aboutsummaryrefslogtreecommitdiff
path: root/libsframe/doc/sframe-spec.texi
blob: c1730adfc55a3f99f477aabcc97dce41c3973c5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
\input texinfo       @c                    -*- Texinfo -*-
@setfilename sframe-spec.info
@settitle The SFrame Format

@copying
Copyright @copyright{} 2021-2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU General Public License, Version 3 or any
later version published by the Free Software Foundation.  A copy of the
license is included in the section entitled ``GNU General Public
License''.

@end copying

@dircategory Software development
@direntry
* SFrame: (sframe-spec).         The Simple Frame format.
@end direntry

@titlepage
@title The SFrame Format
@subtitle Version 2
@author Indu Bhagat

@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage
@contents

@ifnottex
@node Top
@top The SFrame format

This manual describes version 2 of the SFrame file format.  SFrame stands for
Simple Frame.  The SFrame format keeps track of the minimal necessary
information needed for generating stack traces:

@itemize @minus
@item
Canonical Frame Address (CFA).
@item
Frame Pointer (FP).
@item
Return Address (RA).
@end itemize

The reason for existence of the SFrame format is to provide a simple, fast and
low-overhead mechanism to generate stack traces.

@menu
* Introduction::
* SFrame Section::
* ABI/arch-specific Definition::

Appendices
* Generating Stack Traces using SFrame::

* Index::
@end menu

@end ifnottex

@node Introduction
@chapter Introduction
@cindex Introduction

@menu
* Overview::
* Changes from Version 1 to Version 2::
@end menu

@node Overview
@section Overview
@cindex Overview

The SFrame stack trace information is provided in a loaded section, known as the
@code{.sframe} section.  When available, the @code{.sframe} section appears in
a new segment of its own, PT_GNU_SFRAME.

The SFrame format is currently supported only for select ABIs, namely, AMD64
and AAPCS64.

A portion of the SFrame format follows an unaligned on-disk representation.
Some data structures, however, (namely the SFrame header and the SFrame
function descriptor entry) have elements at their natural boundaries.  All data
structures are packed, unless otherwise stated.

The contents of the SFrame section are stored in the target endianness, i.e.,
in the endianness of the system on which the section is targeted to be used.
An SFrame section reader may use the magic number in the SFrame header to
identify the endianness of the SFrame section.

Addresses in this specification are expressed in bytes.

The rest of this specification describes the current version of the format,
@code{SFRAME_VERSION_2}, in detail.  Additional sections outline the major
changes made to each previously published version of the SFrame stack trace
format.

The associated API to decode, probe and encode the SFrame section, provided via
@code{libsframe}, is not accompanied here at this time.  This will be added
later.

This document is intended to be in sync with the C code in @file{sframe.h}.
Please report discrepancies between the two, if any.

@node Changes from Version 1 to Version 2
@section Changes from Version 1 to Version 2
@cindex Changes from Version 1 to Version 2

The following is a list of the changes made to the SFrame stack trace format
since Version 1 was published.

@itemize @bullet
@item
Add an unsigned 8-bit integral field to the SFrame function descriptor entry to
encode the size of the repetitive code blocks.  Such code blocks, e.g, pltN
entries, use an SFrame function descriptor entry of type
SFRAME_FDE_TYPE_PCMASK.
@item
Add an unsigned 16-bit integral field to the SFrame function descriptor entry
to serve as padding.  This helps ensure natural alignment for the members of
the data structure.
@item
The above two imply that each SFrame function descriptor entry has a fixed size
of 20 bytes instead of its size of 17 bytes in SFrame format version 1.
@end itemize

SFrame version 1 is now obsolete and should not be used.

@node SFrame Section
@chapter SFrame Section
@cindex SFrame Section

The SFrame section consists of an SFrame header, starting with a preamble, and
two other sub-sections, namely the SFrame function descriptor entry (SFrame
FDE) sub-section, and the SFrame frame row entry (SFrame FRE) sub-section.

@menu
* SFrame Preamble::
* SFrame Header::
* SFrame Function Descriptor Entries::
* SFrame Frame Row Entries::
@end menu

@node SFrame Preamble
@section SFrame Preamble
@cindex SFrame preamble

The preamble is a 32-bit packed structure; the only part of the SFrame section
whose format cannot vary between versions.

@example
typedef struct sframe_preamble
@{
  uint16_t sfp_magic;
  uint8_t sfp_version;
  uint8_t sfp_flags;
@} ATTRIBUTE_PACKED sframe_preamble;
@end example

Every element of the SFrame preamble is naturally aligned.

All values are stored in the endianness of the target system for which the
SFrame section is intended.  Further details:

@multitable {Offset} {@code{uint16_t}} {@code{sfp_version}} {The magic number for SFrame section: 0xdee2.}
@headitem Offset @tab Type @tab Name @tab Description
@item 0x00
@tab @code{uint16_t}
@tab @code{sfp_magic}
@tab The magic number for SFrame section: 0xdee2.  Defined as a macro @code{SFRAME_MAGIC}.
@tindex SFRAME_MAGIC

@item 0x02
@tab @code{uint8_t}
@tab @code{sfp_version}
@tab The version number of this SFrame section.  @xref{SFrame Version}, for the
set of valid values.  Current version is
@code{SFRAME_VERSION_2}.

@item 0x03
@tab @code{uint8_t}
@tab @code{sfp_flags}
@tab Flags (section-wide) for this SFrame section.  @xref{SFrame Flags}, for the
set of valid values.
@end multitable

@menu
* SFrame Magic Number and Endianness::
* SFrame Version::
* SFrame Flags::
@end menu

@node SFrame Magic Number and Endianness
@subsection SFrame Magic Number and Endianness

@cindex endianness
@cindex SFrame magic number
SFrame sections are stored in the target endianness of the system that consumes
them.  A consumer library reading or writing SFrame sections should detect
foreign-endianness by inspecting the SFrame magic number in the
@code{sfp_magic} field in the SFrame header.  It may then provide means to
endian-flip the SFrame section as necessary.

@node SFrame Version
@subsection SFrame Version

The version of the SFrame format can be determined by inspecting
@code{sfp_version}.  The following versions are currently valid:

@tindex SFRAME_VERSION_1
@cindex SFrame versions
@multitable {SFRAME_VERSION_2} {Number} {Current version, under development.}
@headitem Version Name @tab Number @tab Description
@item @code{SFRAME_VERSION_1}
@tab 1 @tab First version, obsolete.
@item @code{SFRAME_VERSION_2}
@tab 2 @tab Current version, under development.
@end multitable

This document describes @code{SFRAME_VERSION_2}.

@node SFrame Flags
@subsection SFrame Flags
@cindex SFrame Flags

The preamble contains bitflags in its @code{sfp_flags} field that
describe various section-wide properties.

The following flags are currently defined.

@multitable {@code{SFRAME_F_FRAME_POINTER}} {Versions} {Value} {Function Descriptor Entries}
@headitem Flag @tab Versions @tab Value @tab Meaning
@tindex SFRAME_F_FDE_SORTED
@item @code{SFRAME_F_FDE_SORTED} @tab All @tab 0x1 @tab Function Descriptor
Entries are sorted on PC.
@tindex SFRAME_F_FRAME_POINTER
@item @code{SFRAME_F_FRAME_POINTER} @tab All @tab 0x2
@tab All functions in the object file preserve frame pointer.
@end multitable

The purpose of SFRAME_F_FRAME_POINTER flag is to facilitate stack tracers to
reliably fallback on the frame pointer based stack tracing method, if SFrame
information is not present for some function in the SFrame section.

Further flags may be added in future.

@node SFrame Header
@section SFrame Header
@cindex SFrame header

The SFrame header is the first part of an SFrame section.  It begins with the
SFrame preamble.  All parts of it other than the preamble
(@pxref{SFrame Preamble}) can vary between SFrame file versions.  It contains
things that apply to the section as a whole, and offsets to the various other
sub-sections defined in the format.  As with the rest of the SFrame section,
all values are stored in the endianness of the target system.

The two sub-sections tile the SFrame section: each section runs from the offset
given until the start of the next section.  An explicit length is given for the
last sub-section, the SFrame Frame Row Entry (SFrame FRE) sub-section.

@example
typedef struct sframe_header
@{
  sframe_preamble sfh_preamble;
  uint8_t sfh_abi_arch;
  int8_t sfh_cfa_fixed_fp_offset;
  int8_t sfh_cfa_fixed_ra_offset;
  uint8_t sfh_auxhdr_len;
  uint32_t sfh_num_fdes;
  uint32_t sfh_num_fres;
  uint32_t sfh_fre_len;
  uint32_t sfh_fdeoff;
  uint32_t sfh_freoff;
@} ATTRIBUTE_PACKED sframe_header;
@end example

Every element of the SFrame header is naturally aligned.

The sub-section offsets, namely @code{sfh_fdeoff} and @code{sfh_freoff}, in the
SFrame header are relative to the @emph{end} of the SFrame header; they are
each an offset in bytes into the SFrame section where the SFrame FDE
sub-section and the SFrame FRE sub-section respectively start.

The SFrame section contains @code{sfh_num_fdes} number of fixed-length array
elements in the SFrame FDE sub-section.  Each array element is of type SFrame
function descriptor entry; each providing a high-level function description for
the purpose of stack tracing.  More details in a subsequent section.
@xref{SFrame Function Descriptor Entries}.

Next, the SFrame FRE sub-section, starting at offset @code{sfh_fre_off},
describes the stack trace information for each function, using a total of
@code{sfh_num_fres} number of variable-length array elements.  Each array
element is of type SFrame frame row entry.
@xref{SFrame Frame Row Entries}.

SFrame header allows specifying explicitly the fixed offsets from CFA, if any,
from which FP or RA may be recovered.  For example, in AMD64, the stack offset
of the return address is @code{CFA - 8}.  Since these offsets are expected to
be in close vicinity to the CFA in most ABIs, @code{sfh_cfa_fixed_fp_offset}
and @code{sfh_cfa_fixed_ra_offset} are limited to signed 8-bit integers.

@cindex Provisions for future ABIs
The SFrame format has made some provisions for supporting more
ABIs/architectures in the future.  One of them is the concept of the auxiliary
SFrame header.  Bytes in the auxiliary SFrame header may be used to convey
further ABI-specific information.  The @code{sframe_header} structure provides
an unsigned 8-bit integral field to denote the size (in bytes) of an auxiliary
SFrame header.  The auxiliary SFrame header follows right after the
@code{sframe_header} structure.  As for the calculation of the sub-section
offsets, namely @code{sfh_fdeoff} and @code{sfh_freoff}, the @emph{end} of
SFrame header must be the end of the auxiliary SFrame header, if the latter is
present.

Putting it all together:

@multitable {Offset} {@code{uint32_t}} {@code{sfh_cfa_fixed_fp_offset}} {The number of SFrame FREs in the}
@headitem Offset @tab Type @tab Name @tab Description
@item 0x00
@tab @code{sframe_ @* preamble}
@tab @code{sfh_preamble}
@tab The SFrame preamble. @xref{SFrame Preamble}.

@item 0x04
@tab @code{uint8_t}
@tab @code{sfh_abi_arch}
@tab The ABI/arch identifier.  @xref{SFrame ABI/arch Identifier}.

@item 0x05
@tab @code{int8_t}
@tab @code{sfh_cfa_fixed_fp_offset}
@tab The CFA fixed FP offset, if any.

@item 0x06
@tab @code{int8_t}
@tab @code{sfh_cfa_fixed_ra_offset}
@tab The CFA fixed RA offset, if any.

@item 0x07
@tab @code{uint8_t}
@tab @code{sfh_auxhdr_len}
@tab Size in bytes of the auxiliary header that follows the
@code{sframe_header} structure.

@item 0x08
@tab @code{uint32_t}
@tab @code{sfh_num_fdes}
@tab The number of SFrame FDEs in the section.

@item 0x0c
@tab @code{uint32_t}
@tab @code{sfh_num_fres}
@tab The number of SFrame FREs in the section.

@item 0x10
@tab @code{uint32_t}
@tab @code{sfh_fre_len}
@tab The length in bytes of the SFrame FRE sub-section.

@item 0x14
@tab @code{uint32_t}
@tab @code{sfh_fdeoff}
@tab The offset in bytes to the SFrame FDE sub-section.

@item 0x18
@tab @code{uint32_t}
@tab @code{sfh_freoff}
@tab The offset in bytes to the SFrame FRE sub-section.

@end multitable

@menu
* SFrame ABI/arch Identifier::
@end menu

@node SFrame ABI/arch Identifier
@subsection SFrame ABI/arch Identifier
@cindex SFrame ABI/arch Identifier

SFrame header identifies the ABI/arch of the target system for which the
executable and hence, the stack trace information contained in the SFrame
section, is intended.  There are currently three identifiable ABI/arch values
in the format.

@multitable {SFRAME_ABI_AARCH64_ENDIAN_LITTLE} {Value} {@code{AARCH64 little-endian}}
@headitem ABI/arch Identifier @tab Value @tab Description

@tindex SFRAME_ABI_AARCH64_ENDIAN_BIG
@item @code{SFRAME_ABI_AARCH64_ENDIAN_BIG}
@tab 1 @tab AARCH64 big-endian

@tindex SFRAME_ABI_AARCH64_ENDIAN_LITTLE
@item @code{SFRAME_ABI_AARCH64_ENDIAN_LITTLE}
@tab 2 @tab AARCH64 little-endian

@tindex SFRAME_ABI_AMD64_ENDIAN_LITTLE
@item @code{SFRAME_ABI_AMD64_ENDIAN_LITTLE}
@tab 3 @tab AMD64 little-endian

@end multitable

The presence of an explicit identification of ABI/arch in SFrame may allow
stack trace generators to make certain ABI/arch-specific decisions.

@node SFrame Function Descriptor Entries
@section SFrame FDE
@cindex SFrame FDE

The SFrame function descriptor entry sub-section is an array of the
fixed-length SFrame function descriptor entries (SFrame FDEs).  Each SFrame FDE
is a packed structure which contains information to describe a function's stack
trace information at a high-level.

The array of SFrame FDEs is sorted on the @code{sfde_func_start_address} if
the SFrame section header flag @code{sfp_flags} has @code{SFRAME_F_FDE_SORTED}
set.  Typically (as is the case with GNU ld) a linked object or executable
will have the @code{SFRAME_F_FDE_SORTED} set.  This makes the job of a stack
tracer easier as it may then employ binary search schemes to look for the
pertinent SFrame FDE.

@example
typedef struct sframe_func_desc_entry
@{
  int32_t sfde_func_start_address;
  uint32_t sfde_func_size;
  uint32_t sfde_func_start_fre_off;
  uint32_t sfde_func_num_fres;
  uint8_t sfde_func_info;
  uint8_t sfde_func_rep_size;
  uint16_t sfde_func_padding2;
@} ATTRIBUTE_PACKED sframe_func_desc_entry;
@end example

Every element of the SFrame function descriptor entry is naturally aligned.

@code{sfde_func_start_fre_off} is the offset to the first SFrame FRE for the
function.  This offset is relative to the @emph{end of the SFrame FDE}
sub-section (unlike the sub-section offsets in the SFrame header, which are
relative to the @emph{end} of the SFrame header).

@code{sfde_func_info} is the SFrame FDE "info word", containing information on
the FRE type and the FDE type for the function @xref{The SFrame FDE Info Word}.

@cindex Provisions for future ABIs
Apart from the @code{sfde_func_padding2}, the SFrame FDE has some currently
unused bits in the SFrame FDE info word, @xref{The SFrame FDE Info Word}, that
may be used for the purpose of extending the SFrame file format specification
for future ABIs.

Following table describes each component of the SFrame FDE structure:

@multitable {Offset} {@code{uint32_t}} {@code{sfde_func_start_fre_off}} {Signed 32-bit integral field denoting the}
@headitem Offset @tab Type @tab Name @tab Description
@item 0x00
@tab @code{int32_t}
@tab @code{sfde_func_start_address}
@tab Signed 32-bit integral field denoting the virtual memory address of the
described function.

@item 0x04
@tab @code{uint32_t}
@tab @code{sfde_func_size}
@tab Unsigned 32-bit integral field specifying the size of the function in
bytes.

@item 0x08
@tab @code{uint32_t}
@tab @code{sfde_func_start_fre_off}
@tab Unsigned 32-bit integral field specifying the offset in bytes of the
function's first SFrame FRE in the SFrame section.

@item 0x0c
@tab @code{uint32_t}
@tab @code{sfde_func_num_fres}
@tab Unsigned 32-bit integral field specifying the total number of SFrame FREs
used for the function.

@item 0x10
@tab @code{uint8_t}
@tab @code{sfde_func_info}
@tab Unsigned 8-bit integral field specifying the SFrame FDE info word.
@xref{The SFrame FDE Info Word}.

@item 0x11
@tab @code{uint8_t}
@tab @code{sfde_func_rep_size}
@tab Unsigned 8-bit integral field specifying the size of the repetitive code
block for which an SFrame FDE of type SFRAME_FDE_TYPE_PCMASK is used.  For
example, in AMD64, the size of a pltN entry is 16 bytes.

@item 0x12
@tab @code{uint16_t}
@tab @code{sfde_func_padding2}
@tab Padding of 2 bytes.  Currently unused bytes.

@end multitable

@menu
* The SFrame FDE Info Word::
* The SFrame FDE Types::
* The SFrame FRE Types::
@end menu

@cindex The SFrame FDE Info Word
@node The SFrame FDE Info Word
@subsection The SFrame FDE Info Word

The info word is a bitfield split into three parts.  From MSB to LSB:

@multitable {Bit offset} {@code{pauth_key}} {Specify which key is used for signing the return addresses}
@headitem Bit offset @tab Name @tab Description
@item 7--6
@tab @code{unused}
@tab Unused bits.

@item 5
@tab @code{pauth_key}
@tab (For AARCH64) Specify which key is used for signing the return addresses
in the SFrame FDE.  Two possible values: @*
SFRAME_AARCH64_PAUTH_KEY_A (0), or @*
SFRAME_AARCH64_PAUTH_KEY_B (1). @*
Ununsed in AMD64.

@item 4
@tab @code{fdetype}
@tab Specify the SFrame FDE type.  Two possible values: @*
SFRAME_FDE_TYPE_PCMASK (1), or @*
SFRAME_FDE_TYPE_PCINC (0). @*
@xref{The SFrame FDE Types}.

@item 0--3
@tab @code{fretype}
@tab Choice of three SFrame FRE types. @xref{The SFrame FRE Types}.
@end multitable

@node The SFrame FDE Types
@subsection The SFrame FDE Types
@tindex SFRAME_FDE_TYPE_PCMASK
@tindex SFRAME_FDE_TYPE_PCINC

The SFrame format defines two types of FDE entries.  The choice of which SFrame
FDE type to use is made based on the instruction patterns in the relevant
program stub.

An SFrame FDE of type @code{SFRAME_FDE_TYPE_PCINC} is an indication that the PCs in the
FREs should be treated as increments in bytes.  This is used fo the the bulk of
the executable code of a program, which contains instructions with no specific
pattern.

In contrast, an SFrame FDE of type @code{SFRAME_FDE_TYPE_PCMASK} is an
indication that the PCs in the FREs should be treated as masks.  This type is
useful for the cases where a small pattern of instructions in a program stub is
used repeatedly for a specific functionality.  Typical usecases are pltN
entries and trampolines.

@multitable {SFRAME_FDE_TYPE_PCMASK} {Value} {Unwinders perform a Unwinders perform a}
@headitem Name of SFrame FDE type @tab Value @tab Description

@item SFRAME_FDE_TYPE_PCINC
@tab 0 @tab Stacktracers perform a @*
(PC >= FRE_START_ADDR) to look up a matching FRE.

@item SFRAME_FDE_TYPE_PCMASK
@tab 1 @tab  Stacktracers perform a @*
(PC % REP_BLOCK_SIZE @*
 >= FRE_START_ADDR)
to look up a matching FRE.  REP_BLOCK_SIZE is the size in bytes of the
repeating block of program instructions and is encoded via
@code{sfde_func_rep_size} in the SFrame FDE.

@end multitable

@node The SFrame FRE Types
@subsection The SFrame FRE Types

A real world application can have functions of size big and small.  SFrame
format defines three types of SFrame FRE entries to effeciently encode the
stack trace information for such a variety of function sizes.  These
representations vary in the number of bits needed to encode the start address
offset in the SFrame FRE.

The following constants are defined and used to identify the SFrame FRE types:

@multitable {SFRAME_FRE_TYPE_ADDR1} {@code{Value}} {The start address offset (in bytes) of the}
@headitem Name @tab Value @tab Description

@tindex SFRAME_FRE_TYPE_ADDR1
@item @code{SFRAME_FRE_TYPE_ADDR1}
@tab 0
@tab The start address offset (in bytes) of the SFrame FRE is an unsigned
8-bit value.

@tindex SFRAME_FRE_TYPE_ADDR2
@item @code{SFRAME_FRE_TYPE_ADDR2}
@tab 1
@tab The start address offset (in bytes) of the SFrame FRE is an unsigned
16-bit value.

@tindex SFRAME_FRE_TYPE_ADDR4
@item @code{SFRAME_FRE_TYPE_ADDR4}
@tab 2
@tab The start address offset (in bytes) of the SFrame FRE is an unsigned
32-bit value.
@end multitable

A single function must use the same type of SFrame FRE throughout.  The
identifier to reflect the chosen SFrame FRE type is stored in the
@code{fretype} bits in the SFrame FDE info word,
@xref{The SFrame FDE Info Word}.

@node SFrame Frame Row Entries
@section SFrame FRE
@cindex SFrame FRE

The SFrame frame row entry sub-section contains the core of the stack trace
information.  An SFrame frame row entry (FRE) is a self-sufficient record
containing SFrame stack trace information for a range of contiguous
(instruction) addresses, starting at the specified offset from the start of the
function.

Each SFrame FRE encodes the stack offsets to recover the CFA, FP and RA (where
applicable) for the respective instruction addresses.  To encode this
information, each SFrame FRE is followed by S*N bytes, where:

@itemize @minus
@item
@code{S} is the size of a stack offset for the FRE, and
@item
@code{N} is the number of stack offsets in the FRE
@end itemize

The entities @code{S}, @code{N} are encoded in the SFrame FRE info word, via
the @code{fre_offset_size} and the @code{fre_offset_count} respectively.  More
information about the precise encoding and range of values for @code{S} and
@code{N} is provided later in the @xref{The SFrame FRE Info Word}.

@cindex Provisions for future ABIs
It is important to underline here that although the canonical interpretation
of these bytes is as stack offsets (to recover CFA, FP and RA), these bytes
@emph{may} be used by future ABIs/architectures to convey other information on
a per SFrame FRE basis.

In summary, SFrame file format, by design, supports a variable number of stack
offsets at the tail end of each SFrame FRE.  To keep the SFrame file
format specification flexible yet extensible, the interpretation of the stack
offsets is ABI/arch-specific.  The precise interpretation of the FRE stack
offsets in the currently supported ABIs/architectures is covered in the
ABI/arch-specific definition of the SFrame file format,
@xref{ABI/arch-specific Definition}.

Next, the definitions of the three SFrame FRE types are as follows:

@example
typedef struct sframe_frame_row_entry_addr1
@{
  uint8_t sfre_start_address;
  sframe_fre_info sfre_info;
@} ATTRIBUTE_PACKED sframe_frame_row_entry_addr1;
@end example

@example
typedef struct sframe_frame_row_entry_addr2
@{
  uint16_t sfre_start_address;
  sframe_fre_info sfre_info;
@} ATTRIBUTE_PACKED sframe_frame_row_entry_addr2;
@end example

@example
typedef struct sframe_frame_row_entry_addr4
@{
  uint32_t sfre_start_address;
  sframe_fre_info sfre_info;
@} ATTRIBUTE_PACKED sframe_frame_row_entry_addr4;
@end example

For ensuring compactness, SFrame frame row entries are stored unaligned on
disk.  Appropriate mechanisms need to be employed, as necessary, by the
serializing and deserializing entities, if unaligned accesses need to be
avoided.

@code{sfre_start_address} is an unsigned 8-bit/16-bit/32-bit integral field
identifies the start address of the range of program counters, for which the
SFrame FRE applies.  The value encoded in the @code{sfre_start_address} field
is the offset in bytes of the start address of the SFrame FRE, from the start
address of the function.

Further SFrame FRE types may be added in future.

@menu
* The SFrame FRE Info Word::
@end menu

@cindex The SFrame FRE Info Word
@node The SFrame FRE Info Word
@subsection The SFrame FRE Info Word

The SFrame FRE info word is a bitfield split into four parts.  From MSB to LSB:

@multitable {Bit offset} {@code{fre_cfa_base_reg_id}} {Size of stack offsets in bytes.  Valid values}
@headitem Bit offset @tab Name @tab Description
@item 7
@tab @code{fre_mangled_ra_p}
@tab Indicate whether the return address is mangled with any authorization bits (signed RA).

@item 5-6
@tab @code{fre_offset_size}
@tab Size of stack offsets in bytes.  Valid values are: @*
SFRAME_FRE_OFFSET_1B, @*
SFRAME_FRE_OFFSET_2B, and @*
SFRAME_FRE_OFFSET_4B.

@item 1-4
@tab @code{fre_offset_count}
@tab A max value of 15 is allowed.  Typically, a value of upto 3 is sufficient
for most ABIs to track all three of CFA, FP and RA.

@item 0
@tab @code{fre_cfa_base_reg_id}
@tab Distinguish between SP or FP based CFA recovery.

@end multitable

@multitable {SFRAME_FRE_OFFSET_4B} {@code{Value}} {All stack offsets following the fixed-length}
@headitem Name @tab Value @tab Description

@tindex SFRAME_FRE_OFFSET_1B
@item @code{SFRAME_FRE_OFFSET_1B}
@tab 0
@tab All stack offsets following the fixed-length FRE structure are 1 byte
long.

@tindex SFRAME_FRE_OFFSET_2B
@item @code{SFRAME_FRE_OFFSET_2B}
@tab 1
@tab All stack offsets following the fixed-length FRE structure are 2 bytes
long.

@tindex SFRAME_FRE_OFFSET_4B
@item @code{SFRAME_FRE_OFFSET_4B}
@tab 2
@tab All stack offsets following the fixed-length FRE structure are 4 bytes
long.

@end multitable

@node ABI/arch-specific Definition
@chapter ABI/arch-specific Definition
@cindex ABI/arch-specific Definition

This section covers the ABI/arch-specific definition of the SFrame file format.

Currently, the only part of the SFrame file format definition that is
ABI/arch-specific is the interpretation of the variable number of bytes at the
tail end of each SFrame FRE.  Currently, these bytes are only used for
representing stack offsets (for all the currently supported ABIs).  It is
recommended to peruse this section along with @xref{SFrame Frame Row Entries}
for clarity of context.

Future ABIs must specify the algorithm for identifying the appropriate SFrame
FRE stack offsets in this chapter.  This should inevitably include the
blueprint for interpreting the variable number of bytes at the tail end of the
SFrame FRE for the specific ABI/arch. Any further provisions, e.g., using the
auxiliary SFrame header, etc., if used, must also be outlined here.

@menu
* AMD64::
* AArch64::
@end menu

@node AMD64
@section AMD64

Irrespective of the ABI, the first stack offset is always used to locate the
CFA, by interpreting it as: CFA = @code{BASE_REG} + offset1.  The
identification of the @code{BASE_REG} is done by using the
@code{fre_cfa_base_reg_id} field in the SFrame FRE info word.

In AMD64, the return address (RA) is always saved on stack when a function
call is executed.  Further, AMD64 ABI mandates that the RA be saved at a
@code{fixed offset} from the CFA when entering a new function.  This means
that the RA does not need to be tracked per SFrame FRE.  The fixed offset is
encoded in the SFrame file format in the field @code{sfh_cfa_fixed_ra_offset}
in the SFrame header.  @xref{SFrame Header}.

Hence, the second stack offset (in the SFrame FRE), when present, will be used
to locate the FP, by interpreting it as: FP = CFA + offset2.

Hence, in summary:

@multitable {Offset ID} {Interpretation in AMD64 in AMD64}
@headitem Offset ID @tab Interpretation in AMD64
@item 1 @tab CFA = @code{BASE_REG} + offset1
@item 2 @tab FP = CFA + offset2
@end multitable

@node AArch64
@section AArch64

Irrespective of the ABI, the first stack offset is always used to locate the
CFA, by interpreting it as: CFA = @code{BASE_REG} + offset1.  The
identification of the @code{BASE_REG} is done by using the
@code{fre_cfa_base_reg_id} field in the SFrame FRE info word.

In AARCH64, the AAPCS64 standard specifies that the Frame Record saves both FP
and LR (a.k.a the RA).  However, the standard does not mandate the precise
location in the function where the frame record is created, if at all.  Hence
the need to track RA in the SFrame stack trace format.  As RA is being tracked
in this ABI, the second stack offset is always used to locate the RA, by
interpreting it as: RA = CFA + offset2. The third stack offset will be used to
locate the FP, by interpreting it as: FP = CFA + offset3.

Given the nature of things, the number of stack offsets seen on AARCH64 per
SFrame FRE is either 1 or 3.

Hence, in summary:

@multitable {Offset ID} {Interpretation in AArch64 in X}
@headitem Offset ID @tab Interpretation in AArch64
@item 1 @tab CFA = @code{BASE_REG} + offset1
@item 2 @tab RA = CFA + offset2
@item 3 @tab FP = CFA + offset3
@end multitable

@node Generating Stack Traces using SFrame
@appendix Generating Stack Traces using SFrame

Using some C-like pseudocode, this section highlights how SFrame provides a
simple, fast and low-overhead mechanism to generate stack traces.  Needless to
say that for generating accurate and useful stack traces, several other aspects
will need attention: finding and decoding bits of SFrame section(s) in the
program binary, symbolization of addresses, to name a few.

In the current context, a @code{frame} is the abstract construct that
encapsulates the following information:
@itemize @minus
@item
program counter (PC),
@item
stack pointer (SP), and
@item
frame pointer (FP)
@end itemize

With that said, establishing the first @code{frame} should be trivial:

@example
    // frame 0
    frame->pc = current_IP;
    frame->sp = get_reg_value (REG_SP);
    frame->fp = get_reg_value (REG_FP);
@end example

where @code{REG_SP} and @code{REG_FP} are are ABI-designated stack pointer and
frame pointer registers respectively.

Next, given frame N, generating stack trace needs us to get frame N+1.  This
can be done as follows:

@example
     // Get the PC, SP, and FP for frame N.
     pc = frame->pc;
     sp = frame->sp;
     fp = frame->fp;
     // Populate frame N+1.
     int err = get_next_frame (&next_frame, pc, sp, fp);
@end example

where given the values of the program counter, stack pointer and frame pointer
from frame N, @code{get_next_frame} populates the provided @code{next_frame}
object and returns the error code, if any. In the following pseudocode for
@code{get_next_frame}, the @code{sframe_*} functions fetch information from the
SFrame section.

@example
    fre = sframe_find_fre (pc);
    if (fre)
        // Whether the base register for CFA tracking is REG_FP.
        base_reg_val = sframe_fre_base_reg_fp_p (fre) ? fp : sp;
        // Get the CFA stack offset from the FRE.
        cfa_offset = sframe_fre_get_cfa_offset (fre);
        // Get the fixed RA offset or FRE stack offset as applicable.
        ra_offset = sframe_fre_get_ra_offset (fre);
        // Get the fixed FP offset or FRE stack offset as applicable.
        fp_offset = sframe_fre_get_fp_offset (fre);

        cfa = base_reg_val + cfa_offset;
        next_frame->sp = cfa;

        ra_stack_loc = cfa + ra_offset;
        // Get the address stored in the stack location.
        next_frame->pc = read_value (ra_stack_loc);

        if (fp_offset is VALID)
            fp_stack_loc = cfa + fp_offset;
            // Get the value stored in the stack location.
            next_frame->fp = read_value (fp_stack_loc);
        else
            // Continue to use the value of fp as it has not
            // been clobbered by the current frame yet.
            next_frame->fp = fp;
    else
        ret = ERR_NO_SFRAME_FRE;
@end example

@node Index
@unnumbered Index

@syncodeindex tp cp
@printindex cp

@bye