TYPE (decl_or_origin);
	  if (in_lto_p
	      && ! get_AT (var_die, DW_AT_type)
	      && variably_modified_type_p
		   (type, decl_function_context (decl_or_origin)))
	    {
	      if (decl_by_reference_p (decl_or_origin))
		add_type_attribute (var_die, TREE_TYPE (type),
				    TYPE_UNQUALIFIED, false, context_die);
	      else
		add_type_attribute (var_die, type, decl_quals (decl_or_origin),
				    false, context_die);
	    }

	  goto gen_variable_die_location;
	}
    }

  /* For static data members, the declaration in the class is supposed
     to have DW_TAG_member tag in DWARF{3,4} and we emit it for compatibility
     also in DWARF2; the specification should still be DW_TAG_variable
     referencing the DW_TAG_member DIE.  */
  if (declaration && class_scope_p (context_die) && dwarf_version < 5)
    var_die = new_die (DW_TAG_member, context_die, decl);
  else
    var_die = new_die (DW_TAG_variable, context_die, decl);

  if (origin != NULL)
    add_abstract_origin_attribute (var_die, origin);

  /* Loop unrolling can create multiple blocks that refer to the same
     static variable, so we must test for the DW_AT_declaration flag.

     ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
     copy decls and set the DECL_ABSTRACT_P flag on them instead of
     sharing them.

     ??? Duplicated blocks have been rewritten to use .debug_ranges.  */
  else if (decl_will_get_specification_p (old_die, decl, declaration))
    {
      /* This is a definition of a C++ class level static.  */
      add_AT_specification (var_die, old_die);
      specialization_p = true;
      if (DECL_NAME (decl))
	{
	  expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
	  struct dwarf_file_data * file_index = lookup_filename (s.file);

	  if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
	    add_AT_file (var_die, DW_AT_decl_file, file_index);

	  if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
	    add_AT_unsigned (var_die, DW_AT_decl_line, s.line);

	  if (debug_column_info
	      && s.column
	      && (get_AT_unsigned (old_die, DW_AT_decl_column)
		  != (unsigned) s.column))
	    add_AT_unsigned (var_die, DW_AT_decl_column, s.column);

	  if (old_die->die_tag == DW_TAG_member)
	    add_linkage_name (var_die, decl);
	}
    }
  else
    add_name_and_src_coords_attributes (var_die, decl, no_linkage_name);

  if ((origin == NULL && !specialization_p)
      || (origin != NULL
	  && !DECL_ABSTRACT_P (decl_or_origin)
	  && variably_modified_type_p (TREE_TYPE (decl_or_origin),
				       decl_function_context
				       (decl_or_origin)))
      || (old_die && specialization_p
	  && override_type_for_decl_p (decl_or_origin, old_die, context_die)))
    {
      tree type = TREE_TYPE (decl_or_origin);

      if (decl_by_reference_p (decl_or_origin))
	add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
			    context_die);
      else
	add_type_attribute (var_die, type, decl_quals (decl_or_origin), false,
			    context_die);
    }

  if (origin == NULL && !specialization_p)
    {
      if (TREE_PUBLIC (decl))
	add_AT_flag (var_die, DW_AT_external, 1);

      if (DECL_ARTIFICIAL (decl))
	add_AT_flag (var_die, DW_AT_artificial, 1);

      add_alignment_attribute (var_die, decl);

      add_accessibility_attribute (var_die, decl);
    }

  if (declaration)
    add_AT_flag (var_die, DW_AT_declaration, 1);

  if (decl && (DECL_ABSTRACT_P (decl)
	       || !old_die || is_declaration_die (old_die)))
    equate_decl_number_to_die (decl, var_die);

 gen_variable_die_location:
  if (! declaration
      && (! DECL_ABSTRACT_P (decl_or_origin)
	  /* Local static vars are shared between all clones/inlines,
	     so emit DW_AT_location on the abstract DIE if DECL_RTL is
	     already set.  */
	  || (VAR_P (decl_or_origin)
	      && TREE_STATIC (decl_or_origin)
	      && DECL_RTL_SET_P (decl_or_origin))))
    {
      if (early_dwarf)
	{
	  add_pubname (decl_or_origin, var_die);
	  /* For global register variables, emit DW_AT_location if possible
	     already during early_dwarf, as late_global_decl won't be usually
	     called.  */
	  if (DECL_HARD_REGISTER (decl_or_origin)
	      && TREE_STATIC (decl_or_origin)
	      && !decl_by_reference_p (decl_or_origin)
	      && !get_AT (var_die, DW_AT_location)
	      && !get_AT (var_die, DW_AT_const_value)
	      && DECL_RTL_SET_P (decl_or_origin)
	      && REG_P (DECL_RTL (decl_or_origin)))
	    {
	      dw_loc_descr_ref descr
		= reg_loc_descriptor (DECL_RTL (decl_or_origin),
				      VAR_INIT_STATUS_INITIALIZED);
	      if (descr)
		add_AT_loc (var_die, DW_AT_location, descr);
	    }
	}
      else
	add_location_or_const_value_attribute (var_die, decl_or_origin,
					       decl == NULL);
    }
  else
    tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);

  if ((dwarf_version >= 4 || !dwarf_strict)
      && lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
						DW_AT_const_expr) == 1
      && !get_AT (var_die, DW_AT_const_expr)
      && !specialization_p)
    add_AT_flag (var_die, DW_AT_const_expr, 1);

  if (!dwarf_strict)
    {
      int inl = lang_hooks.decls.decl_dwarf_attribute (decl_or_origin,
						       DW_AT_inline);
      if (inl != -1
	  && !get_AT (var_die, DW_AT_inline)
	  && !specialization_p)
	add_AT_unsigned (var_die, DW_AT_inline, inl);
    }
}

/* Generate a DIE to represent a named constant.  */

static void
gen_const_die (tree decl, dw_die_ref context_die)
{
  dw_die_ref const_die;
  tree type = TREE_TYPE (decl);

  const_die = lookup_decl_die (decl);
  if (const_die)
    return;

  const_die = new_die (DW_TAG_constant, context_die, decl);
  equate_decl_number_to_die (decl, const_die);
  add_name_and_src_coords_attributes (const_die, decl);
  add_type_attribute (const_die, type, TYPE_QUAL_CONST, false, context_die);
  if (TREE_PUBLIC (decl))
    add_AT_flag (const_die, DW_AT_external, 1);
  if (DECL_ARTIFICIAL (decl))
    add_AT_flag (const_die, DW_AT_artificial, 1);
  tree_add_const_value_attribute_for_decl (const_die, decl);
}

/* Generate a DIE to represent a label identifier.  */

static void
gen_label_die (tree decl, dw_die_ref context_die)
{
  tree origin = decl_ultimate_origin (decl);
  dw_die_ref lbl_die = lookup_decl_die (decl);
  rtx insn;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (!lbl_die)
    {
      lbl_die = new_die (DW_TAG_label, context_die, decl);
      equate_decl_number_to_die (decl, lbl_die);

      if (origin != NULL)
	add_abstract_origin_attribute (lbl_die, origin);
      else
	add_name_and_src_coords_attributes (lbl_die, decl);
    }

  if (DECL_ABSTRACT_P (decl))
    equate_decl_number_to_die (decl, lbl_die);
  else if (! early_dwarf)
    {
      insn = DECL_RTL_IF_SET (decl);

      /* Deleted labels are programmer specified labels which have been
	 eliminated because of various optimizations.  We still emit them
	 here so that it is possible to put breakpoints on them.  */
      if (insn
	  && (LABEL_P (insn)
	      || ((NOTE_P (insn)
	           && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
	{
	  /* When optimization is enabled (via -O) some parts of the compiler
	     (e.g. jump.cc and cse.cc) may try to delete CODE_LABEL insns which
	     represent source-level labels which were explicitly declared by
	     the user.  This really shouldn't be happening though, so catch
	     it if it ever does happen.  */
	  gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());

	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
          add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
	}
      else if (insn
	       && NOTE_P (insn)
	       && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
	       && CODE_LABEL_NUMBER (insn) != -1)
	{
	  ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
          add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
	}
    }
}

/* A helper function for gen_inlined_subroutine_die.  Add source coordinate
   attributes to the DIE for a block STMT, to describe where the inlined
   function was called from.  This is similar to add_src_coords_attributes.  */

static inline void
add_call_src_coords_attributes (tree stmt, dw_die_ref die)
{
  /* We can end up with BUILTINS_LOCATION here.  */
  if (RESERVED_LOCATION_P (BLOCK_SOURCE_LOCATION (stmt)))
    return;

  location_t locus = BLOCK_SOURCE_LOCATION (stmt);
  expanded_location s = expand_location (locus);

  if (dwarf_version >= 3 || !dwarf_strict)
    {
      add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
      add_AT_unsigned (die, DW_AT_call_line, s.line);
      if (debug_column_info && s.column)
	add_AT_unsigned (die, DW_AT_call_column, s.column);
      unsigned discr = get_discriminator_from_loc (locus);
	if (discr != 0)
	  add_AT_unsigned (die, DW_AT_GNU_discriminator, discr);
    }
}


/* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
   Add low_pc and high_pc attributes to the DIE for a block STMT.  */

static inline void
add_high_low_attributes (tree stmt, dw_die_ref die)
{
  char label[MAX_ARTIFICIAL_LABEL_BYTES];

  if (inline_entry_data **iedp
      = !inline_entry_data_table ? NULL
      : inline_entry_data_table->find_slot_with_hash (stmt,
						      htab_hash_pointer (stmt),
						      NO_INSERT))
    {
      inline_entry_data *ied = *iedp;
      gcc_assert (MAY_HAVE_DEBUG_MARKER_INSNS);
      gcc_assert (debug_inline_points);
      gcc_assert (inlined_function_outer_scope_p (stmt));

      ASM_GENERATE_INTERNAL_LABEL (label, ied->label_pfx, ied->label_num);
      add_AT_lbl_id (die, DW_AT_entry_pc, label);

      if (debug_variable_location_views && !ZERO_VIEW_P (ied->view)
	  && !dwarf_strict)
	{
	  if (!output_asm_line_debug_info ())
	    add_AT_unsigned (die, DW_AT_GNU_entry_view, ied->view);
	  else
	    {
	      ASM_GENERATE_INTERNAL_LABEL (label, "LVU", ied->view);
	      /* FIXME: this will resolve to a small number.  Could we
		 possibly emit smaller data?  Ideally we'd emit a
		 uleb128, but that would make the size of DIEs
		 impossible for the compiler to compute, since it's
		 the assembler that computes the value of the view
		 label in this case.  Ideally, we'd have a single form
		 encompassing both the address and the view, and
		 indirecting them through a table might make things
		 easier, but even that would be more wasteful,
		 space-wise, than what we have now.  */
	      add_AT_symview (die, DW_AT_GNU_entry_view, label);
	    }
	}

      inline_entry_data_table->clear_slot (iedp);
    }

  if (BLOCK_FRAGMENT_CHAIN (stmt)
      && (dwarf_version >= 3 || !dwarf_strict))
    {
      tree chain, superblock = NULL_TREE;
      dw_die_ref pdie;
      dw_attr_node *attr = NULL;

      if (!debug_inline_points && inlined_function_outer_scope_p (stmt))
	{
	  ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
				       BLOCK_NUMBER (stmt));
          add_AT_lbl_id (die, DW_AT_entry_pc, label);
	}

      /* Optimize duplicate .debug_ranges lists or even tails of
	 lists.  If this BLOCK has same ranges as its supercontext,
	 lookup DW_AT_ranges attribute in the supercontext (and
	 recursively so), verify that the ranges_table contains the
	 right values and use it instead of adding a new .debug_range.  */
      for (chain = stmt, pdie = die;
	   BLOCK_SAME_RANGE (chain);
	   chain = BLOCK_SUPERCONTEXT (chain))
	{
	  dw_attr_node *new_attr;

	  pdie = pdie->die_parent;
	  if (pdie == NULL)
	    break;
	  if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
	    break;
	  new_attr = get_AT (pdie, DW_AT_ranges);
	  if (new_attr == NULL
	      || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
	    break;
	  attr = new_attr;
	  superblock = BLOCK_SUPERCONTEXT (chain);
	}
      if (attr != NULL
	  && ((*ranges_table)[attr->dw_attr_val.v.val_offset].num
	      == (int)BLOCK_NUMBER (superblock))
	  && BLOCK_FRAGMENT_CHAIN (superblock))
	{
	  unsigned long off = attr->dw_attr_val.v.val_offset;
	  unsigned long supercnt = 0, thiscnt = 0;
	  for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
	       chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
	    {
	      ++supercnt;
	      gcc_checking_assert ((*ranges_table)[off + supercnt].num
				   == (int)BLOCK_NUMBER (chain));
	    }
	  gcc_checking_assert ((*ranges_table)[off + supercnt + 1].num == 0);
	  for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
	       chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
	    ++thiscnt;
	  gcc_assert (supercnt >= thiscnt);
	  add_AT_range_list (die, DW_AT_ranges, off + supercnt - thiscnt,
			     false);
	  note_rnglist_head (off + supercnt - thiscnt);
	  return;
	}

      unsigned int offset = add_ranges (stmt, true);
      add_AT_range_list (die, DW_AT_ranges, offset, false);
      note_rnglist_head (offset);

      bool prev_in_cold = BLOCK_IN_COLD_SECTION_P (stmt);
      chain = BLOCK_FRAGMENT_CHAIN (stmt);
      do
	{
	  add_ranges (chain, prev_in_cold != BLOCK_IN_COLD_SECTION_P (chain));
	  prev_in_cold = BLOCK_IN_COLD_SECTION_P (chain);
	  chain = BLOCK_FRAGMENT_CHAIN (chain);
	}
      while (chain);
      add_ranges (NULL);
    }
  else
    {
      char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
      ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
				   BLOCK_NUMBER (stmt));
      ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
				   BLOCK_NUMBER (stmt));
      add_AT_low_high_pc (die, label, label_high, false);
    }
}

/* Generate a DIE for a lexical block.  */

static void
gen_lexical_block_die (tree stmt, dw_die_ref context_die)
{
  dw_die_ref old_die = lookup_block_die (stmt);
  dw_die_ref stmt_die = NULL;
  if (!old_die)
    {
      stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
      equate_block_to_die (stmt, stmt_die);
    }

  if (BLOCK_ABSTRACT_ORIGIN (stmt))
    {
      /* If this is an inlined or conrecte instance, create a new lexical
	 die for anything below to attach DW_AT_abstract_origin to.  */
      if (old_die)
	stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);

      tree origin = block_ultimate_origin (stmt);
      if (origin != NULL_TREE && (origin != stmt || old_die))
	add_abstract_origin_attribute (stmt_die, origin);

      old_die = NULL;
    }

  if (old_die)
    stmt_die = old_die;

  /* A non abstract block whose blocks have already been reordered
     should have the instruction range for this block.  If so, set the
     high/low attributes.  */
  if (!early_dwarf && TREE_ASM_WRITTEN (stmt))
    {
      gcc_assert (stmt_die);
      add_high_low_attributes (stmt, stmt_die);
    }

  decls_for_scope (stmt, stmt_die);
}

/* Generate a DIE for an inlined subprogram.  */

static void
gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
{
  tree decl = block_ultimate_origin (stmt);

  /* Make sure any inlined functions are known to be inlineable.  */
  gcc_checking_assert (DECL_ABSTRACT_P (decl)
		       || cgraph_function_possibly_inlined_p (decl));

  dw_die_ref subr_die = new_die (DW_TAG_inlined_subroutine, context_die, stmt);

  if (call_arg_locations || debug_inline_points)
    equate_block_to_die (stmt, subr_die);
  add_abstract_origin_attribute (subr_die, decl);
  if (TREE_ASM_WRITTEN (stmt))
    add_high_low_attributes (stmt, subr_die);
  add_call_src_coords_attributes (stmt, subr_die);

  /* The inliner creates an extra BLOCK for the parameter setup,
     we want to merge that with the actual outermost BLOCK of the
     inlined function to avoid duplicate locals in consumers.
     Do that by doing the recursion to subblocks on the single subblock
     of STMT.  */
  bool unwrap_one = false;
  if (BLOCK_SUBBLOCKS (stmt) && !BLOCK_CHAIN (BLOCK_SUBBLOCKS (stmt)))
    {
      tree origin = block_ultimate_origin (BLOCK_SUBBLOCKS (stmt));
      if (origin
	  && TREE_CODE (origin) == BLOCK
	  && BLOCK_SUPERCONTEXT (origin) == decl)
	unwrap_one = true;
    }
  decls_for_scope (stmt, subr_die, !unwrap_one);
  if (unwrap_one)
    decls_for_scope (BLOCK_SUBBLOCKS (stmt), subr_die);
}

/* Generate a DIE for a field in a record, or structure.  CTX is required: see
   the comment for VLR_CONTEXT.  */

static void
gen_field_die (tree decl, struct vlr_context *ctx, dw_die_ref context_die)
{
  dw_die_ref decl_die;

  if (TREE_TYPE (decl) == error_mark_node)
    return;

  decl_die = new_die (DW_TAG_member, context_die, decl);
  add_name_and_src_coords_attributes (decl_die, decl);
  add_type_attribute (decl_die, member_declared_type (decl), decl_quals (decl),
		      TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl)),
		      context_die);

  if (DECL_BIT_FIELD_TYPE (decl))
    {
      add_byte_size_attribute (decl_die, decl);
      add_bit_size_attribute (decl_die, decl);
      add_bit_offset_attribute (decl_die, decl);
    }

  add_alignment_attribute (decl_die, decl);

  if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
    add_data_member_location_attribute (decl_die, decl, ctx);

  if (DECL_ARTIFICIAL (decl))
    add_AT_flag (decl_die, DW_AT_artificial, 1);

  add_accessibility_attribute (decl_die, decl);

  /* Equate decl number to die, so that we can look up this decl later on.  */
  equate_decl_number_to_die (decl, decl_die);
}

/* Generate a DIE for a pointer to a member type.  TYPE can be an
   OFFSET_TYPE, for a pointer to data member, or a RECORD_TYPE, for a
   pointer to member function.  */

static void
gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
{
  if (lookup_type_die (type))
    return;

  dw_die_ref ptr_die = new_die (DW_TAG_ptr_to_member_type,
				scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, ptr_die);
  add_AT_die_ref (ptr_die, DW_AT_containing_type,
		  lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
  add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
		      context_die);
  add_alignment_attribute (ptr_die, type);

  if (TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE
      && TREE_CODE (TREE_TYPE (type)) != METHOD_TYPE)
    {
      dw_loc_descr_ref op = new_loc_descr (DW_OP_plus, 0, 0);
      add_AT_loc (ptr_die, DW_AT_use_location, op);
    }
}

static char *producer_string;

/* Given a C and/or C++ language/version string return the "highest".
   C++ is assumed to be "higher" than C in this case.  Used for merging
   LTO translation unit languages.  */
static const char *
highest_c_language (const char *lang1, const char *lang2)
{
  if (strcmp ("GNU C++23", lang1) == 0 || strcmp ("GNU C++23", lang2) == 0)
    return "GNU C++23";
  if (strcmp ("GNU C++20", lang1) == 0 || strcmp ("GNU C++20", lang2) == 0)
    return "GNU C++20";
  if (strcmp ("GNU C++17", lang1) == 0 || strcmp ("GNU C++17", lang2) == 0)
    return "GNU C++17";
  if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
    return "GNU C++14";
  if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
    return "GNU C++11";
  if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
    return "GNU C++98";

  if (strcmp ("GNU C2X", lang1) == 0 || strcmp ("GNU C2X", lang2) == 0)
    return "GNU C2X";
  if (strcmp ("GNU C17", lang1) == 0 || strcmp ("GNU C17", lang2) == 0)
    return "GNU C17";
  if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
    return "GNU C11";
  if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
    return "GNU C99";
  if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
    return "GNU C89";

  gcc_unreachable ();
}


/* Generate the DIE for the compilation unit.  */

static dw_die_ref
gen_compile_unit_die (const char *filename)
{
  dw_die_ref die;
  const char *language_string = lang_hooks.name;
  int language;

  die = new_die (DW_TAG_compile_unit, NULL, NULL);

  if (filename)
    {
      add_filename_attribute (die, filename);
      /* Don't add cwd for <built-in>.  */
      if (filename[0] != '<')
	add_comp_dir_attribute (die);
    }

  add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");

  /* If our producer is LTO try to figure out a common language to use
     from the global list of translation units.  */
  if (strcmp (language_string, "GNU GIMPLE") == 0)
    {
      unsigned i;
      tree t;
      const char *common_lang = NULL;

      FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
	{
	  if (!TRANSLATION_UNIT_LANGUAGE (t))
	    continue;
	  if (!common_lang)
	    common_lang = TRANSLATION_UNIT_LANGUAGE (t);
	  else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
	    ;
	  else if (startswith (common_lang, "GNU C")
		    && startswith (TRANSLATION_UNIT_LANGUAGE (t), "GNU C"))
	    /* Mixing C and C++ is ok, use C++ in that case.  */
	    common_lang = highest_c_language (common_lang,
					      TRANSLATION_UNIT_LANGUAGE (t));
	  else
	    {
	      /* Fall back to C.  */
	      common_lang = NULL;
	      break;
	    }
	}

      if (common_lang)
	language_string = common_lang;
    }

  language = DW_LANG_C;
  if (startswith (language_string, "GNU C")
      && ISDIGIT (language_string[5]))
    {
      language = DW_LANG_C89;
      if (dwarf_version >= 3 || !dwarf_strict)
	{
	  if (strcmp (language_string, "GNU C89") != 0)
	    language = DW_LANG_C99;

	  if (dwarf_version >= 5 /* || !dwarf_strict */)
	    if (strcmp (language_string, "GNU C11") == 0
		|| strcmp (language_string, "GNU C17") == 0
		|| strcmp (language_string, "GNU C2X") == 0)
	      language = DW_LANG_C11;
	}
    }
  else if (startswith (language_string, "GNU C++"))
    {
      language = DW_LANG_C_plus_plus;
      if (dwarf_version >= 5 /* || !dwarf_strict */)
	{
	  if (strcmp (language_string, "GNU C++11") == 0)
	    language = DW_LANG_C_plus_plus_11;
	  else if (strcmp (language_string, "GNU C++14") == 0)
	    language = DW_LANG_C_plus_plus_14;
	  else if (strcmp (language_string, "GNU C++17") == 0
		   || strcmp (language_string, "GNU C++20") == 0
		   || strcmp (language_string, "GNU C++23") == 0)
	    /* For now.  */
	    language = DW_LANG_C_plus_plus_14;
	}
    }
  else if (strcmp (language_string, "GNU F77") == 0)
    language = DW_LANG_Fortran77;
  else if (dwarf_version >= 3 || !dwarf_strict)
    {
      if (strcmp (language_string, "GNU Ada") == 0)
	language = DW_LANG_Ada95;
      else if (startswith (language_string, "GNU Fortran"))
	{
	  language = DW_LANG_Fortran95;
	  if (dwarf_version >= 5 /* || !dwarf_strict */)
	    {
	      if (strcmp (language_string, "GNU Fortran2003") == 0)
		language = DW_LANG_Fortran03;
	      else if (strcmp (language_string, "GNU Fortran2008") == 0)
		language = DW_LANG_Fortran08;
	    }
	}
      else if (strcmp (language_string, "GNU Objective-C") == 0)
	language = DW_LANG_ObjC;
      else if (strcmp (language_string, "GNU Objective-C++") == 0)
	language = DW_LANG_ObjC_plus_plus;
      else if (strcmp (language_string, "GNU D") == 0)
	language = DW_LANG_D;
      else if (dwarf_version >= 5 || !dwarf_strict)
	{
	  if (strcmp (language_string, "GNU Go") == 0)
	    language = DW_LANG_Go;
	}
    }
  /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works.  */
  else if (startswith (language_string, "GNU Fortran"))
    language = DW_LANG_Fortran90;
  /* Likewise for Ada.  */
  else if (strcmp (language_string, "GNU Ada") == 0)
    language = DW_LANG_Ada83;

  add_AT_unsigned (die, DW_AT_language, language);

  switch (language)
    {
    case DW_LANG_Fortran77:
    case DW_LANG_Fortran90:
    case DW_LANG_Fortran95:
    case DW_LANG_Fortran03:
    case DW_LANG_Fortran08:
      /* Fortran has case insensitive identifiers and the front-end
	 lowercases everything.  */
      add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
      break;
    default:
      /* The default DW_ID_case_sensitive doesn't need to be specified.  */
      break;
    }
  return die;
}

/* Generate the DIE for a base class.  */

static void
gen_inheritance_die (tree binfo, tree access, tree type,
		     dw_die_ref context_die)
{
  dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
  struct vlr_context ctx = { type, NULL };

  add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, false,
		      context_die);
  add_data_member_location_attribute (die, binfo, &ctx);

  if (BINFO_VIRTUAL_P (binfo))
    add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);

  /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
     children, otherwise the default is DW_ACCESS_public.  In DWARF2
     the default has always been DW_ACCESS_private.  */
  if (access == access_public_node)
    {
      if (dwarf_version == 2
	  || context_die->die_tag == DW_TAG_class_type)
      add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
    }
  else if (access == access_protected_node)
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
  else if (dwarf_version > 2
	   && context_die->die_tag != DW_TAG_class_type)
    add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
}

/* Return whether DECL is a FIELD_DECL that represents the variant part of a
   structure.  */

static bool
is_variant_part (tree decl)
{
  return (TREE_CODE (decl) == FIELD_DECL
	  && TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
}

/* Check that OPERAND is a reference to a field in STRUCT_TYPE.  If it is,
   return the FIELD_DECL.  Return NULL_TREE otherwise.  */

static tree
analyze_discr_in_predicate (tree operand, tree struct_type)
{
  while (CONVERT_EXPR_P (operand))
    operand = TREE_OPERAND (operand, 0);

  /* Match field access to members of struct_type only.  */
  if (TREE_CODE (operand) == COMPONENT_REF
      && TREE_CODE (TREE_OPERAND (operand, 0)) == PLACEHOLDER_EXPR
      && TREE_TYPE (TREE_OPERAND (operand, 0)) == struct_type
      && TREE_CODE (TREE_OPERAND (operand, 1)) == FIELD_DECL)
    return TREE_OPERAND (operand, 1);
  else
    return NULL_TREE;
}

/* Check that SRC is a constant integer that can be represented as a native
   integer constant (either signed or unsigned).  If so, store it into DEST and
   return true.  Return false otherwise. */

static bool
get_discr_value (tree src, dw_discr_value *dest)
{
  tree discr_type = TREE_TYPE (src);

  if (lang_hooks.types.get_debug_type)
    {
      tree debug_type = lang_hooks.types.get_debug_type (discr_type);
      if (debug_type != NULL)
	discr_type = debug_type;
    }

  if (TREE_CODE (src) != INTEGER_CST || !INTEGRAL_TYPE_P (discr_type))
    return false;

  /* Signedness can vary between the original type and the debug type. This
     can happen for character types in Ada for instance: the character type
     used for code generation can be signed, to be compatible with the C one,
     but from a debugger point of view, it must be unsigned.  */
  bool is_orig_unsigned = TYPE_UNSIGNED (TREE_TYPE (src));
  bool is_debug_unsigned = TYPE_UNSIGNED (discr_type);

  if (is_orig_unsigned != is_debug_unsigned)
    src = fold_convert (discr_type, src);

  if (!(is_debug_unsigned ? tree_fits_uhwi_p (src) : tree_fits_shwi_p (src)))
    return false;

  dest->pos = is_debug_unsigned;
  if (is_debug_unsigned)
    dest->v.uval = tree_to_uhwi (src);
  else
    dest->v.sval = tree_to_shwi (src);

  return true;
}

/* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
   FIELD_DECL in STRUCT_TYPE that represents a variant part.  If unsuccessful,
   store NULL_TREE in DISCR_DECL.  Otherwise:

     - store the discriminant field in STRUCT_TYPE that controls the variant
       part to *DISCR_DECL

     - put in *DISCR_LISTS_P an array where for each variant, the item
       represents the corresponding matching list of discriminant values.

     - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
       the above array.

   Note that when the array is allocated (i.e. when the analysis is
   successful), it is up to the caller to free the array.  */

static void
analyze_variants_discr (tree variant_part_decl,
			tree struct_type,
			tree *discr_decl,
			dw_discr_list_ref **discr_lists_p,
			unsigned *discr_lists_length)
{
  tree variant_part_type = TREE_TYPE (variant_part_decl);
  tree variant;
  dw_discr_list_ref *discr_lists;
  unsigned i;

  /* Compute how many variants there are in this variant part.  */
  *discr_lists_length = 0;
  for (variant = TYPE_FIELDS (variant_part_type);
       variant != NULL_TREE;
       variant = DECL_CHAIN (variant))
    ++*discr_lists_length;

  *discr_decl = NULL_TREE;
  *discr_lists_p
    = (dw_discr_list_ref *) xcalloc (*discr_lists_length,
				     sizeof (**discr_lists_p));
  discr_lists = *discr_lists_p;

  /* And then analyze all variants to extract discriminant information for all
     of them.  This analysis is conservative: as soon as we detect something we
     do not support, abort everything and pretend we found nothing.  */
  for (variant = TYPE_FIELDS (variant_part_type), i = 0;
       variant != NULL_TREE;
       variant = DECL_CHAIN (variant), ++i)
    {
      tree match_expr = DECL_QUALIFIER (variant);

      /* Now, try to analyze the predicate and deduce a discriminant for
	 it.  */
      if (match_expr == boolean_true_node)
	/* Typically happens for the default variant: it matches all cases that
	   previous variants rejected.  Don't output any matching value for
	   this one.  */
	continue;

      /* The following loop tries to iterate over each discriminant
	 possibility: single values or ranges.  */
      while (match_expr != NULL_TREE)
	{
	  tree next_round_match_expr;
	  tree candidate_discr = NULL_TREE;
	  dw_discr_list_ref new_node = NULL;

	  /* Possibilities are matched one after the other by nested
	     TRUTH_ORIF_EXPR expressions.  Process the current possibility and
	     continue with the rest at next iteration.  */
	  if (TREE_CODE (match_expr) == TRUTH_ORIF_EXPR)
	    {
	      next_round_match_expr = TREE_OPERAND (match_expr, 0);
	      match_expr = TREE_OPERAND (match_expr, 1);
	    }
	  else
	    next_round_match_expr = NULL_TREE;

	  if (match_expr == boolean_false_node)
	    /* This sub-expression matches nothing: just wait for the next
	       one.  */
	    ;

	  else if (TREE_CODE (match_expr) == EQ_EXPR)
	    {
	      /* We are matching:  <discr_field> == <integer_cst>
		 This sub-expression matches a single value.  */
	      tree integer_cst = TREE_OPERAND (match_expr, 1);

	      candidate_discr
	       = analyze_discr_in_predicate (TREE_OPERAND (match_expr, 0),
					     struct_type);

	      new_node = ggc_cleared_alloc<dw_discr_list_node> ();
	      if (!get_discr_value (integer_cst,
				    &new_node->dw_discr_lower_bound))
		goto abort;
	      new_node->dw_discr_range = false;
	    }

	  else if (TREE_CODE (match_expr) == TRUTH_ANDIF_EXPR)
	    {
	      /* We are matching:
		   <discr_field> > <integer_cst>
		   && <discr_field> < <integer_cst>.
		 This sub-expression matches the range of values between the
		 two matched integer constants.  Note that comparisons can be
		 inclusive or exclusive.  */
	      tree candidate_discr_1, candidate_discr_2;
	      tree lower_cst, upper_cst;
	      bool lower_cst_included, upper_cst_included;
	      tree lower_op = TREE_OPERAND (match_expr, 0);
	      tree upper_op = TREE_OPERAND (match_expr, 1);

	      /* When the comparison is exclusive, the integer constant is not
		 the discriminant range bound we are looking for: we will have
		 to increment or decrement it.  */
	      if (TREE_CODE (lower_op) == GE_EXPR)
		lower_cst_included = true;
	      else if (TREE_CODE (lower_op) == GT_EXPR)
		lower_cst_included = false;
	      else
		goto abort;

	      if (TREE_CODE (upper_op) == LE_EXPR)
		upper_cst_included = true;
	      else if (TREE_CODE (upper_op) == LT_EXPR)
		upper_cst_included = false;
	      else
		goto abort;

	      /* Extract the discriminant from the first operand and check it
		 is consistant with the same analysis in the second
		 operand.  */
	      candidate_discr_1
	        = analyze_discr_in_predicate (TREE_OPERAND (lower_op, 0),
					      struct_type);
	      candidate_discr_2
	        = analyze_discr_in_predicate (TREE_OPERAND (upper_op, 0),
					      struct_type);
	      if (candidate_discr_1 == candidate_discr_2)
		candidate_discr = candidate_discr_1;
	      else
		goto abort;

	      /* Extract bounds from both.  */
	      new_node = ggc_cleared_alloc<dw_discr_list_node> ();
	      lower_cst = TREE_OPERAND (lower_op, 1);
	      upper_cst = TREE_OPERAND (upper_op, 1);

	      if (!lower_cst_included)
		lower_cst
		  = fold_build2 (PLUS_EXPR, TREE_TYPE (lower_cst), lower_cst,
				 build_int_cst (TREE_TYPE (lower_cst), 1));
	      if (!upper_cst_included)
		upper_cst
		  = fold_build2 (MINUS_EXPR, TREE_TYPE (upper_cst), upper_cst,
				 build_int_cst (TREE_TYPE (upper_cst), 1));

	      if (!get_discr_value (lower_cst,
				    &new_node->dw_discr_lower_bound)
		  || !get_discr_value (upper_cst,
				       &new_node->dw_discr_upper_bound))
		goto abort;

	      new_node->dw_discr_range = true;
	    }

	  else if ((candidate_discr
		      = analyze_discr_in_predicate (match_expr, struct_type))
		   && (TREE_TYPE (candidate_discr) == boolean_type_node
		       || TREE_TYPE (TREE_TYPE (candidate_discr))
			  == boolean_type_node))
	    {
	      /* We are matching:  <discr_field> for a boolean discriminant.
		 This sub-expression matches boolean_true_node.  */
	      new_node = ggc_cleared_alloc<dw_discr_list_node> ();
	      if (!get_discr_value (boolean_true_node,
				    &new_node->dw_discr_lower_bound))
		goto abort;
	      new_node->dw_discr_range = false;
	    }

	  else
	    /* Unsupported sub-expression: we cannot determine the set of
	       matching discriminant values.  Abort everything.  */
	    goto abort;

	  /* If the discriminant info is not consistant with what we saw so
	     far, consider the analysis failed and abort everything.  */
	  if (candidate_discr == NULL_TREE
	      || (*discr_decl != NULL_TREE && candidate_discr != *discr_decl))
	    goto abort;
	  else
	    *discr_decl = candidate_discr;

	  if (new_node != NULL)
	    {
	      new_node->dw_discr_next = discr_lists[i];
	      discr_lists[i] = new_node;
	    }
	  match_expr = next_round_match_expr;
	}
    }

  /* If we reach this point, we could match everything we were interested
     in.  */
  return;

abort:
  /* Clean all data structure and return no result.  */
  free (*discr_lists_p);
  *discr_lists_p = NULL;
  *discr_decl = NULL_TREE;
}

/* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
   of STRUCT_TYPE, a record type.  This new DIE is emitted as the next child
   under CONTEXT_DIE.

   Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
   QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter.  The members for
   this type, which are record types, represent the available variants and each
   has a DECL_QUALIFIER attribute.  The discriminant and the discriminant
   values are inferred from these attributes.

   In trees, the offsets for the fields inside these sub-records are relative
   to the variant part itself, whereas the corresponding DIEs should have
   offset attributes that are relative to the embedding record base address.
   This is why the caller must provide a VARIANT_PART_OFFSET expression: it
   must be an expression that computes the offset of the variant part to
   describe in DWARF.  */

static void
gen_variant_part (tree variant_part_decl, struct vlr_context *vlr_ctx,
		  dw_die_ref context_die)
{
  const tree variant_part_type = TREE_TYPE (variant_part_decl);
  tree variant_part_offset = vlr_ctx->variant_part_offset;

  /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
     NULL_TREE if there is no such field.  */
  tree discr_decl = NULL_TREE;
  dw_discr_list_ref *discr_lists;
  unsigned discr_lists_length = 0;
  unsigned i;

  dw_die_ref dwarf_proc_die = NULL;
  dw_die_ref variant_part_die
    = new_die (DW_TAG_variant_part, context_die, variant_part_type);

  equate_decl_number_to_die (variant_part_decl, variant_part_die);

  analyze_variants_discr (variant_part_decl, vlr_ctx->struct_type,
			  &discr_decl, &discr_lists, &discr_lists_length);

  if (discr_decl != NULL_TREE)
    {
      dw_die_ref discr_die = lookup_decl_die (discr_decl);

      if (discr_die)
	add_AT_die_ref (variant_part_die, DW_AT_discr, discr_die);
      else
	/* We have no DIE for the discriminant, so just discard all
	   discrimimant information in the output.  */
	discr_decl = NULL_TREE;
    }

  /* If the offset for this variant part is more complex than a constant,
     create a DWARF procedure for it so that we will not have to generate
     DWARF expressions for it for each member.  */
  if (TREE_CODE (variant_part_offset) != INTEGER_CST
      && (dwarf_version >= 3 || !dwarf_strict))
    {
      struct loc_descr_context ctx = {
	vlr_ctx->struct_type,	/* context_type */
	NULL_TREE,		/* base_decl */
	NULL,		  	/* dpi */
	false,		  	/* placeholder_arg */
	false,		  	/* placeholder_seen */
	false		  	/* strict_signedness */
      };
      const tree dwarf_proc_fndecl
        = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
		      build_function_type (TREE_TYPE (variant_part_offset),
					   NULL_TREE));
      const tree dwarf_proc_call = build_call_expr (dwarf_proc_fndecl, 0);
      const dw_loc_descr_ref dwarf_proc_body
        = loc_descriptor_from_tree (variant_part_offset, 0, &ctx);

      dwarf_proc_die = new_dwarf_proc_die (dwarf_proc_body,
					   dwarf_proc_fndecl, context_die);
      if (dwarf_proc_die != NULL)
	variant_part_offset = dwarf_proc_call;
    }

  /* Output DIEs for all variants.  */
  i = 0;
  for (tree variant = TYPE_FIELDS (variant_part_type);
       variant != NULL_TREE;
       variant = DECL_CHAIN (variant), ++i)
    {
      tree variant_type = TREE_TYPE (variant);
      dw_die_ref variant_die;

      /* All variants (i.e. members of a variant part) are supposed to be
	 encoded as structures.  Sub-variant parts are QUAL_UNION_TYPE fields
	 under these records.  */
      gcc_assert (TREE_CODE (variant_type) == RECORD_TYPE);

      variant_die = new_die (DW_TAG_variant, variant_part_die, variant_type);
      equate_decl_number_to_die (variant, variant_die);

      /* Output discriminant values this variant matches, if any.  */
      if (discr_decl == NULL || discr_lists[i] == NULL)
	/* In the case we have discriminant information at all, this is
	   probably the default variant: as the standard says, don't
	   output any discriminant value/list attribute.  */
	;
      else if (discr_lists[i]->dw_discr_next == NULL
	       && !discr_lists[i]->dw_discr_range)
	/* If there is only one accepted value, don't bother outputting a
	   list.  */
	add_discr_value (variant_die, &discr_lists[i]->dw_discr_lower_bound);
      else
	add_discr_list (variant_die, discr_lists[i]);

      for (tree member = TYPE_FIELDS (variant_type);
	   member != NULL_TREE;
	   member = DECL_CHAIN (member))
	{
	  struct vlr_context vlr_sub_ctx = {
	    vlr_ctx->struct_type, /* struct_type */
	    NULL		  /* variant_part_offset */
	  };
	  if (is_variant_part (member))
	    {
	      /* All offsets for fields inside variant parts are relative to
		 the top-level embedding RECORD_TYPE's base address.  On the
		 other hand, offsets in GCC's types are relative to the
		 nested-most variant part.  So we have to sum offsets each time
		 we recurse.  */

	      vlr_sub_ctx.variant_part_offset
		= fold_build2 (PLUS_EXPR, TREE_TYPE (variant_part_offset),
			       variant_part_offset, byte_position (member));
	      gen_variant_part (member, &vlr_sub_ctx, variant_die);
	    }
	  else
	    {
	      vlr_sub_ctx.variant_part_offset = variant_part_offset;
	      gen_decl_die (member, NULL, &vlr_sub_ctx, variant_die);
	    }
	}
    }

  free (discr_lists);
}

/* Generate a DIE for a class member.  */

static void
gen_member_die (tree type, dw_die_ref context_die)
{
  tree member;
  tree binfo = TYPE_BINFO (type);

  gcc_assert (TYPE_MAIN_VARIANT (type) == type);

  /* If this is not an incomplete type, output descriptions of each of its
     members. Note that as we output the DIEs necessary to represent the
     members of this record or union type, we will also be trying to output
     DIEs to represent the *types* of those members. However the `type'
     function (above) will specifically avoid generating type DIEs for member
     types *within* the list of member DIEs for this (containing) type except
     for those types (of members) which are explicitly marked as also being
     members of this (containing) type themselves.  The g++ front- end can
     force any given type to be treated as a member of some other (containing)
     type by setting the TYPE_CONTEXT of the given (member) type to point to
     the TREE node representing the appropriate (containing) type.  */

  /* First output info about the base classes.  */
  if (binfo && early_dwarf)
    {
      vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
      int i;
      tree base;

      for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
	gen_inheritance_die (base,
			     (accesses ? (*accesses)[i] : access_public_node),
			     type,
			     context_die);
    }

  /* Now output info about the members. */
  for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
    {
      /* Ignore clones.  */
      if (DECL_ABSTRACT_ORIGIN (member))
	continue;

      struct vlr_context vlr_ctx = { type, NULL_TREE };
      bool static_inline_p
	= (VAR_P (member)
	   && TREE_STATIC (member)
	   && (lang_hooks.decls.decl_dwarf_attribute (member, DW_AT_inline)
	       != -1));

      /* If we thought we were generating minimal debug info for TYPE
	 and then changed our minds, some of the member declarations
	 may have already been defined.  Don't define them again, but
	 do put them in the right order.  */

      if (dw_die_ref child = lookup_decl_die (member))
	{
	  /* Handle inline static data members, which only have in-class
	     declarations.  */
	  bool splice = true;

	  dw_die_ref ref = NULL;
	  if (child->die_tag == DW_TAG_variable
	      && child->die_parent == comp_unit_die ())
	    {
	      ref = get_AT_ref (child, DW_AT_specification);

	      /* For C++17 inline static data members followed by redundant
		 out of class redeclaration, we might get here with
		 child being the DIE created for the out of class
		 redeclaration and with its DW_AT_specification being
		 the DIE created for in-class definition.  We want to
		 reparent the latter, and don't want to create another
		 DIE with DW_AT_specification in that case, because
		 we already have one.  */
	      if (ref
		  && static_inline_p
		  && ref->die_tag == DW_TAG_variable
		  && ref->die_parent == comp_unit_die ()
		  && get_AT (ref, DW_AT_specification) == NULL)
		{
		  child = ref;
		  ref = NULL;
		  static_inline_p = false;
		}

	      if (!ref)
		{
		  reparent_child (child, context_die);
		  if (dwarf_version < 5)
		    child->die_tag = DW_TAG_member;
		  splice = false;
		}
	    }
	  else if (child->die_tag == DW_TAG_enumerator)
	    /* Enumerators remain under their enumeration even if
	       their names are introduced in the enclosing scope.  */
	    splice = false;

	  if (splice)
	    splice_child_die (context_die, child);
	}

      /* Do not generate DWARF for variant parts if we are generating the
	 corresponding GNAT encodings: DIEs generated for the two schemes
	 would conflict in our mappings.  */
      else if (is_variant_part (member)
	       && gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
	{
	  vlr_ctx.variant_part_offset = byte_position (member);
	  gen_variant_part (member, &vlr_ctx, context_die);
	}
      else
	{
	  vlr_ctx.variant_part_offset = NULL_TREE;
	  gen_decl_die (member, NULL, &vlr_ctx, context_die);
	}

      /* For C++ inline static data members emit immediately a DW_TAG_variable
	 DIE that will refer to that DW_TAG_member/DW_TAG_variable through
	 DW_AT_specification.  */
      if (static_inline_p)
	{
	  int old_extern = DECL_EXTERNAL (member);
	  DECL_EXTERNAL (member) = 0;
	  gen_decl_die (member, NULL, NULL, comp_unit_die ());
	  DECL_EXTERNAL (member) = old_extern;
	}
    }
}

/* Generate a DIE for a structure or union type.  If TYPE_DECL_SUPPRESS_DEBUG
   is set, we pretend that the type was never defined, so we only get the
   member DIEs needed by later specification DIEs.  */

static void
gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
				enum debug_info_usage usage)
{
  if (TREE_ASM_WRITTEN (type))
    {
      /* Fill in the bound of variable-length fields in late dwarf if
	 still incomplete.  */
      if (!early_dwarf && variably_modified_type_p (type, NULL))
	for (tree member = TYPE_FIELDS (type);
	     member;
	     member = DECL_CHAIN (member))
	  fill_variable_array_bounds (TREE_TYPE (member));
      return;
    }

  dw_die_ref type_die = lookup_type_die (type);
  dw_die_ref scope_die = 0;
  int nested = 0;
  int complete = (TYPE_SIZE (type)
		  && (! TYPE_STUB_DECL (type)
		      || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
  int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
  complete = complete && should_emit_struct_debug (type, usage);

  if (type_die && ! complete)
    return;

  if (TYPE_CONTEXT (type) != NULL_TREE
      && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
	  || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
    nested = 1;

  scope_die = scope_die_for (type, context_die);

  /* Generate child dies for template parameters.  */
  if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
    schedule_generic_params_dies_gen (type);

  if (! type_die || (nested && is_cu_die (scope_die)))
    /* First occurrence of type or toplevel definition of nested class.  */
    {
      dw_die_ref old_die = type_die;

      type_die = new_die (TREE_CODE (type) == RECORD_TYPE
			  ? record_type_tag (type) : DW_TAG_union_type,
			  scope_die, type);
      equate_type_number_to_die (type, type_die);
      if (old_die)
	add_AT_specification (type_die, old_die);
      else
	add_name_attribute (type_die, type_tag (type));
    }
  else
    remove_AT (type_die, DW_AT_declaration);

  /* If this type has been completed, then give it a byte_size attribute and
     then give a list of members.  */
  if (complete && !ns_decl)
    {
      /* Prevent infinite recursion in cases where the type of some member of
	 this type is expressed in terms of this type itself.  */
      TREE_ASM_WRITTEN (type) = 1;
      add_byte_size_attribute (type_die, type);
      add_alignment_attribute (type_die, type);
      if (TYPE_STUB_DECL (type) != NULL_TREE)
	{
	  add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
	  add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
	}

      /* If the first reference to this type was as the return type of an
	 inline function, then it may not have a parent.  Fix this now.  */
      if (type_die->die_parent == NULL)
	add_child_die (scope_die, type_die);

      gen_member_die (type, type_die);

      add_gnat_descriptive_type_attribute (type_die, type, context_die);
      if (TYPE_ARTIFICIAL (type))
	add_AT_flag (type_die, DW_AT_artificial, 1);

      /* GNU extension: Record what type our vtable lives in.  */
      if (TYPE_VFIELD (type))
	{
	  tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));

	  gen_type_die (vtype, context_die);
	  add_AT_die_ref (type_die, DW_AT_containing_type,
			  lookup_type_die (vtype));
	}
    }
  else
    {
      add_AT_flag (type_die, DW_AT_declaration, 1);

      /* We don't need to do this for function-local types.  */
      if (TYPE_STUB_DECL (type)
	  && ! decl_function_context (TYPE_STUB_DECL (type)))
	vec_safe_push (incomplete_types, type);
    }

  if (get_AT (type_die, DW_AT_name))
    add_pubtype (type, type_die);
}

/* Generate a DIE for a subroutine _type_.  */

static void
gen_subroutine_type_die (tree type, dw_die_ref context_die)
{
  tree return_type = TREE_TYPE (type);
  dw_die_ref subr_die
    = new_die (DW_TAG_subroutine_type,
	       scope_die_for (type, context_die), type);

  equate_type_number_to_die (type, subr_die);
  add_prototyped_attribute (subr_die, type);
  add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, false,
		      context_die);
  add_alignment_attribute (subr_die, type);
  gen_formal_types_die (type, subr_die);

  if (get_AT (subr_die, DW_AT_name))
    add_pubtype (type, subr_die);
  if ((dwarf_version >= 5 || !dwarf_strict)
      && lang_hooks.types.type_dwarf_attribute (type, DW_AT_reference) != -1)
    add_AT_flag (subr_die, DW_AT_reference, 1);
  if ((dwarf_version >= 5 || !dwarf_strict)
      && lang_hooks.types.type_dwarf_attribute (type,
						DW_AT_rvalue_reference) != -1)
    add_AT_flag (subr_die, DW_AT_rvalue_reference, 1);
}

/* Generate a DIE for a type definition.  */

static void
gen_typedef_die (tree decl, dw_die_ref context_die)
{
  dw_die_ref type_die;
  tree type;

  if (TREE_ASM_WRITTEN (decl))
    {
      if (DECL_ORIGINAL_TYPE (decl))
	fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl));
      return;
    }

  /* As we avoid creating DIEs for local typedefs (see decl_ultimate_origin
     checks in process_scope_var and modified_type_die), this should be called
     only for original types.  */
  gcc_assert (decl_ultimate_origin (decl) == NULL
	      || decl_ultimate_origin (decl) == decl);

  TREE_ASM_WRITTEN (decl) = 1;
  type_die = new_die (DW_TAG_typedef, context_die, decl);

  add_name_and_src_coords_attributes (type_die, decl);
  if (DECL_ORIGINAL_TYPE (decl))
    {
      type = DECL_ORIGINAL_TYPE (decl);
      if (type == error_mark_node)
	return;

      gcc_assert (type != TREE_TYPE (decl));
      equate_type_number_to_die (TREE_TYPE (decl), type_die);
    }
  else
    {
      type = TREE_TYPE (decl);
      if (type == error_mark_node)
	return;

      if (is_naming_typedef_decl (TYPE_NAME (type)))
	{
	  /* Here, we are in the case of decl being a typedef naming
	     an anonymous type, e.g:
		 typedef struct {...} foo;
	     In that case TREE_TYPE (decl) is not a typedef variant
	     type and TYPE_NAME of the anonymous type is set to the
	     TYPE_DECL of the typedef. This construct is emitted by
	     the C++ FE.

	     TYPE is the anonymous struct named by the typedef
	     DECL. As we need the DW_AT_type attribute of the
	     DW_TAG_typedef to point to the DIE of TYPE, let's
	     generate that DIE right away. add_type_attribute
	     called below will then pick (via lookup_type_die) that
	     anonymous struct DIE.  */
	  if (!TREE_ASM_WRITTEN (type))
	    gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);

	  /* This is a GNU Extension.  We are adding a
	     DW_AT_linkage_name attribute to the DIE of the
	     anonymous struct TYPE.  The value of that attribute
	     is the name of the typedef decl naming the anonymous
	     struct.  This greatly eases the work of consumers of
	     this debug info.  */
	  add_linkage_name_raw (lookup_type_die (type), decl);
	}
    }

  add_type_attribute (type_die, type, decl_quals (decl), false,
		      context_die);

  if (is_naming_typedef_decl (decl))
    /* We want that all subsequent calls to lookup_type_die with
       TYPE in argument yield the DW_TAG_typedef we have just
       created.  */
    equate_type_number_to_die (type, type_die);

  add_alignment_attribute (type_die, TREE_TYPE (decl));

  add_accessibility_attribute (type_die, decl);

  if (DECL_ABSTRACT_P (decl))
    equate_decl_number_to_die (decl, type_die);

  if (get_AT (type_die, DW_AT_name))
    add_pubtype (decl, type_die);
}

/* Generate a DIE for a struct, class, enum or union type.  */

static void
gen_tagged_type_die (tree type,
		     dw_die_ref context_die,
		     enum debug_info_usage usage)
{
  if (type == NULL_TREE
      || !is_tagged_type (type))
    return;

  if (TREE_ASM_WRITTEN (type))
    ;
  /* If this is a nested type whose containing class hasn't been written
     out yet, writing it out will cover this one, too.  This does not apply
     to instantiations of member class templates; they need to be added to
     the containing class as they are generated.  FIXME: This hurts the
     idea of combining type decls from multiple TUs, since we can't predict
     what set of template instantiations we'll get.  */
  else if (TYPE_CONTEXT (type)
      && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
      && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
    {
      gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);

      if (TREE_ASM_WRITTEN (type))
	return;

      /* If that failed, attach ourselves to the stub.  */
      context_die = lookup_type_die (TYPE_CONTEXT (type));
    }
  else if (TYPE_CONTEXT (type) != NULL_TREE
	   && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
    {
      /* If this type is local to a function that hasn't been written
	 out yet, use a NULL context for now; it will be fixed up in
	 decls_for_scope.  */
      context_die = lookup_decl_die (TYPE_CONTEXT (type));
      /* A declaration DIE doesn't count; nested types need to go in the
	 specification.  */
      if (context_die && is_declaration_die (context_die))
	context_die = NULL;
    }
  else
    context_die = declare_in_namespace (type, context_die);

  if (TREE_CODE (type) == ENUMERAL_TYPE)
    {
      /* This might have been written out by the call to
	 declare_in_namespace.  */
      if (!TREE_ASM_WRITTEN (type))
	gen_enumeration_type_die (type, context_die);
    }
  else
    gen_struct_or_union_type_die (type, context_die, usage);

  /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
     it up if it is ever completed.  gen_*_type_die will set it for us
     when appropriate.  */
}

/* Generate a type description DIE.  */

static void
gen_type_die_with_usage (tree type, dw_die_ref context_die,
			 enum debug_info_usage usage)
{
  struct array_descr_info info;

  if (type == NULL_TREE || type == error_mark_node)
    return;

  if (flag_checking && type)
     verify_type (type);

  if (TYPE_NAME (type) != NULL_TREE
      && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
      && is_redundant_typedef (TYPE_NAME (type))
      && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
    /* The DECL of this type is a typedef we don't want to emit debug
       info for but we want debug info for its underlying typedef.
       This can happen for e.g, the injected-class-name of a C++
       type.  */
    type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));

  /* If TYPE is a typedef type variant, let's generate debug info
     for the parent typedef which TYPE is a type of.  */
  if (typedef_variant_p (type))
    {
      if (TREE_ASM_WRITTEN (type))
	return;

      tree name = TYPE_NAME (type);
      tree origin = decl_ultimate_origin (name);
      if (origin != NULL && origin != name)
	{
	  gen_decl_die (origin, NULL, NULL, context_die);
	  return;
	}

      /* Prevent broken recursion; we can't hand off to the same type.  */
      gcc_assert (DECL_ORIGINAL_TYPE (name) != type);

      /* Give typedefs the right scope.  */
      context_die = scope_die_for (type, context_die);

      TREE_ASM_WRITTEN (type) = 1;

      gen_decl_die (name, NULL, NULL, context_die);
      return;
    }

  /* If type is an anonymous tagged type named by a typedef, let's
     generate debug info for the typedef.  */
  if (is_naming_typedef_decl (TYPE_NAME (type)))
    {
      /* Give typedefs the right scope.  */
      context_die = scope_die_for (type, context_die);

      gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
      return;
    }

  if (lang_hooks.types.get_debug_type)
    {
      tree debug_type = lang_hooks.types.get_debug_type (type);

      if (debug_type != NULL_TREE && debug_type != type)
	{
	  gen_type_die_with_usage (debug_type, context_die, usage);
	  return;
	}
    }

  /* We are going to output a DIE to represent the unqualified version
     of this type (i.e. without any const or volatile qualifiers) so
     get the main variant (i.e. the unqualified version) of this type
     now.  (Vectors and arrays are special because the debugging info is in the
     cloned type itself.  Similarly function/method types can contain extra
     ref-qualification).  */
  if (TREE_CODE (type) == FUNCTION_TYPE
      || TREE_CODE (type) == METHOD_TYPE)
    {
      /* For function/method types, can't use type_main_variant here,
	 because that can have different ref-qualifiers for C++,
	 but try to canonicalize.  */
      tree main = TYPE_MAIN_VARIANT (type);
      for (tree t = main; t; t = TYPE_NEXT_VARIANT (t))
	if (TYPE_QUALS_NO_ADDR_SPACE (t) == 0
	    && check_base_type (t, main)
	    && check_lang_type (t, type))
	  {
	    type = t;
	    break;
	  }
    }
  else if (TREE_CODE (type) != VECTOR_TYPE
	   && TREE_CODE (type) != ARRAY_TYPE)
    type = type_main_variant (type);

  /* If this is an array type with hidden descriptor, handle it first.  */
  if (!TREE_ASM_WRITTEN (type)
      && lang_hooks.types.get_array_descr_info)
    {
      memset (&info, 0, sizeof (info));
      if (lang_hooks.types.get_array_descr_info (type, &info))
	{
	  /* Fortran sometimes emits array types with no dimension.  */
	  gcc_assert (info.ndimensions >= 0
		      && (info.ndimensions
			  <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN));
	  gen_descr_array_type_die (type, &info, context_die);
	  TREE_ASM_WRITTEN (type) = 1;
	  return;
	}
    }

  if (TREE_ASM_WRITTEN (type))
    {
      /* Variable-length types may be incomplete even if
	 TREE_ASM_WRITTEN.  For such types, fall through to
	 gen_array_type_die() and possibly fill in
	 DW_AT_{upper,lower}_bound attributes.  */
      if ((TREE_CODE (type) != ARRAY_TYPE
	   && TREE_CODE (type) != RECORD_TYPE
	   && TREE_CODE (type) != UNION_TYPE
	   && TREE_CODE (type) != QUAL_UNION_TYPE)
	  || !variably_modified_type_p (type, NULL))
	return;
    }

  switch (TREE_CODE (type))
    {
    case ERROR_MARK:
      break;

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      /* We must set TREE_ASM_WRITTEN in case this is a recursive type.  This
	 ensures that the gen_type_die recursion will terminate even if the
	 type is recursive.  Recursive types are possible in Ada.  */
      /* ??? We could perhaps do this for all types before the switch
	 statement.  */
      TREE_ASM_WRITTEN (type) = 1;

      /* For these types, all that is required is that we output a DIE (or a
	 set of DIEs) to represent the "basis" type.  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
			       DINFO_USAGE_IND_USE);
      break;

    case OFFSET_TYPE:
      /* This code is used for C++ pointer-to-data-member types.
	 Output a description of the relevant class type.  */
      gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
			       DINFO_USAGE_IND_USE);

      /* Output a description of the type of the object pointed to.  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
			       DINFO_USAGE_IND_USE);

      /* Now output a DIE to represent this pointer-to-data-member type
	 itself.  */
      gen_ptr_to_mbr_type_die (type, context_die);
      break;

    case FUNCTION_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
			       DINFO_USAGE_DIR_USE);
      gen_subroutine_type_die (type, context_die);
      break;

    case METHOD_TYPE:
      /* Force out return type (in case it wasn't forced out already).  */
      gen_type_die_with_usage (TREE_TYPE (type), context_die,
			       DINFO_USAGE_DIR_USE);
      gen_subroutine_type_die (type, context_die);
      break;

    case ARRAY_TYPE:
    case VECTOR_TYPE:
      gen_array_type_die (type, context_die);
      break;

    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      gen_tagged_type_die (type, context_die, usage);
      return;

    case VOID_TYPE:
    case OPAQUE_TYPE:
    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case COMPLEX_TYPE:
    case BOOLEAN_TYPE:
      /* No DIEs needed for fundamental types.  */
      break;

    case NULLPTR_TYPE:
    case LANG_TYPE:
      /* Just use DW_TAG_unspecified_type.  */
      {
        dw_die_ref type_die = lookup_type_die (type);
        if (type_die == NULL)
          {
	    tree name = TYPE_IDENTIFIER (type);
            type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
				type);
            add_name_attribute (type_die, IDENTIFIER_POINTER (name));
            equate_type_number_to_die (type, type_die);
          }
      }
      break;

    default:
      if (is_cxx_auto (type))
	{
	  tree name = TYPE_IDENTIFIER (type);
	  dw_die_ref *die = (name == get_identifier ("auto")
			     ? &auto_die : &decltype_auto_die);
	  if (!*die)
	    {
	      *die = new_die (DW_TAG_unspecified_type,
			      comp_unit_die (), NULL_TREE);
	      add_name_attribute (*die, IDENTIFIER_POINTER (name));
	    }
	  equate_type_number_to_die (type, *die);
	  break;
	}
      gcc_unreachable ();
    }

  TREE_ASM_WRITTEN (type) = 1;
}

static void
gen_type_die (tree type, dw_die_ref context_die)
{
  if (type != error_mark_node)
    {
      gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
      if (flag_checking)
	{
	  dw_die_ref die = lookup_type_die (type);
	  if (die)
	    check_die (die);
	}
    }
}

/* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
   things which are local to the given block.  */

static void
gen_block_die (tree stmt, dw_die_ref context_die)
{
  int must_output_die = 0;
  bool inlined_func;

  /* Ignore blocks that are NULL.  */
  if (stmt == NULL_TREE)
    return;

  inlined_func = inlined_function_outer_scope_p (stmt);

  /* If the block is one fragment of a non-contiguous block, do not
     process the variables, since they will have been done by the
     origin block.  Do process subblocks.  */
  if (BLOCK_FRAGMENT_ORIGIN (stmt))
    {
      tree sub;

      for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
	gen_block_die (sub, context_die);

      return;
    }

  /* Determine if we need to output any Dwarf DIEs at all to represent this
     block.  */
  if (inlined_func)
    /* The outer scopes for inlinings *must* always be represented.  We
       generate DW_TAG_inlined_subroutine DIEs for them.  (See below.) */
    must_output_die = 1;
  else if (lookup_block_die (stmt))
    /* If we already have a DIE then it was filled early.  Meanwhile
       we might have pruned all BLOCK_VARS as optimized out but we
       still want to generate high/low PC attributes so output it.  */
    must_output_die = 1;
  else if (TREE_USED (stmt)
	   || TREE_ASM_WRITTEN (stmt))
    {
      /* Determine if this block directly contains any "significant"
	 local declarations which we will need to output DIEs for.  */
      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  /* We are not in terse mode so any local declaration that
	     is not ignored for debug purposes counts as being a
	     "significant" one.  */
	  if (BLOCK_NUM_NONLOCALIZED_VARS (stmt))
	    must_output_die = 1;
	  else
	    for (tree var = BLOCK_VARS (stmt); var; var = DECL_CHAIN (var))
	      if (!DECL_IGNORED_P (var))
		{
		  must_output_die = 1;
		  break;
		}
	}
      else if (!dwarf2out_ignore_block (stmt))
	must_output_die = 1;
    }

  /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
     DIE for any block which contains no significant local declarations at
     all.  Rather, in such cases we just call `decls_for_scope' so that any
     needed Dwarf info for any sub-blocks will get properly generated. Note
     that in terse mode, our definition of what constitutes a "significant"
     local declaration gets restricted to include only inlined function
     instances and local (nested) function definitions.  */
  if (must_output_die)
    {
      if (inlined_func)
	gen_inlined_subroutine_die (stmt, context_die);
      else
	gen_lexical_block_die (stmt, context_die);
    }
  else
    decls_for_scope (stmt, context_die);
}

/* Process variable DECL (or variable with origin ORIGIN) within
   block STMT and add it to CONTEXT_DIE.  */
static void
process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
{
  dw_die_ref die;
  tree decl_or_origin = decl ? decl : origin;

  if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
    die = lookup_decl_die (decl_or_origin);
  else if (TREE_CODE (decl_or_origin) == TYPE_DECL)
    {
      if (TYPE_DECL_IS_STUB (decl_or_origin))
	die = lookup_type_die (TREE_TYPE (decl_or_origin));
      else
	die = lookup_decl_die (decl_or_origin);
      /* Avoid re-creating the DIE late if it was optimized as unused early.  */
      if (! die && ! early_dwarf)
	return;
    }
  else
    die = NULL;

  /* Avoid creating DIEs for local typedefs and concrete static variables that
     will only be pruned later.  */
  if ((origin || decl_ultimate_origin (decl))
      && (TREE_CODE (decl_or_origin) == TYPE_DECL
	  || (VAR_P (decl_or_origin) && TREE_STATIC (decl_or_origin))))
    {
      origin = decl_ultimate_origin (decl_or_origin);
      if (decl && VAR_P (decl) && die != NULL)
	{
	  die = lookup_decl_die (origin);
	  if (die != NULL)
	    equate_decl_number_to_die (decl, die);
	}
      return;
    }

  if (die != NULL && die->die_parent == NULL)
    add_child_die (context_die, die);
  else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
    {
      if (early_dwarf)
	dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
					     stmt, context_die);
    }
  else
    {
      if (decl && DECL_P (decl))
	{
	  die = lookup_decl_die (decl);

	  /* Early created DIEs do not have a parent as the decls refer
	     to the function as DECL_CONTEXT rather than the BLOCK.  */
	  if (die && die->die_parent == NULL)
	    {
	      gcc_assert (in_lto_p);
	      add_child_die (context_die, die);
	    }
	}

      gen_decl_die (decl, origin, NULL, context_die);
    }
}

/* Generate all of the decls declared within a given scope and (recursively)
   all of its sub-blocks.  */

static void
decls_for_scope (tree stmt, dw_die_ref context_die, bool recurse)
{
  tree decl;
  unsigned int i;
  tree subblocks;

  /* Ignore NULL blocks.  */
  if (stmt == NULL_TREE)
    return;

  /* Output the DIEs to represent all of the data objects and typedefs
     declared directly within this block but not within any nested
     sub-blocks.  Also, nested function and tag DIEs have been
     generated with a parent of NULL; fix that up now.  We don't
     have to do this if we're at -g1.  */
  if (debug_info_level > DINFO_LEVEL_TERSE)
    {
      for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
	process_scope_var (stmt, decl, NULL_TREE, context_die);
      /* BLOCK_NONLOCALIZED_VARs simply generate DIE stubs with abstract
	 origin - avoid doing this twice as we have no good way to see
	 if we've done it once already.  */
      if (! early_dwarf)
	for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
	  {
	    decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
	    if (decl == current_function_decl)
	      /* Ignore declarations of the current function, while they
		 are declarations, gen_subprogram_die would treat them
		 as definitions again, because they are equal to
		 current_function_decl and endlessly recurse.  */;
	    else if (TREE_CODE (decl) == FUNCTION_DECL)
	      process_scope_var (stmt, decl, NULL_TREE, context_die);
	    else
	      process_scope_var (stmt, NULL_TREE, decl, context_die);
	  }
    }

  /* Even if we're at -g1, we need to process the subblocks in order to get
     inlined call information.  */

  /* Output the DIEs to represent all sub-blocks (and the items declared
     therein) of this block.  */
  if (recurse)
    for (subblocks = BLOCK_SUBBLOCKS (stmt);
	 subblocks != NULL;
	 subblocks = BLOCK_CHAIN (subblocks))
      gen_block_die (subblocks, context_die);
}

/* Is this a typedef we can avoid emitting?  */

static bool
is_redundant_typedef (const_tree decl)
{
  if (TYPE_DECL_IS_STUB (decl))
    return true;

  if (DECL_ARTIFICIAL (decl)
      && DECL_CONTEXT (decl)
      && is_tagged_type (DECL_CONTEXT (decl))
      && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
      && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
    /* Also ignore the artificial member typedef for the class name.  */
    return true;

  return false;
}

/* Return TRUE if TYPE is a typedef that names a type for linkage
   purposes. This kind of typedefs is produced by the C++ FE for
   constructs like:

   typedef struct {...} foo;

   In that case, there is no typedef variant type produced for foo.
   Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
   struct type.  */

static bool
is_naming_typedef_decl (const_tree decl)
{
  if (decl == NULL_TREE
      || TREE_CODE (decl) != TYPE_DECL
      || DECL_NAMELESS (decl)
      || !is_tagged_type (TREE_TYPE (decl))
      || DECL_IS_UNDECLARED_BUILTIN (decl)
      || is_redundant_typedef (decl)
      /* It looks like Ada produces TYPE_DECLs that are very similar
         to C++ naming typedefs but that have different
         semantics. Let's be specific to c++ for now.  */
      || !is_cxx (decl))
    return FALSE;

  return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
	  && TYPE_NAME (TREE_TYPE (decl)) == decl
	  && (TYPE_STUB_DECL (TREE_TYPE (decl))
	      != TYPE_NAME (TREE_TYPE (decl))));
}

/* Looks up the DIE for a context.  */

static inline dw_die_ref
lookup_context_die (tree context)
{
  if (context)
    {
      /* Find die that represents this context.  */
      if (TYPE_P (context))
	{
	  context = TYPE_MAIN_VARIANT (context);
	  dw_die_ref ctx = lookup_type_die (context);
	  if (!ctx)
	    return NULL;
	  return strip_naming_typedef (context, ctx);
	}
      else
	return lookup_decl_die (context);
    }
  return comp_unit_die ();
}

/* Returns the DIE for a context.  */

static inline dw_die_ref
get_context_die (tree context)
{
  if (context)
    {
      /* Find die that represents this context.  */
      if (TYPE_P (context))
	{
	  context = TYPE_MAIN_VARIANT (context);
	  return strip_naming_typedef (context, force_type_die (context));
	}
      else
	return force_decl_die (context);
    }
  return comp_unit_die ();
}

/* Returns the DIE for decl.  A DIE will always be returned.  */

static dw_die_ref
force_decl_die (tree decl)
{
  dw_die_ref decl_die;
  unsigned saved_external_flag;
  tree save_fn = NULL_TREE;
  decl_die = lookup_decl_die (decl);
  if (!decl_die)
    {
      dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));

      decl_die = lookup_decl_die (decl);
      if (decl_die)
	return decl_die;

      switch (TREE_CODE (decl))
	{
	case FUNCTION_DECL:
	  /* Clear current_function_decl, so that gen_subprogram_die thinks
	     that this is a declaration. At this point, we just want to force
	     declaration die.  */
	  save_fn = current_function_decl;
	  current_function_decl = NULL_TREE;
	  gen_subprogram_die (decl, context_die);
	  current_function_decl = save_fn;
	  break;

	case VAR_DECL:
	  /* Set external flag to force declaration die. Restore it after
	   gen_decl_die() call.  */
	  saved_external_flag = DECL_EXTERNAL (decl);
	  DECL_EXTERNAL (decl) = 1;
	  gen_decl_die (decl, NULL, NULL, context_die);
	  DECL_EXTERNAL (decl) = saved_external_flag;
	  break;

	case NAMESPACE_DECL:
	  if (dwarf_version >= 3 || !dwarf_strict)
	    dwarf2out_decl (decl);
	  else
	    /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace.  */
	    decl_die = comp_unit_die ();
	  break;

	case CONST_DECL:
	  /* Enumerators shouldn't need force_decl_die.  */
	  gcc_assert (DECL_CONTEXT (decl) == NULL_TREE
		      || TREE_CODE (DECL_CONTEXT (decl)) != ENUMERAL_TYPE);
	  gen_decl_die (decl, NULL, NULL, context_die);
	  break;

	case TRANSLATION_UNIT_DECL:
	  decl_die = comp_unit_die ();
	  break;

	default:
	  gcc_unreachable ();
	}

      /* We should be able to find the DIE now.  */
      if (!decl_die)
	decl_die = lookup_decl_die (decl);
      gcc_assert (decl_die);
    }

  return decl_die;
}

/* Returns the DIE for TYPE, that must not be a base type.  A DIE is
   always returned.  */

static dw_die_ref
force_type_die (tree type)
{
  dw_die_ref type_die;

  type_die = lookup_type_die (type);
  if (!type_die)
    {
      dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));

      type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
				    false, context_die);
      gcc_assert (type_die);
    }
  return type_die;
}

/* Force out any required namespaces to be able to output DECL,
   and return the new context_die for it, if it's changed.  */

static dw_die_ref
setup_namespace_context (tree thing, dw_die_ref context_die)
{
  tree context = (DECL_P (thing)
		  ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
  if (context && TREE_CODE (context) == NAMESPACE_DECL)
    /* Force out the namespace.  */
    context_die = force_decl_die (context);

  return context_die;
}

/* Emit a declaration DIE for THING (which is either a DECL or a tagged
   type) within its namespace, if appropriate.

   For compatibility with older debuggers, namespace DIEs only contain
   declarations; all definitions are emitted at CU scope, with
   DW_AT_specification pointing to the declaration (like with class
   members).  */

static dw_die_ref
declare_in_namespace (tree thing, dw_die_ref context_die)
{
  dw_die_ref ns_context;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return context_die;

  /* External declarations in the local scope only need to be emitted
     once, not once in the namespace and once in the scope.

     This avoids declaring the `extern' below in the
     namespace DIE as well as in the innermost scope:

          namespace S
	  {
            int i=5;
            int foo()
	    {
              int i=8;
              extern int i;
     	      return i;
	    }
          }
  */
  if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
    return context_die;

  /* If this decl is from an inlined function, then don't try to emit it in its
     namespace, as we will get confused.  It would have already been emitted
     when the abstract instance of the inline function was emitted anyways.  */
  if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
    return context_die;

  ns_context = setup_namespace_context (thing, context_die);

  if (ns_context != context_die)
    {
      if (is_fortran () || is_dlang ())
	return ns_context;
      if (DECL_P (thing))
	gen_decl_die (thing, NULL, NULL, ns_context);
      else
	gen_type_die (thing, ns_context);
    }
  return context_die;
}

/* Generate a DIE for a namespace or namespace alias.  */

static void
gen_namespace_die (tree decl, dw_die_ref context_die)
{
  dw_die_ref namespace_die;

  /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
     they are an alias of.  */
  if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
    {
      /* Output a real namespace or module.  */
      context_die = setup_namespace_context (decl, comp_unit_die ());
      namespace_die = new_die (is_fortran () || is_dlang ()
			       ? DW_TAG_module : DW_TAG_namespace,
			       context_die, decl);
      /* For Fortran modules defined in different CU don't add src coords.  */
      if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
	{
	  const char *name = dwarf2_name (decl, 0);
	  if (name)
	    add_name_attribute (namespace_die, name);
	}
      else
	add_name_and_src_coords_attributes (namespace_die, decl);
      if (DECL_EXTERNAL (decl))
	add_AT_flag (namespace_die, DW_AT_declaration, 1);
      equate_decl_number_to_die (decl, namespace_die);
    }
  else
    {
      /* Output a namespace alias.  */

      /* Force out the namespace we are an alias of, if necessary.  */
      dw_die_ref origin_die
	= force_decl_die (DECL_ABSTRACT_ORIGIN (decl));

      if (DECL_FILE_SCOPE_P (decl)
	  || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
	context_die = setup_namespace_context (decl, comp_unit_die ());
      /* Now create the namespace alias DIE.  */
      namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
      add_name_and_src_coords_attributes (namespace_die, decl);
      add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
      equate_decl_number_to_die (decl, namespace_die);
    }
  if ((dwarf_version >= 5 || !dwarf_strict)
      && lang_hooks.decls.decl_dwarf_attribute (decl,
						DW_AT_export_symbols) == 1)
    add_AT_flag (namespace_die, DW_AT_export_symbols, 1);

  /* Bypass dwarf2_name's check for DECL_NAMELESS.  */
  if (want_pubnames ())
    add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
}

/* Generate Dwarf debug information for a decl described by DECL.
   The return value is currently only meaningful for PARM_DECLs,
   for all other decls it returns NULL.

   If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
   It can be NULL otherwise.  */

static dw_die_ref
gen_decl_die (tree decl, tree origin, struct vlr_context *ctx,
	      dw_die_ref context_die)
{
  tree decl_or_origin = decl ? decl : origin;
  tree class_origin = NULL, ultimate_origin;

  if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
    return NULL;

  switch (TREE_CODE (decl_or_origin))
    {
    case ERROR_MARK:
      break;

    case CONST_DECL:
      if (!is_fortran () && !is_ada () && !is_dlang ())
	{
	  /* The individual enumerators of an enum type get output when we output
	     the Dwarf representation of the relevant enum type itself.  */
	  break;
	}

      /* Emit its type.  */
      gen_type_die (TREE_TYPE (decl), context_die);

      /* And its containing namespace.  */
      context_die = declare_in_namespace (decl, context_die);

      gen_const_die (decl, context_die);
      break;

    case FUNCTION_DECL:
#if 0
      /* FIXME */
      /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
	 on local redeclarations of global functions.  That seems broken.  */
      if (current_function_decl != decl)
	/* This is only a declaration.  */;
#endif

      /* We should have abstract copies already and should not generate
	 stray type DIEs in late LTO dumping.  */
      if (! early_dwarf)
	;

      /* If we're emitting a clone, emit info for the abstract instance.  */
      else if (origin || DECL_ORIGIN (decl) != decl)
	dwarf2out_abstract_function (origin
				     ? DECL_ORIGIN (origin)
				     : DECL_ABSTRACT_ORIGIN (decl));

      /* If we're emitting a possibly inlined function emit it as
         abstract instance.  */
      else if (cgraph_function_possibly_inlined_p (decl)
	       && ! DECL_ABSTRACT_P (decl)
	       && ! class_or_namespace_scope_p (context_die)
	       /* dwarf2out_abstract_function won't emit a die if this is just
		  a declaration.  We must avoid setting DECL_ABSTRACT_ORIGIN in
		  that case, because that works only if we have a die.  */
	       && DECL_INITIAL (decl) != NULL_TREE)
	dwarf2out_abstract_function (decl);

      /* Otherwise we're emitting the primary DIE for this decl.  */
      else if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  /* Before we describe the FUNCTION_DECL itself, make sure that we
	     have its containing type.  */
	  if (!origin)
	    origin = decl_class_context (decl);
	  if (origin != NULL_TREE)
	    gen_type_die (origin, context_die);

	  /* And its return type.  */
	  gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);

	  /* And its virtual context.  */
	  if (DECL_VINDEX (decl) != NULL_TREE)
	    gen_type_die (DECL_CONTEXT (decl), context_die);

	  /* Make sure we have a member DIE for decl.  */
	  if (origin != NULL_TREE)
	    gen_type_die_for_member (origin, decl, context_die);

	  /* And its containing namespace.  */
	  context_die = declare_in_namespace (decl, context_die);
	}

      /* Now output a DIE to represent the function itself.  */
      if (decl)
        gen_subprogram_die (decl, context_die);
      break;

    case TYPE_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
	 actual typedefs.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	break;

      /* In the special case of a TYPE_DECL node representing the declaration
	 of some type tag, if the given TYPE_DECL is marked as having been
	 instantiated from some other (original) TYPE_DECL node (e.g. one which
	 was generated within the original definition of an inline function) we
	 used to generate a special (abbreviated) DW_TAG_structure_type,
	 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here.  But nothing
	 should be actually referencing those DIEs, as variable DIEs with that
	 type would be emitted already in the abstract origin, so it was always
	 removed during unused type prunning.  Don't add anything in this
	 case.  */
      if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
	break;

      if (is_redundant_typedef (decl))
	gen_type_die (TREE_TYPE (decl), context_die);
      else
	/* Output a DIE to represent the typedef itself.  */
	gen_typedef_die (decl, context_die);
      break;

    case LABEL_DECL:
      if (debug_info_level >= DINFO_LEVEL_NORMAL)
	gen_label_die (decl, context_die);
      break;

    case VAR_DECL:
    case RESULT_DECL:
      /* If we are in terse mode, don't generate any DIEs to represent any
	 variable declarations or definitions unless it is external.  */
      if (debug_info_level < DINFO_LEVEL_TERSE
	  || (debug_info_level == DINFO_LEVEL_TERSE
	      && !TREE_PUBLIC (decl_or_origin)))
	break;

      if (debug_info_level > DINFO_LEVEL_TERSE)
	{
	  /* Avoid generating stray type DIEs during late dwarf dumping.
	     All types have been dumped early.  */
	  if (early_dwarf
	      /* ???  But in LTRANS we cannot annotate early created variably
		 modified type DIEs without copying them and adjusting all
		 references to them.  Dump them again as happens for inlining
		 which copies both the decl and the types.  */
	      /* ???  And even non-LTO needs to re-visit type DIEs to fill
		 in VLA bound information for example.  */
	      || (decl && variably_modified_type_p (TREE_TYPE (decl),
						    current_function_decl)))
	    {
	      /* Output any DIEs that are needed to specify the type of this data
		 object.  */
	      if (decl_by_reference_p (decl_or_origin))
		gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
	      else
		gen_type_die (TREE_TYPE (decl_or_origin), context_die);
	    }

	  if (early_dwarf)
	    {
	      /* And its containing type.  */
	      class_origin = decl_class_context (decl_or_origin);
	      if (class_origin != NULL_TREE)
		gen_type_die_for_member (class_origin, decl_or_origin, context_die);

	      /* And its containing namespace.  */
	      context_die = declare_in_namespace (decl_or_origin, context_die);
	    }
	}

      /* Now output the DIE to represent the data object itself.  This gets
	 complicated because of the possibility that the VAR_DECL really
	 represents an inlined instance of a formal parameter for an inline
	 function.  */
      ultimate_origin = decl_ultimate_origin (decl_or_origin);
      if (ultimate_origin != NULL_TREE
	  && TREE_CODE (ultimate_origin) == PARM_DECL)
	gen_formal_parameter_die (decl, origin,
				  true /* Emit name attribute.  */,
				  context_die);
      else
	gen_variable_die (decl, origin, context_die);
      break;

    case FIELD_DECL:
      gcc_assert (ctx != NULL && ctx->struct_type != NULL);
      /* Ignore the nameless fields that are used to skip bits but handle C++
	 anonymous unions and structs.  */
      if (DECL_NAME (decl) != NULL_TREE
	  || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
	  || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
	{
	  gen_type_die (member_declared_type (decl), context_die);
	  gen_field_die (decl, ctx, context_die);
	}
      break;

    case PARM_DECL:
      /* Avoid generating stray type DIEs during late dwarf dumping.
         All types have been dumped early.  */
      if (early_dwarf
	  /* ???  But in LTRANS we cannot annotate early created variably
	     modified type DIEs without copying them and adjusting all
	     references to them.  Dump them again as happens for inlining
	     which copies both the decl and the types.  */
	  /* ???  And even non-LTO needs to re-visit type DIEs to fill
	     in VLA bound information for example.  */
	  || (decl && variably_modified_type_p (TREE_TYPE (decl),
						current_function_decl)))
	{
	  if (DECL_BY_REFERENCE (decl_or_origin))
	    gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
	  else
	    gen_type_die (TREE_TYPE (decl_or_origin), context_die);
	}
      return gen_formal_parameter_die (decl, origin,
				       true /* Emit name attribute.  */,
				       context_die);

    case NAMESPACE_DECL:
      if (dwarf_version >= 3 || !dwarf_strict)
	gen_namespace_die (decl, context_die);
      break;

    case IMPORTED_DECL:
      dwarf2out_imported_module_or_decl_1 (decl, DECL_NAME (decl),
					   DECL_CONTEXT (decl), context_die);
      break;

    case NAMELIST_DECL:
      gen_namelist_decl (DECL_NAME (decl), context_die,
			 NAMELIST_DECL_ASSOCIATED_DECL (decl));
      break;

    default:
      /* Probably some frontend-internal decl.  Assume we don't care.  */
      gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
      break;
    }

  return NULL;
}

/* Output initial debug information for global DECL.  Called at the
   end of the parsing process.

   This is the initial debug generation process.  As such, the DIEs
   generated may be incomplete.  A later debug generation pass
   (dwarf2out_late_global_decl) will augment the information generated
   in this pass (e.g., with complete location info).  */

static void
dwarf2out_early_global_decl (tree decl)
{
  set_early_dwarf s;

  /* gen_decl_die() will set DECL_ABSTRACT because
     cgraph_function_possibly_inlined_p() returns true.  This is in
     turn will cause DW_AT_inline attributes to be set.

     This happens because at early dwarf generation, there is no
     cgraph information, causing cgraph_function_possibly_inlined_p()
     to return true.  Trick cgraph_function_possibly_inlined_p()
     while we generate dwarf early.  */
  bool save = symtab->global_info_ready;
  symtab->global_info_ready = true;

  /* We don't handle TYPE_DECLs.  If required, they'll be reached via
     other DECLs and they can point to template types or other things
     that dwarf2out can't handle when done via dwarf2out_decl.  */
  if (TREE_CODE (decl) != TYPE_DECL
      && TREE_CODE (decl) != PARM_DECL)
    {
      if (TREE_CODE (decl) == FUNCTION_DECL)
	{
	  tree save_fndecl = current_function_decl;

	  /* For nested functions, make sure we have DIEs for the parents first
	     so that all nested DIEs are generated at the proper scope in the
	     first shot.  */
	  tree context = decl_function_context (decl);
	  if (context != NULL)
	    {
	      dw_die_ref context_die = lookup_decl_die (context);
	      current_function_decl = context;

	      /* Avoid emitting DIEs multiple times, but still process CONTEXT
		 enough so that it lands in its own context.  This avoids type
		 pruning issues later on.  */
	      if (context_die == NULL || is_declaration_die (context_die))
		dwarf2out_early_global_decl (context);
	    }

	  /* Emit an abstract origin of a function first.  This happens
	     with C++ constructor clones for example and makes
	     dwarf2out_abstract_function happy which requires the early
	     DIE of the abstract instance to be present.  */
	  tree origin = DECL_ABSTRACT_ORIGIN (decl);
	  dw_die_ref origin_die;
	  if (origin != NULL
	      /* Do not emit the DIE multiple times but make sure to
	         process it fully here in case we just saw a declaration.  */
	      && ((origin_die = lookup_decl_die (origin)) == NULL
		  || is_declaration_die (origin_die)))
	    {
	      current_function_decl = origin;
	      dwarf2out_decl (origin);
	    }

	  /* Emit the DIE for decl but avoid doing that multiple times.  */
	  dw_die_ref old_die;
	  if ((old_die = lookup_decl_die (decl)) == NULL
	      || is_declaration_die (old_die))
	    {
	      current_function_decl = decl;
	      dwarf2out_decl (decl);
	    }

	  current_function_decl = save_fndecl;
	}
      else
	dwarf2out_decl (decl);
    }
  symtab->global_info_ready = save;
}

/* Return whether EXPR is an expression with the following pattern:
   INDIRECT_REF (NOP_EXPR (INTEGER_CST)).  */

static bool
is_trivial_indirect_ref (tree expr)
{
  if (expr == NULL_TREE || TREE_CODE (expr) != INDIRECT_REF)
    return false;

  tree nop = TREE_OPERAND (expr, 0);
  if (nop == NULL_TREE || TREE_CODE (nop) != NOP_EXPR)
    return false;

  tree int_cst = TREE_OPERAND (nop, 0);
  return int_cst != NULL_TREE && TREE_CODE (int_cst) == INTEGER_CST;
}

/* Output debug information for global decl DECL.  Called from
   toplev.cc after compilation proper has finished.  */

static void
dwarf2out_late_global_decl (tree decl)
{
  /* Fill-in any location information we were unable to determine
     on the first pass.  */
  if (VAR_P (decl))
    {
      dw_die_ref die = lookup_decl_die (decl);

      /* We may have to generate full debug late for LTO in case debug
         was not enabled at compile-time or the target doesn't support
	 the LTO early debug scheme.  */
      if (! die && in_lto_p)
	dwarf2out_decl (decl);
      else if (die)
	{
	  /* We get called via the symtab code invoking late_global_decl
	     for symbols that are optimized out.

	     Do not add locations for those, except if they have a
	     DECL_VALUE_EXPR, in which case they are relevant for debuggers.
	     Still don't add a location if the DECL_VALUE_EXPR is not a trivial
	     INDIRECT_REF expression, as this could generate relocations to
	     text symbols in LTO object files, which is invalid.  */
	  varpool_node *node = varpool_node::get (decl);
	  if ((! node || ! node->definition)
	      && ! (DECL_HAS_VALUE_EXPR_P (decl)
		    && is_trivial_indirect_ref (DECL_VALUE_EXPR (decl))))
	    tree_add_const_value_attribute_for_decl (die, decl);
	  else
	    add_location_or_const_value_attribute (die, decl, false);
	}
    }
}

/* Output debug information for type decl DECL.  Called from toplev.cc
   and from language front ends (to record built-in types).  */
static void
dwarf2out_type_decl (tree decl, int local)
{
  if (!local)
    {
      set_early_dwarf s;
      dwarf2out_decl (decl);
    }
}

/* Output debug information for imported module or decl DECL.
   NAME is non-NULL name in the lexical block if the decl has been renamed.
   LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
   that DECL belongs to.
   LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK.  */
static void
dwarf2out_imported_module_or_decl_1 (tree decl,
				     tree name,
				     tree lexical_block,
				     dw_die_ref lexical_block_die)
{
  expanded_location xloc;
  dw_die_ref imported_die = NULL;
  dw_die_ref at_import_die;

  if (TREE_CODE (decl) == IMPORTED_DECL)
    {
      xloc = expand_location (DECL_SOURCE_LOCATION (decl));
      decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
      gcc_assert (decl);
    }
  else
    xloc = expand_location (input_location);

  if (TREE_CODE (decl) == TYPE_DECL)
    {
      at_import_die = force_type_die (TREE_TYPE (decl));
      /* For namespace N { typedef void T; } using N::T; base_type_die
	 returns NULL, but DW_TAG_imported_declaration requires
	 the DW_AT_import tag.  Force creation of DW_TAG_typedef.  */
      if (!at_import_die)
	{
	  gcc_assert (TREE_CODE (decl) == TYPE_DECL);
	  gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
	  at_import_die = lookup_type_die (TREE_TYPE (decl));
	  gcc_assert (at_import_die);
	}
    }
  else
    {
      at_import_die = lookup_decl_die (decl);
      if (!at_import_die)
	{
	  /* If we're trying to avoid duplicate debug info, we may not have
	     emitted the member decl for this field.  Emit it now.  */
	  if (TREE_CODE (decl) == FIELD_DECL)
	    {
	      tree type = DECL_CONTEXT (decl);

	      if (TYPE_CONTEXT (type)
		  && TYPE_P (TYPE_CONTEXT (type))
		  && !should_emit_struct_debug (TYPE_CONTEXT (type),
						DINFO_USAGE_DIR_USE))
		return;
	      gen_type_die_for_member (type, decl,
				       get_context_die (TYPE_CONTEXT (type)));
	    }
	  if (TREE_CODE (decl) == CONST_DECL)
	    {
	      /* Individual enumerators of an enum type do not get output here
		 (see gen_decl_die), so we cannot call force_decl_die.  */
	      if (!is_fortran () && !is_ada () && !is_dlang ())
		return;
	    }
	  if (TREE_CODE (decl) == NAMELIST_DECL)
	    at_import_die = gen_namelist_decl (DECL_NAME (decl),
					 get_context_die (DECL_CONTEXT (decl)),
					 NULL_TREE);
	  else
	    at_import_die = force_decl_die (decl);
	}
    }

  if (TREE_CODE (decl) == NAMESPACE_DECL)
    {
      if (dwarf_version >= 3 || !dwarf_strict)
	imported_die = new_die (DW_TAG_imported_module,
				lexical_block_die,
				lexical_block);
      else
	return;
    }
  else
    imported_die = new_die (DW_TAG_imported_declaration,
			    lexical_block_die,
			    lexical_block);

  add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
  add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
  if (debug_column_info && xloc.column)
    add_AT_unsigned (imported_die, DW_AT_decl_column, xloc.column);
  if (name)
    add_AT_string (imported_die, DW_AT_name,
		   IDENTIFIER_POINTER (name));
  add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
}

/* Output debug information for imported module or decl DECL.
   NAME is non-NULL name in context if the decl has been renamed.
   CHILD is true if decl is one of the renamed decls as part of
   importing whole module.
   IMPLICIT is set if this hook is called for an implicit import
   such as inline namespace.  */

static void
dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
				   bool child, bool implicit)
{
  /* dw_die_ref at_import_die;  */
  dw_die_ref scope_die;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return;

  gcc_assert (decl);

  /* For DWARF5, just DW_AT_export_symbols on the DW_TAG_namespace
     should be enough, for DWARF4 and older even if we emit as extension
     DW_AT_export_symbols add the implicit DW_TAG_imported_module anyway
     for the benefit of consumers unaware of DW_AT_export_symbols.  */
  if (implicit
      && dwarf_version >= 5
      && lang_hooks.decls.decl_dwarf_attribute (decl,
						DW_AT_export_symbols) == 1)
    return;

  set_early_dwarf s;

  /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
     We need decl DIE for reference and scope die. First, get DIE for the decl
     itself.  */

  /* Get the scope die for decl context. Use comp_unit_die for global module
     or decl. If die is not found for non globals, force new die.  */
  if (context
      && TYPE_P (context)
      && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
    return;

  scope_die = get_context_die (context);

  if (child)
    {
      /* DW_TAG_imported_module was introduced in the DWARFv3 specification, so
	 there is nothing we can do, here.  */
      if (dwarf_version < 3 && dwarf_strict)
	return;

      gcc_assert (scope_die->die_child);
      gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
      gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
      scope_die = scope_die->die_child;
    }

  /* OK, now we have DIEs for decl as well as scope. Emit imported die.  */
  dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
}

/* Output debug information for namelists.   */

static dw_die_ref
gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
{
  dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
  tree value;
  unsigned i;

  if (debug_info_level <= DINFO_LEVEL_TERSE)
    return NULL;

  gcc_assert (scope_die != NULL);
  nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
  add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));

  /* If there are no item_decls, we have a nondefining namelist, e.g.
     with USE association; hence, set DW_AT_declaration.  */
  if (item_decls == NULL_TREE)
    {
      add_AT_flag (nml_die, DW_AT_declaration, 1);
      return nml_die;
    }

  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
    {
      nml_item_ref_die = lookup_decl_die (value);
      if (!nml_item_ref_die)
	nml_item_ref_die = force_decl_die (value);

      nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
      add_AT_die_ref (nml_item_die, DW_AT_namelist_item, nml_item_ref_die);
    }
  return nml_die;
}


/* Write the debugging output for DECL and return the DIE.  */

static void
dwarf2out_decl (tree decl)
{
  dw_die_ref context_die = comp_unit_die ();

  switch (TREE_CODE (decl))
    {
    case ERROR_MARK:
      return;

    case FUNCTION_DECL:
      /* If we're a nested function, initially use a parent of NULL; if we're
	 a plain function, this will be fixed up in decls_for_scope.  If
	 we're a method, it will be ignored, since we already have a DIE.
	 Avoid doing this late though since clones of class methods may
	 otherwise end up in limbo and create type DIEs late.  */
      if (early_dwarf
	  && decl_function_context (decl)
	  /* But if we're in terse mode, we don't care about scope.  */
	  && debug_info_level > DINFO_LEVEL_TERSE)
	context_die = NULL;
      break;

    case VAR_DECL:
      /* For local statics lookup proper context die.  */
      if (local_function_static (decl))
	context_die = lookup_decl_die (DECL_CONTEXT (decl));

      /* If we are in terse mode, don't generate any DIEs to represent any
	 variable declarations or definitions unless it is external.  */
      if (debug_info_level < DINFO_LEVEL_TERSE
	  || (debug_info_level == DINFO_LEVEL_TERSE
	      && !TREE_PUBLIC (decl)))
	return;
      break;

    case CONST_DECL:
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;
      if (!is_fortran () && !is_ada () && !is_dlang ())
	return;
      if (TREE_STATIC (decl) && decl_function_context (decl))
	context_die = lookup_decl_die (DECL_CONTEXT (decl));
      break;

    case NAMESPACE_DECL:
    case IMPORTED_DECL:
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;
      if (lookup_decl_die (decl) != NULL)
	return;
      break;

    case TYPE_DECL:
      /* Don't emit stubs for types unless they are needed by other DIEs.  */
      if (TYPE_DECL_SUPPRESS_DEBUG (decl))
	return;

      /* Don't bother trying to generate any DIEs to represent any of the
	 normal built-in types for the language we are compiling.  */
      if (DECL_IS_UNDECLARED_BUILTIN (decl))
	return;

      /* If we are in terse mode, don't generate any DIEs for types.  */
      if (debug_info_level <= DINFO_LEVEL_TERSE)
	return;

      /* If we're a function-scope tag, initially use a parent of NULL;
	 this will be fixed up in decls_for_scope.  */
      if (decl_function_context (decl))
	context_die = NULL;

      break;

    case NAMELIST_DECL:
      break;

    default:
      return;
    }

  gen_decl_die (decl, NULL, NULL, context_die);

  if (flag_checking)
    {
      dw_die_ref die = lookup_decl_die (decl);
      if (die)
	check_die (die);
    }
}

/* Write the debugging output for DECL.  */

static void
dwarf2out_function_decl (tree decl)
{
  dwarf2out_decl (decl);
  call_arg_locations = NULL;
  call_arg_loc_last = NULL;
  call_site_count = -1;
  tail_call_site_count = -1;
  decl_loc_table->empty ();
  cached_dw_loc_list_table->empty ();
}

/* Output a marker (i.e. a label) for the beginning of the generated code for
   a lexical block.  */

static void
dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
		       unsigned int blocknum)
{
  switch_to_section (current_function_section ());
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
}

/* Output a marker (i.e. a label) for the end of the generated code for a
   lexical block.  */

static void
dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
{
  switch_to_section (current_function_section ());
  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
}

/* Returns nonzero if it is appropriate not to emit any debugging
   information for BLOCK, because it doesn't contain any instructions.

   Don't allow this for blocks with nested functions or local classes
   as we would end up with orphans, and in the presence of scheduling
   we may end up calling them anyway.  */

static bool
dwarf2out_ignore_block (const_tree block)
{
  tree decl;
  unsigned int i;

  for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
    if (TREE_CODE (decl) == FUNCTION_DECL
	|| (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
      return 0;
  for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
    {
      decl = BLOCK_NONLOCALIZED_VAR (block, i);
      if (TREE_CODE (decl) == FUNCTION_DECL
	  || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
      return 0;
    }

  return 1;
}

/* Hash table routines for file_hash.  */

bool
dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
{
  return filename_cmp (p1->key, p2) == 0;
}

hashval_t
dwarf_file_hasher::hash (dwarf_file_data *p)
{
  return htab_hash_string (p->key);
}

/* Lookup FILE_NAME (in the list of filenames that we know about here in
   dwarf2out.cc) and return its "index".  The index of each (known) filename is
   just a unique number which is associated with only that one filename.  We
   need such numbers for the sake of generating labels (in the .debug_sfnames
   section) and references to those files numbers (in the .debug_srcinfo
   and .debug_macinfo sections).  If the filename given as an argument is not
   found in our current list, add it to the list and assign it the next
   available unique index number.  */

static struct dwarf_file_data *
lookup_filename (const char *file_name)
{
  struct dwarf_file_data * created;

  if (!file_name)
    return NULL;

  if (!file_name[0])
    file_name = "<stdin>";

  dwarf_file_data **slot
    = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
				       INSERT);
  if (*slot)
    return *slot;

  created = ggc_alloc<dwarf_file_data> ();
  created->key = file_name;
  created->filename = remap_debug_filename (file_name);
  created->emitted_number = 0;
  *slot = created;
  return created;
}

/* If the assembler will construct the file table, then translate the compiler
   internal file table number into the assembler file table number, and emit
   a .file directive if we haven't already emitted one yet.  The file table
   numbers are different because we prune debug info for unused variables and
   types, which may include filenames.  */

static int
maybe_emit_file (struct dwarf_file_data * fd)
{
  if (! fd->emitted_number)
    {
      if (last_emitted_file)
	fd->emitted_number = last_emitted_file->emitted_number + 1;
      else
	fd->emitted_number = 1;
      last_emitted_file = fd;

      if (output_asm_line_debug_info ())
	{
	  fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
	  output_quoted_string (asm_out_file, fd->filename);
	  fputc ('\n', asm_out_file);
	}
    }

  return fd->emitted_number;
}

/* Schedule generation of a DW_AT_const_value attribute to DIE.
   That generation should happen after function debug info has been
   generated. The value of the attribute is the constant value of ARG.  */

static void
append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
{
  die_arg_entry entry;

  if (!die || !arg)
    return;

  gcc_assert (early_dwarf);

  if (!tmpl_value_parm_die_table)
    vec_alloc (tmpl_value_parm_die_table, 32);

  entry.die = die;
  entry.arg = arg;
  vec_safe_push (tmpl_value_parm_die_table, entry);
}

/* Return TRUE if T is an instance of generic type, FALSE
   otherwise.  */

static bool
generic_type_p (tree t)
{
  if (t == NULL_TREE || !TYPE_P (t))
    return false;
  return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
}

/* Schedule the generation of the generic parameter dies for the
  instance of generic type T. The proper generation itself is later
  done by gen_scheduled_generic_parms_dies. */

static void
schedule_generic_params_dies_gen (tree t)
{
  if (!generic_type_p (t))
    return;

  gcc_assert (early_dwarf);

  if (!generic_type_instances)
    vec_alloc (generic_type_instances, 256);

  vec_safe_push (generic_type_instances, t);
}

/* Add a DW_AT_const_value attribute to DIEs that were scheduled
   by append_entry_to_tmpl_value_parm_die_table. This function must
   be called after function DIEs have been generated.  */

static void
gen_remaining_tmpl_value_param_die_attribute (void)
{
  if (tmpl_value_parm_die_table)
    {
      unsigned i, j;
      die_arg_entry *e;

      /* We do this in two phases - first get the cases we can
	 handle during early-finish, preserving those we cannot
	 (containing symbolic constants where we don't yet know
	 whether we are going to output the referenced symbols).
	 For those we try again at late-finish.  */
      j = 0;
      FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
	{
	  if (!e->die->removed
	      && !tree_add_const_value_attribute (e->die, e->arg))
	    {
	      dw_loc_descr_ref loc = NULL;
	      if (! early_dwarf
		  && (dwarf_version >= 5 || !dwarf_strict))
		loc = loc_descriptor_from_tree (e->arg, 2, NULL);
	      if (loc)
		add_AT_loc (e->die, DW_AT_location, loc);
	      else
		(*tmpl_value_parm_die_table)[j++] = *e;
	    }
	}
      tmpl_value_parm_die_table->truncate (j);
    }
}

/* Generate generic parameters DIEs for instances of generic types
   that have been previously scheduled by
   schedule_generic_params_dies_gen. This function must be called
   after all the types of the CU have been laid out.  */

static void
gen_scheduled_generic_parms_dies (void)
{
  unsigned i;
  tree t;

  if (!generic_type_instances)
    return;
  
  FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
    if (COMPLETE_TYPE_P (t))
      gen_generic_params_dies (t);

  generic_type_instances = NULL;
}


/* Replace DW_AT_name for the decl with name.  */

static void
dwarf2out_set_name (tree decl, tree name)
{
  dw_die_ref die;
  dw_attr_node *attr;
  const char *dname;

  die = TYPE_SYMTAB_DIE (decl);
  if (!die)
    return;

  dname = dwarf2_name (name, 0);
  if (!dname)
    return;

  attr = get_AT (die, DW_AT_name);
  if (attr)
    {
      struct indirect_string_node *node;

      node = find_AT_string (dname);
      /* replace the string.  */
      attr->dw_attr_val.v.val_str = node;
    }

  else
    add_name_attribute (die, dname);
}

/* True if before or during processing of the first function being emitted.  */
static bool in_first_function_p = true;
/* True if loc_note during dwarf2out_var_location call might still be
   before first real instruction at address equal to .Ltext0.  */
static bool maybe_at_text_label_p = true;
/* One above highest N where .LVLN label might be equal to .Ltext0 label.  */
static unsigned int first_loclabel_num_not_at_text_label;

/* Look ahead for a real insn.  */

static rtx_insn *
dwarf2out_next_real_insn (rtx_insn *loc_note)
{
  rtx_insn *next_real = NEXT_INSN (loc_note);

  while (next_real)
    if (INSN_P (next_real))
      break;
    else
      next_real = NEXT_INSN (next_real);

  return next_real;
}

/* Called by the final INSN scan whenever we see a var location.  We
   use it to drop labels in the right places, and throw the location in
   our lookup table.  */

static void
dwarf2out_var_location (rtx_insn *loc_note)
{
  char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
  struct var_loc_node *newloc;
  rtx_insn *next_real;
  rtx_insn *call_insn = NULL;
  static const char *last_label;
  static const char *last_postcall_label;
  static bool last_in_cold_section_p;
  static rtx_insn *expected_next_loc_note;
  tree decl;
  bool var_loc_p;
  var_loc_view view = 0;

  if (!NOTE_P (loc_note))
    {
      if (CALL_P (loc_note))
	{
	  maybe_reset_location_view (loc_note, cur_line_info_table);
	  call_site_count++;
	  if (SIBLING_CALL_P (loc_note))
	    tail_call_site_count++;
	  if (find_reg_note (loc_note, REG_CALL_ARG_LOCATION, NULL_RTX))
	    {
	      call_insn = loc_note;
	      loc_note = NULL;
	      var_loc_p = false;

	      next_real = dwarf2out_next_real_insn (call_insn);
	      cached_next_real_insn = NULL;
	      goto create_label;
	    }
	  if (optimize == 0 && !flag_var_tracking)
	    {
	      /* When the var-tracking pass is not running, there is no note
		 for indirect calls whose target is compile-time known. In this
		 case, process such calls specifically so that we generate call
		 sites for them anyway.  */
	      rtx x = PATTERN (loc_note);
	      if (GET_CODE (x) == PARALLEL)
		x = XVECEXP (x, 0, 0);
	      if (GET_CODE (x) == SET)
		x = SET_SRC (x);
	      if (GET_CODE (x) == CALL)
		x = XEXP (x, 0);
	      if (!MEM_P (x)
		  || GET_CODE (XEXP (x, 0)) != SYMBOL_REF
		  || !SYMBOL_REF_DECL (XEXP (x, 0))
		  || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0)))
		      != FUNCTION_DECL))
		{
		  call_insn = loc_note;
		  loc_note = NULL;
		  var_loc_p = false;

		  next_real = dwarf2out_next_real_insn (call_insn);
		  cached_next_real_insn = NULL;
		  goto create_label;
		}
	    }
	}
      else if (!debug_variable_location_views)
	gcc_unreachable ();
      else
	maybe_reset_location_view (loc_note, cur_line_info_table);

      return;
    }

  var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
  if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
    return;

  /* Optimize processing a large consecutive sequence of location
     notes so we don't spend too much time in next_real_insn.  If the
     next insn is another location note, remember the next_real_insn
     calculation for next time.  */
  next_real = cached_next_real_insn;
  if (next_real)
    {
      if (expected_next_loc_note != loc_note)
	next_real = NULL;
    }

  if (! next_real)
    next_real = dwarf2out_next_real_insn (loc_note);

  if (next_real)
    {
      rtx_insn *next_note = NEXT_INSN (loc_note);
      while (next_note != next_real)
	{
	  if (! next_note->deleted ()
	      && NOTE_P (next_note)
	      && NOTE_KIND (next_note) == NOTE_INSN_VAR_LOCATION)
	    break;
	  next_note = NEXT_INSN (next_note);
	}

      if (next_note == next_real)
	cached_next_real_insn = NULL;
      else
	{
	  expected_next_loc_note = next_note;
	  cached_next_real_insn = next_real;
	}
    }
  else
    cached_next_real_insn = NULL;

  /* If there are no instructions which would be affected by this note,
     don't do anything.  */
  if (var_loc_p
      && next_real == NULL_RTX
      && !NOTE_DURING_CALL_P (loc_note))
    return;

create_label:

  if (next_real == NULL_RTX)
    next_real = get_last_insn ();

  /* If there were any real insns between note we processed last time
     and this note (or if it is the first note), clear
     last_{,postcall_}label so that they are not reused this time.  */
  if (last_var_location_insn == NULL_RTX
      || last_var_location_insn != next_real
      || last_in_cold_section_p != in_cold_section_p)
    {
      last_label = NULL;
      last_postcall_label = NULL;
    }

  if (var_loc_p)
    {
      const char *label
	= NOTE_DURING_CALL_P (loc_note) ? last_postcall_label : last_label;
      view = cur_line_info_table->view;
      decl = NOTE_VAR_LOCATION_DECL (loc_note);
      newloc = add_var_loc_to_decl (decl, loc_note, label, view);
      if (newloc == NULL)
	return;
    }
  else
    {
      decl = NULL_TREE;
      newloc = NULL;
    }

  /* If there were no real insns between note we processed last time
     and this note, use the label we emitted last time.  Otherwise
     create a new label and emit it.  */
  if (last_label == NULL)
    {
      ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
      ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
      loclabel_num++;
      last_label = ggc_strdup (loclabel);
      /* See if loclabel might be equal to .Ltext0.  If yes,
	 bump first_loclabel_num_not_at_text_label.  */
      if (!have_multiple_function_sections
	  && in_first_function_p
	  && maybe_at_text_label_p)
	{
	  static rtx_insn *last_start;
	  rtx_insn *insn;
	  for (insn = loc_note; insn; insn = previous_insn (insn))
	    if (insn == last_start)
	      break;
	    else if (!NONDEBUG_INSN_P (insn))
	      continue;
	    else
	      {
		rtx body = PATTERN (insn);
		if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
		  continue;
		/* Inline asm could occupy zero bytes.  */
		else if (GET_CODE (body) == ASM_INPUT
			 || asm_noperands (body) >= 0)
		  continue;
#ifdef HAVE_ATTR_length /* ??? We don't include insn-attr.h.  */
		else if (HAVE_ATTR_length && get_attr_min_length (insn) == 0)
		  continue;
#endif
		else
		  {
		    /* Assume insn has non-zero length.  */
		    maybe_at_text_label_p = false;
		    break;
		  }
	      }
	  if (maybe_at_text_label_p)
	    {
	      last_start = loc_note;
	      first_loclabel_num_not_at_text_label = loclabel_num;
	    }
	}
    }

  gcc_assert ((loc_note == NULL_RTX && call_insn != NULL_RTX)
	      || (loc_note != NULL_RTX && call_insn == NULL_RTX));

  if (!var_loc_p)
    {
      struct call_arg_loc_node *ca_loc
	= ggc_cleared_alloc<call_arg_loc_node> ();
      rtx_insn *prev = call_insn;

      ca_loc->call_arg_loc_note
	= find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
      ca_loc->next = NULL;
      ca_loc->label = last_label;
      gcc_assert (prev
		  && (CALL_P (prev)
		      || (NONJUMP_INSN_P (prev)
			  && GET_CODE (PATTERN (prev)) == SEQUENCE
			  && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
      if (!CALL_P (prev))
	prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
      ca_loc->tail_call_p = SIBLING_CALL_P (prev);

      /* Look for a SYMBOL_REF in the "prev" instruction.  */
      rtx x = get_call_rtx_from (prev);
      if (x)
	{
	  /* Try to get the call symbol, if any.  */
	  if (MEM_P (XEXP (x, 0)))
	    x = XEXP (x, 0);
	  /* First, look for a memory access to a symbol_ref.  */
	  if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	      && SYMBOL_REF_DECL (XEXP (x, 0))
	      && TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0))) == FUNCTION_DECL)
	    ca_loc->symbol_ref = XEXP (x, 0);
	  /* Otherwise, look at a compile-time known user-level function
	     declaration.  */
	  else if (MEM_P (x)
		   && MEM_EXPR (x)
		   && TREE_CODE (MEM_EXPR (x)) == FUNCTION_DECL)
	    ca_loc->symbol_ref = XEXP (DECL_RTL (MEM_EXPR (x)), 0);
	}

      ca_loc->block = insn_scope (prev);
      if (call_arg_locations)
	call_arg_loc_last->next = ca_loc;
      else
	call_arg_locations = ca_loc;
      call_arg_loc_last = ca_loc;
    }
  else if (loc_note != NULL_RTX && !NOTE_DURING_CALL_P (loc_note))
    {
      newloc->label = last_label;
      newloc->view = view;
    }
  else
    {
      if (!last_postcall_label)
	{
	  sprintf (loclabel, "%s-1", last_label);
	  last_postcall_label = ggc_strdup (loclabel);
	}
      newloc->label = last_postcall_label;
      /* ??? This view is at last_label, not last_label-1, but we
	 could only assume view at last_label-1 is zero if we could
	 assume calls always have length greater than one.  This is
	 probably true in general, though there might be a rare
	 exception to this rule, e.g. if a call insn is optimized out
	 by target magic.  Then, even the -1 in the label will be
	 wrong, which might invalidate the range.  Anyway, using view,
	 though technically possibly incorrect, will work as far as
	 ranges go: since L-1 is in the middle of the call insn,
	 (L-1).0 and (L-1).V shouldn't make any difference, and having
	 the loclist entry refer to the .loc entry might be useful, so
	 leave it like this.  */
      newloc->view = view;
    }

  if (var_loc_p && flag_debug_asm)
    {
      const char *name, *sep, *patstr;
      if (decl && DECL_NAME (decl))
	name = IDENTIFIER_POINTER (DECL_NAME (decl));
      else
	name = "";
      if (NOTE_VAR_LOCATION_LOC (loc_note))
	{
	  sep = " => ";
	  patstr = str_pattern_slim (NOTE_VAR_LOCATION_LOC (loc_note));
	}
      else
	{
	  sep = " ";
	  patstr = "RESET";
	}
      fprintf (asm_out_file, "\t%s DEBUG %s%s%s\n", ASM_COMMENT_START,
	       name, sep, patstr);
    }

  last_var_location_insn = next_real;
  last_in_cold_section_p = in_cold_section_p;
}

/* Check whether BLOCK, a lexical block, is nested within OUTER, or is
   OUTER itself.  If BOTHWAYS, check not only that BLOCK can reach
   OUTER through BLOCK_SUPERCONTEXT links, but also that there is a
   path from OUTER to BLOCK through BLOCK_SUBBLOCKs and
   BLOCK_FRAGMENT_ORIGIN links.  */
static bool
block_within_block_p (tree block, tree outer, bool bothways)
{
  if (block == outer)
    return true;

  /* Quickly check that OUTER is up BLOCK's supercontext chain.  */
  for (tree context = BLOCK_SUPERCONTEXT (block);
       context != outer;
       context = BLOCK_SUPERCONTEXT (context))
    if (!context || TREE_CODE (context) != BLOCK)
      return false;

  if (!bothways)
    return true;

  /* Now check that each block is actually referenced by its
     parent.  */
  for (tree context = BLOCK_SUPERCONTEXT (block); ;
       context = BLOCK_SUPERCONTEXT (context))
    {
      if (BLOCK_FRAGMENT_ORIGIN (context))
	{
	  gcc_assert (!BLOCK_SUBBLOCKS (context));
	  context = BLOCK_FRAGMENT_ORIGIN (context);
	}
      for (tree sub = BLOCK_SUBBLOCKS (context);
	   sub != block;
	   sub = BLOCK_CHAIN (sub))
	if (!sub)
	  return false;
      if (context == outer)
	return true;
      else
	block = context;
    }
}

/* Called during final while assembling the marker of the entry point
   for an inlined function.  */

static void
dwarf2out_inline_entry (tree block)
{
  gcc_assert (debug_inline_points);

  /* If we can't represent it, don't bother.  */
  if (!(dwarf_version >= 3 || !dwarf_strict))
    return;

  gcc_assert (DECL_P (block_ultimate_origin (block)));

  /* Sanity check the block tree.  This would catch a case in which
     BLOCK got removed from the tree reachable from the outermost
     lexical block, but got retained in markers.  It would still link
     back to its parents, but some ancestor would be missing a link
     down the path to the sub BLOCK.  If the block got removed, its
     BLOCK_NUMBER will not be a usable value.  */
  if (flag_checking)
    gcc_assert (block_within_block_p (block,
				      DECL_INITIAL (current_function_decl),
				      true));

  gcc_assert (inlined_function_outer_scope_p (block));
  gcc_assert (!lookup_block_die (block));

  if (BLOCK_FRAGMENT_ORIGIN (block))
    block = BLOCK_FRAGMENT_ORIGIN (block);
  /* Can the entry point ever not be at the beginning of an
     unfragmented lexical block?  */
  else if (!(BLOCK_FRAGMENT_CHAIN (block)
	     || (cur_line_info_table
		 && !ZERO_VIEW_P (cur_line_info_table->view))))
    return;

  if (!inline_entry_data_table)
    inline_entry_data_table
      = hash_table<inline_entry_data_hasher>::create_ggc (10);


  inline_entry_data **iedp
    = inline_entry_data_table->find_slot_with_hash (block,
						    htab_hash_pointer (block),
						    INSERT);
  if (*iedp)
    /* ??? Ideally, we'd record all entry points for the same inlined
       function (some may have been duplicated by e.g. unrolling), but
       we have no way to represent that ATM.  */
    return;

  inline_entry_data *ied = *iedp = ggc_cleared_alloc<inline_entry_data> ();
  ied->block = block;
  ied->label_pfx = BLOCK_INLINE_ENTRY_LABEL;
  ied->label_num = BLOCK_NUMBER (block);
  if (cur_line_info_table)
    ied->view = cur_line_info_table->view;

  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_INLINE_ENTRY_LABEL,
			  BLOCK_NUMBER (block));
}

/* Called from finalize_size_functions for size functions so that their body
   can be encoded in the debug info to describe the layout of variable-length
   structures.  */

static void
dwarf2out_size_function (tree decl)
{
  set_early_dwarf s;
  function_to_dwarf_procedure (decl);
}

/* Note in one location list that text section has changed.  */

int
var_location_switch_text_section_1 (var_loc_list **slot, void *)
{
  var_loc_list *list = *slot;
  if (list->first)
    list->last_before_switch
      = list->last->next ? list->last->next : list->last;
  return 1;
}

/* Note in all location lists that text section has changed.  */

static void
var_location_switch_text_section (void)
{
  if (decl_loc_table == NULL)
    return;

  decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
}

/* Create a new line number table.  */

static dw_line_info_table *
new_line_info_table (void)
{
  dw_line_info_table *table;

  table = ggc_cleared_alloc<dw_line_info_table> ();
  table->file_num = 1;
  table->line_num = 1;
  table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
  FORCE_RESET_NEXT_VIEW (table->view);
  table->symviews_since_reset = 0;

  return table;
}

/* Lookup the "current" table into which we emit line info, so
   that we don't have to do it for every source line.  */

static void
set_cur_line_info_table (section *sec)
{
  dw_line_info_table *table;

  if (sec == text_section)
    table = text_section_line_info;
  else if (sec == cold_text_section)
    {
      table = cold_text_section_line_info;
      if (!table)
	{
	  cold_text_section_line_info = table = new_line_info_table ();
	  table->end_label = cold_end_label;
	}
    }
  else
    {
      const char *end_label;

      if (crtl->has_bb_partition)
	{
	  if (in_cold_section_p)
	    end_label = crtl->subsections.cold_section_end_label;
	  else
	    end_label = crtl->subsections.hot_section_end_label;
	}
      else
	{
	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
	  ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
				       current_function_funcdef_no);
	  end_label = ggc_strdup (label);
	}

      table = new_line_info_table ();
      table->end_label = end_label;

      vec_safe_push (separate_line_info, table);
    }

  if (output_asm_line_debug_info ())
    table->is_stmt = (cur_line_info_table
		      ? cur_line_info_table->is_stmt
		      : DWARF_LINE_DEFAULT_IS_STMT_START);
  cur_line_info_table = table;
}


/* We need to reset the locations at the beginning of each
   function. We can't do this in the end_function hook, because the
   declarations that use the locations won't have been output when
   that hook is called.  Also compute have_multiple_function_sections here.  */

static void
dwarf2out_begin_function (tree fun)
{
  section *sec = function_section (fun);

  if (sec != text_section)
    have_multiple_function_sections = true;

  if (crtl->has_bb_partition && !cold_text_section)
    {
      gcc_assert (current_function_decl == fun);
      cold_text_section = unlikely_text_section ();
      switch_to_section (cold_text_section);
      ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
      switch_to_section (sec);
    }

  call_site_count = 0;
  tail_call_site_count = 0;

  set_cur_line_info_table (sec);
  FORCE_RESET_NEXT_VIEW (cur_line_info_table->view);
}

/* Helper function of dwarf2out_end_function, called only after emitting
   the very first function into assembly.  Check if some .debug_loc range
   might end with a .LVL* label that could be equal to .Ltext0.
   In that case we must force using absolute addresses in .debug_loc ranges,
   because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
   .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
   list terminator.
   Set have_multiple_function_sections to true in that case and
   terminate htab traversal.  */

int
find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
{
  var_loc_list *entry = *slot;
  struct var_loc_node *node;

  node = entry->first;
  if (node && node->next && node->next->label)
    {
      unsigned int i;
      const char *label = node->next->label;
      char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];

      for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
	{
	  ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
	  if (strcmp (label, loclabel) == 0)
	    {
	      have_multiple_function_sections = true;
	      return 0;
	    }
	}
    }
  return 1;
}

/* Hook called after emitting a function into assembly.
   This does something only for the very first function emitted.  */

static void
dwarf2out_end_function (unsigned int)
{
  if (in_first_function_p
      && !have_multiple_function_sections
      && first_loclabel_num_not_at_text_label
      && decl_loc_table)
    decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
  in_first_function_p = false;
  maybe_at_text_label_p = false;
}

/* Temporary holder for dwarf2out_register_main_translation_unit.  Used to let
   front-ends register a translation unit even before dwarf2out_init is
   called.  */
static tree main_translation_unit = NULL_TREE;

/* Hook called by front-ends after they built their main translation unit.
   Associate comp_unit_die to UNIT.  */

static void
dwarf2out_register_main_translation_unit (tree unit)
{
  gcc_assert (TREE_CODE (unit) == TRANSLATION_UNIT_DECL
	      && main_translation_unit == NULL_TREE);
  main_translation_unit = unit;
  /* If dwarf2out_init has not been called yet, it will perform the association
     itself looking at main_translation_unit.  */
  if (decl_die_table != NULL)
    equate_decl_number_to_die (unit, comp_unit_die ());
}

/* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE.  */

static void
push_dw_line_info_entry (dw_line_info_table *table,
			 enum dw_line_info_opcode opcode, unsigned int val)
{
  dw_line_info_entry e;
  e.opcode = opcode;
  e.val = val;
  vec_safe_push (table->entries, e);
}

/* Output a label to mark the beginning of a source code line entry
   and record information relating to this source line, in
   'line_info_table' for later output of the .debug_line section.  */
/* ??? The discriminator parameter ought to be unsigned.  */

static void
dwarf2out_source_line (unsigned int line, unsigned int column,
		       const char *filename,
                       int discriminator, bool is_stmt)
{
  unsigned int file_num;
  dw_line_info_table *table;
  static var_loc_view lvugid;

  /* 'line_info_table' information gathering is not needed when the debug
     info level is set to the lowest value.  Also, the current DWARF-based
     debug formats do not use this info.  */
  if (debug_info_level < DINFO_LEVEL_TERSE || !dwarf_debuginfo_p ())
    return;

  table = cur_line_info_table;

  if (line == 0)
    {
      if (debug_variable_location_views
	  && output_asm_line_debug_info ()
	  && table && !RESETTING_VIEW_P (table->view))
	{
	  /* If we're using the assembler to compute view numbers, we
	     can't issue a .loc directive for line zero, so we can't
	     get a view number at this point.  We might attempt to
	     compute it from the previous view, or equate it to a
	     subsequent view (though it might not be there!), but
	     since we're omitting the line number entry, we might as
	     well omit the view number as well.  That means pretending
	     it's a view number zero, which might very well turn out
	     to be correct.  ??? Extend the assembler so that the
	     compiler could emit e.g. ".locview .LVU#", to output a
	     view without changing line number information.  We'd then
	     have to count it in symviews_since_reset; when it's omitted,
	     it doesn't count.  */
	  if (!zero_view_p)
	    zero_view_p = BITMAP_GGC_ALLOC ();
	  bitmap_set_bit (zero_view_p, table->view);
	  if (flag_debug_asm)
	    {
	      char label[MAX_ARTIFICIAL_LABEL_BYTES];
	      ASM_GENERATE_INTERNAL_LABEL (label, "LVU", table->view);
	      fprintf (asm_out_file, "\t%s line 0, omitted view ",
		       ASM_COMMENT_START);
	      assemble_name (asm_out_file, label);
	      putc ('\n', asm_out_file);
	    }
	  table->view = ++lvugid;
	}
      return;
    }

  /* The discriminator column was added in dwarf4.  Simplify the below
     by simply removing it if we're not supposed to output it.  */
  if (dwarf_version < 4 && dwarf_strict)
    discriminator = 0;

  if (!debug_column_info)
    column = 0;

  file_num = maybe_emit_file (lookup_filename (filename));

  /* ??? TODO: Elide duplicate line number entries.  Traditionally,
     the debugger has used the second (possibly duplicate) line number
     at the beginning of the function to mark the end of the prologue.
     We could eliminate any other duplicates within the function.  For
     Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
     that second line number entry.  */
  /* Recall that this end-of-prologue indication is *not* the same thing
     as the end_prologue debug hook.  The NOTE_INSN_PROLOGUE_END note,
     to which the hook corresponds, follows the last insn that was 
     emitted by gen_prologue.  What we need is to precede the first insn
     that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
     insn that corresponds to something the user wrote.  These may be
     very different locations once scheduling is enabled.  */

  if (0 && file_num == table->file_num
      && line == table->line_num
      && column == table->column_num
      && discriminator == table->discrim_num
      && is_stmt == table->is_stmt)
    return;

  switch_to_section (current_function_section ());

  /* If requested, emit something human-readable.  */
  if (flag_debug_asm)
    {
      if (debug_column_info)
	fprintf (asm_out_file, "\t%s %s:%d:%d\n", ASM_COMMENT_START,
		 filename, line, column);
      else
	fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
		 filename, line);
    }

  if (output_asm_line_debug_info ())
    {
      /* Emit the .loc directive understood by GNU as.  */
      /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
	 file_num, line, is_stmt, discriminator */
      fputs ("\t.loc ", asm_out_file);
      fprint_ul (asm_out_file, file_num);
      putc (' ', asm_out_file);
      fprint_ul (asm_out_file, line);
      putc (' ', asm_out_file);
      fprint_ul (asm_out_file, column);

      if (is_stmt != table->is_stmt)
	{
#if HAVE_GAS_LOC_STMT
	  fputs (" is_stmt ", asm_out_file);
	  putc (is_stmt ? '1' : '0', asm_out_file);
#endif
	}
      if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
	{
	  gcc_assert (discriminator > 0);
	  fputs (" discriminator ", asm_out_file);
	  fprint_ul (asm_out_file, (unsigned long) discriminator);
	}
      if (debug_variable_location_views)
	{
	  if (!RESETTING_VIEW_P (table->view))
	    {
	      table->symviews_since_reset++;
	      if (table->symviews_since_reset > symview_upper_bound)
		symview_upper_bound = table->symviews_since_reset;
	      /* When we're using the assembler to compute view
		 numbers, we output symbolic labels after "view" in
		 .loc directives, and the assembler will set them for
		 us, so that we can refer to the view numbers in
		 location lists.  The only exceptions are when we know
		 a view will be zero: "-0" is a forced reset, used
		 e.g. in the beginning of functions, whereas "0" tells
		 the assembler to check that there was a PC change
		 since the previous view, in a way that implicitly
		 resets the next view.  */
	      fputs (" view ", asm_out_file);
	      char label[MAX_ARTIFICIAL_LABEL_BYTES];
	      ASM_GENERATE_INTERNAL_LABEL (label, "LVU", table->view);
	      assemble_name (asm_out_file, label);
	      table->view = ++lvugid;
	    }
	  else
	    {
	      table->symviews_since_reset = 0;
	      if (FORCE_RESETTING_VIEW_P (table->view))
		fputs (" view -0", asm_out_file);
	      else
		fputs (" view 0", asm_out_file);
	      /* Mark the present view as a zero view.  Earlier debug
		 binds may have already added its id to loclists to be
		 emitted later, so we can't reuse the id for something
		 else.  However, it's good to know whether a view is
		 known to be zero, because then we may be able to
		 optimize out locviews that are all zeros, so take
		 note of it in zero_view_p.  */
	      if (!zero_view_p)
		zero_view_p = BITMAP_GGC_ALLOC ();
	      bitmap_set_bit (zero_view_p, lvugid);
	      table->view = ++lvugid;
	    }
	}
      putc ('\n', asm_out_file);
    }
  else
    {
      unsigned int label_num = ++line_info_label_num;

      targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);

      if (debug_variable_location_views && !RESETTING_VIEW_P (table->view))
	push_dw_line_info_entry (table, LI_adv_address, label_num);
      else
	push_dw_line_info_entry (table, LI_set_address, label_num);
      if (debug_variable_location_views)
	{
	  bool resetting = FORCE_RESETTING_VIEW_P (table->view);
	  if (resetting)
	    table->view = 0;

	  if (flag_debug_asm)
	    fprintf (asm_out_file, "\t%s view %s%d\n",
		     ASM_COMMENT_START,
		     resetting ? "-" : "",
		     table->view);

	  table->view++;
	}
      if (file_num != table->file_num)
	push_dw_line_info_entry (table, LI_set_file, file_num);
      if (discriminator != table->discrim_num)
	push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
      if (is_stmt != table->is_stmt)
	push_dw_line_info_entry (table, LI_negate_stmt, 0);
      push_dw_line_info_entry (table, LI_set_line, line);
      if (debug_column_info)
	push_dw_line_info_entry (table, LI_set_column, column);
    }

  table->file_num = file_num;
  table->line_num = line;
  table->column_num = column;
  table->discrim_num = discriminator;
  table->is_stmt = is_stmt;
  table->in_use = true;
}

/* Record a source file location for a DECL_IGNORED_P function.  */

static void
dwarf2out_set_ignored_loc (unsigned int line, unsigned int column,
			   const char *filename)
{
  dw_fde_ref fde = cfun->fde;

  fde->ignored_debug = false;
  set_cur_line_info_table (function_section (fde->decl));

  dwarf2out_source_line (line, column, filename, 0, true);
}

/* Record the beginning of a new source file.  */

static void
dwarf2out_start_source_file (unsigned int lineno, const char *filename)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      macinfo_entry e;
      e.code = DW_MACINFO_start_file;
      e.lineno = lineno;
      e.info = ggc_strdup (filename);
      vec_safe_push (macinfo_table, e);
    }
}

/* Record the end of a source file.  */

static void
dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      macinfo_entry e;
      e.code = DW_MACINFO_end_file;
      e.lineno = lineno;
      e.info = NULL;
      vec_safe_push (macinfo_table, e);
    }
}

/* Called from debug_define in toplev.cc.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

static void
dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
		  const char *buffer ATTRIBUTE_UNUSED)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      macinfo_entry e;
      /* Insert a dummy first entry to be able to optimize the whole
	 predefined macro block using DW_MACRO_import.  */
      if (macinfo_table->is_empty () && lineno <= 1)
	{
	  e.code = 0;
	  e.lineno = 0;
	  e.info = NULL;
	  vec_safe_push (macinfo_table, e);
	}
      e.code = DW_MACINFO_define;
      e.lineno = lineno;
      e.info = ggc_strdup (buffer);
      vec_safe_push (macinfo_table, e);
    }
}

/* Called from debug_undef in toplev.cc.  The `buffer' parameter contains
   the tail part of the directive line, i.e. the part which is past the
   initial whitespace, #, whitespace, directive-name, whitespace part.  */

static void
dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
		 const char *buffer ATTRIBUTE_UNUSED)
{
  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    {
      macinfo_entry e;
      /* Insert a dummy first entry to be able to optimize the whole
	 predefined macro block using DW_MACRO_import.  */
      if (macinfo_table->is_empty () && lineno <= 1)
	{
	  e.code = 0;
	  e.lineno = 0;
	  e.info = NULL;
	  vec_safe_push (macinfo_table, e);
	}
      e.code = DW_MACINFO_undef;
      e.lineno = lineno;
      e.info = ggc_strdup (buffer);
      vec_safe_push (macinfo_table, e);
    }
}

/* Helpers to manipulate hash table of CUs.  */

struct macinfo_entry_hasher : nofree_ptr_hash <macinfo_entry>
{
  static inline hashval_t hash (const macinfo_entry *);
  static inline bool equal (const macinfo_entry *, const macinfo_entry *);
};

inline hashval_t
macinfo_entry_hasher::hash (const macinfo_entry *entry)
{
  return htab_hash_string (entry->info);
}

inline bool
macinfo_entry_hasher::equal (const macinfo_entry *entry1,
			     const macinfo_entry *entry2)
{
  return !strcmp (entry1->info, entry2->info);
}

typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;

/* Output a single .debug_macinfo entry.  */

static void
output_macinfo_op (macinfo_entry *ref)
{
  int file_num;
  size_t len;
  struct indirect_string_node *node;
  char label[MAX_ARTIFICIAL_LABEL_BYTES];
  struct dwarf_file_data *fd;

  switch (ref->code)
    {
    case DW_MACINFO_start_file:
      fd = lookup_filename (ref->info);
      file_num = maybe_emit_file (fd);
      dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
      dw2_asm_output_data_uleb128 (ref->lineno,
				   "Included from line number %lu", 
				   (unsigned long) ref->lineno);
      dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
      break;
    case DW_MACINFO_end_file:
      dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
      break;
    case DW_MACINFO_define:
    case DW_MACINFO_undef:
      len = strlen (ref->info) + 1;
      if ((!dwarf_strict || dwarf_version >= 5)
	  && len > (size_t) dwarf_offset_size
	  && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
	  && (debug_str_section->common.flags & SECTION_MERGE) != 0)
	{
	  if (dwarf_split_debug_info && dwarf_version >= 5)
	    ref->code = ref->code == DW_MACINFO_define
			? DW_MACRO_define_strx : DW_MACRO_undef_strx;
	  else
	    ref->code = ref->code == DW_MACINFO_define
			? DW_MACRO_define_strp : DW_MACRO_undef_strp;
	  output_macinfo_op (ref);
	  return;
	}
      dw2_asm_output_data (1, ref->code,
			   ref->code == DW_MACINFO_define
			   ? "Define macro" : "Undefine macro");
      dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu", 
				   (unsigned long) ref->lineno);
      dw2_asm_output_nstring (ref->info, -1, "The macro");
      break;
    case DW_MACRO_define_strp:
      dw2_asm_output_data (1, ref->code, "Define macro strp");
      goto do_DW_MACRO_define_strpx;
    case DW_MACRO_undef_strp:
      dw2_asm_output_data (1, ref->code, "Undefine macro strp");
      goto do_DW_MACRO_define_strpx;
    case DW_MACRO_define_strx:
      dw2_asm_output_data (1, ref->code, "Define macro strx");
      goto do_DW_MACRO_define_strpx;
    case DW_MACRO_undef_strx:
      dw2_asm_output_data (1, ref->code, "Undefine macro strx");
      /* FALLTHRU */
    do_DW_MACRO_define_strpx:
      /* NB: dwarf2out_finish performs:
	   1. save_macinfo_strings
	   2. hash table traverse of index_string
	   3. output_macinfo -> output_macinfo_op
	   4. output_indirect_strings
		-> hash table traverse of output_index_string

	 When output_macinfo_op is called, all index strings have been
	 added to hash table by save_macinfo_strings and we can't pass
	 INSERT to find_slot_with_hash which may expand hash table, even
	 if no insertion is needed, and change hash table traverse order
	 between index_string and output_index_string.  */
      node = find_AT_string (ref->info, NO_INSERT);
      gcc_assert (node
		  && (node->form == DW_FORM_strp
		      || node->form == dwarf_FORM (DW_FORM_strx)));
      dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
				   (unsigned long) ref->lineno);
      if (node->form == DW_FORM_strp)
        dw2_asm_output_offset (dwarf_offset_size, node->label,
                               debug_str_section, "The macro: \"%s\"",
                               ref->info);
      else
        dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
                                     ref->info);
      break;
    case DW_MACRO_import:
      dw2_asm_output_data (1, ref->code, "Import");
      ASM_GENERATE_INTERNAL_LABEL (label,
				   DEBUG_MACRO_SECTION_LABEL,
				   ref->lineno + macinfo_label_base);
      dw2_asm_output_offset (dwarf_offset_size, label, NULL, NULL);
      break;
    default:
      fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
	       ASM_COMMENT_START, (unsigned long) ref->code);
      break;
    }
}

/* Attempt to make a sequence of define/undef macinfo ops shareable with
   other compilation unit .debug_macinfo sections.  IDX is the first
   index of a define/undef, return the number of ops that should be
   emitted in a comdat .debug_macinfo section and emit
   a DW_MACRO_import entry referencing it.
   If the define/undef entry should be emitted normally, return 0.  */

static unsigned
optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
			macinfo_hash_type **macinfo_htab)
{
  macinfo_entry *first, *second, *cur, *inc;
  char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
  unsigned char checksum[16];
  struct md5_ctx ctx;
  char *grp_name, *tail;
  const char *base;
  unsigned int i, count, encoded_filename_len, linebuf_len;
  macinfo_entry **slot;

  first = &(*macinfo_table)[idx];
  second = &(*macinfo_table)[idx + 1];

  /* Optimize only if there are at least two consecutive define/undef ops,
     and either all of them are before first DW_MACINFO_start_file
     with lineno {0,1} (i.e. predefined macro block), or all of them are
     in some included header file.  */
  if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
    return 0;
  if (vec_safe_is_empty (files))
    {
      if (first->lineno > 1 || second->lineno > 1)
	return 0;
    }
  else if (first->lineno == 0)
    return 0;

  /* Find the last define/undef entry that can be grouped together
     with first and at the same time compute md5 checksum of their
     codes, linenumbers and strings.  */
  md5_init_ctx (&ctx);
  for (i = idx; macinfo_table->iterate (i, &cur); i++)
    if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
      break;
    else if (vec_safe_is_empty (files) && cur->lineno > 1)
      break;
    else
      {
	unsigned char code = cur->code;
	md5_process_bytes (&code, 1, &ctx);
	checksum_uleb128 (cur->lineno, &ctx);
	md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
      }
  md5_finish_ctx (&ctx, checksum);
  count = i - idx;

  /* From the containing include filename (if any) pick up just
     usable characters from its basename.  */
  if (vec_safe_is_empty (files))
    base = "";
  else
    base = lbasename (files->last ().info);
  for (encoded_filename_len = 0, i = 0; base[i]; i++)
    if (ISIDNUM (base[i]) || base[i] == '.')
      encoded_filename_len++;
  /* Count . at the end.  */
  if (encoded_filename_len)
    encoded_filename_len++;

  sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
  linebuf_len = strlen (linebuf);

  /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum>  */
  grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
			 + 16 * 2 + 1);
  memcpy (grp_name, dwarf_offset_size == 4 ? "wm4." : "wm8.", 4);
  tail = grp_name + 4;
  if (encoded_filename_len)
    {
      for (i = 0; base[i]; i++)
	if (ISIDNUM (base[i]) || base[i] == '.')
	  *tail++ = base[i];
      *tail++ = '.';
    }
  memcpy (tail, linebuf, linebuf_len);
  tail += linebuf_len;
  *tail++ = '.';
  for (i = 0; i < 16; i++)
    sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);

  /* Construct a macinfo_entry for DW_MACRO_import
     in the empty vector entry before the first define/undef.  */
  inc = &(*macinfo_table)[idx - 1];
  inc->code = DW_MACRO_import;
  inc->lineno = 0;
  inc->info = ggc_strdup (grp_name);
  if (!*macinfo_htab)
    *macinfo_htab = new macinfo_hash_type (10);
  /* Avoid emitting duplicates.  */
  slot = (*macinfo_htab)->find_slot (inc, INSERT);
  if (*slot != NULL)
    {
      inc->code = 0;
      inc->info = NULL;
      /* If such an entry has been used before, just emit
	 a DW_MACRO_import op.  */
      inc = *slot;
      output_macinfo_op (inc);
      /* And clear all macinfo_entry in the range to avoid emitting them
	 in the second pass.  */
      for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
	{
	  cur->code = 0;
	  cur->info = NULL;
	}
    }
  else
    {
      *slot = inc;
      inc->lineno = (*macinfo_htab)->elements ();
      output_macinfo_op (inc);
    }
  return count;
}

/* Save any strings needed by the macinfo table in the debug str
   table.  All strings must be collected into the table by the time
   index_string is called.  */

static void
save_macinfo_strings (void)
{
  unsigned len;
  unsigned i;
  macinfo_entry *ref;

  for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
    {
      switch (ref->code)
        {
          /* Match the logic in output_macinfo_op to decide on
             indirect strings.  */
          case DW_MACINFO_define:
          case DW_MACINFO_undef:
            len = strlen (ref->info) + 1;
	    if ((!dwarf_strict || dwarf_version >= 5)
                && len > (unsigned) dwarf_offset_size
                && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
                && (debug_str_section->common.flags & SECTION_MERGE) != 0)
              set_indirect_string (find_AT_string (ref->info));
            break;
	  case DW_MACINFO_start_file:
	    /* -gsplit-dwarf -g3 will also output filename as indirect
	       string.  */
	    if (!dwarf_split_debug_info)
	      break;
	    /* Fall through. */
	  case DW_MACRO_define_strp:
	  case DW_MACRO_undef_strp:
	  case DW_MACRO_define_strx:
	  case DW_MACRO_undef_strx:
            set_indirect_string (find_AT_string (ref->info));
            break;
          default:
            break;
        }
    }
}

/* Output macinfo section(s).  */

static void
output_macinfo (const char *debug_line_label, bool early_lto_debug)
{
  unsigned i;
  unsigned long length = vec_safe_length (macinfo_table);
  macinfo_entry *ref;
  vec<macinfo_entry, va_gc> *files = NULL;
  macinfo_hash_type *macinfo_htab = NULL;
  char dl_section_ref[MAX_ARTIFICIAL_LABEL_BYTES];

  if (! length)
    return;

  /* output_macinfo* uses these interchangeably.  */
  gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_define
	      && (int) DW_MACINFO_undef == (int) DW_MACRO_undef
	      && (int) DW_MACINFO_start_file == (int) DW_MACRO_start_file
	      && (int) DW_MACINFO_end_file == (int) DW_MACRO_end_file);

  /* AIX Assembler inserts the length, so adjust the reference to match the
     offset expected by debuggers.  */
  strcpy (dl_section_ref, debug_line_label);
  if (XCOFF_DEBUGGING_INFO)
    strcat (dl_section_ref, DWARF_INITIAL_LENGTH_SIZE_STR);

  /* For .debug_macro emit the section header.  */
  if (!dwarf_strict || dwarf_version >= 5)
    {
      dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
			   "DWARF macro version number");
      if (dwarf_offset_size == 8)
	dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
      else
	dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
      dw2_asm_output_offset (dwarf_offset_size, debug_line_label,
                             debug_line_section, NULL);
    }

  /* In the first loop, it emits the primary .debug_macinfo section
     and after each emitted op the macinfo_entry is cleared.
     If a longer range of define/undef ops can be optimized using
     DW_MACRO_import, the DW_MACRO_import op is emitted and kept in
     the vector before the first define/undef in the range and the
     whole range of define/undef ops is not emitted and kept.  */
  for (i = 0; macinfo_table->iterate (i, &ref); i++)
    {
      switch (ref->code)
	{
	case DW_MACINFO_start_file:
	  vec_safe_push (files, *ref);
	  break;
	case DW_MACINFO_end_file:
	  if (!vec_safe_is_empty (files))
	    files->pop ();
	  break;
	case DW_MACINFO_define:
	case DW_MACINFO_undef:
	  if ((!dwarf_strict || dwarf_version >= 5)
	      && HAVE_COMDAT_GROUP
	      && vec_safe_length (files) != 1
	      && i > 0
	      && i + 1 < length
	      && (*macinfo_table)[i - 1].code == 0)
	    {
	      unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
	      if (count)
		{
		  i += count - 1;
		  continue;
		}
	    }
	  break;
	case 0:
	  /* A dummy entry may be inserted at the beginning to be able
	     to optimize the whole block of predefined macros.  */
	  if (i == 0)
	    continue;
	default:
	  break;
	}
      output_macinfo_op (ref);
      ref->info = NULL;
      ref->code = 0;
    }

  if (!macinfo_htab)
    return;

  /* Save the number of transparent includes so we can adjust the
     label number for the fat LTO object DWARF.  */
  unsigned macinfo_label_base_adj = macinfo_htab->elements ();

  delete macinfo_htab;
  macinfo_htab = NULL;

  /* If any DW_MACRO_import were used, on those DW_MACRO_import entries
     terminate the current chain and switch to a new comdat .debug_macinfo
     section and emit the define/undef entries within it.  */
  for (i = 0; macinfo_table->iterate (i, &ref); i++)
    switch (ref->code)
      {
      case 0:
	continue;
      case DW_MACRO_import:
	{
	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
	  tree comdat_key = get_identifier (ref->info);
	  /* Terminate the previous .debug_macinfo section.  */
	  dw2_asm_output_data (1, 0, "End compilation unit");
	  targetm.asm_out.named_section (debug_macinfo_section_name,
					 SECTION_DEBUG
					 | SECTION_LINKONCE
					 | (early_lto_debug
					    ? SECTION_EXCLUDE : 0),
					 comdat_key);
	  ASM_GENERATE_INTERNAL_LABEL (label,
				       DEBUG_MACRO_SECTION_LABEL,
				       ref->lineno + macinfo_label_base);
	  ASM_OUTPUT_LABEL (asm_out_file, label);
	  ref->code = 0;
	  ref->info = NULL;
	  dw2_asm_output_data (2, dwarf_version >= 5 ? 5 : 4,
			       "DWARF macro version number");
	  if (dwarf_offset_size == 8)
	    dw2_asm_output_data (1, 1, "Flags: 64-bit");
	  else
	    dw2_asm_output_data (1, 0, "Flags: 32-bit");
	}
	break;
      case DW_MACINFO_define:
      case DW_MACINFO_undef:
	output_macinfo_op (ref);
	ref->code = 0;
	ref->info = NULL;
	break;
      default:
	gcc_unreachable ();
      }

  macinfo_label_base += macinfo_label_base_adj;
}

/* As init_sections_and_labels may get called multiple times, have a
   generation count for labels.  */
static unsigned init_sections_and_labels_generation;

/* Initialize the various sections and labels for dwarf output and prefix
   them with PREFIX if non-NULL.  Returns the generation (zero based
   number of times function was called).  */

static unsigned
init_sections_and_labels (bool early_lto_debug)
{
  if (early_lto_debug)
    {
      if (!dwarf_split_debug_info)
	{
	  debug_info_section = get_section (DEBUG_LTO_INFO_SECTION,
					    SECTION_DEBUG | SECTION_EXCLUDE,
					    NULL);
	  debug_abbrev_section = get_section (DEBUG_LTO_ABBREV_SECTION,
					      SECTION_DEBUG | SECTION_EXCLUDE,
					      NULL);
	  debug_macinfo_section_name
	    = ((dwarf_strict && dwarf_version < 5)
	       ? DEBUG_LTO_MACINFO_SECTION : DEBUG_LTO_MACRO_SECTION);
	  debug_macinfo_section = get_section (debug_macinfo_section_name,
					       SECTION_DEBUG
					       | SECTION_EXCLUDE, NULL);
	}
      else
	{
	  /* ???  Which of the following do we need early?  */
	  debug_info_section = get_section (DEBUG_LTO_DWO_INFO_SECTION,
					    SECTION_DEBUG | SECTION_EXCLUDE,
					    NULL);
	  debug_abbrev_section = get_section (DEBUG_LTO_DWO_ABBREV_SECTION,
					      SECTION_DEBUG | SECTION_EXCLUDE,
					      NULL);
	  debug_skeleton_info_section = get_section (DEBUG_LTO_INFO_SECTION,
						     SECTION_DEBUG
						     | SECTION_EXCLUDE, NULL);
	  debug_skeleton_abbrev_section
	    = get_section (DEBUG_LTO_ABBREV_SECTION,
			   SECTION_DEBUG | SECTION_EXCLUDE, NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
				       DEBUG_SKELETON_ABBREV_SECTION_LABEL,
				       init_sections_and_labels_generation);

	  /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
	     stay in the main .o, but the skeleton_line goes into the split
	     off dwo.  */
	  debug_skeleton_line_section
	    = get_section (DEBUG_LTO_LINE_SECTION,
			   SECTION_DEBUG | SECTION_EXCLUDE, NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
				       DEBUG_SKELETON_LINE_SECTION_LABEL,
				       init_sections_and_labels_generation);
	  debug_str_offsets_section
	    = get_section (DEBUG_LTO_DWO_STR_OFFSETS_SECTION,
			   SECTION_DEBUG | SECTION_EXCLUDE,
			   NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
				       DEBUG_SKELETON_INFO_SECTION_LABEL,
				       init_sections_and_labels_generation);
	  debug_str_dwo_section = get_section (DEBUG_LTO_STR_DWO_SECTION,
					       DEBUG_STR_DWO_SECTION_FLAGS,
					       NULL);
	  debug_macinfo_section_name
	    = ((dwarf_strict && dwarf_version < 5)
	       ? DEBUG_LTO_DWO_MACINFO_SECTION : DEBUG_LTO_DWO_MACRO_SECTION);
	  debug_macinfo_section = get_section (debug_macinfo_section_name,
					       SECTION_DEBUG | SECTION_EXCLUDE,
					       NULL);
	}
      /* For macro info and the file table we have to refer to a
	 debug_line section.  */
      debug_line_section = get_section (DEBUG_LTO_LINE_SECTION,
					SECTION_DEBUG | SECTION_EXCLUDE, NULL);
      ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
				   DEBUG_LINE_SECTION_LABEL,
				   init_sections_and_labels_generation);

      debug_str_section = get_section (DEBUG_LTO_STR_SECTION,
				       DEBUG_STR_SECTION_FLAGS
				       | SECTION_EXCLUDE, NULL);
      if (!dwarf_split_debug_info)
	debug_line_str_section
	  = get_section (DEBUG_LTO_LINE_STR_SECTION,
			 DEBUG_STR_SECTION_FLAGS | SECTION_EXCLUDE, NULL);
    }
  else
    {
      if (!dwarf_split_debug_info)
	{
	  debug_info_section = get_section (DEBUG_INFO_SECTION,
					    SECTION_DEBUG, NULL);
	  debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
					      SECTION_DEBUG, NULL);
	  debug_loc_section = get_section (dwarf_version >= 5
					   ? DEBUG_LOCLISTS_SECTION
					   : DEBUG_LOC_SECTION,
					   SECTION_DEBUG, NULL);
	  debug_macinfo_section_name
	    = ((dwarf_strict && dwarf_version < 5)
	       ? DEBUG_MACINFO_SECTION : DEBUG_MACRO_SECTION);
	  debug_macinfo_section = get_section (debug_macinfo_section_name,
					       SECTION_DEBUG, NULL);
	}
      else
	{
	  debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
					    SECTION_DEBUG | SECTION_EXCLUDE,
					    NULL);
	  debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
					      SECTION_DEBUG | SECTION_EXCLUDE,
					      NULL);
	  debug_addr_section = get_section (DEBUG_ADDR_SECTION,
					    SECTION_DEBUG, NULL);
	  debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
						     SECTION_DEBUG, NULL);
	  debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
						       SECTION_DEBUG, NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
				       DEBUG_SKELETON_ABBREV_SECTION_LABEL,
				       init_sections_and_labels_generation);

	  /* Somewhat confusing detail: The skeleton_[abbrev|info] sections
	     stay in the main .o, but the skeleton_line goes into the
	     split off dwo.  */
	  debug_skeleton_line_section
	      = get_section (DEBUG_DWO_LINE_SECTION,
			     SECTION_DEBUG | SECTION_EXCLUDE, NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
				       DEBUG_SKELETON_LINE_SECTION_LABEL,
				       init_sections_and_labels_generation);
	  debug_str_offsets_section
	    = get_section (DEBUG_DWO_STR_OFFSETS_SECTION,
			   SECTION_DEBUG | SECTION_EXCLUDE, NULL);
	  ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
				       DEBUG_SKELETON_INFO_SECTION_LABEL,
				       init_sections_and_labels_generation);
	  debug_loc_section = get_section (dwarf_version >= 5
					   ? DEBUG_DWO_LOCLISTS_SECTION
					   : DEBUG_DWO_LOC_SECTION,
					   SECTION_DEBUG | SECTION_EXCLUDE,
					   NULL);
	  debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
					       DEBUG_STR_DWO_SECTION_FLAGS,
					       NULL);
	  debug_macinfo_section_name
	    = ((dwarf_strict && dwarf_version < 5)
	       ? DEBUG_DWO_MACINFO_SECTION : DEBUG_DWO_MACRO_SECTION);
	  debug_macinfo_section = get_section (debug_macinfo_section_name,
					       SECTION_DEBUG | SECTION_EXCLUDE,
					       NULL);
	  if (dwarf_version >= 5)
	    debug_ranges_dwo_section
	      = get_section (DEBUG_DWO_RNGLISTS_SECTION,
			     SECTION_DEBUG | SECTION_EXCLUDE, NULL);
	}
      debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
					   SECTION_DEBUG, NULL);
      debug_line_section = get_section (DEBUG_LINE_SECTION,
					SECTION_DEBUG, NULL);
      debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
					    SECTION_DEBUG, NULL);
      debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
					    SECTION_DEBUG, NULL);
      debug_str_section = get_section (DEBUG_STR_SECTION,
				       DEBUG_STR_SECTION_FLAGS, NULL);
      if ((!dwarf_split_debug_info && !output_asm_line_debug_info ())
	  || asm_outputs_debug_line_str ())
	debug_line_str_section = get_section (DEBUG_LINE_STR_SECTION,
					      DEBUG_STR_SECTION_FLAGS, NULL);

      debug_ranges_section = get_section (dwarf_version >= 5
					  ? DEBUG_RNGLISTS_SECTION
					  : DEBUG_RANGES_SECTION,
					  SECTION_DEBUG, NULL);
      debug_frame_section = get_section (DEBUG_FRAME_SECTION,
					 SECTION_DEBUG, NULL);
    }

  ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
			       DEBUG_ABBREV_SECTION_LABEL,
			       init_sections_and_labels_generation);
  ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
			       DEBUG_INFO_SECTION_LABEL,
			       init_sections_and_labels_generation);
  info_section_emitted = false;
  ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
			       DEBUG_LINE_SECTION_LABEL,
			       init_sections_and_labels_generation);
  /* There are up to 6 unique ranges labels per generation.
     See also output_rnglists.  */
  ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
			       DEBUG_RANGES_SECTION_LABEL,
			       init_sections_and_labels_generation * 6);
  if (dwarf_version >= 5 && dwarf_split_debug_info)
    ASM_GENERATE_INTERNAL_LABEL (ranges_base_label,
				 DEBUG_RANGES_SECTION_LABEL,
				 1 + init_sections_and_labels_generation * 6);
  ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
			       DEBUG_ADDR_SECTION_LABEL,
			       init_sections_and_labels_generation);
  ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
			       (dwarf_strict && dwarf_version < 5)
			       ? DEBUG_MACINFO_SECTION_LABEL
			       : DEBUG_MACRO_SECTION_LABEL,
			       init_sections_and_labels_generation);
  ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL,
			       init_sections_and_labels_generation);

  ++init_sections_and_labels_generation;
  return init_sections_and_labels_generation - 1;
}

/* Set up for Dwarf output at the start of compilation.  */

static void
dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
{
  /* Allocate the file_table.  */
  file_table = hash_table<dwarf_file_hasher>::create_ggc (50);

#ifndef DWARF2_LINENO_DEBUGGING_INFO
  /* Allocate the decl_die_table.  */
  decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);

  /* Allocate the decl_loc_table.  */
  decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);

  /* Allocate the cached_dw_loc_list_table.  */
  cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);

  /* Allocate the initial hunk of the abbrev_die_table.  */
  vec_alloc (abbrev_die_table, 256);
  /* Zero-th entry is allocated, but unused.  */
  abbrev_die_table->quick_push (NULL);

  /* Allocate the dwarf_proc_stack_usage_map.  */
  dwarf_proc_stack_usage_map = new hash_map<dw_die_ref, int>;

  /* Allocate the pubtypes and pubnames vectors.  */
  vec_alloc (pubname_table, 32);
  vec_alloc (pubtype_table, 32);

  vec_alloc (incomplete_types, 64);

  vec_alloc (used_rtx_array, 32);

  if (debug_info_level >= DINFO_LEVEL_VERBOSE)
    vec_alloc (macinfo_table, 64);
#endif

  /* If front-ends already registered a main translation unit but we were not
     ready to perform the association, do this now.  */
  if (main_translation_unit != NULL_TREE)
    equate_decl_number_to_die (main_translation_unit, comp_unit_die ());
}

/* Called before compile () starts outputtting functions, variables
   and toplevel asms into assembly.  */

static void
dwarf2out_assembly_start (void)
{
  if (text_section_line_info)
    return;

#ifndef DWARF2_LINENO_DEBUGGING_INFO
  ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
			       COLD_TEXT_SECTION_LABEL, 0);
  ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);

  switch_to_section (text_section);
  ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
#endif

  /* Make sure the line number table for .text always exists.  */
  text_section_line_info = new_line_info_table ();
  text_section_line_info->end_label = text_end_label;

#ifdef DWARF2_LINENO_DEBUGGING_INFO
  cur_line_info_table = text_section_line_info;
#endif

  if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
      && dwarf2out_do_cfi_asm ()
      && !dwarf2out_do_eh_frame ())
    fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");

#if defined(HAVE_AS_GDWARF_5_DEBUG_FLAG) && defined(HAVE_AS_WORKING_DWARF_N_FLAG)
  if (output_asm_line_debug_info () && dwarf_version >= 5)
    {
      /* When gas outputs DWARF5 .debug_line[_str] then we have to
	 tell it the comp_dir and main file name for the zero entry
	 line table.  */
      const char *comp_dir, *filename0;

      comp_dir = comp_dir_string ();
      if (comp_dir == NULL)
	comp_dir = "";

      filename0 = get_AT_string (comp_unit_die (), DW_AT_name);
      if (filename0 == NULL)
	filename0 = "";

      fprintf (asm_out_file, "\t.file 0 ");
      output_quoted_string (asm_out_file, remap_debug_filename (comp_dir));
      fputc (' ', asm_out_file);
      output_quoted_string (asm_out_file, remap_debug_filename (filename0));
      fputc ('\n', asm_out_file);
    }
  else
#endif
  /* Work around for PR101575: output a dummy .file directive.  */
  if (!last_emitted_file && dwarf_debuginfo_p ()
      && debug_info_level >= DINFO_LEVEL_TERSE)
    {
      const char *filename0 = get_AT_string (comp_unit_die (), DW_AT_name);

      if (filename0 == NULL)
	filename0 = "<dummy>";
      maybe_emit_file (lookup_filename (filename0));
    }
}

/* A helper function for dwarf2out_finish called through
   htab_traverse.  Assign a string its index.  All strings must be
   collected into the table by the time index_string is called,
   because the indexing code relies on htab_traverse to traverse nodes
   in the same order for each run. */

int
index_string (indirect_string_node **h, unsigned int *index)
{
  indirect_string_node *node = *h;

  find_string_form (node);
  if (node->form == dwarf_FORM (DW_FORM_strx) && node->refcount > 0)
    {
      gcc_assert (node->index == NO_INDEX_ASSIGNED);
      node->index = *index;
      *index += 1;
    }
  return 1;
}

/* A helper function for output_indirect_strings called through
   htab_traverse.  Output the offset to a string and update the
   current offset.  */

int
output_index_string_offset (indirect_string_node **h, unsigned int *offset)
{
  indirect_string_node *node = *h;

  if (node->form == dwarf_FORM (DW_FORM_strx) && node->refcount > 0)
    {
      /* Assert that this node has been assigned an index.  */
      gcc_assert (node->index != NO_INDEX_ASSIGNED
                  && node->index != NOT_INDEXED);
      dw2_asm_output_data (dwarf_offset_size, *offset,
                           "indexed string 0x%x: %s", node->index, node->str);
      *offset += strlen (node->str) + 1;
    }
  return 1;
}

/* A helper function for dwarf2out_finish called through
   htab_traverse.  Output the indexed string.  */

int
output_index_string (indirect_string_node **h, unsigned int *cur_idx)
{
  struct indirect_string_node *node = *h;

  if (node->form == dwarf_FORM (DW_FORM_strx) && node->refcount > 0)
    {
      /* Assert that the strings are output in the same order as their
         indexes were assigned.  */
      gcc_assert (*cur_idx == node->index);
      assemble_string (node->str, strlen (node->str) + 1);
      *cur_idx += 1;
    }
  return 1;
}

/* A helper function for output_indirect_strings.  Counts the number
   of index strings offsets.  Must match the logic of the functions
   output_index_string[_offsets] above.  */
int
count_index_strings (indirect_string_node **h, unsigned int *last_idx)
{
  struct indirect_string_node *node = *h;

  if (node->form == dwarf_FORM (DW_FORM_strx) && node->refcount > 0)
    *last_idx += 1;
  return 1;
}

/* A helper function for dwarf2out_finish called through
   htab_traverse.  Emit one queued .debug_str string.  */

int
output_indirect_string (indirect_string_node **h, enum dwarf_form form)
{
  struct indirect_string_node *node = *h;

  node->form = find_string_form (node);
  if (node->form == form && node->refcount > 0)
    {
      ASM_OUTPUT_LABEL (asm_out_file, node->label);
      assemble_string (node->str, strlen (node->str) + 1);
    }

  return 1;
}

/* Output the indexed string table.  */

static void
output_indirect_strings (void)
{
  switch_to_section (debug_str_section);
  if (!dwarf_split_debug_info)
    debug_str_hash->traverse<enum dwarf_form,
			     output_indirect_string> (DW_FORM_strp);
  else
    {
      unsigned int offset = 0;
      unsigned int cur_idx = 0;

      if (skeleton_debug_str_hash)
        skeleton_debug_str_hash->traverse<enum dwarf_form,
					  output_indirect_string> (DW_FORM_strp);

      switch_to_section (debug_str_offsets_section);
      /* For DWARF5 the .debug_str_offsets[.dwo] section needs a unit
	 header.  Note that we don't need to generate a label to the
	 actual index table following the header here, because this is
	 for the split dwarf case only.  In an .dwo file there is only
	 one string offsets table (and one debug info section).  But
	 if we would start using string offset tables for the main (or
	 skeleton) unit, then we have to add a DW_AT_str_offsets_base
	 pointing to the actual index after the header.  Split dwarf
	 units will never have a string offsets base attribute.  When
	 a split unit is moved into a .dwp file the string offsets can
	 be found through the .debug_cu_index section table.  */
      if (dwarf_version >= 5)
	{
	  unsigned int last_idx = 0;
	  unsigned long str_offsets_length;

	  debug_str_hash->traverse_noresize
	    <unsigned int *, count_index_strings> (&last_idx);
	  str_offsets_length = last_idx * dwarf_offset_size + 4;
	  if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	    dw2_asm_output_data (4, 0xffffffff,
				 "Escape value for 64-bit DWARF extension");
	  dw2_asm_output_data (dwarf_offset_size, str_offsets_length,
			       "Length of string offsets unit");
	  dw2_asm_output_data (2, 5, "DWARF string offsets version");
	  dw2_asm_output_data (2, 0, "Header zero padding");
	}
      debug_str_hash->traverse_noresize
	<unsigned int *, output_index_string_offset> (&offset);
      switch_to_section (debug_str_dwo_section);
      debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
	(&cur_idx);
    }
}

/* Callback for htab_traverse to assign an index to an entry in the
   table, and to write that entry to the .debug_addr section.  */

int
output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
{
  addr_table_entry *entry = *slot;

  if (entry->refcount == 0)
    {
      gcc_assert (entry->index == NO_INDEX_ASSIGNED
                  || entry->index == NOT_INDEXED);
      return 1;
    }

  gcc_assert (entry->index == *cur_index);
  (*cur_index)++;

  switch (entry->kind)
    {
      case ate_kind_rtx:
        dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
                                 "0x%x", entry->index);
        break;
      case ate_kind_rtx_dtprel:
        gcc_assert (targetm.asm_out.output_dwarf_dtprel);
        targetm.asm_out.output_dwarf_dtprel (asm_out_file,
                                             DWARF2_ADDR_SIZE,
                                             entry->addr.rtl);
        fputc ('\n', asm_out_file);
        break;
      case ate_kind_label:
        dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
                                 "0x%x", entry->index);
        break;
      default:
        gcc_unreachable ();
    }
  return 1;
}

/* A helper function for dwarf2out_finish.  Counts the number
   of indexed addresses.  Must match the logic of the functions
   output_addr_table_entry above.  */
int
count_index_addrs (addr_table_entry **slot, unsigned int *last_idx)
{
  addr_table_entry *entry = *slot;

  if (entry->refcount > 0)
    *last_idx += 1;
  return 1;
}

/* Produce the .debug_addr section.  */

static void
output_addr_table (void)
{
  unsigned int index = 0;
  if (addr_index_table == NULL || addr_index_table->size () == 0)
    return;

  switch_to_section (debug_addr_section);
  /* GNU DebugFission https://gcc.gnu.org/wiki/DebugFission
     which GCC uses to implement -gsplit-dwarf as DWARF GNU extension
     before DWARF5, didn't have a header for .debug_addr units.
     DWARF5 specifies a small header when address tables are used.  */
  if (dwarf_version >= 5)
    {
      unsigned int last_idx = 0;
      unsigned long addrs_length;

      addr_index_table->traverse_noresize
	<unsigned int *, count_index_addrs> (&last_idx);
      addrs_length = last_idx * DWARF2_ADDR_SIZE + 4;

      if (DWARF_INITIAL_LENGTH_SIZE - dwarf_offset_size == 4)
	dw2_asm_output_data (4, 0xffffffff,
			     "Escape value for 64-bit DWARF extension");
      dw2_asm_output_data (dwarf_offset_size, addrs_length,
			   "Length of Address Unit");
      dw2_asm_output_data (2, 5, "DWARF addr version");
      dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
      dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
    }
  ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);

  addr_index_table
    ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
}

#if ENABLE_ASSERT_CHECKING
/* Verify that all marks are clear.  */

static void
verify_marks_clear (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (! die->die_mark);
  FOR_EACH_CHILD (die, c, verify_marks_clear (c));
}
#endif /* ENABLE_ASSERT_CHECKING */

/* Clear the marks for a die and its children.
   Be cool if the mark isn't set.  */

static void
prune_unmark_dies (dw_die_ref die)
{
  dw_die_ref c;

  if (die->die_mark)
    die->die_mark = 0;
  FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
}

/* Given LOC that is referenced by a DIE we're marking as used, find all
   referenced DWARF procedures it references and mark them as used.  */

static void
prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc)
{
  for (; loc != NULL; loc = loc->dw_loc_next)
    switch (loc->dw_loc_opc)
      {
      case DW_OP_implicit_pointer:
      case DW_OP_convert:
      case DW_OP_reinterpret:
      case DW_OP_GNU_implicit_pointer:
      case DW_OP_GNU_convert:
      case DW_OP_GNU_reinterpret:
	if (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref)
	  prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
	break;
      case DW_OP_GNU_variable_value:
	if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
	  {
	    dw_die_ref ref
	      = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
	    if (ref == NULL)
	      break;
	    loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	    loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
	    loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  }
	/* FALLTHRU */
      case DW_OP_call2:
      case DW_OP_call4:
      case DW_OP_call_ref:
      case DW_OP_const_type:
      case DW_OP_GNU_const_type:
      case DW_OP_GNU_parameter_ref:
	gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref);
	prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
	break;
      case DW_OP_regval_type:
      case DW_OP_deref_type:
      case DW_OP_GNU_regval_type:
      case DW_OP_GNU_deref_type:
	gcc_assert (loc->dw_loc_oprnd2.val_class == dw_val_class_die_ref);
	prune_unused_types_mark (loc->dw_loc_oprnd2.v.val_die_ref.die, 1);
	break;
      case DW_OP_entry_value:
      case DW_OP_GNU_entry_value:
	gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_loc);
	prune_unused_types_walk_loc_descr (loc->dw_loc_oprnd1.v.val_loc);
	break;
      default:
	break;
      }
}

/* Given DIE that we're marking as used, find any other dies
   it references as attributes and mark them as used.  */

static void
prune_unused_types_walk_attribs (dw_die_ref die)
{
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    {
      switch (AT_class (a))
	{
	/* Make sure DWARF procedures referenced by location descriptions will
	   get emitted.  */
	case dw_val_class_loc:
	  prune_unused_types_walk_loc_descr (AT_loc (a));
	  break;
	case dw_val_class_loc_list:
	  for (dw_loc_list_ref list = AT_loc_list (a);
	       list != NULL;
	       list = list->dw_loc_next)
	    prune_unused_types_walk_loc_descr (list->expr);
	  break;

	case dw_val_class_view_list:
	  /* This points to a loc_list in another attribute, so it's
	     already covered.  */
	  break;

	case dw_val_class_die_ref:
	  /* A reference to another DIE.
	     Make sure that it will get emitted.
	     If it was broken out into a comdat group, don't follow it.  */
          if (! AT_ref (a)->comdat_type_p
              || a->dw_attr == DW_AT_specification)
	    prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
	  break;

	case dw_val_class_str:
	  /* Set the string's refcount to 0 so that prune_unused_types_mark
	     accounts properly for it.  */
	  a->dw_attr_val.v.val_str->refcount = 0;
	  break;

	default:
	  break;
	}
    }
}

/* Mark the generic parameters and arguments children DIEs of DIE.  */

static void
prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
{
  dw_die_ref c;

  if (die == NULL || die->die_child == NULL)
    return;
  c = die->die_child;
  do
    {
      if (is_template_parameter (c))
	prune_unused_types_mark (c, 1);
      c = c->die_sib;
    } while (c && c != die->die_child);
}

/* Mark DIE as being used.  If DOKIDS is true, then walk down
   to DIE's children.  */

static void
prune_unused_types_mark (dw_die_ref die, int dokids)
{
  dw_die_ref c;

  if (die->die_mark == 0)
    {
      /* We haven't done this node yet.  Mark it as used.  */
      die->die_mark = 1;
      /* If this is the DIE of a generic type instantiation,
	 mark the children DIEs that describe its generic parms and
	 args.  */
      prune_unused_types_mark_generic_parms_dies (die);

      /* We also have to mark its parents as used.
	 (But we don't want to mark our parent's kids due to this,
	 unless it is a class.)  */
      if (die->die_parent)
	prune_unused_types_mark (die->die_parent,
				 class_scope_p (die->die_parent));

      /* Mark any referenced nodes.  */
      prune_unused_types_walk_attribs (die);

      /* If this node is a specification,
	 also mark the definition, if it exists.  */
      if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
	prune_unused_types_mark (die->die_definition, 1);
    }

  if (dokids && die->die_mark != 2)
    {
      /* We need to walk the children, but haven't done so yet.
	 Remember that we've walked the kids.  */
      die->die_mark = 2;

      /* If this is an array type, we need to make sure our
	 kids get marked, even if they're types.  If we're
	 breaking out types into comdat sections, do this
	 for all type definitions.  */
      if (die->die_tag == DW_TAG_array_type
          || (use_debug_types
              && is_type_die (die) && ! is_declaration_die (die)))
	FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
      else
	FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
    }
}

/* For local classes, look if any static member functions were emitted
   and if so, mark them.  */

static void
prune_unused_types_walk_local_classes (dw_die_ref die)
{
  dw_die_ref c;

  if (die->die_mark == 2)
    return;

  switch (die->die_tag)
    {
    case DW_TAG_structure_type:
    case DW_TAG_union_type:
    case DW_TAG_class_type:
    case DW_TAG_interface_type:
      break;

    case DW_TAG_subprogram:
      if (!get_AT_flag (die, DW_AT_declaration)
	  || die->die_definition != NULL)
	prune_unused_types_mark (die, 1);
      return;

    default:
      return;
    }

  /* Mark children.  */
  FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
}

/* Walk the tree DIE and mark types that we actually use.  */

static void
prune_unused_types_walk (dw_die_ref die)
{
  dw_die_ref c;

  /* Don't do anything if this node is already marked and
     children have been marked as well.  */
  if (die->die_mark == 2)
    return;

  switch (die->die_tag)
    {
    case DW_TAG_structure_type:
    case DW_TAG_union_type:
    case DW_TAG_class_type:
    case DW_TAG_interface_type:
      if (die->die_perennial_p)
	break;

      for (c = die->die_parent; c; c = c->die_parent)
	if (c->die_tag == DW_TAG_subprogram)
	  break;

      /* Finding used static member functions inside of classes
	 is needed just for local classes, because for other classes
	 static member function DIEs with DW_AT_specification
	 are emitted outside of the DW_TAG_*_type.  If we ever change
	 it, we'd need to call this even for non-local classes.  */
      if (c)
	prune_unused_types_walk_local_classes (die);

      /* It's a type node --- don't mark it.  */
      return;

    case DW_TAG_const_type:
    case DW_TAG_packed_type:
    case DW_TAG_pointer_type:
    case DW_TAG_reference_type:
    case DW_TAG_rvalue_reference_type:
    case DW_TAG_volatile_type:
    case DW_TAG_typedef:
    case DW_TAG_array_type:
    case DW_TAG_friend:
    case DW_TAG_enumeration_type:
    case DW_TAG_subroutine_type:
    case DW_TAG_string_type:
    case DW_TAG_set_type:
    case DW_TAG_subrange_type:
    case DW_TAG_ptr_to_member_type:
    case DW_TAG_file_type:
      /* Type nodes are useful only when other DIEs reference them --- don't
	 mark them.  */
      /* FALLTHROUGH */

    case DW_TAG_dwarf_procedure:
      /* Likewise for DWARF procedures.  */

      if (die->die_perennial_p)
	break;

      return;

    case DW_TAG_variable:
      if (flag_debug_only_used_symbols)
	{
	  if (die->die_perennial_p)
	    break;

	  /* For static data members, the declaration in the class is supposed
	     to have DW_TAG_member tag in DWARF{3,4} but DW_TAG_variable in
	     DWARF5.  DW_TAG_member will be marked, so mark even such
	     DW_TAG_variables in DWARF5, as long as it has DW_AT_const_value
	     attribute.  */
	  if (dwarf_version >= 5
	      && class_scope_p (die->die_parent)
	      && get_AT (die, DW_AT_const_value))
	    break;

	  /* premark_used_variables marks external variables --- don't mark
	     them here.  But function-local externals are always considered
	     used.  */
	  if (get_AT (die, DW_AT_external))
	    {
	      for (c = die->die_parent; c; c = c->die_parent)
		if (c->die_tag == DW_TAG_subprogram)
		  break;
	      if (!c)
		return;
	    }
	}
      /* FALLTHROUGH */

    default:
      /* Mark everything else.  */
      break;
  }

  if (die->die_mark == 0)
    {
      die->die_mark = 1;

      /* Now, mark any dies referenced from here.  */
      prune_unused_types_walk_attribs (die);
    }

  die->die_mark = 2;

  /* Mark children.  */
  FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
}

/* Increment the string counts on strings referred to from DIE's
   attributes.  */

static void
prune_unused_types_update_strings (dw_die_ref die)
{
  dw_attr_node *a;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    if (AT_class (a) == dw_val_class_str)
      {
	struct indirect_string_node *s = a->dw_attr_val.v.val_str;
	s->refcount++;
	/* Avoid unnecessarily putting strings that are used less than
	   twice in the hash table.  */
	if (s->form != DW_FORM_line_strp
	    && (s->refcount
		== ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2)))
	  {
	    indirect_string_node **slot
	      = debug_str_hash->find_slot_with_hash (s->str,
						     htab_hash_string (s->str),
						     INSERT);
	    gcc_assert (*slot == NULL);
	    *slot = s;
	  }
      }
}

/* Mark DIE and its children as removed.  */

static void
mark_removed (dw_die_ref die)
{
  dw_die_ref c;
  die->removed = true;
  FOR_EACH_CHILD (die, c, mark_removed (c));
}

/* Remove from the tree DIE any dies that aren't marked.  */

static void
prune_unused_types_prune (dw_die_ref die)
{
  dw_die_ref c;

  gcc_assert (die->die_mark);
  prune_unused_types_update_strings (die);

  if (! die->die_child)
    return;

  c = die->die_child;
  do {
    dw_die_ref prev = c, next;
    for (c = c->die_sib; ! c->die_mark; c = next)
      if (c == die->die_child)
	{
	  /* No marked children between 'prev' and the end of the list.  */
	  if (prev == c)
	    /* No marked children at all.  */
	    die->die_child = NULL;
	  else
	    {
	      prev->die_sib = c->die_sib;
	      die->die_child = prev;
	    }
	  c->die_sib = NULL;
	  mark_removed (c);
	  return;
	}
      else
	{
	  next = c->die_sib;
	  c->die_sib = NULL;
	  mark_removed (c);
	}

    if (c != prev->die_sib)
      prev->die_sib = c;
    prune_unused_types_prune (c);
  } while (c != die->die_child);
}

/* Remove dies representing declarations that we never use.  */

static void
prune_unused_types (void)
{
  unsigned int i;
  limbo_die_node *node;
  comdat_type_node *ctnode;
  pubname_entry *pub;
  dw_die_ref base_type;

#if ENABLE_ASSERT_CHECKING
  /* All the marks should already be clear.  */
  verify_marks_clear (comp_unit_die ());
  for (node = limbo_die_list; node; node = node->next)
    verify_marks_clear (node->die);
  for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
    verify_marks_clear (ctnode->root_die);
#endif /* ENABLE_ASSERT_CHECKING */

  /* Mark types that are used in global variables.  */
  premark_types_used_by_global_vars ();

  /* Mark variables used in the symtab.  */
  if (flag_debug_only_used_symbols)
    premark_used_variables ();

  /* Set the mark on nodes that are actually used.  */
  prune_unused_types_walk (comp_unit_die ());
  for (node = limbo_die_list; node; node = node->next)
    prune_unused_types_walk (node->die);
  for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
    {
      prune_unused_types_walk (ctnode->root_die);
      prune_unused_types_mark (ctnode->type_die, 1);
    }

  /* Also set the mark on nodes referenced from the pubname_table.  Enumerators
     are unusual in that they are pubnames that are the children of pubtypes.
     They should only be marked via their parent DW_TAG_enumeration_type die,
     not as roots in themselves.  */
  FOR_EACH_VEC_ELT (*pubname_table, i, pub)
    if (pub->die->die_tag != DW_TAG_enumerator)
      prune_unused_types_mark (pub->die, 1);
  for (i = 0; base_types.iterate (i, &base_type); i++)
    prune_unused_types_mark (base_type, 1);

  /* Also set the mark on nodes that could be referenced by
     DW_TAG_call_site DW_AT_call_origin (i.e. direct call callees) or
     by DW_TAG_inlined_subroutine origins.  */
  cgraph_node *cnode;
  FOR_EACH_FUNCTION (cnode)
    if (cnode->referred_to_p (false))
      {
	dw_die_ref die = lookup_decl_die (cnode->decl);
	if (die == NULL || die->die_mark)
	  continue;
	for (cgraph_edge *e = cnode->callers; e; e = e->next_caller)
	  if (e->caller != cnode)
	    {
	      prune_unused_types_mark (die, 1);
	      break;
	    }
      }

  if (debug_str_hash)
    debug_str_hash->empty ();
  if (skeleton_debug_str_hash)
    skeleton_debug_str_hash->empty ();
  prune_unused_types_prune (comp_unit_die ());
  for (limbo_die_node **pnode = &limbo_die_list; *pnode; )
    {
      node = *pnode;
      if (!node->die->die_mark)
	*pnode = node->next;
      else
	{
	  prune_unused_types_prune (node->die);
	  pnode = &node->next;
	}
    }
  for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
    prune_unused_types_prune (ctnode->root_die);

  /* Leave the marks clear.  */
  prune_unmark_dies (comp_unit_die ());
  for (node = limbo_die_list; node; node = node->next)
    prune_unmark_dies (node->die);
  for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
    prune_unmark_dies (ctnode->root_die);
}

/* Helpers to manipulate hash table of comdat type units.  */

struct comdat_type_hasher : nofree_ptr_hash <comdat_type_node>
{
  static inline hashval_t hash (const comdat_type_node *);
  static inline bool equal (const comdat_type_node *, const comdat_type_node *);
};

inline hashval_t
comdat_type_hasher::hash (const comdat_type_node *type_node)
{
  hashval_t h;
  memcpy (&h, type_node->signature, sizeof (h));
  return h;
}

inline bool
comdat_type_hasher::equal (const comdat_type_node *type_node_1,
			   const comdat_type_node *type_node_2)
{
  return (! memcmp (type_node_1->signature, type_node_2->signature,
                    DWARF_TYPE_SIGNATURE_SIZE));
}

/* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
   to the location it would have been added, should we know its
   DECL_ASSEMBLER_NAME when we added other attributes.  This will
   probably improve compactness of debug info, removing equivalent
   abbrevs, and hide any differences caused by deferring the
   computation of the assembler name, triggered by e.g. PCH.  */

static inline void
move_linkage_attr (dw_die_ref die)
{
  unsigned ix = vec_safe_length (die->die_attr);
  dw_attr_node linkage = (*die->die_attr)[ix - 1];

  gcc_assert (linkage.dw_attr == DW_AT_linkage_name
	      || linkage.dw_attr == DW_AT_MIPS_linkage_name);

  while (--ix > 0)
    {
      dw_attr_node *prev = &(*die->die_attr)[ix - 1];

      if (prev->dw_attr == DW_AT_decl_line
	  || prev->dw_attr == DW_AT_decl_column
	  || prev->dw_attr == DW_AT_name)
	break;
    }

  if (ix != vec_safe_length (die->die_attr) - 1)
    {
      die->die_attr->pop ();
      die->die_attr->quick_insert (ix, linkage);
    }
}

/* Helper function for resolve_addr, mark DW_TAG_base_type nodes
   referenced from typed stack ops and count how often they are used.  */

static void
mark_base_types (dw_loc_descr_ref loc)
{
  dw_die_ref base_type = NULL;

  for (; loc; loc = loc->dw_loc_next)
    {
      switch (loc->dw_loc_opc)
	{
	case DW_OP_regval_type:
	case DW_OP_deref_type:
	case DW_OP_GNU_regval_type:
	case DW_OP_GNU_deref_type:
	  base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
	  break;
	case DW_OP_convert:
	case DW_OP_reinterpret:
	case DW_OP_GNU_convert:
	case DW_OP_GNU_reinterpret:
	  if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
	    continue;
	  /* FALLTHRU */
	case DW_OP_const_type:
	case DW_OP_GNU_const_type:
	  base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
	  break;
	case DW_OP_entry_value:
	case DW_OP_GNU_entry_value:
	  mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
	  continue;
	default:
	  continue;
	}
      gcc_assert (base_type->die_parent == comp_unit_die ());
      if (base_type->die_mark)
	base_type->die_mark++;
      else
	{
	  base_types.safe_push (base_type);
	  base_type->die_mark = 1;
	}
    }
}

/* Stripped-down variant of resolve_addr, mark DW_TAG_base_type nodes
   referenced from typed stack ops and count how often they are used.  */

static void
mark_base_types (dw_die_ref die)
{
  dw_die_ref c;
  dw_attr_node *a;
  dw_loc_list_ref *curr;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
    switch (AT_class (a))
      {
      case dw_val_class_loc_list:
	curr = AT_loc_list_ptr (a);
	while (*curr)
	  {
	    mark_base_types ((*curr)->expr);
	    curr = &(*curr)->dw_loc_next;
	  }
	break;

      case dw_val_class_loc:
	mark_base_types (AT_loc (a));
	break;

      default:
	break;
      }

  FOR_EACH_CHILD (die, c, mark_base_types (c));
}

/* Comparison function for sorting marked base types.  */

static int
base_type_cmp (const void *x, const void *y)
{
  dw_die_ref dx = *(const dw_die_ref *) x;
  dw_die_ref dy = *(const dw_die_ref *) y;
  unsigned int byte_size1, byte_size2;
  unsigned int encoding1, encoding2;
  unsigned int align1, align2;
  if (dx->die_mark > dy->die_mark)
    return -1;
  if (dx->die_mark < dy->die_mark)
    return 1;
  byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
  byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
  if (byte_size1 < byte_size2)
    return 1;
  if (byte_size1 > byte_size2)
    return -1;
  encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
  encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
  if (encoding1 < encoding2)
    return 1;
  if (encoding1 > encoding2)
    return -1;
  align1 = get_AT_unsigned (dx, DW_AT_alignment);
  align2 = get_AT_unsigned (dy, DW_AT_alignment);
  if (align1 < align2)
    return 1;
  if (align1 > align2)
    return -1;
  return 0;
}

/* Move base types marked by mark_base_types as early as possible
   in the CU, sorted by decreasing usage count both to make the
   uleb128 references as small as possible and to make sure they
   will have die_offset already computed by calc_die_sizes when
   sizes of typed stack loc ops is computed.  */

static void
move_marked_base_types (void)
{
  unsigned int i;
  dw_die_ref base_type, die, c;

  if (base_types.is_empty ())
    return;

  /* Sort by decreasing usage count, they will be added again in that
     order later on.  */
  base_types.qsort (base_type_cmp);
  die = comp_unit_die ();
  c = die->die_child;
  do
    {
      dw_die_ref prev = c;
      c = c->die_sib;
      while (c->die_mark)
	{
	  remove_child_with_prev (c, prev);
	  /* As base types got marked, there must be at least
	     one node other than DW_TAG_base_type.  */
	  gcc_assert (die->die_child != NULL);
	  c = prev->die_sib;
	}
    }
  while (c != die->die_child);
  gcc_assert (die->die_child);
  c = die->die_child;
  for (i = 0; base_types.iterate (i, &base_type); i++)
    {
      base_type->die_mark = 0;
      base_type->die_sib = c->die_sib;
      c->die_sib = base_type;
      c = base_type;
    }
}

/* Helper function for resolve_addr, attempt to resolve
   one CONST_STRING, return true if successful.  Similarly verify that
   SYMBOL_REFs refer to variables emitted in the current CU.  */

static bool
resolve_one_addr (rtx *addr)
{
  rtx rtl = *addr;

  if (GET_CODE (rtl) == CONST_STRING)
    {
      size_t len = strlen (XSTR (rtl, 0)) + 1;
      tree t = build_string (len, XSTR (rtl, 0));
      tree tlen = size_int (len - 1);
      TREE_TYPE (t)
	= build_array_type (char_type_node, build_index_type (tlen));
      rtl = lookup_constant_def (t);
      if (!rtl || !MEM_P (rtl))
	return false;
      rtl = XEXP (rtl, 0);
      if (GET_CODE (rtl) == SYMBOL_REF
	  && SYMBOL_REF_DECL (rtl)
	  && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
	return false;
      vec_safe_push (used_rtx_array, rtl);
      *addr = rtl;
      return true;
    }

  if (GET_CODE (rtl) == SYMBOL_REF
      && SYMBOL_REF_DECL (rtl))
    {
      if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
	{
	  if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
	    return false;
	}
      else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
	return false;
    }

  if (GET_CODE (rtl) == CONST)
    {
      subrtx_ptr_iterator::array_type array;
      FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
	if (!resolve_one_addr (*iter))
	  return false;
    }

  return true;
}

/* For STRING_CST, return SYMBOL_REF of its constant pool entry,
   if possible, and create DW_TAG_dwarf_procedure that can be referenced
   from DW_OP_implicit_pointer if the string hasn't been seen yet.  */

static rtx
string_cst_pool_decl (tree t)
{
  rtx rtl = output_constant_def (t, 1);
  unsigned char *array;
  dw_loc_descr_ref l;
  tree decl;
  size_t len;
  dw_die_ref ref;

  if (!rtl || !MEM_P (rtl))
    return NULL_RTX;
  rtl = XEXP (rtl, 0);
  if (GET_CODE (rtl) != SYMBOL_REF
      || SYMBOL_REF_DECL (rtl) == NULL_TREE)
    return NULL_RTX;

  decl = SYMBOL_REF_DECL (rtl);
  if (!lookup_decl_die (decl))
    {
      len = TREE_STRING_LENGTH (t);
      vec_safe_push (used_rtx_array, rtl);
      ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
      array = ggc_vec_alloc<unsigned char> (len);
      memcpy (array, TREE_STRING_POINTER (t), len);
      l = new_loc_descr (DW_OP_implicit_value, len, 0);
      l->dw_loc_oprnd2.val_class = dw_val_class_vec;
      l->dw_loc_oprnd2.v.val_vec.length = len;
      l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
      l->dw_loc_oprnd2.v.val_vec.array = array;
      add_AT_loc (ref, DW_AT_location, l);
      equate_decl_number_to_die (decl, ref);
    }
  return rtl;
}

/* Helper function of resolve_addr_in_expr.  LOC is
   a DW_OP_addr followed by DW_OP_stack_value, either at the start
   of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
   resolved.  Replace it (both DW_OP_addr and DW_OP_stack_value)
   with DW_OP_implicit_pointer if possible
   and return true, if unsuccessful, return false.  */

static bool
optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
{
  rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
  HOST_WIDE_INT offset = 0;
  dw_die_ref ref = NULL;
  tree decl;

  if (GET_CODE (rtl) == CONST
      && GET_CODE (XEXP (rtl, 0)) == PLUS
      && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
    {
      offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
      rtl = XEXP (XEXP (rtl, 0), 0);
    }
  if (GET_CODE (rtl) == CONST_STRING)
    {
      size_t len = strlen (XSTR (rtl, 0)) + 1;
      tree t = build_string (len, XSTR (rtl, 0));
      tree tlen = size_int (len - 1);

      TREE_TYPE (t)
	= build_array_type (char_type_node, build_index_type (tlen));
      rtl = string_cst_pool_decl (t);
      if (!rtl)
	return false;
    }
  if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
    {
      decl = SYMBOL_REF_DECL (rtl);
      if (VAR_P (decl) && !DECL_EXTERNAL (decl))
	{
	  ref = lookup_decl_die (decl);
	  if (ref && (get_AT (ref, DW_AT_location)
		      || get_AT (ref, DW_AT_const_value)))
	    {
	      loc->dw_loc_opc = dwarf_OP (DW_OP_implicit_pointer);
	      loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	      loc->dw_loc_oprnd1.val_entry = NULL;
	      loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
	      loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
	      loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
	      loc->dw_loc_oprnd2.v.val_int = offset;
	      return true;
	    }
	}
    }
  return false;
}

/* Helper function for resolve_addr, handle one location
   expression, return false if at least one CONST_STRING or SYMBOL_REF in
   the location list couldn't be resolved.  */

static bool
resolve_addr_in_expr (dw_attr_node *a, dw_loc_descr_ref loc)
{
  dw_loc_descr_ref keep = NULL;
  for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
    switch (loc->dw_loc_opc)
      {
      case DW_OP_addr:
	if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
	  {
	    if ((prev == NULL
		 || prev->dw_loc_opc == DW_OP_piece
		 || prev->dw_loc_opc == DW_OP_bit_piece)
		&& loc->dw_loc_next
		&& loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
		&& (!dwarf_strict || dwarf_version >= 5)
		&& optimize_one_addr_into_implicit_ptr (loc))
	      break;
	    return false;
	  }
	break;
      case DW_OP_GNU_addr_index:
      case DW_OP_addrx:
      case DW_OP_GNU_const_index:
      case DW_OP_constx:
	if ((loc->dw_loc_opc == DW_OP_GNU_addr_index
	     || loc->dw_loc_opc == DW_OP_addrx)
	    || ((loc->dw_loc_opc == DW_OP_GNU_const_index
		 || loc->dw_loc_opc == DW_OP_constx)
		&& loc->dtprel))
          {
            rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
            if (!resolve_one_addr (&rtl))
              return false;
            remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
	    loc->dw_loc_oprnd1.val_entry
	      = add_addr_table_entry (rtl, ate_kind_rtx);
          }
	break;
      case DW_OP_const4u:
      case DW_OP_const8u:
	if (loc->dtprel
	    && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
	  return false;
	break;
      case DW_OP_plus_uconst:
	if (size_of_loc_descr (loc)
	    > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
	      + 1
	    && loc->dw_loc_oprnd1.v.val_unsigned > 0)
	  {
	    dw_loc_descr_ref repl
	      = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
	    add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
	    add_loc_descr (&repl, loc->dw_loc_next);
	    *loc = *repl;
	  }
	break;
      case DW_OP_implicit_value:
	if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
	    && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
	  return false;
	break;
      case DW_OP_implicit_pointer:
      case DW_OP_GNU_implicit_pointer:
      case DW_OP_GNU_parameter_ref:
      case DW_OP_GNU_variable_value:
	if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
	  {
	    dw_die_ref ref
	      = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
	    if (ref == NULL)
	      return false;
	    loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
	    loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
	    loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
	  }
	if (loc->dw_loc_opc == DW_OP_GNU_variable_value)
	  {
	    if (prev == NULL
		&& loc->dw_loc_next == NULL
		&& AT_class (a) == dw_val_class_loc)
	      switch (a->dw_attr)
		{
		  /* Following attributes allow both exprloc and reference,
		     so if the whole expression is DW_OP_GNU_variable_value
		     alone we could transform it into reference.  */
		case DW_AT_byte_size:
		case DW_AT_bit_size:
		case DW_AT_lower_bound:
		case DW_AT_upper_bound:
		case DW_AT_bit_stride:
		case DW_AT_count:
		case DW_AT_allocated:
		case DW_AT_associated:
		case DW_AT_byte_stride:
		  a->dw_attr_val.val_class = dw_val_class_die_ref;
		  a->dw_attr_val.val_entry = NULL;
		  a->dw_attr_val.v.val_die_ref.die
		    = loc->dw_loc_oprnd1.v.val_die_ref.die;
		  a->dw_attr_val.v.val_die_ref.external = 0;
		  return true;
		default:
		  break;
		}
	    if (dwarf_strict)
	      return false;
	  }
	break;
      case DW_OP_const_type:
      case DW_OP_regval_type:
      case DW_OP_deref_type:
      case DW_OP_convert:
      case DW_OP_reinterpret:
      case DW_OP_GNU_const_type:
      case DW_OP_GNU_regval_type:
      case DW_OP_GNU_deref_type:
      case DW_OP_GNU_convert:
      case DW_OP_GNU_reinterpret:
	while (loc->dw_loc_next
	       && (loc->dw_loc_next->dw_loc_opc == DW_OP_convert
		   || loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert))
	  {
	    dw_die_ref base1, base2;
	    unsigned enc1, enc2, size1, size2;
	    if (loc->dw_loc_opc == DW_OP_regval_type
		|| loc->dw_loc_opc == DW_OP_deref_type
		|| loc->dw_loc_opc == DW_OP_GNU_regval_type
		|| loc->dw_loc_opc == DW_OP_GNU_deref_type)
	      base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
	    else if (loc->dw_loc_oprnd1.val_class
		     == dw_val_class_unsigned_const)
	      break;
	    else
	      base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
	    if (loc->dw_loc_next->dw_loc_oprnd1.val_class
		== dw_val_class_unsigned_const)
	      break;
	    base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
	    gcc_assert (base1->die_tag == DW_TAG_base_type
			&& base2->die_tag == DW_TAG_base_type);
	    enc1 = get_AT_unsigned (base1, DW_AT_encoding);
	    enc2 = get_AT_unsigned (base2, DW_AT_encoding);
	    size1 = get_AT_unsigned (base1, DW_AT_byte_size);
	    size2 = get_AT_unsigned (base2, DW_AT_byte_size);
	    if (size1 == size2
		&& (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
		     && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
		     && loc != keep)
		    || enc1 == enc2))
	      {
		/* Optimize away next DW_OP_convert after
		   adjusting LOC's base type die reference.  */
		if (loc->dw_loc_opc == DW_OP_regval_type
		    || loc->dw_loc_opc == DW_OP_deref_type
		    || loc->dw_loc_opc == DW_OP_GNU_regval_type
		    || loc->dw_loc_opc == DW_OP_GNU_deref_type)
		  loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
		else
		  loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
		loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
		continue;
	      }
	    /* Don't change integer DW_OP_convert after e.g. floating
	       point typed stack entry.  */
	    else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
	      keep = loc->dw_loc_next;
	    break;
	  }
	break;
      default:
	break;
      }
  return true;
}

/* Helper function of resolve_addr.  DIE had DW_AT_location of
   DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
   and DW_OP_addr couldn't be resolved.  resolve_addr has already
   removed the DW_AT_location attribute.  This function attempts to
   add a new DW_AT_location attribute with DW_OP_implicit_pointer
   to it or DW_AT_const_value attribute, if possible.  */

static void
optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
{
  if (!VAR_P (decl)
      || lookup_decl_die (decl) != die
      || DECL_EXTERNAL (decl)
      || !TREE_STATIC (decl)
      || DECL_INITIAL (decl) == NULL_TREE
      || DECL_P (DECL_INITIAL (decl))
      || get_AT (die, DW_AT_const_value))
    return;

  tree init = DECL_INITIAL (decl);
  HOST_WIDE_INT offset = 0;
  /* For variables that have been optimized away and thus
     don't have a memory location, see if we can emit
     DW_AT_const_value instead.  */
  if (tree_add_const_value_attribute (die, init))
    return;
  if (dwarf_strict && dwarf_version < 5)
    return;
  /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
     and ADDR_EXPR refers to a decl that has DW_AT_location or
     DW_AT_const_value (but isn't addressable, otherwise
     resolving the original DW_OP_addr wouldn't fail), see if
     we can add DW_OP_implicit_pointer.  */
  STRIP_NOPS (init);
  if (TREE_CODE (init) == POINTER_PLUS_EXPR
      && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
    {
      offset = tree_to_shwi (TREE_OPERAND (init, 1));
      init = TREE_OPERAND (init, 0);
      STRIP_NOPS (init);
    }
  if (TREE_CODE (init) != ADDR_EXPR)
    return;
  if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
       && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
      || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
	  && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
	  && TREE_OPERAND (init, 0) != decl))
    {
      dw_die_ref ref;
      dw_loc_descr_ref l;

      if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
	{
	  rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
	  if (!rtl)
	    return;
	  decl = SYMBOL_REF_DECL (rtl);
	}
      else
	decl = TREE_OPERAND (init, 0);
      ref = lookup_decl_die (decl);
      if (ref == NULL
	  || (!get_AT (ref, DW_AT_location)
	      && !get_AT (ref, DW_AT_const_value)))
	return;
      l = new_loc_descr (dwarf_OP (DW_OP_implicit_pointer), 0, offset);
      l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
      l->dw_loc_oprnd1.v.val_die_ref.die = ref;
      l->dw_loc_oprnd1.v.val_die_ref.external = 0;
      add_AT_loc (die, DW_AT_location, l);
    }
}

/* Return NULL if l is a DWARF expression, or first op that is not
   valid DWARF expression.  */

static dw_loc_descr_ref
non_dwarf_expression (dw_loc_descr_ref l)
{
  while (l)
    {
      if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
	return l;
      switch (l->dw_loc_opc)
	{
	case DW_OP_regx:
	case DW_OP_implicit_value:
	case DW_OP_stack_value:
	case DW_OP_implicit_pointer:
	case DW_OP_GNU_implicit_pointer:
	case DW_OP_GNU_parameter_ref:
	case DW_OP_piece:
	case DW_OP_bit_piece:
	  return l;
	default:
	  break;
	}
      l = l->dw_loc_next;
    }
  return NULL;
}

/* Return adjusted copy of EXPR:
   If it is empty DWARF expression, return it.
   If it is valid non-empty DWARF expression,
   return copy of EXPR with DW_OP_deref appended to it.
   If it is DWARF expression followed by DW_OP_reg{N,x}, return
   copy of the DWARF expression with DW_OP_breg{N,x} <0> appended.
   If it is DWARF expression followed by DW_OP_stack_value, return
   copy of the DWARF expression without anything appended.
   Otherwise, return NULL.  */

static dw_loc_descr_ref
copy_deref_exprloc (dw_loc_descr_ref expr)
{
  dw_loc_descr_ref tail = NULL;

  if (expr == NULL)
    return NULL;

  dw_loc_descr_ref l = non_dwarf_expression (expr);
  if (l && l->dw_loc_next)
    return NULL;

  if (l)
    {
      if (l->dw_loc_opc >= DW_OP_reg0 && l->dw_loc_opc <= DW_OP_reg31)
	tail = new_loc_descr ((enum dwarf_location_atom)
			      (DW_OP_breg0 + (l->dw_loc_opc - DW_OP_reg0)),
			      0, 0);
      else
	switch (l->dw_loc_opc)
	  {
	  case DW_OP_regx:
	    tail = new_loc_descr (DW_OP_bregx,
				  l->dw_loc_oprnd1.v.val_unsigned, 0);
	    break;
	  case DW_OP_stack_value:
	    break;
	  default:
	    return NULL;
	  }
    }
  else
    tail = new_loc_descr (DW_OP_deref, 0, 0);

  dw_loc_descr_ref ret = NULL, *p = &ret;
  while (expr != l)
    {
      *p = new_loc_descr (expr->dw_loc_opc, 0, 0);
      (*p)->dw_loc_oprnd1 = expr->dw_loc_oprnd1;
      (*p)->dw_loc_oprnd2 = expr->dw_loc_oprnd2;
      p = &(*p)->dw_loc_next;
      expr = expr->dw_loc_next;
    }
  *p = tail;
  return ret;
}

/* For DW_AT_string_length attribute with DW_OP_GNU_variable_value
   reference to a variable or argument, adjust it if needed and return:
   -1 if the DW_AT_string_length attribute and DW_AT_{string_length_,}byte_size
      attribute if present should be removed
   0 keep the attribute perhaps with minor modifications, no need to rescan
   1 if the attribute has been successfully adjusted.  */

static int
optimize_string_length (dw_attr_node *a)