1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
|
/* CTF dict creation.
Copyright (C) 2019-2024 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>
#include <elf.h>
#include "elf-bfd.h"
/* Symtypetab sections. */
/* Symtypetab emission flags. */
#define CTF_SYMTYPETAB_EMIT_FUNCTION 0x1
#define CTF_SYMTYPETAB_EMIT_PAD 0x2
#define CTF_SYMTYPETAB_FORCE_INDEXED 0x4
/* Properties of symtypetab emission, shared by symtypetab section
sizing and symtypetab emission itself. */
typedef struct emit_symtypetab_state
{
/* True if linker-reported symbols are being filtered out. symfp is set if
this is true: otherwise, indexing is forced and the symflags indicate as
much. */
int filter_syms;
/* True if symbols are being sorted. */
int sort_syms;
/* Flags for symtypetab emission. */
int symflags;
/* The dict to which the linker has reported symbols. */
ctf_dict_t *symfp;
/* The maximum number of objects seen. */
size_t maxobjt;
/* The maximum number of func info entris seen. */
size_t maxfunc;
} emit_symtypetab_state_t;
/* Determine if a symbol is "skippable" and should never appear in the
symtypetab sections. */
int
ctf_symtab_skippable (ctf_link_sym_t *sym)
{
/* Never skip symbols whose name is not yet known. */
if (sym->st_nameidx_set)
return 0;
return (sym->st_name == NULL || sym->st_name[0] == 0
|| sym->st_shndx == SHN_UNDEF
|| strcmp (sym->st_name, "_START_") == 0
|| strcmp (sym->st_name, "_END_") == 0
|| (sym->st_type == STT_OBJECT && sym->st_shndx == SHN_EXTABS
&& sym->st_value == 0));
}
/* Get the number of symbols in a symbol hash, the count of symbols, the maximum
seen, the eventual size, without any padding elements, of the func/data and
(if generated) index sections, and the size of accumulated padding elements.
The linker-reported set of symbols is found in SYMFP: it may be NULL if
symbol filtering is not desired, in which case CTF_SYMTYPETAB_FORCE_INDEXED
will always be set in the flags.
Also figure out if any symbols need to be moved to the variable section, and
add them (if not already present). */
_libctf_nonnull_ ((1,3,4,5,6,7,8))
static int
symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
size_t *count, size_t *max, size_t *unpadsize,
size_t *padsize, size_t *idxsize, int flags)
{
ctf_next_t *i = NULL;
const void *name;
const void *ctf_sym;
ctf_dynhash_t *linker_known = NULL;
int err;
int beyond_max = 0;
*count = 0;
*max = 0;
*unpadsize = 0;
*idxsize = 0;
*padsize = 0;
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
{
/* Make a dynhash citing only symbols reported by the linker of the
appropriate type, then traverse all potential-symbols we know the types
of, removing them from linker_known as we go. Once this is done, the
only symbols remaining in linker_known are symbols we don't know the
types of: we must emit pads for those symbols that are below the
maximum symbol we will emit (any beyond that are simply skipped).
If there are none, this symtypetab will be empty: just report that. */
if (!symfp->ctf_dynsyms)
return 0;
if ((linker_known = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
NULL, NULL)) == NULL)
return (ctf_set_errno (fp, ENOMEM));
while ((err = ctf_dynhash_cnext (symfp->ctf_dynsyms, &i,
&name, &ctf_sym)) == 0)
{
ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& sym->st_type != STT_FUNC)
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& sym->st_type != STT_OBJECT))
continue;
if (ctf_symtab_skippable (sym))
continue;
/* This should only be true briefly before all the names are
finalized, long before we get this far. */
if (!ctf_assert (fp, !sym->st_nameidx_set))
return -1; /* errno is set for us. */
if (ctf_dynhash_cinsert (linker_known, name, ctf_sym) < 0)
{
ctf_dynhash_destroy (linker_known);
return (ctf_set_errno (fp, ENOMEM));
}
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols during "
"serialization"));
ctf_dynhash_destroy (linker_known);
return (ctf_set_errno (fp, err));
}
}
while ((err = ctf_dynhash_cnext (symhash, &i, &name, NULL)) == 0)
{
ctf_link_sym_t *sym;
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
{
/* Linker did not report symbol in symtab. Remove it from the
set of known data symbols and continue. */
if ((sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, name)) == NULL)
{
ctf_dynhash_remove (symhash, name);
continue;
}
/* We don't remove skippable symbols from the symhash because we don't
want them to be migrated into variables. */
if (ctf_symtab_skippable (sym))
continue;
if ((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& sym->st_type != STT_FUNC)
{
ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
"function but is of type %x. "
"The symbol type lookup tables "
"are probably corrupted"),
sym->st_name, sym->st_symidx, sym->st_type);
ctf_dynhash_remove (symhash, name);
continue;
}
else if (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& sym->st_type != STT_OBJECT)
{
ctf_err_warn (fp, 1, 0, _("symbol %s (%x) added to CTF as a "
"data object but is of type %x. "
"The symbol type lookup tables "
"are probably corrupted"),
sym->st_name, sym->st_symidx, sym->st_type);
ctf_dynhash_remove (symhash, name);
continue;
}
ctf_dynhash_remove (linker_known, name);
if (*max < sym->st_symidx)
*max = sym->st_symidx;
}
else
(*max)++;
*unpadsize += sizeof (uint32_t);
(*count)++;
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iterating over CTF symtypetab during "
"serialization"));
ctf_dynhash_destroy (linker_known);
return (ctf_set_errno (fp, err));
}
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
{
while ((err = ctf_dynhash_cnext (linker_known, &i, NULL, &ctf_sym)) == 0)
{
ctf_link_sym_t *sym = (ctf_link_sym_t *) ctf_sym;
if (sym->st_symidx > *max)
beyond_max++;
}
if (err != ECTF_NEXT_END)
{
ctf_err_warn (fp, 0, err, _("iterating over linker-known symbols "
"during CTF serialization"));
ctf_dynhash_destroy (linker_known);
return (ctf_set_errno (fp, err));
}
}
*idxsize = *count * sizeof (uint32_t);
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
*padsize = (ctf_dynhash_elements (linker_known) - beyond_max) * sizeof (uint32_t);
ctf_dynhash_destroy (linker_known);
return 0;
}
/* Emit an objt or func symtypetab into DP in a particular order defined by an
array of ctf_link_sym_t or symbol names passed in. The index has NIDX
elements in it: unindexed output would terminate at symbol OUTMAX and is in
any case no larger than SIZE bytes. Some index elements are expected to be
skipped: see symtypetab_density. The linker-reported set of symbols (if any)
is found in SYMFP. */
static int
emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
uint32_t outmax, int size, int flags)
{
uint32_t i;
uint32_t *dpp = dp;
ctf_dynhash_t *symhash;
ctf_dprintf ("Emitting table of size %i, outmax %u, %u symtypetab entries, "
"flags %i\n", size, outmax, nidx, flags);
/* Empty table? Nothing to do. */
if (size == 0)
return 0;
if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
symhash = fp->ctf_funchash;
else
symhash = fp->ctf_objthash;
for (i = 0; i < nidx; i++)
{
const char *sym_name;
void *type;
/* If we have a linker-reported set of symbols, we may be given that set
to work from, or a set of symbol names. In both cases we want to look
at the corresponding linker-reported symbol (if any). */
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
{
ctf_link_sym_t *this_link_sym;
if (idx)
this_link_sym = idx[i];
else
this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, nameidx[i]);
/* Unreported symbol number. No pad, no nothing. */
if (!this_link_sym)
continue;
/* Symbol of the wrong type, or skippable? This symbol is not in this
table. */
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& this_link_sym->st_type != STT_FUNC)
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& this_link_sym->st_type != STT_OBJECT))
continue;
if (ctf_symtab_skippable (this_link_sym))
continue;
sym_name = this_link_sym->st_name;
/* Linker reports symbol of a different type to the symbol we actually
added? Skip the symbol. No pad, since the symbol doesn't actually
belong in this table at all. (Warned about in
symtypetab_density.) */
if ((this_link_sym->st_type == STT_FUNC)
&& (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
continue;
if ((this_link_sym->st_type == STT_OBJECT)
&& (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
continue;
}
else
sym_name = nameidx[i];
/* Symbol in index but no type set? Silently skip and (optionally)
pad. (In force-indexed mode, this is also where we track symbols of
the wrong type for this round of insertion.) */
if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
{
if (flags & CTF_SYMTYPETAB_EMIT_PAD)
*dpp++ = 0;
continue;
}
if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
return -1; /* errno is set for us. */
*dpp++ = (ctf_id_t) (uintptr_t) type;
/* When emitting unindexed output, all later symbols are pads: stop
early. */
if ((flags & CTF_SYMTYPETAB_EMIT_PAD) && idx[i]->st_symidx == outmax)
break;
}
return 0;
}
/* Emit an objt or func symtypetab index into DP in a paticular order defined by
an array of symbol names passed in. Stop at NIDX. The linker-reported set
of symbols (if any) is found in SYMFP. */
static int
emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
const char **idx, uint32_t nidx, int size, int flags)
{
uint32_t i;
uint32_t *dpp = dp;
ctf_dynhash_t *symhash;
ctf_dprintf ("Emitting index of size %i, %u entries reported by linker, "
"flags %i\n", size, nidx, flags);
/* Empty table? Nothing to do. */
if (size == 0)
return 0;
if (flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
symhash = fp->ctf_funchash;
else
symhash = fp->ctf_objthash;
/* Indexes should always be unpadded. */
if (!ctf_assert (fp, !(flags & CTF_SYMTYPETAB_EMIT_PAD)))
return -1; /* errno is set for us. */
for (i = 0; i < nidx; i++)
{
const char *sym_name;
void *type;
if (!(flags & CTF_SYMTYPETAB_FORCE_INDEXED))
{
ctf_link_sym_t *this_link_sym;
this_link_sym = ctf_dynhash_lookup (symfp->ctf_dynsyms, idx[i]);
/* This is an index: unreported symbols should never appear in it. */
if (!ctf_assert (fp, this_link_sym != NULL))
return -1; /* errno is set for us. */
/* Symbol of the wrong type, or skippable? This symbol is not in this
table. */
if (((flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& this_link_sym->st_type != STT_FUNC)
|| (!(flags & CTF_SYMTYPETAB_EMIT_FUNCTION)
&& this_link_sym->st_type != STT_OBJECT))
continue;
if (ctf_symtab_skippable (this_link_sym))
continue;
sym_name = this_link_sym->st_name;
/* Linker reports symbol of a different type to the symbol we actually
added? Skip the symbol. */
if ((this_link_sym->st_type == STT_FUNC)
&& (ctf_dynhash_lookup (fp->ctf_objthash, sym_name)))
continue;
if ((this_link_sym->st_type == STT_OBJECT)
&& (ctf_dynhash_lookup (fp->ctf_funchash, sym_name)))
continue;
}
else
sym_name = idx[i];
/* Symbol in index and reported by linker, but no type set? Silently skip
and (optionally) pad. (In force-indexed mode, this is also where we
track symbols of the wrong type for this round of insertion.) */
if ((type = ctf_dynhash_lookup (symhash, sym_name)) == NULL)
continue;
ctf_str_add_ref (fp, sym_name, dpp++);
if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) <= size))
return -1; /* errno is set for us. */
}
return 0;
}
/* Delete symbols that have been assigned names from the variable section. Must
be called from within ctf_serialize, because that is the only place you can
safely delete variables without messing up ctf_rollback. */
static int
symtypetab_delete_nonstatics (ctf_dict_t *fp, ctf_dict_t *symfp)
{
ctf_dvdef_t *dvd, *nvd;
ctf_id_t type;
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
{
nvd = ctf_list_next (dvd);
if ((((type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_objthash, dvd->dvd_name)) > 0)
|| (type = (ctf_id_t) (uintptr_t)
ctf_dynhash_lookup (fp->ctf_funchash, dvd->dvd_name)) > 0)
&& ctf_dynhash_lookup (symfp->ctf_dynsyms, dvd->dvd_name) != NULL
&& type == dvd->dvd_type)
ctf_dvd_delete (fp, dvd);
}
return 0;
}
/* Figure out the sizes of the symtypetab sections, their indexed state,
etc. */
static int
ctf_symtypetab_sect_sizes (ctf_dict_t *fp, emit_symtypetab_state_t *s,
ctf_header_t *hdr, size_t *objt_size,
size_t *func_size, size_t *objtidx_size,
size_t *funcidx_size)
{
size_t nfuncs, nobjts;
size_t objt_unpadsize, func_unpadsize, objt_padsize, func_padsize;
/* If doing a writeout as part of linking, and the link flags request it,
filter out reported symbols from the variable section, and filter out all
other symbols from the symtypetab sections. (If we are not linking, the
symbols are sorted; if we are linking, don't bother sorting if we are not
filtering out reported symbols: this is almost certainly an ld -r and only
the linker is likely to consume these symtypetabs again. The linker
doesn't care what order the symtypetab entries are in, since it only
iterates over symbols and does not use the ctf_lookup_by_symbol* API.) */
s->sort_syms = 1;
if (fp->ctf_flags & LCTF_LINKING)
{
s->filter_syms = !(fp->ctf_link_flags & CTF_LINK_NO_FILTER_REPORTED_SYMS);
if (!s->filter_syms)
s->sort_syms = 0;
}
/* Find the dict to which the linker has reported symbols, if any. */
if (s->filter_syms)
{
if (!fp->ctf_dynsyms && fp->ctf_parent && fp->ctf_parent->ctf_dynsyms)
s->symfp = fp->ctf_parent;
else
s->symfp = fp;
}
/* If not filtering, keep all potential symbols in an unsorted, indexed
dict. */
if (!s->filter_syms)
s->symflags = CTF_SYMTYPETAB_FORCE_INDEXED;
else
hdr->cth_flags |= CTF_F_IDXSORTED;
if (!ctf_assert (fp, (s->filter_syms && s->symfp)
|| (!s->filter_syms && !s->symfp
&& ((s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED) != 0))))
return -1;
/* Work out the sizes of the object and function sections, and work out the
number of pad (unassigned) symbols in each, and the overall size of the
sections. */
if (symtypetab_density (fp, s->symfp, fp->ctf_objthash, &nobjts, &s->maxobjt,
&objt_unpadsize, &objt_padsize, objtidx_size,
s->symflags) < 0)
return -1; /* errno is set for us. */
ctf_dprintf ("Object symtypetab: %i objects, max %i, unpadded size %i, "
"%i bytes of pads, index size %i\n", (int) nobjts,
(int) s->maxobjt, (int) objt_unpadsize, (int) objt_padsize,
(int) *objtidx_size);
if (symtypetab_density (fp, s->symfp, fp->ctf_funchash, &nfuncs, &s->maxfunc,
&func_unpadsize, &func_padsize, funcidx_size,
s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
return -1; /* errno is set for us. */
ctf_dprintf ("Function symtypetab: %i functions, max %i, unpadded size %i, "
"%i bytes of pads, index size %i\n", (int) nfuncs,
(int) s->maxfunc, (int) func_unpadsize, (int) func_padsize,
(int) *funcidx_size);
/* It is worth indexing each section if it would save space to do so, due to
reducing the number of pads sufficiently. A pad is the same size as a
single index entry: but index sections compress relatively poorly compared
to constant pads, so it takes a lot of contiguous padding to equal one
index section entry. It would be nice to be able to *verify* whether we
would save space after compression rather than guessing, but this seems
difficult, since it would require complete reserialization. Regardless, if
the linker has not reported any symbols (e.g. if this is not a final link
but just an ld -r), we must emit things in indexed fashion just as the
compiler does. */
*objt_size = objt_unpadsize;
if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
&& ((objt_padsize + objt_unpadsize) * CTF_INDEX_PAD_THRESHOLD
> objt_padsize))
{
*objt_size += objt_padsize;
*objtidx_size = 0;
}
*func_size = func_unpadsize;
if (!(s->symflags & CTF_SYMTYPETAB_FORCE_INDEXED)
&& ((func_padsize + func_unpadsize) * CTF_INDEX_PAD_THRESHOLD
> func_padsize))
{
*func_size += func_padsize;
*funcidx_size = 0;
}
/* If we are filtering symbols out, those symbols that the linker has not
reported have now been removed from the ctf_objthash and ctf_funchash.
Delete entries from the variable section that duplicate newly-added
symbols. There's no need to migrate new ones in: we do that (if necessary)
in ctf_link_deduplicating_variables. */
if (s->filter_syms && s->symfp->ctf_dynsyms &&
symtypetab_delete_nonstatics (fp, s->symfp) < 0)
return -1;
return 0;
}
static int
ctf_emit_symtypetab_sects (ctf_dict_t *fp, emit_symtypetab_state_t *s,
unsigned char **tptr, size_t objt_size,
size_t func_size, size_t objtidx_size,
size_t funcidx_size)
{
unsigned char *t = *tptr;
size_t nsymtypes = 0;
const char **sym_name_order = NULL;
int err;
/* Sort the linker's symbols into name order if need be. */
if ((objtidx_size != 0) || (funcidx_size != 0))
{
ctf_next_t *i = NULL;
void *symname;
const char **walk;
if (s->filter_syms)
{
if (s->symfp->ctf_dynsyms)
nsymtypes = ctf_dynhash_elements (s->symfp->ctf_dynsyms);
else
nsymtypes = 0;
}
else
nsymtypes = ctf_dynhash_elements (fp->ctf_objthash)
+ ctf_dynhash_elements (fp->ctf_funchash);
if ((sym_name_order = calloc (nsymtypes, sizeof (const char *))) == NULL)
goto oom;
walk = sym_name_order;
if (s->filter_syms)
{
if (s->symfp->ctf_dynsyms)
{
while ((err = ctf_dynhash_next_sorted (s->symfp->ctf_dynsyms, &i,
&symname, NULL,
ctf_dynhash_sort_by_name,
NULL)) == 0)
*walk++ = (const char *) symname;
if (err != ECTF_NEXT_END)
goto symerr;
}
}
else
{
ctf_hash_sort_f sort_fun = NULL;
/* Since we partition the set of symbols back into objt and func,
we can sort the two independently without harm. */
if (s->sort_syms)
sort_fun = ctf_dynhash_sort_by_name;
while ((err = ctf_dynhash_next_sorted (fp->ctf_objthash, &i, &symname,
NULL, sort_fun, NULL)) == 0)
*walk++ = (const char *) symname;
if (err != ECTF_NEXT_END)
goto symerr;
while ((err = ctf_dynhash_next_sorted (fp->ctf_funchash, &i, &symname,
NULL, sort_fun, NULL)) == 0)
*walk++ = (const char *) symname;
if (err != ECTF_NEXT_END)
goto symerr;
}
}
/* Emit the object and function sections, and if necessary their indexes.
Emission is done in symtab order if there is no index, and in index
(name) order otherwise. */
if ((objtidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
{
ctf_dprintf ("Emitting unindexed objt symtypetab\n");
if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
s->symfp->ctf_dynsymidx, NULL,
s->symfp->ctf_dynsymmax + 1, s->maxobjt,
objt_size, s->symflags | CTF_SYMTYPETAB_EMIT_PAD) < 0)
goto err; /* errno is set for us. */
}
else
{
ctf_dprintf ("Emitting indexed objt symtypetab\n");
if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL,
sym_name_order, nsymtypes, s->maxobjt,
objt_size, s->symflags) < 0)
goto err; /* errno is set for us. */
}
t += objt_size;
if ((funcidx_size == 0) && s->symfp && s->symfp->ctf_dynsymidx)
{
ctf_dprintf ("Emitting unindexed func symtypetab\n");
if (emit_symtypetab (fp, s->symfp, (uint32_t *) t,
s->symfp->ctf_dynsymidx, NULL,
s->symfp->ctf_dynsymmax + 1, s->maxfunc,
func_size, s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION
| CTF_SYMTYPETAB_EMIT_PAD) < 0)
goto err; /* errno is set for us. */
}
else
{
ctf_dprintf ("Emitting indexed func symtypetab\n");
if (emit_symtypetab (fp, s->symfp, (uint32_t *) t, NULL, sym_name_order,
nsymtypes, s->maxfunc, func_size,
s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
goto err; /* errno is set for us. */
}
t += func_size;
if (objtidx_size > 0)
if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
nsymtypes, objtidx_size, s->symflags) < 0)
goto err;
t += objtidx_size;
if (funcidx_size > 0)
if (emit_symtypetab_index (fp, s->symfp, (uint32_t *) t, sym_name_order,
nsymtypes, funcidx_size,
s->symflags | CTF_SYMTYPETAB_EMIT_FUNCTION) < 0)
goto err;
t += funcidx_size;
free (sym_name_order);
*tptr = t;
return 0;
oom:
ctf_set_errno (fp, EAGAIN);
goto err;
symerr:
ctf_err_warn (fp, 0, err, _("error serializing symtypetabs"));
err:
free (sym_name_order);
return -1;
}
/* Type section. */
/* Iterate through the static types and the dynamic type definition list and
compute the size of the CTF type section. */
static size_t
ctf_type_sect_size (ctf_dict_t *fp)
{
ctf_dtdef_t *dtd;
size_t type_size;
for (type_size = 0, dtd = ctf_list_next (&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next (dtd))
{
uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
size_t type_ctt_size = dtd->dtd_data.ctt_size;
/* Shrink ctf_type_t-using types from a ctf_type_t to a ctf_stype_t
if possible. */
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION)
{
size_t lsize = CTF_TYPE_LSIZE (&dtd->dtd_data);
if (lsize <= CTF_MAX_SIZE)
type_ctt_size = lsize;
}
if (type_ctt_size != CTF_LSIZE_SENT)
type_size += sizeof (ctf_stype_t);
else
type_size += sizeof (ctf_type_t);
switch (kind)
{
case CTF_K_INTEGER:
case CTF_K_FLOAT:
type_size += sizeof (uint32_t);
break;
case CTF_K_ARRAY:
type_size += sizeof (ctf_array_t);
break;
case CTF_K_SLICE:
type_size += sizeof (ctf_slice_t);
break;
case CTF_K_FUNCTION:
type_size += sizeof (uint32_t) * (vlen + (vlen & 1));
break;
case CTF_K_STRUCT:
case CTF_K_UNION:
if (type_ctt_size < CTF_LSTRUCT_THRESH)
type_size += sizeof (ctf_member_t) * vlen;
else
type_size += sizeof (ctf_lmember_t) * vlen;
break;
case CTF_K_ENUM:
type_size += sizeof (ctf_enum_t) * vlen;
break;
}
}
return type_size + fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff;
}
/* Take a final lap through the dynamic type definition list and copy the
appropriate type records to the output buffer, noting down the strings as
we go. */
static void
ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
{
unsigned char *t = *tptr;
ctf_dtdef_t *dtd;
for (dtd = ctf_list_next (&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next (dtd))
{
uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
size_t type_ctt_size = dtd->dtd_data.ctt_size;
size_t len;
ctf_stype_t *copied;
const char *name;
size_t i;
/* Shrink ctf_type_t-using types from a ctf_type_t to a ctf_stype_t
if possible. */
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION)
{
size_t lsize = CTF_TYPE_LSIZE (&dtd->dtd_data);
if (lsize <= CTF_MAX_SIZE)
type_ctt_size = lsize;
}
if (type_ctt_size != CTF_LSIZE_SENT)
len = sizeof (ctf_stype_t);
else
len = sizeof (ctf_type_t);
memcpy (t, &dtd->dtd_data, len);
copied = (ctf_stype_t *) t; /* name is at the start: constant offset. */
if (copied->ctt_name
&& (name = ctf_strraw (fp, copied->ctt_name)) != NULL)
ctf_str_add_ref (fp, name, &copied->ctt_name);
copied->ctt_size = type_ctt_size;
t += len;
switch (kind)
{
case CTF_K_INTEGER:
case CTF_K_FLOAT:
memcpy (t, dtd->dtd_vlen, sizeof (uint32_t));
t += sizeof (uint32_t);
break;
case CTF_K_SLICE:
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_slice));
t += sizeof (struct ctf_slice);
break;
case CTF_K_ARRAY:
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_array));
t += sizeof (struct ctf_array);
break;
case CTF_K_FUNCTION:
/* Functions with no args also have no vlen. */
if (dtd->dtd_vlen)
memcpy (t, dtd->dtd_vlen, sizeof (uint32_t) * (vlen + (vlen & 1)));
t += sizeof (uint32_t) * (vlen + (vlen & 1));
break;
/* These need to be copied across element by element, depending on
their ctt_size. */
case CTF_K_STRUCT:
case CTF_K_UNION:
{
ctf_lmember_t *dtd_vlen = (ctf_lmember_t *) dtd->dtd_vlen;
ctf_lmember_t *t_lvlen = (ctf_lmember_t *) t;
ctf_member_t *t_vlen = (ctf_member_t *) t;
for (i = 0; i < vlen; i++)
{
const char *name = ctf_strraw (fp, dtd_vlen[i].ctlm_name);
ctf_str_add_ref (fp, name, &dtd_vlen[i].ctlm_name);
if (type_ctt_size < CTF_LSTRUCT_THRESH)
{
t_vlen[i].ctm_name = dtd_vlen[i].ctlm_name;
t_vlen[i].ctm_type = dtd_vlen[i].ctlm_type;
t_vlen[i].ctm_offset = CTF_LMEM_OFFSET (&dtd_vlen[i]);
ctf_str_add_ref (fp, name, &t_vlen[i].ctm_name);
}
else
{
t_lvlen[i] = dtd_vlen[i];
ctf_str_add_ref (fp, name, &t_lvlen[i].ctlm_name);
}
}
}
if (type_ctt_size < CTF_LSTRUCT_THRESH)
t += sizeof (ctf_member_t) * vlen;
else
t += sizeof (ctf_lmember_t) * vlen;
break;
case CTF_K_ENUM:
{
ctf_enum_t *dtd_vlen = (struct ctf_enum *) dtd->dtd_vlen;
ctf_enum_t *t_vlen = (struct ctf_enum *) t;
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_enum) * vlen);
for (i = 0; i < vlen; i++)
{
const char *name = ctf_strraw (fp, dtd_vlen[i].cte_name);
ctf_str_add_ref (fp, name, &t_vlen[i].cte_name);
ctf_str_add_ref (fp, name, &dtd_vlen[i].cte_name);
}
t += sizeof (struct ctf_enum) * vlen;
break;
}
}
}
*tptr = t;
}
/* Variable section. */
/* Sort a newly-constructed static variable array. */
typedef struct ctf_sort_var_arg_cb
{
ctf_dict_t *fp;
ctf_strs_t *strtab;
} ctf_sort_var_arg_cb_t;
static int
ctf_sort_var (const void *one_, const void *two_, void *arg_)
{
const ctf_varent_t *one = one_;
const ctf_varent_t *two = two_;
ctf_sort_var_arg_cb_t *arg = arg_;
return (strcmp (ctf_strraw_explicit (arg->fp, one->ctv_name, arg->strtab),
ctf_strraw_explicit (arg->fp, two->ctv_name, arg->strtab)));
}
/* Overall serialization. */
/* Emit a new CTF dict which is a serialized copy of this one: also reify
the string table and update all offsets in the current dict suitably.
(This simplifies ctf-string.c a little, at the cost of storing a second
copy of the strtab if this dict was originally read in via ctf_open.)
Other aspects of the existing dict are unchanged, although some
static entries may be duplicated in the dynamic state (which should
have no effect on visible operation). */
static unsigned char *
ctf_serialize (ctf_dict_t *fp, size_t *bufsiz)
{
ctf_header_t hdr, *hdrp;
ctf_dvdef_t *dvd;
ctf_varent_t *dvarents;
const ctf_strs_writable_t *strtab;
int sym_functions = 0;
unsigned char *t;
unsigned long i;
size_t buf_size, type_size, objt_size, func_size;
size_t funcidx_size, objtidx_size;
size_t nvars;
unsigned char *buf = NULL, *newbuf;
emit_symtypetab_state_t symstate;
memset (&symstate, 0, sizeof (emit_symtypetab_state_t));
/* Fill in an initial CTF header. We will leave the label, object,
and function sections empty and only output a header, type section,
and string table. The type section begins at a 4-byte aligned
boundary past the CTF header itself (at relative offset zero). The flag
indicating a new-style function info section (an array of CTF_K_FUNCTION
type IDs in the types section) is flipped on. */
memset (&hdr, 0, sizeof (hdr));
hdr.cth_magic = CTF_MAGIC;
hdr.cth_version = CTF_VERSION;
/* This is a new-format func info section, and the symtab and strtab come out
of the dynsym and dynstr these days. */
hdr.cth_flags = (CTF_F_NEWFUNCINFO | CTF_F_DYNSTR);
/* Propagate all symbols in the symtypetabs into the dynamic state, so that
we can put them back in the right order. Symbols already in the dynamic
state, likely due to repeated serialization, are left unchanged. */
do
{
ctf_next_t *it = NULL;
const char *sym_name;
ctf_id_t sym;
while ((sym = ctf_symbol_next_static (fp, &it, &sym_name,
sym_functions)) != CTF_ERR)
if ((ctf_add_funcobjt_sym_forced (fp, sym_functions, sym_name, sym)) < 0)
if (ctf_errno (fp) != ECTF_DUPLICATE)
return NULL; /* errno is set for us. */
if (ctf_errno (fp) != ECTF_NEXT_END)
return NULL; /* errno is set for us. */
} while (sym_functions++ < 1);
/* Figure out how big the symtypetabs are now. */
if (ctf_symtypetab_sect_sizes (fp, &symstate, &hdr, &objt_size, &func_size,
&objtidx_size, &funcidx_size) < 0)
return NULL; /* errno is set for us. */
/* Propagate all vars into the dynamic state, so we can put them back later.
Variables already in the dynamic state, likely due to repeated
serialization, are left unchanged. */
for (i = 0; i < fp->ctf_nvars; i++)
{
const char *name = ctf_strptr (fp, fp->ctf_vars[i].ctv_name);
if (name != NULL && !ctf_dvd_lookup (fp, name))
if (ctf_add_variable_forced (fp, name, fp->ctf_vars[i].ctv_type) < 0)
return NULL; /* errno is set for us. */
}
for (nvars = 0, dvd = ctf_list_next (&fp->ctf_dvdefs);
dvd != NULL; dvd = ctf_list_next (dvd), nvars++);
type_size = ctf_type_sect_size (fp);
/* Compute the size of the CTF buffer we need, sans only the string table,
then allocate a new buffer and memcpy the finished header to the start of
the buffer. (We will adjust this later with strtab length info.) */
hdr.cth_lbloff = hdr.cth_objtoff = 0;
hdr.cth_funcoff = hdr.cth_objtoff + objt_size;
hdr.cth_objtidxoff = hdr.cth_funcoff + func_size;
hdr.cth_funcidxoff = hdr.cth_objtidxoff + objtidx_size;
hdr.cth_varoff = hdr.cth_funcidxoff + funcidx_size;
hdr.cth_typeoff = hdr.cth_varoff + (nvars * sizeof (ctf_varent_t));
hdr.cth_stroff = hdr.cth_typeoff + type_size;
hdr.cth_strlen = 0;
buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
if ((buf = malloc (buf_size)) == NULL)
{
ctf_set_errno (fp, EAGAIN);
return NULL;
}
memcpy (buf, &hdr, sizeof (ctf_header_t));
t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;
hdrp = (ctf_header_t *) buf;
if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parname != NULL))
ctf_str_add_ref (fp, fp->ctf_parname, &hdrp->cth_parname);
if (fp->ctf_cuname != NULL)
ctf_str_add_ref (fp, fp->ctf_cuname, &hdrp->cth_cuname);
if (ctf_emit_symtypetab_sects (fp, &symstate, &t, objt_size, func_size,
objtidx_size, funcidx_size) < 0)
goto err;
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_varoff);
/* Work over the variable list, translating everything into ctf_varent_t's and
prepping the string table. */
dvarents = (ctf_varent_t *) t;
for (i = 0, dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
dvd = ctf_list_next (dvd), i++)
{
ctf_varent_t *var = &dvarents[i];
ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
var->ctv_type = (uint32_t) dvd->dvd_type;
}
assert (i == nvars);
t += sizeof (ctf_varent_t) * nvars;
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_typeoff);
/* Copy in existing static types, then emit new dynamic types. */
memcpy (t, fp->ctf_buf + fp->ctf_header->cth_typeoff,
fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff);
t += fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff;
ctf_emit_type_sect (fp, &t);
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);
/* Construct the final string table and fill out all the string refs with the
final offsets. */
strtab = ctf_str_write_strtab (fp);
if (strtab == NULL)
goto oom;
/* Now the string table is constructed, we can sort the buffer of
ctf_varent_t's. */
ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) strtab };
ctf_qsort_r (dvarents, nvars, sizeof (ctf_varent_t), ctf_sort_var,
&sort_var_arg);
if ((newbuf = realloc (buf, buf_size + strtab->cts_len)) == NULL)
goto oom;
buf = newbuf;
memcpy (buf + buf_size, strtab->cts_strs, strtab->cts_len);
hdrp = (ctf_header_t *) buf;
hdrp->cth_strlen = strtab->cts_len;
buf_size += hdrp->cth_strlen;
*bufsiz = buf_size;
return buf;
oom:
ctf_set_errno (fp, EAGAIN);
err:
free (buf);
return NULL; /* errno is set for us. */
}
/* File writing. */
/* Write the compressed CTF data stream to the specified gzFile descriptor. The
whole stream is compressed, and cannot be read by CTF opening functions in
this library until it is decompressed. (The functions below this one leave
the header uncompressed, and the CTF opening functions work on them without
manual decompression.)
No support for (testing-only) endian-flipping. */
int
ctf_gzwrite (ctf_dict_t *fp, gzFile fd)
{
unsigned char *buf;
unsigned char *p;
size_t bufsiz;
size_t len, written = 0;
if ((buf = ctf_serialize (fp, &bufsiz)) == NULL)
return -1; /* errno is set for us. */
p = buf;
while (written < bufsiz)
{
if ((len = gzwrite (fd, p, bufsiz - written)) <= 0)
{
free (buf);
return (ctf_set_errno (fp, errno));
}
written += len;
p += len;
}
free (buf);
return 0;
}
/* Optionally compress the specified CTF data stream and return it as a new
dynamically-allocated string. Possibly write it with reversed
endianness. */
unsigned char *
ctf_write_mem (ctf_dict_t *fp, size_t *size, size_t threshold)
{
unsigned char *rawbuf;
unsigned char *buf = NULL;
unsigned char *bp;
ctf_header_t *rawhp, *hp;
unsigned char *src;
size_t rawbufsiz;
size_t alloc_len = 0;
int uncompressed = 0;
int flip_endian;
int rc;
flip_endian = getenv ("LIBCTF_WRITE_FOREIGN_ENDIAN") != NULL;
if ((rawbuf = ctf_serialize (fp, &rawbufsiz)) == NULL)
return NULL; /* errno is set for us. */
if (!ctf_assert (fp, rawbufsiz >= sizeof (ctf_header_t)))
goto err;
if (rawbufsiz >= threshold)
alloc_len = compressBound (rawbufsiz - sizeof (ctf_header_t))
+ sizeof (ctf_header_t);
/* Trivial operation if the buffer is too small to bother compressing, and
we're not doing a forced write-time flip. */
if (rawbufsiz < threshold)
{
alloc_len = rawbufsiz;
uncompressed = 1;
}
if (!flip_endian && uncompressed)
{
*size = rawbufsiz;
return rawbuf;
}
if ((buf = malloc (alloc_len)) == NULL)
{
ctf_set_errno (fp, ENOMEM);
ctf_err_warn (fp, 0, 0, _("ctf_write_mem: cannot allocate %li bytes"),
(unsigned long) (alloc_len));
goto err;
}
rawhp = (ctf_header_t *) rawbuf;
hp = (ctf_header_t *) buf;
memcpy (hp, rawbuf, sizeof (ctf_header_t));
bp = buf + sizeof (ctf_header_t);
*size = sizeof (ctf_header_t);
if (!uncompressed)
hp->cth_flags |= CTF_F_COMPRESS;
src = rawbuf + sizeof (ctf_header_t);
if (flip_endian)
{
ctf_flip_header (hp);
if (ctf_flip (fp, rawhp, src, 1) < 0)
goto err; /* errno is set for us. */
}
if (!uncompressed)
{
size_t compress_len = alloc_len - sizeof (ctf_header_t);
if ((rc = compress (bp, (uLongf *) &compress_len,
src, rawbufsiz - sizeof (ctf_header_t))) != Z_OK)
{
ctf_set_errno (fp, ECTF_COMPRESS);
ctf_err_warn (fp, 0, 0, _("zlib deflate err: %s"), zError (rc));
goto err;
}
*size += compress_len;
}
else
{
memcpy (bp, src, rawbufsiz - sizeof (ctf_header_t));
*size += rawbufsiz - sizeof (ctf_header_t);
}
free (rawbuf);
return buf;
err:
free (buf);
free (rawbuf);
return NULL;
}
/* Write the compressed CTF data stream to the specified file descriptor,
possibly compressed. Internal only (for now). */
int
ctf_write_thresholded (ctf_dict_t *fp, int fd, size_t threshold)
{
unsigned char *buf;
unsigned char *bp;
size_t tmp;
ssize_t buf_len;
ssize_t len;
int err = 0;
if ((buf = ctf_write_mem (fp, &tmp, threshold)) == NULL)
return -1; /* errno is set for us. */
buf_len = tmp;
bp = buf;
while (buf_len > 0)
{
if ((len = write (fd, bp, buf_len)) < 0)
{
err = ctf_set_errno (fp, errno);
ctf_err_warn (fp, 0, 0, _("ctf_compress_write: error writing"));
goto ret;
}
buf_len -= len;
bp += len;
}
ret:
free (buf);
return err;
}
/* Compress the specified CTF data stream and write it to the specified file
descriptor. */
int
ctf_compress_write (ctf_dict_t *fp, int fd)
{
return ctf_write_thresholded (fp, fd, 0);
}
/* Write the uncompressed CTF data stream to the specified file descriptor. */
int
ctf_write (ctf_dict_t *fp, int fd)
{
return ctf_write_thresholded (fp, fd, (size_t) -1);
}
|