aboutsummaryrefslogtreecommitdiff
path: root/gprof/hist.c
blob: 2fc2ad45f32f059156ca2c03a85c5e8f18145209 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/* hist.c  -  Histogram related operations.

   Copyright (C) 1999-2019 Free Software Foundation, Inc.

   This file is part of GNU Binutils.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */

#include "gprof.h"
#include "libiberty.h"
#include "search_list.h"
#include "source.h"
#include "symtab.h"
#include "corefile.h"
#include "gmon_io.h"
#include "gmon_out.h"
#include "hist.h"
#include "sym_ids.h"
#include "utils.h"
#include "math.h"
#include "stdio.h"
#include "stdlib.h"

#define UNITS_TO_CODE (offset_to_code / sizeof(UNIT))

static void scale_and_align_entries (void);
static void print_header (int);
static void print_line (Sym *, double);
static int cmp_time (const PTR, const PTR);

/* Declarations of automatically generated functions to output blurbs.  */
extern void flat_blurb (FILE * fp);

static histogram *find_histogram (bfd_vma lowpc, bfd_vma highpc);
static histogram *find_histogram_for_pc (bfd_vma pc);

histogram * histograms;
unsigned num_histograms;
double hist_scale;
static char hist_dimension[16] = "seconds";
static char hist_dimension_abbrev = 's';

static double accum_time;	/* Accumulated time so far for print_line(). */
static double total_time;	/* Total time for all routines.  */

/* Table of SI prefixes for powers of 10 (used to automatically
   scale some of the values in the flat profile).  */
const struct
  {
    char prefix;
    double scale;
  }
SItab[] =
{
  { 'T', 1e-12 },				/* tera */
  { 'G', 1e-09 },				/* giga */
  { 'M', 1e-06 },				/* mega */
  { 'K', 1e-03 },				/* kilo */
  { ' ', 1e-00 },
  { 'm', 1e+03 },				/* milli */
  { 'u', 1e+06 },				/* micro */
  { 'n', 1e+09 },				/* nano */
  { 'p', 1e+12 },				/* pico */
  { 'f', 1e+15 },				/* femto */
  { 'a', 1e+18 }				/* ato */
};

/* Reads just the header part of histogram record into
   *RECORD from IFP.  FILENAME is the name of IFP and
   is provided for formatting error messages only.

   If FIRST is non-zero, sets global variables HZ, HIST_DIMENSION,
   HIST_DIMENSION_ABBREV, HIST_SCALE.  If FIRST is zero, checks
   that the new histogram is compatible with already-set values
   of those variables and emits an error if that's not so.  */
static void
read_histogram_header (histogram *record,
		       FILE *ifp, const char *filename,
		       int first)
{
  unsigned int profrate;
  char n_hist_dimension[15];
  char n_hist_dimension_abbrev;
  double n_hist_scale;

  if (gmon_io_read_vma (ifp, &record->lowpc)
      || gmon_io_read_vma (ifp, &record->highpc)
      || gmon_io_read_32 (ifp, &record->num_bins)
      || gmon_io_read_32 (ifp, &profrate)
      || gmon_io_read (ifp, n_hist_dimension, 15)
      || gmon_io_read (ifp, &n_hist_dimension_abbrev, 1))
    {
      fprintf (stderr, _("%s: %s: unexpected end of file\n"),
	       whoami, filename);

      done (1);
    }

  n_hist_scale = (double)((record->highpc - record->lowpc) / sizeof (UNIT))
    / record->num_bins;

  if (first)
    {
      /* We don't try to veryfy profrate is the same for all histogram
	 records.  If we have two histogram records for the same
	 address range and profiling samples is done as often
	 as possible as opposed on timer, then the actual profrate will
	 be slightly different.  Most of the time the difference does not
	 matter and insisting that profiling rate is exactly the same
	 will only create inconvenient.  */
      hz = profrate;
      memcpy (hist_dimension, n_hist_dimension, 15);
      hist_dimension_abbrev = n_hist_dimension_abbrev;
      hist_scale = n_hist_scale;
    }
  else
    {
      if (strncmp (n_hist_dimension, hist_dimension, 15) != 0)
	{
	  fprintf (stderr,
		   _("%s: dimension unit changed between histogram records\n"
		     "%s: from '%s'\n"
		     "%s: to '%s'\n"),
		   whoami, whoami, hist_dimension, whoami, n_hist_dimension);
	  done (1);
	}

      if (n_hist_dimension_abbrev != hist_dimension_abbrev)
	{
	  fprintf (stderr,
		   _("%s: dimension abbreviation changed between histogram records\n"
		     "%s: from '%c'\n"
		     "%s: to '%c'\n"),
		   whoami, whoami, hist_dimension_abbrev, whoami, n_hist_dimension_abbrev);
	  done (1);
	}

      /* The only reason we require the same scale for histograms is that
	 there's code (notably printing code), that prints units,
	 and it would be very confusing to have one unit mean different
	 things for different functions.  */
      if (fabs (hist_scale - n_hist_scale) > 0.000001)
	{
	  fprintf (stderr,
		   _("%s: different scales in histogram records"),
		   whoami);
	  done (1);
	}
    }
}

/* Read the histogram from file IFP.  FILENAME is the name of IFP and
   is provided for formatting error messages only.  */

void
hist_read_rec (FILE * ifp, const char *filename)
{
  bfd_vma lowpc, highpc;
  histogram n_record;
  histogram *record, *existing_record;
  unsigned i;

  /* 1. Read the header and see if there's existing record for the
     same address range and that there are no overlapping records.  */
  read_histogram_header (&n_record, ifp, filename, num_histograms == 0);

  existing_record = find_histogram (n_record.lowpc, n_record.highpc);
  if (existing_record)
    {
      record = existing_record;
    }
  else
    {
      /* If this record overlaps, but does not completely match an existing
	 record, it's an error.  */
      lowpc = n_record.lowpc;
      highpc = n_record.highpc;
      hist_clip_symbol_address (&lowpc, &highpc);
      if (lowpc != highpc)
	{
	  fprintf (stderr,
		   _("%s: overlapping histogram records\n"),
		   whoami);
	  done (1);
	}

      /* This is new record.  Add it to global array and allocate space for
	 the samples.  */
      histograms = (struct histogram *)
          xrealloc (histograms, sizeof (histogram) * (num_histograms + 1));
      memcpy (histograms + num_histograms,
	      &n_record, sizeof (histogram));
      record = &histograms[num_histograms];
      ++num_histograms;

      record->sample = (int *) xmalloc (record->num_bins
					* sizeof (record->sample[0]));
      memset (record->sample, 0, record->num_bins * sizeof (record->sample[0]));
    }

  /* 2. We have either a new record (with zeroed histogram data), or an existing
     record with some data in the histogram already.  Read new data into the
     record, adding hit counts.  */

  DBG (SAMPLEDEBUG,
       printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %u\n",
	       (unsigned long) record->lowpc, (unsigned long) record->highpc,
               record->num_bins));

  for (i = 0; i < record->num_bins; ++i)
    {
      UNIT count;
      if (fread (&count[0], sizeof (count), 1, ifp) != 1)
	{
	  fprintf (stderr,
		  _("%s: %s: unexpected EOF after reading %u of %u samples\n"),
		   whoami, filename, i, record->num_bins);
	  done (1);
	}
      record->sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]);
      DBG (SAMPLEDEBUG,
	   printf ("[hist_read_rec] 0x%lx: %u\n",
		   (unsigned long) (record->lowpc
                                    + i * (record->highpc - record->lowpc)
                                    / record->num_bins),
		   record->sample[i]));
    }
}


/* Write all execution histograms file OFP.  FILENAME is the name
   of OFP and is provided for formatting error-messages only.  */

void
hist_write_hist (FILE * ofp, const char *filename)
{
  UNIT count;
  unsigned int i, r;

  for (r = 0; r < num_histograms; ++r)
    {
      histogram *record = &histograms[r];

      /* Write header.  */

      if (gmon_io_write_8 (ofp, GMON_TAG_TIME_HIST)
	  || gmon_io_write_vma (ofp, record->lowpc)
	  || gmon_io_write_vma (ofp, record->highpc)
	  || gmon_io_write_32 (ofp, record->num_bins)
	  || gmon_io_write_32 (ofp, hz)
	  || gmon_io_write (ofp, hist_dimension, 15)
	  || gmon_io_write (ofp, &hist_dimension_abbrev, 1))
	{
	  perror (filename);
	  done (1);
	}

      for (i = 0; i < record->num_bins; ++i)
	{
	  bfd_put_16 (core_bfd, (bfd_vma) record->sample[i], (bfd_byte *) &count[0]);

	  if (fwrite (&count[0], sizeof (count), 1, ofp) != 1)
	    {
	      perror (filename);
	      done (1);
	    }
	}
    }
}

/* Calculate scaled entry point addresses (to save time in
   hist_assign_samples), and, on architectures that have procedure
   entry masks at the start of a function, possibly push the scaled
   entry points over the procedure entry mask, if it turns out that
   the entry point is in one bin and the code for a routine is in the
   next bin.  */

static void
scale_and_align_entries (void)
{
  Sym *sym;
  bfd_vma bin_of_entry;
  bfd_vma bin_of_code;

  for (sym = symtab.base; sym < symtab.limit; sym++)
    {
      histogram *r = find_histogram_for_pc (sym->addr);

      sym->hist.scaled_addr = sym->addr / sizeof (UNIT);

      if (r)
	{
	  bin_of_entry = (sym->hist.scaled_addr - r->lowpc) / hist_scale;
	  bin_of_code = ((sym->hist.scaled_addr + UNITS_TO_CODE - r->lowpc)
		     / hist_scale);
	  if (bin_of_entry < bin_of_code)
	    {
	      DBG (SAMPLEDEBUG,
		   printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n",
			   (unsigned long) sym->hist.scaled_addr,
			   (unsigned long) (sym->hist.scaled_addr
					    + UNITS_TO_CODE)));
	      sym->hist.scaled_addr += UNITS_TO_CODE;
	    }
	}
    }
}


/* Assign samples to the symbol to which they belong.

   Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC)
   which may overlap one more symbol address ranges.  If a symbol
   overlaps with the bin's address range by O percent, then O percent
   of the bin's count is credited to that symbol.

   There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be
   with respect to the symbol's address range [SYM_LOW_PC,
   SYM_HIGH_PC) as shown in the following diagram.  OVERLAP computes
   the distance (in UNITs) between the arrows, the fraction of the
   sample that is to be credited to the symbol which starts at
   SYM_LOW_PC.

	  sym_low_pc                                      sym_high_pc
	       |                                               |
	       v                                               v

	       +-----------------------------------------------+
	       |                                               |
	  |  ->|    |<-         ->|         |<-         ->|    |<-  |
	  |         |             |         |             |         |
	  +---------+             +---------+             +---------+

	  ^         ^             ^         ^             ^         ^
	  |         |             |         |             |         |
     bin_low_pc bin_high_pc  bin_low_pc bin_high_pc  bin_low_pc bin_high_pc

   For the VAX we assert that samples will never fall in the first two
   bytes of any routine, since that is the entry mask, thus we call
   scale_and_align_entries() to adjust the entry points if the entry
   mask falls in one bin but the code for the routine doesn't start
   until the next bin.  In conjunction with the alignment of routine
   addresses, this should allow us to have only one sample for every
   four bytes of text space and never have any overlap (the two end
   cases, above).  */

static void
hist_assign_samples_1 (histogram *r)
{
  bfd_vma bin_low_pc, bin_high_pc;
  bfd_vma sym_low_pc, sym_high_pc;
  bfd_vma overlap, addr;
  unsigned int bin_count;
  unsigned int i, j, k;
  double count_time, credit;

  bfd_vma lowpc = r->lowpc / sizeof (UNIT);

  /* Iterate over all sample bins.  */
  for (i = 0, k = 1; i < r->num_bins; ++i)
    {
      bin_count = r->sample[i];
      if (! bin_count)
	continue;

      bin_low_pc = lowpc + (bfd_vma) (hist_scale * i);
      bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1));
      count_time = bin_count;

      DBG (SAMPLEDEBUG,
	   printf (
      "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%u\n",
		    (unsigned long) (sizeof (UNIT) * bin_low_pc),
		    (unsigned long) (sizeof (UNIT) * bin_high_pc),
		    bin_count));
      total_time += count_time;

      /* Credit all symbols that are covered by bin I.

         PR gprof/13325: Make sure that K does not get decremented
	 and J will never be less than 0.  */
      for (j = k - 1; j < symtab.len; k = ++j)
	{
	  sym_low_pc = symtab.base[j].hist.scaled_addr;
	  sym_high_pc = symtab.base[j + 1].hist.scaled_addr;

	  /* If high end of bin is below entry address,
	     go for next bin.  */
	  if (bin_high_pc < sym_low_pc)
	    break;

	  /* If low end of bin is above high end of symbol,
	     go for next symbol.  */
	  if (bin_low_pc >= sym_high_pc)
	    continue;

	  overlap =
	    MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc);
	  if (overlap > 0)
	    {
	      DBG (SAMPLEDEBUG,
		   printf (
	       "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n",
			   (unsigned long) symtab.base[j].addr,
			   (unsigned long) (sizeof (UNIT) * sym_high_pc),
			   symtab.base[j].name, overlap * count_time / hist_scale,
			   (long) overlap));

	      addr = symtab.base[j].addr;
	      credit = overlap * count_time / hist_scale;

	      /* Credit symbol if it appears in INCL_FLAT or that
		 table is empty and it does not appear it in
		 EXCL_FLAT.  */
	      if (sym_lookup (&syms[INCL_FLAT], addr)
		  || (syms[INCL_FLAT].len == 0
		      && !sym_lookup (&syms[EXCL_FLAT], addr)))
		{
		  symtab.base[j].hist.time += credit;
		}
	      else
		{
		  total_time -= credit;
		}
	    }
	}
    }

  DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n",
			    total_time));
}

/* Calls 'hist_assign_sampes_1' for all histogram records read so far. */
void
hist_assign_samples (void)
{
  unsigned i;

  scale_and_align_entries ();

  for (i = 0; i < num_histograms; ++i)
    hist_assign_samples_1 (&histograms[i]);

}

/* Print header for flag histogram profile.  */

static void
print_header (int prefix)
{
  char unit[64];

  sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev);

  if (bsd_style_output)
    {
      printf (_("\ngranularity: each sample hit covers %ld byte(s)"),
	      (long) hist_scale * (long) sizeof (UNIT));
      if (total_time > 0.0)
	{
	  printf (_(" for %.2f%% of %.2f %s\n\n"),
		  100.0 / total_time, total_time / hz, hist_dimension);
	}
    }
  else
    {
      printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension);
    }

  if (total_time <= 0.0)
    {
      printf (_(" no time accumulated\n\n"));

      /* This doesn't hurt since all the numerators will be zero.  */
      total_time = 1.0;
    }

  printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
	  "%  ", _("cumulative"), _("self  "), "", _("self  "), _("total "),
	  "");
  printf ("%5.5s %9.9s  %8.8s %8.8s %8.8s %8.8s  %-8.8s\n",
	  _("time"), hist_dimension, hist_dimension, _("calls"), unit, unit,
	  _("name"));
}


static void
print_line (Sym *sym, double scale)
{
  if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0)
    return;

  accum_time += sym->hist.time;

  if (bsd_style_output)
    printf ("%5.1f %10.2f %8.2f",
	    total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
	    accum_time / hz, sym->hist.time / hz);
  else
    printf ("%6.2f %9.2f %8.2f",
	    total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0,
	    accum_time / hz, sym->hist.time / hz);

  if (sym->ncalls != 0)
    printf (" %8lu %8.2f %8.2f  ",
	    sym->ncalls, scale * sym->hist.time / hz / sym->ncalls,
	    scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls);
  else
    printf (" %8.8s %8.8s %8.8s  ", "", "", "");

  if (bsd_style_output)
    print_name (sym);
  else
    print_name_only (sym);

  printf ("\n");
}


/* Compare LP and RP.  The primary comparison key is execution time,
   the secondary is number of invocation, and the tertiary is the
   lexicographic order of the function names.  */

static int
cmp_time (const PTR lp, const PTR rp)
{
  const Sym *left = *(const Sym **) lp;
  const Sym *right = *(const Sym **) rp;
  double time_diff;

  time_diff = right->hist.time - left->hist.time;

  if (time_diff > 0.0)
    return 1;

  if (time_diff < 0.0)
    return -1;

  if (right->ncalls > left->ncalls)
    return 1;

  if (right->ncalls < left->ncalls)
    return -1;

  return strcmp (left->name, right->name);
}


/* Print the flat histogram profile.  */

void
hist_print (void)
{
  Sym **time_sorted_syms, *top_dog, *sym;
  unsigned int sym_index;
  unsigned log_scale;
  double top_time;
  bfd_vma addr;

  if (first_output)
    first_output = FALSE;
  else
    printf ("\f\n");

  accum_time = 0.0;

  if (bsd_style_output)
    {
      if (print_descriptions)
	{
	  printf (_("\n\n\nflat profile:\n"));
	  flat_blurb (stdout);
	}
    }
  else
    {
      printf (_("Flat profile:\n"));
    }

  /* Sort the symbol table by time (call-count and name as secondary
     and tertiary keys).  */
  time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));

  for (sym_index = 0; sym_index < symtab.len; ++sym_index)
    time_sorted_syms[sym_index] = &symtab.base[sym_index];

  qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time);

  if (bsd_style_output)
    {
      log_scale = 5;		/* Milli-seconds is BSD-default.  */
    }
  else
    {
      /* Search for symbol with highest per-call
	 execution time and scale accordingly.  */
      log_scale = 0;
      top_dog = 0;
      top_time = 0.0;

      for (sym_index = 0; sym_index < symtab.len; ++sym_index)
	{
	  sym = time_sorted_syms[sym_index];

	  if (sym->ncalls != 0)
	    {
	      double call_time;

	      call_time = (sym->hist.time + sym->cg.child_time) / sym->ncalls;

	      if (call_time > top_time)
		{
		  top_dog = sym;
		  top_time = call_time;
		}
	    }
	}

      if (top_dog && top_dog->ncalls != 0 && top_time > 0.0)
	{
	  top_time /= hz;

	  for (log_scale = 0; log_scale < ARRAY_SIZE (SItab); log_scale ++)
	    {
	      double scaled_value = SItab[log_scale].scale * top_time;

	      if (scaled_value >= 1.0 && scaled_value < 1000.0)
		break;
	    }
	}
    }

  /* For now, the dimension is always seconds.  In the future, we
     may also want to support other (pseudo-)dimensions (such as
     I-cache misses etc.).  */
  print_header (SItab[log_scale].prefix);

  for (sym_index = 0; sym_index < symtab.len; ++sym_index)
    {
      addr = time_sorted_syms[sym_index]->addr;

      /* Print symbol if its in INCL_FLAT table or that table
	is empty and the symbol is not in EXCL_FLAT.  */
      if (sym_lookup (&syms[INCL_FLAT], addr)
	  || (syms[INCL_FLAT].len == 0
	      && !sym_lookup (&syms[EXCL_FLAT], addr)))
	print_line (time_sorted_syms[sym_index], SItab[log_scale].scale);
    }

  free (time_sorted_syms);

  if (print_descriptions && !bsd_style_output)
    flat_blurb (stdout);
}

int
hist_check_address (unsigned address)
{
  unsigned i;

  for (i = 0; i < num_histograms; ++i)
    if (histograms[i].lowpc <= address && address < histograms[i].highpc)
      return 1;

  return 0;
}

#if ! defined(min)
#define min(a,b) (((a)<(b)) ? (a) : (b))
#endif
#if ! defined(max)
#define max(a,b) (((a)>(b)) ? (a) : (b))
#endif

void
hist_clip_symbol_address (bfd_vma *p_lowpc, bfd_vma *p_highpc)
{
  unsigned i;
  int found = 0;

  if (num_histograms == 0)
    {
      *p_highpc = *p_lowpc;
      return;
    }

  for (i = 0; i < num_histograms; ++i)
    {
      bfd_vma common_low, common_high;
      common_low = max (histograms[i].lowpc, *p_lowpc);
      common_high = min (histograms[i].highpc, *p_highpc);

      if (common_low < common_high)
	{
	  if (found)
	    {
	      fprintf (stderr,
		       _("%s: found a symbol that covers "
			 "several histogram records"),
			 whoami);
	      done (1);
	    }

	  found = 1;
	  *p_lowpc = common_low;
	  *p_highpc = common_high;
	}
    }

  if (!found)
    *p_highpc = *p_lowpc;
}

/* Find and return exising histogram record having the same lowpc and
   highpc as passed via the parameters.  Return NULL if nothing is found.
   The return value is valid until any new histogram is read.  */
static histogram *
find_histogram (bfd_vma lowpc, bfd_vma highpc)
{
  unsigned i;
  for (i = 0; i < num_histograms; ++i)
    {
      if (histograms[i].lowpc == lowpc && histograms[i].highpc == highpc)
	return &histograms[i];
    }
  return 0;
}

/* Given a PC, return histogram record which address range include this PC.
   Return NULL if there's no such record.  */
static histogram *
find_histogram_for_pc (bfd_vma pc)
{
  unsigned i;
  for (i = 0; i < num_histograms; ++i)
    {
      if (histograms[i].lowpc <= pc && pc < histograms[i].highpc)
	return &histograms[i];
    }
  return 0;
}