aboutsummaryrefslogtreecommitdiff
path: root/gold/mips.cc
blob: e346692dcc47e07be03546df058e7ec48d2ce722 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
// mips.cc -- mips target support for gold.

// Copyright (C) 2011-2021 Free Software Foundation, Inc.
// Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
//        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
// This file contains borrowed and adapted code from bfd/elfxx-mips.c.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <algorithm>
#include <set>
#include <sstream>
#include "demangle.h"

#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "mips.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"
#include "attributes.h"
#include "nacl.h"

namespace
{
using namespace gold;

template<int size, bool big_endian>
class Mips_output_data_plt;

template<int size, bool big_endian>
class Mips_output_data_got;

template<int size, bool big_endian>
class Target_mips;

template<int size, bool big_endian>
class Mips_output_section_reginfo;

template<int size, bool big_endian>
class Mips_output_section_options;

template<int size, bool big_endian>
class Mips_output_data_la25_stub;

template<int size, bool big_endian>
class Mips_output_data_mips_stubs;

template<int size>
class Mips_symbol;

template<int size, bool big_endian>
class Mips_got_info;

template<int size, bool big_endian>
class Mips_relobj;

class Mips16_stub_section_base;

template<int size, bool big_endian>
class Mips16_stub_section;

// The ABI says that every symbol used by dynamic relocations must have
// a global GOT entry.  Among other things, this provides the dynamic
// linker with a free, directly-indexed cache.  The GOT can therefore
// contain symbols that are not referenced by GOT relocations themselves
// (in other words, it may have symbols that are not referenced by things
// like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).

// GOT relocations are less likely to overflow if we put the associated
// GOT entries towards the beginning.  We therefore divide the global
// GOT entries into two areas: "normal" and "reloc-only".  Entries in
// the first area can be used for both dynamic relocations and GP-relative
// accesses, while those in the "reloc-only" area are for dynamic
// relocations only.

// These GGA_* ("Global GOT Area") values are organised so that lower
// values are more general than higher values.  Also, non-GGA_NONE
// values are ordered by the position of the area in the GOT.

enum Global_got_area
{
  GGA_NORMAL = 0,
  GGA_RELOC_ONLY = 1,
  GGA_NONE = 2
};

// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
  GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
  GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
  GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair

  // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
  GOT_TYPE_STANDARD_MULTIGOT = 3,
  GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
  GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
};

// TLS type of GOT entry.
enum Got_tls_type
{
  GOT_TLS_NONE = 0,
  GOT_TLS_GD = 1,
  GOT_TLS_LDM = 2,
  GOT_TLS_IE = 4
};

// Values found in the r_ssym field of a relocation entry.
enum Special_relocation_symbol
{
  RSS_UNDEF = 0,    // None - value is zero.
  RSS_GP = 1,       // Value of GP.
  RSS_GP0 = 2,      // Value of GP in object being relocated.
  RSS_LOC = 3       // Address of location being relocated.
};

// Whether the section is readonly.
static inline bool
is_readonly_section(Output_section* output_section)
{
  elfcpp::Elf_Xword section_flags = output_section->flags();
  elfcpp::Elf_Word section_type = output_section->type();

  if (section_type == elfcpp::SHT_NOBITS)
    return false;

  if (section_flags & elfcpp::SHF_WRITE)
    return false;

  return true;
}

// Return TRUE if a relocation of type R_TYPE from OBJECT might
// require an la25 stub.  See also local_pic_function, which determines
// whether the destination function ever requires a stub.
template<int size, bool big_endian>
static inline bool
relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
                           unsigned int r_type, bool target_is_16_bit_code)
{
  // We specifically ignore branches and jumps from EF_PIC objects,
  // where the onus is on the compiler or programmer to perform any
  // necessary initialization of $25.  Sometimes such initialization
  // is unnecessary; for example, -mno-shared functions do not use
  // the incoming value of $25, and may therefore be called directly.
  if (object->is_pic())
    return false;

  switch (r_type)
    {
    case elfcpp::R_MIPS_26:
    case elfcpp::R_MIPS_PC16:
    case elfcpp::R_MIPS_PC21_S2:
    case elfcpp::R_MIPS_PC26_S2:
    case elfcpp::R_MICROMIPS_26_S1:
    case elfcpp::R_MICROMIPS_PC7_S1:
    case elfcpp::R_MICROMIPS_PC10_S1:
    case elfcpp::R_MICROMIPS_PC16_S1:
    case elfcpp::R_MICROMIPS_PC23_S2:
      return true;

    case elfcpp::R_MIPS16_26:
      return !target_is_16_bit_code;

    default:
      return false;
    }
}

// Return true if SYM is a locally-defined PIC function, in the sense
// that it or its fn_stub might need $25 to be valid on entry.
// Note that MIPS16 functions set up $gp using PC-relative instructions,
// so they themselves never need $25 to be valid.  Only non-MIPS16
// entry points are of interest here.
template<int size, bool big_endian>
static inline bool
local_pic_function(Mips_symbol<size>* sym)
{
  bool def_regular = (sym->source() == Symbol::FROM_OBJECT
                      && !sym->object()->is_dynamic()
                      && !sym->is_undefined());

  if (sym->is_defined() && def_regular)
    {
      Mips_relobj<size, big_endian>* object =
        static_cast<Mips_relobj<size, big_endian>*>(sym->object());

      if ((object->is_pic() || sym->is_pic())
          && (!sym->is_mips16()
              || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
        return true;
    }
  return false;
}

static inline bool
hi16_reloc(int r_type)
{
  return (r_type == elfcpp::R_MIPS_HI16
          || r_type == elfcpp::R_MIPS16_HI16
          || r_type == elfcpp::R_MICROMIPS_HI16
          || r_type == elfcpp::R_MIPS_PCHI16);
}

static inline bool
lo16_reloc(int r_type)
{
  return (r_type == elfcpp::R_MIPS_LO16
          || r_type == elfcpp::R_MIPS16_LO16
          || r_type == elfcpp::R_MICROMIPS_LO16
          || r_type == elfcpp::R_MIPS_PCLO16);
}

static inline bool
got16_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_GOT16
          || r_type == elfcpp::R_MIPS16_GOT16
          || r_type == elfcpp::R_MICROMIPS_GOT16);
}

static inline bool
call_lo16_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_CALL_LO16
          || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
}

static inline bool
got_lo16_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_GOT_LO16
          || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
}

static inline bool
eh_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_EH);
}

static inline bool
got_disp_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_GOT_DISP
          || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
}

static inline bool
got_page_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_GOT_PAGE
          || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
}

static inline bool
tls_gd_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_TLS_GD
          || r_type == elfcpp::R_MIPS16_TLS_GD
          || r_type == elfcpp::R_MICROMIPS_TLS_GD);
}

static inline bool
tls_gottprel_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
          || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
          || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
}

static inline bool
tls_ldm_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_TLS_LDM
          || r_type == elfcpp::R_MIPS16_TLS_LDM
          || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
}

static inline bool
mips16_call_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS16_26
          || r_type == elfcpp::R_MIPS16_CALL16);
}

static inline bool
jal_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MIPS_26
          || r_type == elfcpp::R_MIPS16_26
          || r_type == elfcpp::R_MICROMIPS_26_S1);
}

static inline bool
micromips_branch_reloc(unsigned int r_type)
{
  return (r_type == elfcpp::R_MICROMIPS_26_S1
          || r_type == elfcpp::R_MICROMIPS_PC16_S1
          || r_type == elfcpp::R_MICROMIPS_PC10_S1
          || r_type == elfcpp::R_MICROMIPS_PC7_S1);
}

// Check if R_TYPE is a MIPS16 reloc.
static inline bool
mips16_reloc(unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_MIPS16_26:
    case elfcpp::R_MIPS16_GPREL:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MIPS16_HI16:
    case elfcpp::R_MIPS16_LO16:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MIPS16_TLS_LDM:
    case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
    case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MIPS16_TLS_TPREL_HI16:
    case elfcpp::R_MIPS16_TLS_TPREL_LO16:
      return true;

    default:
      return false;
    }
}

// Check if R_TYPE is a microMIPS reloc.
static inline bool
micromips_reloc(unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_MICROMIPS_26_S1:
    case elfcpp::R_MICROMIPS_HI16:
    case elfcpp::R_MICROMIPS_LO16:
    case elfcpp::R_MICROMIPS_GPREL16:
    case elfcpp::R_MICROMIPS_LITERAL:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_PC7_S1:
    case elfcpp::R_MICROMIPS_PC10_S1:
    case elfcpp::R_MICROMIPS_PC16_S1:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MICROMIPS_GOT_DISP:
    case elfcpp::R_MICROMIPS_GOT_PAGE:
    case elfcpp::R_MICROMIPS_GOT_OFST:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_SUB:
    case elfcpp::R_MICROMIPS_HIGHER:
    case elfcpp::R_MICROMIPS_HIGHEST:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
    case elfcpp::R_MICROMIPS_SCN_DISP:
    case elfcpp::R_MICROMIPS_JALR:
    case elfcpp::R_MICROMIPS_HI0_LO16:
    case elfcpp::R_MICROMIPS_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_LDM:
    case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
    case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
    case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
    case elfcpp::R_MICROMIPS_GPREL7_S2:
    case elfcpp::R_MICROMIPS_PC23_S2:
      return true;

    default:
      return false;
    }
}

static inline bool
is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
{
  switch (high_reloc)
    {
    case elfcpp::R_MIPS_HI16:
    case elfcpp::R_MIPS_GOT16:
      return lo16_reloc == elfcpp::R_MIPS_LO16;
    case elfcpp::R_MIPS_PCHI16:
      return lo16_reloc == elfcpp::R_MIPS_PCLO16;
    case elfcpp::R_MIPS16_HI16:
    case elfcpp::R_MIPS16_GOT16:
      return lo16_reloc == elfcpp::R_MIPS16_LO16;
    case elfcpp::R_MICROMIPS_HI16:
    case elfcpp::R_MICROMIPS_GOT16:
      return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
    default:
      return false;
    }
}

// This class is used to hold information about one GOT entry.
// There are three types of entry:
//
//    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
//          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
//    (2) a SYMBOL address, where SYMBOL is not local to an input object
//          (sym != NULL, symndx == -1)
//    (3) a TLS LDM slot (there's only one of these per GOT.)
//          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)

template<int size, bool big_endian>
class Mips_got_entry
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

 public:
  Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
                 Mips_address addend, unsigned char tls_type,
                 unsigned int shndx, bool is_section_symbol)
    : addend_(addend), symndx_(symndx), tls_type_(tls_type),
      is_section_symbol_(is_section_symbol), shndx_(shndx)
  { this->d.object = object; }

  Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
    : addend_(0), symndx_(-1U), tls_type_(tls_type),
      is_section_symbol_(false), shndx_(-1U)
  { this->d.sym = sym; }

  // Return whether this entry is for a local symbol.
  bool
  is_for_local_symbol() const
  { return this->symndx_ != -1U; }

  // Return whether this entry is for a global symbol.
  bool
  is_for_global_symbol() const
  { return this->symndx_ == -1U; }

  // Return the hash of this entry.
  size_t
  hash() const
  {
    if (this->tls_type_ == GOT_TLS_LDM)
      return this->symndx_ + (1 << 18);

    size_t name_hash_value = gold::string_hash<char>(
        (this->symndx_ != -1U)
         ? this->d.object->name().c_str()
         : this->d.sym->name());
    size_t addend = this->addend_;
    return name_hash_value ^ this->symndx_ ^ (addend << 16);
  }

  // Return whether this entry is equal to OTHER.
  bool
  equals(Mips_got_entry<size, big_endian>* other) const
  {
    if (this->symndx_ != other->symndx_
        || this->tls_type_ != other->tls_type_)
      return false;

    if (this->tls_type_ == GOT_TLS_LDM)
      return true;

    return (((this->symndx_ != -1U)
              ? (this->d.object == other->d.object)
              : (this->d.sym == other->d.sym))
            && (this->addend_ == other->addend_));
  }

  // Return input object that needs this GOT entry.
  Mips_relobj<size, big_endian>*
  object() const
  {
    gold_assert(this->symndx_ != -1U);
    return this->d.object;
  }

  // Return local symbol index for local GOT entries.
  unsigned int
  symndx() const
  {
    gold_assert(this->symndx_ != -1U);
    return this->symndx_;
  }

  // Return the relocation addend for local GOT entries.
  Mips_address
  addend() const
  { return this->addend_; }

  // Return global symbol for global GOT entries.
  Mips_symbol<size>*
  sym() const
  {
    gold_assert(this->symndx_ == -1U);
    return this->d.sym;
  }

  // Return whether this is a TLS GOT entry.
  bool
  is_tls_entry() const
  { return this->tls_type_ != GOT_TLS_NONE; }

  // Return TLS type of this GOT entry.
  unsigned char
  tls_type() const
  { return this->tls_type_; }

  // Return section index of the local symbol for local GOT entries.
  unsigned int
  shndx() const
  { return this->shndx_; }

  // Return whether this is a STT_SECTION symbol.
  bool
  is_section_symbol() const
  { return this->is_section_symbol_; }

 private:
  // The addend.
  Mips_address addend_;

  // The index of the symbol if we have a local symbol; -1 otherwise.
  unsigned int symndx_;

  union
  {
    // The input object for local symbols that needs the GOT entry.
    Mips_relobj<size, big_endian>* object;
    // If symndx == -1, the global symbol corresponding to this GOT entry.  The
    // symbol's entry is in the local area if mips_sym->global_got_area is
    // GGA_NONE, otherwise it is in the global area.
    Mips_symbol<size>* sym;
  } d;

  // The TLS type of this GOT entry.  An LDM GOT entry will be a local
  // symbol entry with r_symndx == 0.
  unsigned char tls_type_;

  // Whether this is a STT_SECTION symbol.
  bool is_section_symbol_;

  // For local GOT entries, section index of the local symbol.
  unsigned int shndx_;
};

// Hash for Mips_got_entry.

template<int size, bool big_endian>
class Mips_got_entry_hash
{
 public:
  size_t
  operator()(Mips_got_entry<size, big_endian>* entry) const
  { return entry->hash(); }
};

// Equality for Mips_got_entry.

template<int size, bool big_endian>
class Mips_got_entry_eq
{
 public:
  bool
  operator()(Mips_got_entry<size, big_endian>* e1,
             Mips_got_entry<size, big_endian>* e2) const
  { return e1->equals(e2); }
};

// Hash for Mips_symbol.

template<int size>
class Mips_symbol_hash
{
 public:
  size_t
  operator()(Mips_symbol<size>* sym) const
  { return sym->hash(); }
};

// Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
// MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
// increasing MIN_ADDEND.

struct Got_page_range
{
  Got_page_range()
    : next(NULL), min_addend(0), max_addend(0)
  { }

  Got_page_range* next;
  int min_addend;
  int max_addend;

  // Return the maximum number of GOT page entries required.
  int
  get_max_pages()
  { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
};

// Got_page_entry.  This class describes the range of addends that are applied
// to page relocations against a given symbol.

struct Got_page_entry
{
  Got_page_entry()
    : object(NULL), symndx(-1U), ranges(NULL)
  { }

  Got_page_entry(Object* object_, unsigned int symndx_)
    : object(object_), symndx(symndx_), ranges(NULL)
  { }

  // The input object that needs the GOT page entry.
  Object* object;
  // The index of the symbol, as stored in the relocation r_info.
  unsigned int symndx;
  // The ranges for this page entry.
  Got_page_range* ranges;
};

// Hash for Got_page_entry.

struct Got_page_entry_hash
{
  size_t
  operator()(Got_page_entry* entry) const
  { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
};

// Equality for Got_page_entry.

struct Got_page_entry_eq
{
  bool
  operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
  {
    return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
  }
};

// This class is used to hold .got information when linking.

template<int size, bool big_endian>
class Mips_got_info
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
    Reloc_section;
  typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;

  // Unordered set of GOT entries.
  typedef Unordered_set<Mips_got_entry<size, big_endian>*,
      Mips_got_entry_hash<size, big_endian>,
      Mips_got_entry_eq<size, big_endian> > Got_entry_set;

  // Unordered set of GOT page entries.
  typedef Unordered_set<Got_page_entry*,
      Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;

  // Unordered set of global GOT entries.
  typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
      Global_got_entry_set;

 public:
  Mips_got_info()
    : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
      tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
      got_entries_(), got_page_entries_(), got_page_offset_start_(0),
      got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
      offset_(0)
  { }

  // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
  // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
  void
  record_local_got_symbol(Mips_relobj<size, big_endian>* object,
                          unsigned int symndx, Mips_address addend,
                          unsigned int r_type, unsigned int shndx,
                          bool is_section_symbol);

  // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
  // in OBJECT.  FOR_CALL is true if the caller is only interested in
  // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
  // relocation.
  void
  record_global_got_symbol(Mips_symbol<size>* mips_sym,
                           Mips_relobj<size, big_endian>* object,
                           unsigned int r_type, bool dyn_reloc, bool for_call);

  // Add ENTRY to master GOT and to OBJECT's GOT.
  void
  record_got_entry(Mips_got_entry<size, big_endian>* entry,
                   Mips_relobj<size, big_endian>* object);

  // Record that OBJECT has a page relocation against symbol SYMNDX and
  // that ADDEND is the addend for that relocation.
  void
  record_got_page_entry(Mips_relobj<size, big_endian>* object,
                        unsigned int symndx, int addend);

  // Create all entries that should be in the local part of the GOT.
  void
  add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);

  // Create GOT page entries.
  void
  add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);

  // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
  void
  add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
                     unsigned int non_reloc_only_global_gotno);

  // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
  void
  add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);

  // Create TLS GOT entries.
  void
  add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);

  // Decide whether the symbol needs an entry in the global part of the primary
  // GOT, setting global_got_area accordingly.  Count the number of global
  // symbols that are in the primary GOT only because they have dynamic
  // relocations R_MIPS_REL32 against them (reloc_only_gotno).
  void
  count_got_symbols(Symbol_table* symtab);

  // Return the offset of GOT page entry for VALUE.
  unsigned int
  get_got_page_offset(Mips_address value,
                      Mips_output_data_got<size, big_endian>* got);

  // Count the number of GOT entries required.
  void
  count_got_entries();

  // Count the number of GOT entries required by ENTRY.  Accumulate the result.
  void
  count_got_entry(Mips_got_entry<size, big_endian>* entry);

  // Add FROM's GOT entries.
  void
  add_got_entries(Mips_got_info<size, big_endian>* from);

  // Add FROM's GOT page entries.
  void
  add_got_page_count(Mips_got_info<size, big_endian>* from);

  // Return GOT size.
  unsigned int
  got_size() const
  { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
             + this->tls_gotno_) * size/8);
  }

  // Return the number of local GOT entries.
  unsigned int
  local_gotno() const
  { return this->local_gotno_; }

  // Return the maximum number of page GOT entries needed.
  unsigned int
  page_gotno() const
  { return this->page_gotno_; }

  // Return the number of global GOT entries.
  unsigned int
  global_gotno() const
  { return this->global_gotno_; }

  // Set the number of global GOT entries.
  void
  set_global_gotno(unsigned int global_gotno)
  { this->global_gotno_ = global_gotno; }

  // Return the number of GGA_RELOC_ONLY global GOT entries.
  unsigned int
  reloc_only_gotno() const
  { return this->reloc_only_gotno_; }

  // Return the number of TLS GOT entries.
  unsigned int
  tls_gotno() const
  { return this->tls_gotno_; }

  // Return the GOT type for this GOT.  Used for multi-GOT links only.
  unsigned int
  multigot_got_type(unsigned int got_type) const
  {
    switch (got_type)
      {
      case GOT_TYPE_STANDARD:
        return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
      case GOT_TYPE_TLS_OFFSET:
        return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
      case GOT_TYPE_TLS_PAIR:
        return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
      default:
        gold_unreachable();
      }
  }

  // Remove lazy-binding stubs for global symbols in this GOT.
  void
  remove_lazy_stubs(Target_mips<size, big_endian>* target);

  // Return offset of this GOT from the start of .got section.
  unsigned int
  offset() const
  { return this->offset_; }

  // Set offset of this GOT from the start of .got section.
  void
  set_offset(unsigned int offset)
  { this->offset_ = offset; }

  // Set index of this GOT in multi-GOT links.
  void
  set_index(unsigned int index)
  { this->index_ = index; }

  // Return next GOT in multi-GOT links.
  Mips_got_info<size, big_endian>*
  next() const
  { return this->next_; }

  // Set next GOT in multi-GOT links.
  void
  set_next(Mips_got_info<size, big_endian>* next)
  { this->next_ = next; }

  // Return the offset of TLS LDM entry for this GOT.
  unsigned int
  tls_ldm_offset() const
  { return this->tls_ldm_offset_; }

  // Set the offset of TLS LDM entry for this GOT.
  void
  set_tls_ldm_offset(unsigned int tls_ldm_offset)
  { this->tls_ldm_offset_ = tls_ldm_offset; }

  Global_got_entry_set&
  global_got_symbols()
  { return this->global_got_symbols_; }

  // Return the GOT_TLS_* type required by relocation type R_TYPE.
  static int
  mips_elf_reloc_tls_type(unsigned int r_type)
  {
    if (tls_gd_reloc(r_type))
      return GOT_TLS_GD;

    if (tls_ldm_reloc(r_type))
      return GOT_TLS_LDM;

    if (tls_gottprel_reloc(r_type))
      return GOT_TLS_IE;

    return GOT_TLS_NONE;
  }

  // Return the number of GOT slots needed for GOT TLS type TYPE.
  static int
  mips_tls_got_entries(unsigned int type)
  {
    switch (type)
      {
      case GOT_TLS_GD:
      case GOT_TLS_LDM:
        return 2;

      case GOT_TLS_IE:
        return 1;

      case GOT_TLS_NONE:
        return 0;

      default:
        gold_unreachable();
      }
  }

 private:
  // The number of local GOT entries.
  unsigned int local_gotno_;
  // The maximum number of page GOT entries needed.
  unsigned int page_gotno_;
  // The number of global GOT entries.
  unsigned int global_gotno_;
  // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
  unsigned int reloc_only_gotno_;
  // The number of TLS GOT entries.
  unsigned int tls_gotno_;
  // The offset of TLS LDM entry for this GOT.
  unsigned int tls_ldm_offset_;
  // All symbols that have global GOT entry.
  Global_got_entry_set global_got_symbols_;
  // A hash table holding GOT entries.
  Got_entry_set got_entries_;
  // A hash table of GOT page entries (only used in master GOT).
  Got_page_entry_set got_page_entries_;
  // The offset of first GOT page entry for this GOT.
  unsigned int got_page_offset_start_;
  // The offset of next available GOT page entry for this GOT.
  unsigned int got_page_offset_next_;
  // A hash table that maps GOT page entry value to the GOT offset where
  // the entry is located.
  Got_page_offsets got_page_offsets_;
  // In multi-GOT links, a pointer to the next GOT.
  Mips_got_info<size, big_endian>* next_;
  // Index of this GOT in multi-GOT links.
  unsigned int index_;
  // The offset of this GOT in multi-GOT links.
  unsigned int offset_;
};

// This is a helper class used during relocation scan.  It records GOT16 addend.

template<int size, bool big_endian>
struct got16_addend
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

  got16_addend(const Sized_relobj_file<size, big_endian>* _object,
               unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
               Mips_address _addend)
    : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
      addend(_addend)
  { }

  const Sized_relobj_file<size, big_endian>* object;
  unsigned int shndx;
  unsigned int r_type;
  unsigned int r_sym;
  Mips_address addend;
};

// .MIPS.abiflags section content

template<bool big_endian>
struct Mips_abiflags
{
  typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;

  Mips_abiflags()
    : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
      cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
  { }

  // Version of flags structure.
  Valtype16 version;
  // The level of the ISA: 1-5, 32, 64.
  Valtype8 isa_level;
  // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
  Valtype8 isa_rev;
  // The size of general purpose registers.
  Valtype8 gpr_size;
  // The size of co-processor 1 registers.
  Valtype8 cpr1_size;
  // The size of co-processor 2 registers.
  Valtype8 cpr2_size;
  // The floating-point ABI.
  Valtype8 fp_abi;
  // Processor-specific extension.
  Valtype32 isa_ext;
  // Mask of ASEs used.
  Valtype32 ases;
  // Mask of general flags.
  Valtype32 flags1;
  Valtype32 flags2;
};

// Mips_symbol class.  Holds additional symbol information needed for Mips.

template<int size>
class Mips_symbol : public Sized_symbol<size>
{
 public:
  Mips_symbol()
    : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
      has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
      pointer_equality_needed_(false), global_got_area_(GGA_NONE),
      global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
      needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
      comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
      mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
  { }

  // Return whether this is a MIPS16 symbol.
  bool
  is_mips16() const
  {
    // (st_other & STO_MIPS16) == STO_MIPS16
    return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
            == elfcpp::STO_MIPS16 >> 2);
  }

  // Return whether this is a microMIPS symbol.
  bool
  is_micromips() const
  {
    // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
    return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
            == elfcpp::STO_MICROMIPS >> 2);
  }

  // Return whether the symbol needs MIPS16 fn_stub.
  bool
  need_fn_stub() const
  { return this->need_fn_stub_; }

  // Set that the symbol needs MIPS16 fn_stub.
  void
  set_need_fn_stub()
  { this->need_fn_stub_ = true; }

  // Return whether this symbol is referenced by branch relocations from
  // any non-PIC input file.
  bool
  has_nonpic_branches() const
  { return this->has_nonpic_branches_; }

  // Set that this symbol is referenced by branch relocations from
  // any non-PIC input file.
  void
  set_has_nonpic_branches()
  { this->has_nonpic_branches_ = true; }

  // Return the offset of the la25 stub for this symbol from the start of the
  // la25 stub section.
  unsigned int
  la25_stub_offset() const
  { return this->la25_stub_offset_; }

  // Set the offset of the la25 stub for this symbol from the start of the
  // la25 stub section.
  void
  set_la25_stub_offset(unsigned int offset)
  { this->la25_stub_offset_ = offset; }

  // Return whether the symbol has la25 stub.  This is true if this symbol is
  // for a PIC function, and there are non-PIC branches and jumps to it.
  bool
  has_la25_stub() const
  { return this->la25_stub_offset_ != -1U; }

  // Return whether there is a relocation against this symbol that must be
  // resolved by the static linker (that is, the relocation cannot possibly
  // be made dynamic).
  bool
  has_static_relocs() const
  { return this->has_static_relocs_; }

  // Set that there is a relocation against this symbol that must be resolved
  // by the static linker (that is, the relocation cannot possibly be made
  // dynamic).
  void
  set_has_static_relocs()
  { this->has_static_relocs_ = true; }

  // Return whether we must not create a lazy-binding stub for this symbol.
  bool
  no_lazy_stub() const
  { return this->no_lazy_stub_; }

  // Set that we must not create a lazy-binding stub for this symbol.
  void
  set_no_lazy_stub()
  { this->no_lazy_stub_ = true; }

  // Return the offset of the lazy-binding stub for this symbol from the start
  // of .MIPS.stubs section.
  unsigned int
  lazy_stub_offset() const
  { return this->lazy_stub_offset_; }

  // Set the offset of the lazy-binding stub for this symbol from the start
  // of .MIPS.stubs section.
  void
  set_lazy_stub_offset(unsigned int offset)
  { this->lazy_stub_offset_ = offset; }

  // Return whether there are any relocations for this symbol where
  // pointer equality matters.
  bool
  pointer_equality_needed() const
  { return this->pointer_equality_needed_; }

  // Set that there are relocations for this symbol where pointer equality
  // matters.
  void
  set_pointer_equality_needed()
  { this->pointer_equality_needed_ = true; }

  // Return global GOT area where this symbol in located.
  Global_got_area
  global_got_area() const
  { return this->global_got_area_; }

  // Set global GOT area where this symbol in located.
  void
  set_global_got_area(Global_got_area global_got_area)
  { this->global_got_area_ = global_got_area; }

  // Return the global GOT offset for this symbol.  For multi-GOT links, this
  // returns the offset from the start of .got section to the first GOT entry
  // for the symbol.  Note that in multi-GOT links the symbol can have entry
  // in more than one GOT.
  unsigned int
  global_gotoffset() const
  { return this->global_gotoffset_; }

  // Set the global GOT offset for this symbol.  Note that in multi-GOT links
  // the symbol can have entry in more than one GOT.  This method will set
  // the offset only if it is less than current offset.
  void
  set_global_gotoffset(unsigned int offset)
  {
    if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
      this->global_gotoffset_ = offset;
  }

  // Return whether all GOT relocations for this symbol are for calls.
  bool
  got_only_for_calls() const
  { return this->got_only_for_calls_; }

  // Set that there is a GOT relocation for this symbol that is not for call.
  void
  set_got_not_only_for_calls()
  { this->got_only_for_calls_ = false; }

  // Return whether this is a PIC symbol.
  bool
  is_pic() const
  {
    // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
    return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
            == (elfcpp::STO_MIPS_PIC >> 2));
  }

  // Set the flag in st_other field that marks this symbol as PIC.
  void
  set_pic()
  {
    if (this->is_mips16())
      // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
      this->set_nonvis((this->nonvis()
                        & ~((elfcpp::STO_MIPS16 >> 2)
                            | (elfcpp::STO_MIPS_FLAGS >> 2)))
                       | (elfcpp::STO_MIPS_PIC >> 2));
    else
      // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
      this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
                       | (elfcpp::STO_MIPS_PIC >> 2));
  }

  // Set the flag in st_other field that marks this symbol as PLT.
  void
  set_mips_plt()
  {
    if (this->is_mips16())
      // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
      this->set_nonvis((this->nonvis()
                        & ((elfcpp::STO_MIPS16 >> 2)
                           | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
                       | (elfcpp::STO_MIPS_PLT >> 2));

    else
      // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
      this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
                       | (elfcpp::STO_MIPS_PLT >> 2));
  }

  // Downcast a base pointer to a Mips_symbol pointer.
  static Mips_symbol<size>*
  as_mips_sym(Symbol* sym)
  { return static_cast<Mips_symbol<size>*>(sym); }

  // Downcast a base pointer to a Mips_symbol pointer.
  static const Mips_symbol<size>*
  as_mips_sym(const Symbol* sym)
  { return static_cast<const Mips_symbol<size>*>(sym); }

  // Return whether the symbol has lazy-binding stub.
  bool
  has_lazy_stub() const
  { return this->has_lazy_stub_; }

  // Set whether the symbol has lazy-binding stub.
  void
  set_has_lazy_stub(bool has_lazy_stub)
  { this->has_lazy_stub_ = has_lazy_stub; }

  // Return whether the symbol needs a standard PLT entry.
  bool
  needs_mips_plt() const
  { return this->needs_mips_plt_; }

  // Set whether the symbol needs a standard PLT entry.
  void
  set_needs_mips_plt(bool needs_mips_plt)
  { this->needs_mips_plt_ = needs_mips_plt; }

  // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
  // entry.
  bool
  needs_comp_plt() const
  { return this->needs_comp_plt_; }

  // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
  void
  set_needs_comp_plt(bool needs_comp_plt)
  { this->needs_comp_plt_ = needs_comp_plt; }

  // Return standard PLT entry offset, or -1 if none.
  unsigned int
  mips_plt_offset() const
  { return this->mips_plt_offset_; }

  // Set standard PLT entry offset.
  void
  set_mips_plt_offset(unsigned int mips_plt_offset)
  { this->mips_plt_offset_ = mips_plt_offset; }

  // Return whether the symbol has standard PLT entry.
  bool
  has_mips_plt_offset() const
  { return this->mips_plt_offset_ != -1U; }

  // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
  unsigned int
  comp_plt_offset() const
  { return this->comp_plt_offset_; }

  // Set compressed (MIPS16 or microMIPS) PLT entry offset.
  void
  set_comp_plt_offset(unsigned int comp_plt_offset)
  { this->comp_plt_offset_ = comp_plt_offset; }

  // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
  bool
  has_comp_plt_offset() const
  { return this->comp_plt_offset_ != -1U; }

  // Return MIPS16 fn stub for a symbol.
  template<bool big_endian>
  Mips16_stub_section<size, big_endian>*
  get_mips16_fn_stub() const
  {
    return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
  }

  // Set MIPS16 fn stub for a symbol.
  void
  set_mips16_fn_stub(Mips16_stub_section_base* stub)
  { this->mips16_fn_stub_ = stub; }

  // Return whether symbol has MIPS16 fn stub.
  bool
  has_mips16_fn_stub() const
  { return this->mips16_fn_stub_ != NULL; }

  // Return MIPS16 call stub for a symbol.
  template<bool big_endian>
  Mips16_stub_section<size, big_endian>*
  get_mips16_call_stub() const
  {
    return static_cast<Mips16_stub_section<size, big_endian>*>(
      mips16_call_stub_);
  }

  // Set MIPS16 call stub for a symbol.
  void
  set_mips16_call_stub(Mips16_stub_section_base* stub)
  { this->mips16_call_stub_ = stub; }

  // Return whether symbol has MIPS16 call stub.
  bool
  has_mips16_call_stub() const
  { return this->mips16_call_stub_ != NULL; }

  // Return MIPS16 call_fp stub for a symbol.
  template<bool big_endian>
  Mips16_stub_section<size, big_endian>*
  get_mips16_call_fp_stub() const
  {
    return static_cast<Mips16_stub_section<size, big_endian>*>(
      mips16_call_fp_stub_);
  }

  // Set MIPS16 call_fp stub for a symbol.
  void
  set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
  { this->mips16_call_fp_stub_ = stub; }

  // Return whether symbol has MIPS16 call_fp stub.
  bool
  has_mips16_call_fp_stub() const
  { return this->mips16_call_fp_stub_ != NULL; }

  bool
  get_applied_secondary_got_fixup() const
  { return applied_secondary_got_fixup_; }

  void
  set_applied_secondary_got_fixup()
  { this->applied_secondary_got_fixup_ = true; }

  // Return the hash of this symbol.
  size_t
  hash() const
  {
    return gold::string_hash<char>(this->name());
  }

 private:
  // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
  // appears in any relocs other than a 16 bit call.
  bool need_fn_stub_;

  // True if this symbol is referenced by branch relocations from
  // any non-PIC input file.  This is used to determine whether an
  // la25 stub is required.
  bool has_nonpic_branches_;

  // The offset of the la25 stub for this symbol from the start of the
  // la25 stub section.
  unsigned int la25_stub_offset_;

  // True if there is a relocation against this symbol that must be
  // resolved by the static linker (that is, the relocation cannot
  // possibly be made dynamic).
  bool has_static_relocs_;

  // Whether we must not create a lazy-binding stub for this symbol.
  // This is true if the symbol has relocations related to taking the
  // function's address.
  bool no_lazy_stub_;

  // The offset of the lazy-binding stub for this symbol from the start of
  // .MIPS.stubs section.
  unsigned int lazy_stub_offset_;

  // True if there are any relocations for this symbol where pointer equality
  // matters.
  bool pointer_equality_needed_;

  // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
  // in the global part of the GOT.
  Global_got_area global_got_area_;

  // The global GOT offset for this symbol.  For multi-GOT links, this is offset
  // from the start of .got section to the first GOT entry for the symbol.
  // Note that in multi-GOT links the symbol can have entry in more than one GOT.
  unsigned int global_gotoffset_;

  // Whether all GOT relocations for this symbol are for calls.
  bool got_only_for_calls_;
  // Whether the symbol has lazy-binding stub.
  bool has_lazy_stub_;
  // Whether the symbol needs a standard PLT entry.
  bool needs_mips_plt_;
  // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
  bool needs_comp_plt_;
  // Standard PLT entry offset, or -1 if none.
  unsigned int mips_plt_offset_;
  // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
  unsigned int comp_plt_offset_;
  // MIPS16 fn stub for a symbol.
  Mips16_stub_section_base* mips16_fn_stub_;
  // MIPS16 call stub for a symbol.
  Mips16_stub_section_base* mips16_call_stub_;
  // MIPS16 call_fp stub for a symbol.
  Mips16_stub_section_base* mips16_call_fp_stub_;

  bool applied_secondary_got_fixup_;
};

// Mips16_stub_section class.

// The mips16 compiler uses a couple of special sections to handle
// floating point arguments.

// Section names that look like .mips16.fn.FNNAME contain stubs that
// copy floating point arguments from the fp regs to the gp regs and
// then jump to FNNAME.  If any 32 bit function calls FNNAME, the
// call should be redirected to the stub instead.  If no 32 bit
// function calls FNNAME, the stub should be discarded.  We need to
// consider any reference to the function, not just a call, because
// if the address of the function is taken we will need the stub,
// since the address might be passed to a 32 bit function.

// Section names that look like .mips16.call.FNNAME contain stubs
// that copy floating point arguments from the gp regs to the fp
// regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
// then any 16 bit function that calls FNNAME should be redirected
// to the stub instead.  If FNNAME is not a 32 bit function, the
// stub should be discarded.

// .mips16.call.fp.FNNAME sections are similar, but contain stubs
// which call FNNAME and then copy the return value from the fp regs
// to the gp regs.  These stubs store the return address in $18 while
// calling FNNAME; any function which might call one of these stubs
// must arrange to save $18 around the call.  (This case is not
// needed for 32 bit functions that call 16 bit functions, because
// 16 bit functions always return floating point values in both
// $f0/$f1 and $2/$3.)

// Note that in all cases FNNAME might be defined statically.
// Therefore, FNNAME is not used literally.  Instead, the relocation
// information will indicate which symbol the section is for.

// We record any stubs that we find in the symbol table.

// TODO(sasa): All mips16 stub sections should be emitted in the .text section.

class Mips16_stub_section_base { };

template<int size, bool big_endian>
class Mips16_stub_section : public Mips16_stub_section_base
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

 public:
  Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
    : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
      found_r_mips_none_(false)
  {
    gold_assert(object->is_mips16_fn_stub_section(shndx)
                || object->is_mips16_call_stub_section(shndx)
                || object->is_mips16_call_fp_stub_section(shndx));
  }

  // Return the object of this stub section.
  Mips_relobj<size, big_endian>*
  object() const
  { return this->object_; }

  // Return the size of a section.
  uint64_t
  section_size() const
  { return this->object_->section_size(this->shndx_); }

  // Return section index of this stub section.
  unsigned int
  shndx() const
  { return this->shndx_; }

  // Return symbol index, if stub is for a local function.
  unsigned int
  r_sym() const
  { return this->r_sym_; }

  // Return symbol, if stub is for a global function.
  Mips_symbol<size>*
  gsym() const
  { return this->gsym_; }

  // Return whether stub is for a local function.
  bool
  is_for_local_function() const
  { return this->gsym_ == NULL; }

  // This method is called when a new relocation R_TYPE for local symbol R_SYM
  // is found in the stub section.  Try to find stub target.
  void
  new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
  {
    // To find target symbol for this stub, trust the first R_MIPS_NONE
    // relocation, if any.  Otherwise trust the first relocation, whatever
    // its kind.
    if (this->found_r_mips_none_)
      return;
    if (r_type == elfcpp::R_MIPS_NONE)
      {
        this->r_sym_ = r_sym;
        this->gsym_ = NULL;
        this->found_r_mips_none_ = true;
      }
    else if (!is_target_found())
      this->r_sym_ = r_sym;
  }

  // This method is called when a new relocation R_TYPE for global symbol GSYM
  // is found in the stub section.  Try to find stub target.
  void
  new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
  {
    // To find target symbol for this stub, trust the first R_MIPS_NONE
    // relocation, if any.  Otherwise trust the first relocation, whatever
    // its kind.
    if (this->found_r_mips_none_)
      return;
    if (r_type == elfcpp::R_MIPS_NONE)
      {
        this->gsym_ = gsym;
        this->r_sym_ = 0;
        this->found_r_mips_none_ = true;
      }
    else if (!is_target_found())
      this->gsym_ = gsym;
  }

  // Return whether we found the stub target.
  bool
  is_target_found() const
  { return this->r_sym_ != 0 || this->gsym_ != NULL;  }

  // Return whether this is a fn stub.
  bool
  is_fn_stub() const
  { return this->object_->is_mips16_fn_stub_section(this->shndx_); }

  // Return whether this is a call stub.
  bool
  is_call_stub() const
  { return this->object_->is_mips16_call_stub_section(this->shndx_); }

  // Return whether this is a call_fp stub.
  bool
  is_call_fp_stub() const
  { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }

  // Return the output address.
  Mips_address
  output_address() const
  {
    return (this->object_->output_section(this->shndx_)->address()
            + this->object_->output_section_offset(this->shndx_));
  }

 private:
  // The object of this stub section.
  Mips_relobj<size, big_endian>* object_;
  // The section index of this stub section.
  unsigned int shndx_;
  // The symbol index, if stub is for a local function.
  unsigned int r_sym_;
  // The symbol, if stub is for a global function.
  Mips_symbol<size>* gsym_;
  // True if we found R_MIPS_NONE relocation in this stub.
  bool found_r_mips_none_;
};

// Mips_relobj class.

template<int size, bool big_endian>
class Mips_relobj : public Sized_relobj_file<size, big_endian>
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
    Mips16_stubs_int_map;
  typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;

 public:
  Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
              const typename elfcpp::Ehdr<size, big_endian>& ehdr)
    : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
      processor_specific_flags_(0), local_symbol_is_mips16_(),
      local_symbol_is_micromips_(), mips16_stub_sections_(),
      local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
      local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
      merge_processor_specific_data_(true), got_info_(NULL),
      section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
      section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
      attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
      cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
  {
    this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
    this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
  }

  ~Mips_relobj()
  { delete this->attributes_section_data_; }

  // Downcast a base pointer to a Mips_relobj pointer.  This is
  // not type-safe but we only use Mips_relobj not the base class.
  static Mips_relobj<size, big_endian>*
  as_mips_relobj(Relobj* relobj)
  { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }

  // Downcast a base pointer to a Mips_relobj pointer.  This is
  // not type-safe but we only use Mips_relobj not the base class.
  static const Mips_relobj<size, big_endian>*
  as_mips_relobj(const Relobj* relobj)
  { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }

  // Processor-specific flags in ELF file header.  This is valid only after
  // reading symbols.
  elfcpp::Elf_Word
  processor_specific_flags() const
  { return this->processor_specific_flags_; }

  // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
  // index.  This is only valid after do_count_local_symbol is called.
  bool
  local_symbol_is_mips16(unsigned int r_sym) const
  {
    gold_assert(r_sym < this->local_symbol_is_mips16_.size());
    return this->local_symbol_is_mips16_[r_sym];
  }

  // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
  // index.  This is only valid after do_count_local_symbol is called.
  bool
  local_symbol_is_micromips(unsigned int r_sym) const
  {
    gold_assert(r_sym < this->local_symbol_is_micromips_.size());
    return this->local_symbol_is_micromips_[r_sym];
  }

  // Get or create MIPS16 stub section.
  Mips16_stub_section<size, big_endian>*
  get_mips16_stub_section(unsigned int shndx)
  {
    typename Mips16_stubs_int_map::const_iterator it =
      this->mips16_stub_sections_.find(shndx);
    if (it != this->mips16_stub_sections_.end())
      return (*it).second;

    Mips16_stub_section<size, big_endian>* stub_section =
      new Mips16_stub_section<size, big_endian>(this, shndx);
    this->mips16_stub_sections_.insert(
      std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
        stub_section->shndx(), stub_section));
    return stub_section;
  }

  // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
  // object doesn't have fn stub for R_SYM.
  Mips16_stub_section<size, big_endian>*
  get_local_mips16_fn_stub(unsigned int r_sym) const
  {
    typename Mips16_stubs_int_map::const_iterator it =
      this->local_mips16_fn_stubs_.find(r_sym);
    if (it != this->local_mips16_fn_stubs_.end())
      return (*it).second;
    return NULL;
  }

  // Record that this object has MIPS16 fn stub for local symbol.  This method
  // is only called if we decided not to discard the stub.
  void
  add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
  {
    gold_assert(stub->is_for_local_function());
    unsigned int r_sym = stub->r_sym();
    this->local_mips16_fn_stubs_.insert(
      std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
        r_sym, stub));
  }

  // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
  // object doesn't have call stub for R_SYM.
  Mips16_stub_section<size, big_endian>*
  get_local_mips16_call_stub(unsigned int r_sym) const
  {
    typename Mips16_stubs_int_map::const_iterator it =
      this->local_mips16_call_stubs_.find(r_sym);
    if (it != this->local_mips16_call_stubs_.end())
      return (*it).second;
    return NULL;
  }

  // Record that this object has MIPS16 call stub for local symbol.  This method
  // is only called if we decided not to discard the stub.
  void
  add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
  {
    gold_assert(stub->is_for_local_function());
    unsigned int r_sym = stub->r_sym();
    this->local_mips16_call_stubs_.insert(
      std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
        r_sym, stub));
  }

  // Record that we found "non 16-bit" call relocation against local symbol
  // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
  // is one.
  void
  add_local_non_16bit_call(unsigned int symndx)
  { this->local_non_16bit_calls_.insert(symndx); }

  // Return true if there is any "non 16-bit" call relocation against local
  // symbol SYMNDX in this object.
  bool
  has_local_non_16bit_call_relocs(unsigned int symndx)
  {
    return (this->local_non_16bit_calls_.find(symndx)
            != this->local_non_16bit_calls_.end());
  }

  // Record that we found 16-bit call relocation R_MIPS16_26 against local
  // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
  // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
  void
  add_local_16bit_call(unsigned int symndx)
  { this->local_16bit_calls_.insert(symndx); }

  // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
  // symbol SYMNDX in this object.
  bool
  has_local_16bit_call_relocs(unsigned int symndx)
  {
    return (this->local_16bit_calls_.find(symndx)
            != this->local_16bit_calls_.end());
  }

  // Get gp value that was used to create this object.
  Mips_address
  gp_value() const
  { return this->gp_; }

  // Return whether the object is a PIC object.
  bool
  is_pic() const
  { return this->is_pic_; }

  // Return whether the object uses N32 ABI.
  bool
  is_n32() const
  { return this->is_n32_; }

  // Return whether the object uses N64 ABI.
  bool
  is_n64() const
  { return size == 64; }

  // Return whether the object uses NewABI conventions.
  bool
  is_newabi() const
  { return this->is_n32() || this->is_n64(); }

  // Return Mips_got_info for this object.
  Mips_got_info<size, big_endian>*
  get_got_info() const
  { return this->got_info_; }

  // Return Mips_got_info for this object.  Create new info if it doesn't exist.
  Mips_got_info<size, big_endian>*
  get_or_create_got_info()
  {
    if (!this->got_info_)
      this->got_info_ = new Mips_got_info<size, big_endian>();
    return this->got_info_;
  }

  // Set Mips_got_info for this object.
  void
  set_got_info(Mips_got_info<size, big_endian>* got_info)
  { this->got_info_ = got_info; }

  // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
  // after do_read_symbols is called.
  bool
  is_mips16_stub_section(unsigned int shndx)
  {
    return (is_mips16_fn_stub_section(shndx)
            || is_mips16_call_stub_section(shndx)
            || is_mips16_call_fp_stub_section(shndx));
  }

  // Return TRUE if relocations in section SHNDX can refer directly to a
  // MIPS16 function rather than to a hard-float stub.  This is only valid
  // after do_read_symbols is called.
  bool
  section_allows_mips16_refs(unsigned int shndx)
  {
    return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
  }

  // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
  // after do_read_symbols is called.
  bool
  is_mips16_fn_stub_section(unsigned int shndx)
  {
    gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
    return this->section_is_mips16_fn_stub_[shndx];
  }

  // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
  // after do_read_symbols is called.
  bool
  is_mips16_call_stub_section(unsigned int shndx)
  {
    gold_assert(shndx < this->section_is_mips16_call_stub_.size());
    return this->section_is_mips16_call_stub_[shndx];
  }

  // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
  // valid after do_read_symbols is called.
  bool
  is_mips16_call_fp_stub_section(unsigned int shndx)
  {
    gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
    return this->section_is_mips16_call_fp_stub_[shndx];
  }

  // Discard MIPS16 stub secions that are not needed.
  void
  discard_mips16_stub_sections(Symbol_table* symtab);

  // Return whether there is a .reginfo section.
  bool
  has_reginfo_section() const
  { return this->has_reginfo_section_; }

  // Return whether we want to merge processor-specific data.
  bool
  merge_processor_specific_data() const
  { return this->merge_processor_specific_data_; }

  // Return gprmask from the .reginfo section of this object.
  Valtype
  gprmask() const
  { return this->gprmask_; }

  // Return cprmask1 from the .reginfo section of this object.
  Valtype
  cprmask1() const
  { return this->cprmask1_; }

  // Return cprmask2 from the .reginfo section of this object.
  Valtype
  cprmask2() const
  { return this->cprmask2_; }

  // Return cprmask3 from the .reginfo section of this object.
  Valtype
  cprmask3() const
  { return this->cprmask3_; }

  // Return cprmask4 from the .reginfo section of this object.
  Valtype
  cprmask4() const
  { return this->cprmask4_; }

  // This is the contents of the .MIPS.abiflags section if there is one.
  Mips_abiflags<big_endian>*
  abiflags()
  { return this->abiflags_; }

  // This is the contents of the .gnu.attribute section if there is one.
  const Attributes_section_data*
  attributes_section_data() const
  { return this->attributes_section_data_; }

 protected:
  // Count the local symbols.
  void
  do_count_local_symbols(Stringpool_template<char>*,
                         Stringpool_template<char>*);

  // Read the symbol information.
  void
  do_read_symbols(Read_symbols_data* sd);

 private:
  // The name of the options section.
  const char* mips_elf_options_section_name()
  { return this->is_newabi() ? ".MIPS.options" : ".options"; }

  // processor-specific flags in ELF file header.
  elfcpp::Elf_Word processor_specific_flags_;

  // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
  // This is only valid after do_count_local_symbol is called.
  std::vector<bool> local_symbol_is_mips16_;

  // Bit vector to tell if a local symbol is a microMIPS symbol or not.
  // This is only valid after do_count_local_symbol is called.
  std::vector<bool> local_symbol_is_micromips_;

  // Map from section index to the MIPS16 stub for that section.  This contains
  // all stubs found in this object.
  Mips16_stubs_int_map mips16_stub_sections_;

  // Local symbols that have "non 16-bit" call relocation.  This relocation
  // would need to refer to a MIPS16 fn stub, if there is one.
  std::set<unsigned int> local_non_16bit_calls_;

  // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
  // call or call_fp stubs will only be needed if there is some R_MIPS16_26
  // relocation that refers to the stub symbol.
  std::set<unsigned int> local_16bit_calls_;

  // Map from local symbol index to the MIPS16 fn stub for that symbol.
  // This contains only the stubs that we decided not to discard.
  Mips16_stubs_int_map local_mips16_fn_stubs_;

  // Map from local symbol index to the MIPS16 call stub for that symbol.
  // This contains only the stubs that we decided not to discard.
  Mips16_stubs_int_map local_mips16_call_stubs_;

  // gp value that was used to create this object.
  Mips_address gp_;
  // Whether the object is a PIC object.
  bool is_pic_ : 1;
  // Whether the object uses N32 ABI.
  bool is_n32_ : 1;
  // Whether the object contains a .reginfo section.
  bool has_reginfo_section_ : 1;
  // Whether we merge processor-specific data of this object to output.
  bool merge_processor_specific_data_ : 1;
  // The Mips_got_info for this object.
  Mips_got_info<size, big_endian>* got_info_;

  // Bit vector to tell if a section is a MIPS16 fn stub section or not.
  // This is only valid after do_read_symbols is called.
  std::vector<bool> section_is_mips16_fn_stub_;

  // Bit vector to tell if a section is a MIPS16 call stub section or not.
  // This is only valid after do_read_symbols is called.
  std::vector<bool> section_is_mips16_call_stub_;

  // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
  // This is only valid after do_read_symbols is called.
  std::vector<bool> section_is_mips16_call_fp_stub_;

  // .pdr section index.
  unsigned int pdr_shndx_;

  // Object attributes if there is a .gnu.attributes section or NULL.
  Attributes_section_data* attributes_section_data_;

  // Object abiflags if there is a .MIPS.abiflags section or NULL.
  Mips_abiflags<big_endian>* abiflags_;

  // gprmask from the .reginfo section of this object.
  Valtype gprmask_;
  // cprmask1 from the .reginfo section of this object.
  Valtype cprmask1_;
  // cprmask2 from the .reginfo section of this object.
  Valtype cprmask2_;
  // cprmask3 from the .reginfo section of this object.
  Valtype cprmask3_;
  // cprmask4 from the .reginfo section of this object.
  Valtype cprmask4_;
};

// Mips_output_data_got class.

template<int size, bool big_endian>
class Mips_output_data_got : public Output_data_got<size, big_endian>
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
    Reloc_section;
  typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;

 public:
  Mips_output_data_got(Target_mips<size, big_endian>* target,
      Symbol_table* symtab, Layout* layout)
    : Output_data_got<size, big_endian>(), target_(target),
      symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
      first_global_got_dynsym_index_(-1U), primary_got_(NULL),
      secondary_got_relocs_()
  {
    this->master_got_info_ = new Mips_got_info<size, big_endian>();
    this->set_addralign(16);
  }

  // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
  // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
  void
  record_local_got_symbol(Mips_relobj<size, big_endian>* object,
                          unsigned int symndx, Mips_address addend,
                          unsigned int r_type, unsigned int shndx,
                          bool is_section_symbol)
  {
    this->master_got_info_->record_local_got_symbol(object, symndx, addend,
                                                    r_type, shndx,
                                                    is_section_symbol);
  }

  // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
  // in OBJECT.  FOR_CALL is true if the caller is only interested in
  // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
  // relocation.
  void
  record_global_got_symbol(Mips_symbol<size>* mips_sym,
                           Mips_relobj<size, big_endian>* object,
                           unsigned int r_type, bool dyn_reloc, bool for_call)
  {
    this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
                                                     dyn_reloc, for_call);
  }

  // Record that OBJECT has a page relocation against symbol SYMNDX and
  // that ADDEND is the addend for that relocation.
  void
  record_got_page_entry(Mips_relobj<size, big_endian>* object,
                        unsigned int symndx, int addend)
  { this->master_got_info_->record_got_page_entry(object, symndx, addend); }

  // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
  // symbol and R_TYPE is the code of a dynamic relocation that needs to be
  // applied in a static link.
  void
  add_static_reloc(unsigned int got_offset, unsigned int r_type,
                   Mips_symbol<size>* gsym)
  { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }

  // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
  // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
  // relocation that needs to be applied in a static link.
  void
  add_static_reloc(unsigned int got_offset, unsigned int r_type,
                   Sized_relobj_file<size, big_endian>* relobj,
                   unsigned int index)
  {
    this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
                                                index));
  }

  // Record that global symbol GSYM has R_TYPE dynamic relocation in the
  // secondary GOT at OFFSET.
  void
  add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
                          Mips_symbol<size>* gsym)
  {
    this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
                                                       r_type, gsym));
  }

  // Update GOT entry at OFFSET with VALUE.
  void
  update_got_entry(unsigned int offset, Mips_address value)
  {
    elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
  }

  // Return the number of entries in local part of the GOT.  This includes
  // local entries, page entries and 2 reserved entries.
  unsigned int
  get_local_gotno() const
  {
    if (!this->multi_got())
      {
        return (2 + this->master_got_info_->local_gotno()
                + this->master_got_info_->page_gotno());
      }
    else
      return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
  }

  // Return dynamic symbol table index of the first symbol with global GOT
  // entry.
  unsigned int
  first_global_got_dynsym_index() const
  { return this->first_global_got_dynsym_index_; }

  // Set dynamic symbol table index of the first symbol with global GOT entry.
  void
  set_first_global_got_dynsym_index(unsigned int index)
  { this->first_global_got_dynsym_index_ = index; }

  // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
  // larger than 64K, create multi-GOT.
  void
  lay_out_got(Layout* layout, Symbol_table* symtab,
              const Input_objects* input_objects);

  // Create multi-GOT.  For every GOT, add local, global and TLS entries.
  void
  lay_out_multi_got(Layout* layout, const Input_objects* input_objects);

  // Attempt to merge GOTs of different input objects.
  void
  merge_gots(const Input_objects* input_objects);

  // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
  // this would lead to overflow, true if they were merged successfully.
  bool
  merge_got_with(Mips_got_info<size, big_endian>* from,
                 Mips_relobj<size, big_endian>* object,
                 Mips_got_info<size, big_endian>* to);

  // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
  // use OBJECT's GOT.
  unsigned int
  get_got_page_offset(Mips_address value,
                      const Mips_relobj<size, big_endian>* object)
  {
    Mips_got_info<size, big_endian>* g = (!this->multi_got()
                                          ? this->master_got_info_
                                          : object->get_got_info());
    gold_assert(g != NULL);
    return g->get_got_page_offset(value, this);
  }

  // Return the GOT offset of type GOT_TYPE of the global symbol
  // GSYM.  For multi-GOT links, use OBJECT's GOT.
  unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
                          Mips_relobj<size, big_endian>* object) const
  {
    if (!this->multi_got())
      return gsym->got_offset(got_type);
    else
      {
        Mips_got_info<size, big_endian>* g = object->get_got_info();
        gold_assert(g != NULL);
        return gsym->got_offset(g->multigot_got_type(got_type));
      }
  }

  // Return the GOT offset of type GOT_TYPE of the local symbol
  // SYMNDX.
  unsigned int
  got_offset(unsigned int symndx, unsigned int got_type,
             Sized_relobj_file<size, big_endian>* object,
             uint64_t addend) const
  { return object->local_got_offset(symndx, got_type, addend); }

  // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
  unsigned int
  tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
  {
    Mips_got_info<size, big_endian>* g = (!this->multi_got()
                                          ? this->master_got_info_
                                          : object->get_got_info());
    gold_assert(g != NULL);
    return g->tls_ldm_offset();
  }

  // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
  void
  set_tls_ldm_offset(unsigned int tls_ldm_offset,
                     Mips_relobj<size, big_endian>* object)
  {
    Mips_got_info<size, big_endian>* g = (!this->multi_got()
                                          ? this->master_got_info_
                                          : object->get_got_info());
    gold_assert(g != NULL);
    g->set_tls_ldm_offset(tls_ldm_offset);
  }

  // Return true for multi-GOT links.
  bool
  multi_got() const
  { return this->primary_got_ != NULL; }

  // Return the offset of OBJECT's GOT from the start of .got section.
  unsigned int
  get_got_offset(const Mips_relobj<size, big_endian>* object)
  {
    if (!this->multi_got())
      return 0;
    else
      {
        Mips_got_info<size, big_endian>* g = object->get_got_info();
        return g != NULL ? g->offset() : 0;
      }
  }

  // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
  void
  add_reloc_only_entries()
  { this->master_got_info_->add_reloc_only_entries(this); }

  // Return offset of the primary GOT's entry for global symbol.
  unsigned int
  get_primary_got_offset(const Mips_symbol<size>* sym) const
  {
    gold_assert(sym->global_got_area() != GGA_NONE);
    return (this->get_local_gotno() + sym->dynsym_index()
            - this->first_global_got_dynsym_index()) * size/8;
  }

  // For the entry at offset GOT_OFFSET, return its offset from the gp.
  // Input argument GOT_OFFSET is always global offset from the start of
  // .got section, for both single and multi-GOT links.
  // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
  // links, the return value is object_got_offset - 0x7FF0, where
  // object_got_offset is offset in the OBJECT's GOT.
  int
  gp_offset(unsigned int got_offset,
            const Mips_relobj<size, big_endian>* object) const
  {
    return (this->address() + got_offset
            - this->target_->adjusted_gp_value(object));
  }

 protected:
  // Write out the GOT table.
  void
  do_write(Output_file*);

 private:

  // This class represent dynamic relocations that need to be applied by
  // gold because we are using TLS relocations in a static link.
  class Static_reloc
  {
   public:
    Static_reloc(unsigned int got_offset, unsigned int r_type,
                 Mips_symbol<size>* gsym)
      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
    { this->u_.global.symbol = gsym; }

    Static_reloc(unsigned int got_offset, unsigned int r_type,
          Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
    {
      this->u_.local.relobj = relobj;
      this->u_.local.index = index;
    }

    // Return the GOT offset.
    unsigned int
    got_offset() const
    { return this->got_offset_; }

    // Relocation type.
    unsigned int
    r_type() const
    { return this->r_type_; }

    // Whether the symbol is global or not.
    bool
    symbol_is_global() const
    { return this->symbol_is_global_; }

    // For a relocation against a global symbol, the global symbol.
    Mips_symbol<size>*
    symbol() const
    {
      gold_assert(this->symbol_is_global_);
      return this->u_.global.symbol;
    }

    // For a relocation against a local symbol, the defining object.
    Sized_relobj_file<size, big_endian>*
    relobj() const
    {
      gold_assert(!this->symbol_is_global_);
      return this->u_.local.relobj;
    }

    // For a relocation against a local symbol, the local symbol index.
    unsigned int
    index() const
    {
      gold_assert(!this->symbol_is_global_);
      return this->u_.local.index;
    }

   private:
    // GOT offset of the entry to which this relocation is applied.
    unsigned int got_offset_;
    // Type of relocation.
    unsigned int r_type_;
    // Whether this relocation is against a global symbol.
    bool symbol_is_global_;
    // A global or local symbol.
    union
    {
      struct
      {
        // For a global symbol, the symbol itself.
        Mips_symbol<size>* symbol;
      } global;
      struct
      {
        // For a local symbol, the object defining object.
        Sized_relobj_file<size, big_endian>* relobj;
        // For a local symbol, the symbol index.
        unsigned int index;
      } local;
    } u_;
  };

  // The target.
  Target_mips<size, big_endian>* target_;
  // The symbol table.
  Symbol_table* symbol_table_;
  // The layout.
  Layout* layout_;
  // Static relocs to be applied to the GOT.
  std::vector<Static_reloc> static_relocs_;
  // .got section view.
  unsigned char* got_view_;
  // The dynamic symbol table index of the first symbol with global GOT entry.
  unsigned int first_global_got_dynsym_index_;
  // The master GOT information.
  Mips_got_info<size, big_endian>* master_got_info_;
  // The  primary GOT information.
  Mips_got_info<size, big_endian>* primary_got_;
  // Secondary GOT fixups.
  std::vector<Static_reloc> secondary_got_relocs_;
};

// A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
// two ways of creating these interfaces.  The first is to add:
//
//      lui     $25,%hi(func)
//      j       func
//      addiu   $25,$25,%lo(func)
//
// to a separate trampoline section.  The second is to add:
//
//      lui     $25,%hi(func)
//      addiu   $25,$25,%lo(func)
//
// immediately before a PIC function "func", but only if a function is at the
// beginning of the section, and the section is not too heavily aligned (i.e we
// would need to add no more than 2 nops before the stub.)
//
// We only create stubs of the first type.

template<int size, bool big_endian>
class Mips_output_data_la25_stub : public Output_section_data
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

 public:
  Mips_output_data_la25_stub()
  : Output_section_data(size == 32 ? 4 : 8), symbols_()
  { }

  // Create LA25 stub for a symbol.
  void
  create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
                   Mips_symbol<size>* gsym);

  // Return output address of a stub.
  Mips_address
  stub_address(const Mips_symbol<size>* sym) const
  {
    gold_assert(sym->has_la25_stub());
    return this->address() + sym->la25_stub_offset();
  }

 protected:
  void
  do_adjust_output_section(Output_section* os)
  { os->set_entsize(0); }

 private:
  // Template for standard LA25 stub.
  static const uint32_t la25_stub_entry[];
  // Template for microMIPS LA25 stub.
  static const uint32_t la25_stub_micromips_entry[];

  // Set the final size.
  void
  set_final_data_size()
  { this->set_data_size(this->symbols_.size() * 16); }

  // Create a symbol for SYM stub's value and size, to help make the
  // disassembly easier to read.
  void
  create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
                     Target_mips<size, big_endian>* target, uint64_t symsize);

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(".LA25.stubs")); }

  // Write out the LA25 stub section.
  void
  do_write(Output_file*);

  // Symbols that have LA25 stubs.
  std::vector<Mips_symbol<size>*> symbols_;
};

// MIPS-specific relocation writer.

template<int sh_type, bool dynamic, int size, bool big_endian>
struct Mips_output_reloc_writer;

template<int sh_type, bool dynamic, bool big_endian>
struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
{
  typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
  typedef std::vector<Output_reloc_type> Relocs;

  static void
  write(typename Relocs::const_iterator p, unsigned char* pov)
  { p->write(pov); }
};

template<int sh_type, bool dynamic, bool big_endian>
struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
{
  typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
  typedef std::vector<Output_reloc_type> Relocs;

  static void
  write(typename Relocs::const_iterator p, unsigned char* pov)
  {
    elfcpp::Mips64_rel_write<big_endian> orel(pov);
    orel.put_r_offset(p->get_address());
    orel.put_r_sym(p->get_symbol_index());
    orel.put_r_ssym(RSS_UNDEF);
    orel.put_r_type(p->type());
    if (p->type() == elfcpp::R_MIPS_REL32)
      orel.put_r_type2(elfcpp::R_MIPS_64);
    else
      orel.put_r_type2(elfcpp::R_MIPS_NONE);
    orel.put_r_type3(elfcpp::R_MIPS_NONE);
  }
};

template<int sh_type, bool dynamic, int size, bool big_endian>
class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
                                                        size, big_endian>
{
 public:
  Mips_output_data_reloc(bool sort_relocs)
    : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
  { }

 protected:
  // Write out the data.
  void
  do_write(Output_file* of)
  {
    typedef Mips_output_reloc_writer<sh_type, dynamic, size,
        big_endian> Writer;
    this->template do_write_generic<Writer>(of);
  }
};


// A class to handle the PLT data.

template<int size, bool big_endian>
class Mips_output_data_plt : public Output_section_data
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
                                 size, big_endian> Reloc_section;

 public:
  // Create the PLT section.  The ordinary .got section is an argument,
  // since we need to refer to the start.
  Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
                       Target_mips<size, big_endian>* target)
    : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
      plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
      target_(target)
  {
    this->rel_ = new Reloc_section(false);
    layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                    elfcpp::SHF_ALLOC, this->rel_,
                                    ORDER_DYNAMIC_PLT_RELOCS, false);
  }

  // Add an entry to the PLT for a symbol referenced by r_type relocation.
  void
  add_entry(Mips_symbol<size>* gsym, unsigned int r_type);

  // Return the .rel.plt section data.
  Reloc_section*
  rel_plt() const
  { return this->rel_; }

  // Return the number of PLT entries.
  unsigned int
  entry_count() const
  { return this->symbols_.size(); }

  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  first_plt_entry_offset() const
  { return sizeof(plt0_entry_o32); }

  // Return the size of a PLT entry.
  unsigned int
  plt_entry_size() const
  { return sizeof(plt_entry); }

  // Set final PLT offsets.  For each symbol, determine whether standard or
  // compressed (MIPS16 or microMIPS) PLT entry is used.
  void
  set_plt_offsets();

  // Return the offset of the first standard PLT entry.
  unsigned int
  first_mips_plt_offset() const
  { return this->plt_header_size_; }

  // Return the offset of the first compressed PLT entry.
  unsigned int
  first_comp_plt_offset() const
  { return this->plt_header_size_ + this->plt_mips_offset_; }

  // Return whether there are any standard PLT entries.
  bool
  has_standard_entries() const
  { return this->plt_mips_offset_ > 0; }

  // Return the output address of standard PLT entry.
  Mips_address
  mips_entry_address(const Mips_symbol<size>* sym) const
  {
    gold_assert (sym->has_mips_plt_offset());
    return (this->address() + this->first_mips_plt_offset()
            + sym->mips_plt_offset());
  }

  // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
  Mips_address
  comp_entry_address(const Mips_symbol<size>* sym) const
  {
    gold_assert (sym->has_comp_plt_offset());
    return (this->address() + this->first_comp_plt_offset()
            + sym->comp_plt_offset());
  }

 protected:
  void
  do_adjust_output_section(Output_section* os)
  { os->set_entsize(0); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(".plt")); }

 private:
  // Template for the first PLT entry.
  static const uint32_t plt0_entry_o32[];
  static const uint32_t plt0_entry_n32[];
  static const uint32_t plt0_entry_n64[];
  static const uint32_t plt0_entry_micromips_o32[];
  static const uint32_t plt0_entry_micromips32_o32[];

  // Template for subsequent PLT entries.
  static const uint32_t plt_entry[];
  static const uint32_t plt_entry_r6[];
  static const uint32_t plt_entry_mips16_o32[];
  static const uint32_t plt_entry_micromips_o32[];
  static const uint32_t plt_entry_micromips32_o32[];

  // Set the final size.
  void
  set_final_data_size()
  {
    this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
                        + this->plt_comp_offset_);
  }

  // Write out the PLT data.
  void
  do_write(Output_file*);

  // Return whether the plt header contains microMIPS code.  For the sake of
  // cache alignment always use a standard header whenever any standard entries
  // are present even if microMIPS entries are present as well.  This also lets
  // the microMIPS header rely on the value of $v0 only set by microMIPS
  // entries, for a small size reduction.
  bool
  is_plt_header_compressed() const
  {
    gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
    return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
  }

  // Return the size of the PLT header.
  unsigned int
  get_plt_header_size() const
  {
    if (this->target_->is_output_n64())
      return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
    else if (this->target_->is_output_n32())
      return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
    else if (!this->is_plt_header_compressed())
      return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
    else if (this->target_->use_32bit_micromips_instructions())
      return (2 * sizeof(plt0_entry_micromips32_o32)
              / sizeof(plt0_entry_micromips32_o32[0]));
    else
      return (2 * sizeof(plt0_entry_micromips_o32)
              / sizeof(plt0_entry_micromips_o32[0]));
  }

  // Return the PLT header entry.
  const uint32_t*
  get_plt_header_entry() const
  {
    if (this->target_->is_output_n64())
      return plt0_entry_n64;
    else if (this->target_->is_output_n32())
      return plt0_entry_n32;
    else if (!this->is_plt_header_compressed())
      return plt0_entry_o32;
    else if (this->target_->use_32bit_micromips_instructions())
      return plt0_entry_micromips32_o32;
    else
      return plt0_entry_micromips_o32;
  }

  // Return the size of the standard PLT entry.
  unsigned int
  standard_plt_entry_size() const
  { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }

  // Return the size of the compressed PLT entry.
  unsigned int
  compressed_plt_entry_size() const
  {
    gold_assert(!this->target_->is_output_newabi());

    if (!this->target_->is_output_micromips())
      return (2 * sizeof(plt_entry_mips16_o32)
              / sizeof(plt_entry_mips16_o32[0]));
    else if (this->target_->use_32bit_micromips_instructions())
      return (2 * sizeof(plt_entry_micromips32_o32)
              / sizeof(plt_entry_micromips32_o32[0]));
    else
      return (2 * sizeof(plt_entry_micromips_o32)
              / sizeof(plt_entry_micromips_o32[0]));
  }

  // The reloc section.
  Reloc_section* rel_;
  // The .got.plt section.
  Output_data_space* got_plt_;
  // Symbols that have PLT entry.
  std::vector<Mips_symbol<size>*> symbols_;
  // The offset of the next standard PLT entry to create.
  unsigned int plt_mips_offset_;
  // The offset of the next compressed PLT entry to create.
  unsigned int plt_comp_offset_;
  // The size of the PLT header in bytes.
  unsigned int plt_header_size_;
  // The target.
  Target_mips<size, big_endian>* target_;
};

// A class to handle the .MIPS.stubs data.

template<int size, bool big_endian>
class Mips_output_data_mips_stubs : public Output_section_data
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

  // Unordered set of .MIPS.stubs entries.
  typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
      Mips_stubs_entry_set;

 public:
   Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
     : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
       stub_offsets_are_set_(false), target_(target)
   { }

  // Create entry for a symbol.
  void
  make_entry(Mips_symbol<size>*);

  // Remove entry for a symbol.
  void
  remove_entry(Mips_symbol<size>* gsym);

  // Set stub offsets for symbols.  This method expects that the number of
  // entries in dynamic symbol table is set.
  void
  set_lazy_stub_offsets();

  void
  set_needs_dynsym_value();

   // Set the number of entries in dynamic symbol table.
  void
  set_dynsym_count(unsigned int dynsym_count)
  { this->dynsym_count_ = dynsym_count; }

  // Return maximum size of the stub, ie. the stub size if the dynamic symbol
  // count is greater than 0x10000.  If the dynamic symbol count is less than
  // 0x10000, the stub will be 4 bytes smaller.
  // There's no disadvantage from using microMIPS code here, so for the sake of
  // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
  // output produced at all.  This has a benefit of stubs being shorter by
  // 4 bytes each too, unless in the insn32 mode.
  unsigned int
  stub_max_size() const
  {
    if (!this->target_->is_output_micromips()
        || this->target_->use_32bit_micromips_instructions())
      return 20;
    else
      return 16;
  }

  // Return the size of the stub.  This method expects that the final dynsym
  // count is set.
  unsigned int
  stub_size() const
  {
    gold_assert(this->dynsym_count_ != -1U);
    if (this->dynsym_count_ > 0x10000)
      return this->stub_max_size();
    else
      return this->stub_max_size() - 4;
  }

  // Return output address of a stub.
  Mips_address
  stub_address(const Mips_symbol<size>* sym) const
  {
    gold_assert(sym->has_lazy_stub());
    return this->address() + sym->lazy_stub_offset();
  }

 protected:
  void
  do_adjust_output_section(Output_section* os)
  { os->set_entsize(0); }

  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(".MIPS.stubs")); }

 private:
  static const uint32_t lazy_stub_normal_1[];
  static const uint32_t lazy_stub_normal_1_n64[];
  static const uint32_t lazy_stub_normal_2[];
  static const uint32_t lazy_stub_normal_2_n64[];
  static const uint32_t lazy_stub_big[];
  static const uint32_t lazy_stub_big_n64[];

  static const uint32_t lazy_stub_micromips_normal_1[];
  static const uint32_t lazy_stub_micromips_normal_1_n64[];
  static const uint32_t lazy_stub_micromips_normal_2[];
  static const uint32_t lazy_stub_micromips_normal_2_n64[];
  static const uint32_t lazy_stub_micromips_big[];
  static const uint32_t lazy_stub_micromips_big_n64[];

  static const uint32_t lazy_stub_micromips32_normal_1[];
  static const uint32_t lazy_stub_micromips32_normal_1_n64[];
  static const uint32_t lazy_stub_micromips32_normal_2[];
  static const uint32_t lazy_stub_micromips32_normal_2_n64[];
  static const uint32_t lazy_stub_micromips32_big[];
  static const uint32_t lazy_stub_micromips32_big_n64[];

  // Set the final size.
  void
  set_final_data_size()
  { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }

  // Write out the .MIPS.stubs data.
  void
  do_write(Output_file*);

  // .MIPS.stubs symbols
  Mips_stubs_entry_set symbols_;
  // Number of entries in dynamic symbol table.
  unsigned int dynsym_count_;
  // Whether the stub offsets are set.
  bool stub_offsets_are_set_;
  // The target.
  Target_mips<size, big_endian>* target_;
};

// This class handles Mips .reginfo output section.

template<int size, bool big_endian>
class Mips_output_section_reginfo : public Output_section_data
{
  typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;

 public:
  Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
                              Valtype gprmask, Valtype cprmask1,
                              Valtype cprmask2, Valtype cprmask3,
                              Valtype cprmask4)
    : Output_section_data(24, 4, true), target_(target),
      gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
      cprmask3_(cprmask3), cprmask4_(cprmask4)
  { }

 protected:
  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(".reginfo")); }

  // Write out reginfo section.
  void
  do_write(Output_file* of);

 private:
  Target_mips<size, big_endian>* target_;

  // gprmask of the output .reginfo section.
  Valtype gprmask_;
  // cprmask1 of the output .reginfo section.
  Valtype cprmask1_;
  // cprmask2 of the output .reginfo section.
  Valtype cprmask2_;
  // cprmask3 of the output .reginfo section.
  Valtype cprmask3_;
  // cprmask4 of the output .reginfo section.
  Valtype cprmask4_;
};

// This class handles .MIPS.options output section.

template<int size, bool big_endian>
class Mips_output_section_options : public Output_section
{
 public:
  Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
                              elfcpp::Elf_Xword flags,
                              Target_mips<size, big_endian>* target)
    : Output_section(name, type, flags), target_(target)
  {
    // After the input sections are written, we only need to update
    // ri_gp_value field of ODK_REGINFO entries.
    this->set_after_input_sections();
  }

 protected:
  // Write out option section.
  void
  do_write(Output_file* of);

 private:
  Target_mips<size, big_endian>* target_;
};

// This class handles .MIPS.abiflags output section.

template<int size, bool big_endian>
class Mips_output_section_abiflags : public Output_section_data
{
 public:
  Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
    : Output_section_data(24, 8, true), abiflags_(abiflags)
  { }

 protected:
  // Write to a map file.
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _(".MIPS.abiflags")); }

  void
  do_write(Output_file* of);

 private:
  const Mips_abiflags<big_endian>& abiflags_;
};

// The MIPS target has relocation types which default handling of relocatable
// relocation cannot process.  So we have to extend the default code.

template<bool big_endian, typename Classify_reloc>
class Mips_scan_relocatable_relocs :
  public Default_scan_relocatable_relocs<Classify_reloc>
{
 public:
  // Return the strategy to use for a local symbol which is a section
  // symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  local_section_strategy(unsigned int r_type, Relobj* object)
  {
    if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    else
      {
        switch (r_type)
          {
          case elfcpp::R_MIPS_26:
            return Relocatable_relocs::RELOC_SPECIAL;

          default:
            return Default_scan_relocatable_relocs<Classify_reloc>::
                local_section_strategy(r_type, object);
          }
      }
  }
};

// Mips_copy_relocs class.  The only difference from the base class is the
// method emit_mips, which should be called instead of Copy_reloc_entry::emit.
// Mips cannot convert all relocation types to dynamic relocs.  If a reloc
// cannot be made dynamic, a COPY reloc is emitted.

template<int sh_type, int size, bool big_endian>
class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
{
 public:
  Mips_copy_relocs()
    : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
  { }

  // Emit any saved relocations which turn out to be needed.  This is
  // called after all the relocs have been scanned.
  void
  emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
            Symbol_table*, Layout*, Target_mips<size, big_endian>*);

 private:
  typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
    Copy_reloc_entry;

  // Emit this reloc if appropriate.  This is called after we have
  // scanned all the relocations, so we know whether we emitted a
  // COPY relocation for SYM_.
  void
  emit_entry(Copy_reloc_entry& entry,
             Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
             Symbol_table* symtab, Layout* layout,
             Target_mips<size, big_endian>* target);
};


// Return true if the symbol SYM should be considered to resolve local
// to the current module, and false otherwise.  The logic is taken from
// GNU ld's method _bfd_elf_symbol_refs_local_p.
static bool
symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
                  bool local_protected)
{
  // If it's a local sym, of course we resolve locally.
  if (sym == NULL)
    return true;

  // STV_HIDDEN or STV_INTERNAL ones must be local.
  if (sym->visibility() == elfcpp::STV_HIDDEN
      || sym->visibility() == elfcpp::STV_INTERNAL)
    return true;

  // If we don't have a definition in a regular file, then we can't
  // resolve locally.  The sym is either undefined or dynamic.
  if (sym->is_from_dynobj() || sym->is_undefined())
    return false;

  // Forced local symbols resolve locally.
  if (sym->is_forced_local())
    return true;

  // As do non-dynamic symbols.
  if (!has_dynsym_entry)
    return true;

  // At this point, we know the symbol is defined and dynamic.  In an
  // executable it must resolve locally, likewise when building symbolic
  // shared libraries.
  if (parameters->options().output_is_executable()
      || parameters->options().Bsymbolic())
    return true;

  // Now deal with defined dynamic symbols in shared libraries.  Ones
  // with default visibility might not resolve locally.
  if (sym->visibility() == elfcpp::STV_DEFAULT)
    return false;

  // STV_PROTECTED non-function symbols are local.
  if (sym->type() != elfcpp::STT_FUNC)
    return true;

  // Function pointer equality tests may require that STV_PROTECTED
  // symbols be treated as dynamic symbols.  If the address of a
  // function not defined in an executable is set to that function's
  // plt entry in the executable, then the address of the function in
  // a shared library must also be the plt entry in the executable.
  return local_protected;
}

// Return TRUE if references to this symbol always reference the symbol in this
// object.
static bool
symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
{
  return symbol_refs_local(sym, has_dynsym_entry, false);
}

// Return TRUE if calls to this symbol always call the version in this object.
static bool
symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
{
  return symbol_refs_local(sym, has_dynsym_entry, true);
}

// Compare GOT offsets of two symbols.

template<int size, bool big_endian>
static bool
got_offset_compare(Symbol* sym1, Symbol* sym2)
{
  Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
  Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
  unsigned int area1 = mips_sym1->global_got_area();
  unsigned int area2 = mips_sym2->global_got_area();
  gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);

  // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
  if (area1 != area2)
    return area1 < area2;

  return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
}

// This method divides dynamic symbols into symbols that have GOT entry, and
// symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
// Mips ABI requires that symbols with the GOT entry must be at the end of
// dynamic symbol table, and the order in dynamic symbol table must match the
// order in GOT.

template<int size, bool big_endian>
static void
reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
                    std::vector<Symbol*>* non_got_symbols,
                    std::vector<Symbol*>* got_symbols)
{
  for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
       p != dyn_symbols->end();
       ++p)
    {
      Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
      if (mips_sym->global_got_area() == GGA_NORMAL
          || mips_sym->global_got_area() == GGA_RELOC_ONLY)
        got_symbols->push_back(mips_sym);
      else
        non_got_symbols->push_back(mips_sym);
    }

  std::sort(got_symbols->begin(), got_symbols->end(),
            got_offset_compare<size, big_endian>);
}

// Functor class for processing the global symbol table.

template<int size, bool big_endian>
class Symbol_visitor_check_symbols
{
 public:
  Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
    Layout* layout, Symbol_table* symtab)
    : target_(target), layout_(layout), symtab_(symtab)
  { }

  void
  operator()(Sized_symbol<size>* sym)
  {
    Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
    if (local_pic_function<size, big_endian>(mips_sym))
      {
        // SYM is a function that might need $25 to be valid on entry.
        // If we're creating a non-PIC relocatable object, mark SYM as
        // being PIC.  If we're creating a non-relocatable object with
        // non-PIC branches and jumps to SYM, make sure that SYM has an la25
        // stub.
        if (parameters->options().relocatable())
          {
            if (!parameters->options().output_is_position_independent())
              mips_sym->set_pic();
          }
        else if (mips_sym->has_nonpic_branches())
          {
            this->target_->la25_stub_section(layout_)
                ->create_la25_stub(this->symtab_, this->target_, mips_sym);
          }
      }
  }

 private:
  Target_mips<size, big_endian>* target_;
  Layout* layout_;
  Symbol_table* symtab_;
};

// Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
// and endianness. The relocation format for MIPS-64 is non-standard.

template<int sh_type, int size, bool big_endian>
struct Mips_reloc_types;

template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
{
  typedef typename elfcpp::Rel<32, big_endian> Reloc;
  typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;

  static typename elfcpp::Elf_types<32>::Elf_Swxword
  get_r_addend(const Reloc*)
  { return 0; }

  static inline void
  set_reloc_addend(Reloc_write*,
		   typename elfcpp::Elf_types<32>::Elf_Swxword)
  { gold_unreachable(); }
};

template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
{
  typedef typename elfcpp::Rela<32, big_endian> Reloc;
  typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;

  static typename elfcpp::Elf_types<32>::Elf_Swxword
  get_r_addend(const Reloc* reloc)
  { return reloc->get_r_addend(); }

  static inline void
  set_reloc_addend(Reloc_write* p,
		   typename elfcpp::Elf_types<32>::Elf_Swxword val)
  { p->put_r_addend(val); }
};

template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
{
  typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
  typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;

  static typename elfcpp::Elf_types<64>::Elf_Swxword
  get_r_addend(const Reloc*)
  { return 0; }

  static inline void
  set_reloc_addend(Reloc_write*,
		   typename elfcpp::Elf_types<64>::Elf_Swxword)
  { gold_unreachable(); }
};

template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
{
  typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
  typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;

  static typename elfcpp::Elf_types<64>::Elf_Swxword
  get_r_addend(const Reloc* reloc)
  { return reloc->get_r_addend(); }

  static inline void
  set_reloc_addend(Reloc_write* p,
		   typename elfcpp::Elf_types<64>::Elf_Swxword val)
  { p->put_r_addend(val); }
};

// Forward declaration.
static unsigned int
mips_get_size_for_reloc(unsigned int, Relobj*);

// A class for inquiring about properties of a relocation,
// used while scanning relocs during a relocatable link and
// garbage collection.

template<int sh_type_, int size, bool big_endian>
class Mips_classify_reloc;

template<int sh_type_, bool big_endian>
class Mips_classify_reloc<sh_type_, 32, big_endian> :
    public gold::Default_classify_reloc<sh_type_, 32, big_endian>
{
 public:
  typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
      Reltype;
  typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
      Reltype_write;

  // Return the symbol referred to by the relocation.
  static inline unsigned int
  get_r_sym(const Reltype* reloc)
  { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }

  // Return the type of the relocation.
  static inline unsigned int
  get_r_type(const Reltype* reloc)
  { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }

  static inline unsigned int
  get_r_type2(const Reltype*)
  { return 0; }

  static inline unsigned int
  get_r_type3(const Reltype*)
  { return 0; }

  static inline unsigned int
  get_r_ssym(const Reltype*)
  { return 0; }

  // Return the explicit addend of the relocation (return 0 for SHT_REL).
  static inline unsigned int
  get_r_addend(const Reltype* reloc)
  {
    if (sh_type_ == elfcpp::SHT_REL)
      return 0;
    return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
  }

  // Write the r_info field to a new reloc, using the r_info field from
  // the original reloc, replacing the r_sym field with R_SYM.
  static inline void
  put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
  {
    unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
    new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
  }

  // Write the r_addend field to a new reloc.
  static inline void
  put_r_addend(Reltype_write* to,
	       typename elfcpp::Elf_types<32>::Elf_Swxword addend)
  { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }

  // Return the size of the addend of the relocation (only used for SHT_REL).
  static unsigned int
  get_size_for_reloc(unsigned int r_type, Relobj* obj)
  { return mips_get_size_for_reloc(r_type, obj); }
};

template<int sh_type_, bool big_endian>
class Mips_classify_reloc<sh_type_, 64, big_endian> :
    public gold::Default_classify_reloc<sh_type_, 64, big_endian>
{
 public:
  typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
      Reltype;
  typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
      Reltype_write;

  // Return the symbol referred to by the relocation.
  static inline unsigned int
  get_r_sym(const Reltype* reloc)
  { return reloc->get_r_sym(); }

  // Return the r_type of the relocation.
  static inline unsigned int
  get_r_type(const Reltype* reloc)
  { return reloc->get_r_type(); }

  // Return the r_type2 of the relocation.
  static inline unsigned int
  get_r_type2(const Reltype* reloc)
  { return reloc->get_r_type2(); }

  // Return the r_type3 of the relocation.
  static inline unsigned int
  get_r_type3(const Reltype* reloc)
  { return reloc->get_r_type3(); }

  // Return the special symbol of the relocation.
  static inline unsigned int
  get_r_ssym(const Reltype* reloc)
  { return reloc->get_r_ssym(); }

  // Return the explicit addend of the relocation (return 0 for SHT_REL).
  static inline typename elfcpp::Elf_types<64>::Elf_Swxword
  get_r_addend(const Reltype* reloc)
  {
    if (sh_type_ == elfcpp::SHT_REL)
      return 0;
    return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
  }

  // Write the r_info field to a new reloc, using the r_info field from
  // the original reloc, replacing the r_sym field with R_SYM.
  static inline void
  put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
  {
    new_reloc->put_r_sym(r_sym);
    new_reloc->put_r_ssym(reloc->get_r_ssym());
    new_reloc->put_r_type3(reloc->get_r_type3());
    new_reloc->put_r_type2(reloc->get_r_type2());
    new_reloc->put_r_type(reloc->get_r_type());
  }

  // Write the r_addend field to a new reloc.
  static inline void
  put_r_addend(Reltype_write* to,
	       typename elfcpp::Elf_types<64>::Elf_Swxword addend)
  { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }

  // Return the size of the addend of the relocation (only used for SHT_REL).
  static unsigned int
  get_size_for_reloc(unsigned int r_type, Relobj* obj)
  { return mips_get_size_for_reloc(r_type, obj); }
};

template<int size, bool big_endian>
class Target_mips : public Sized_target<size, big_endian>
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
    Reloc_section;
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
  typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
  typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
      Reltype;
  typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
      Relatype;

 public:
  Target_mips(const Target::Target_info* info = &mips_info)
    : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
      got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
      dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
      mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
      mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
      entry_symbol_is_compressed_(false), insn32_(false)
  {
    this->add_machine_extensions();
  }

  // The offset of $gp from the beginning of the .got section.
  static const unsigned int MIPS_GP_OFFSET = 0x7ff0;

  // The maximum size of the GOT for it to be addressable using 16-bit
  // offsets from $gp.
  static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;

  // Make a new symbol table entry for the Mips target.
  Sized_symbol<size>*
  make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
  { return new Mips_symbol<size>(); }

  // Process the relocations to determine unreferenced sections for
  // garbage collection.
  void
  gc_process_relocs(Symbol_table* symtab,
                    Layout* layout,
                    Sized_relobj_file<size, big_endian>* object,
                    unsigned int data_shndx,
                    unsigned int sh_type,
                    const unsigned char* prelocs,
                    size_t reloc_count,
                    Output_section* output_section,
                    bool needs_special_offset_handling,
                    size_t local_symbol_count,
                    const unsigned char* plocal_symbols);

  // Scan the relocations to look for symbol adjustments.
  void
  scan_relocs(Symbol_table* symtab,
              Layout* layout,
              Sized_relobj_file<size, big_endian>* object,
              unsigned int data_shndx,
              unsigned int sh_type,
              const unsigned char* prelocs,
              size_t reloc_count,
              Output_section* output_section,
              bool needs_special_offset_handling,
              size_t local_symbol_count,
              const unsigned char* plocal_symbols);

  // Finalize the sections.
  void
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

  // Relocate a section.
  void
  relocate_section(const Relocate_info<size, big_endian>*,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   unsigned char* view,
                   Mips_address view_address,
                   section_size_type view_size,
                   const Reloc_symbol_changes*);

  // Scan the relocs during a relocatable link.
  void
  scan_relocatable_relocs(Symbol_table* symtab,
                          Layout* layout,
                          Sized_relobj_file<size, big_endian>* object,
                          unsigned int data_shndx,
                          unsigned int sh_type,
                          const unsigned char* prelocs,
                          size_t reloc_count,
                          Output_section* output_section,
                          bool needs_special_offset_handling,
                          size_t local_symbol_count,
                          const unsigned char* plocal_symbols,
                          Relocatable_relocs*);

  // Scan the relocs for --emit-relocs.
  void
  emit_relocs_scan(Symbol_table* symtab,
		   Layout* layout,
		   Sized_relobj_file<size, big_endian>* object,
		   unsigned int data_shndx,
		   unsigned int sh_type,
		   const unsigned char* prelocs,
		   size_t reloc_count,
		   Output_section* output_section,
		   bool needs_special_offset_handling,
		   size_t local_symbol_count,
		   const unsigned char* plocal_syms,
		   Relocatable_relocs* rr);

  // Emit relocations for a section.
  void
  relocate_relocs(const Relocate_info<size, big_endian>*,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  typename elfcpp::Elf_types<size>::Elf_Off
                    offset_in_output_section,
                  unsigned char* view,
                  Mips_address view_address,
                  section_size_type view_size,
                  unsigned char* reloc_view,
                  section_size_type reloc_view_size);

  // Perform target-specific processing in a relocatable link.  This is
  // only used if we use the relocation strategy RELOC_SPECIAL.
  void
  relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
                               unsigned int sh_type,
                               const unsigned char* preloc_in,
                               size_t relnum,
                               Output_section* output_section,
                               typename elfcpp::Elf_types<size>::Elf_Off
                                 offset_in_output_section,
                               unsigned char* view,
                               Mips_address view_address,
                               section_size_type view_size,
                               unsigned char* preloc_out);

  // Return whether SYM is defined by the ABI.
  bool
  do_is_defined_by_abi(const Symbol* sym) const
  {
    return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
            || (strcmp(sym->name(), "_gp_disp") == 0)
            || (strcmp(sym->name(), "___tls_get_addr") == 0));
  }

  // Return the number of entries in the GOT.
  unsigned int
  got_entry_count() const
  {
    if (!this->has_got_section())
      return 0;
    return this->got_size() / (size/8);
  }

  // Return the number of entries in the PLT.
  unsigned int
  plt_entry_count() const
  {
    if (this->plt_ == NULL)
      return 0;
    return this->plt_->entry_count();
  }

  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  first_plt_entry_offset() const
  { return this->plt_->first_plt_entry_offset(); }

  // Return the size of each PLT entry.
  unsigned int
  plt_entry_size() const
  { return this->plt_->plt_entry_size(); }

  // Get the GOT section, creating it if necessary.
  Mips_output_data_got<size, big_endian>*
  got_section(Symbol_table*, Layout*);

  // Get the GOT section.
  Mips_output_data_got<size, big_endian>*
  got_section() const
  {
    gold_assert(this->got_ != NULL);
    return this->got_;
  }

  // Get the .MIPS.stubs section, creating it if necessary.
  Mips_output_data_mips_stubs<size, big_endian>*
  mips_stubs_section(Layout* layout);

  // Get the .MIPS.stubs section.
  Mips_output_data_mips_stubs<size, big_endian>*
  mips_stubs_section() const
  {
    gold_assert(this->mips_stubs_ != NULL);
    return this->mips_stubs_;
  }

  // Get the LA25 stub section, creating it if necessary.
  Mips_output_data_la25_stub<size, big_endian>*
  la25_stub_section(Layout*);

  // Get the LA25 stub section.
  Mips_output_data_la25_stub<size, big_endian>*
  la25_stub_section()
  {
    gold_assert(this->la25_stub_ != NULL);
    return this->la25_stub_;
  }

  // Get gp value.  It has the value of .got + 0x7FF0.
  Mips_address
  gp_value() const
  {
    if (this->gp_ != NULL)
      return this->gp_->value();
    return 0;
  }

  // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
  // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
  Mips_address
  adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
  {
    if (this->gp_ == NULL)
      return 0;

    bool multi_got = false;
    if (this->has_got_section())
      multi_got = this->got_section()->multi_got();
    if (!multi_got)
      return this->gp_->value();
    else
      return this->gp_->value() + this->got_section()->get_got_offset(object);
  }

  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  rel_dyn_section(Layout*);

  bool
  do_has_custom_set_dynsym_indexes() const
  { return true; }

  // Don't emit input .reginfo/.MIPS.abiflags sections to
  // output .reginfo/.MIPS.abiflags.
  bool
  do_should_include_section(elfcpp::Elf_Word sh_type) const
  {
    return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
             && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
  }

  // Set the dynamic symbol indexes.  INDEX is the index of the first
  // global dynamic symbol.  Pointers to the symbols are stored into the
  // vector SYMS.  The names are added to DYNPOOL.  This returns an
  // updated dynamic symbol index.
  unsigned int
  do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
                        std::vector<Symbol*>* syms, Stringpool* dynpool,
                        Versions* versions, Symbol_table* symtab) const;

  // Remove .MIPS.stubs entry for a symbol.
  void
  remove_lazy_stub_entry(Mips_symbol<size>* sym)
  {
    if (this->mips_stubs_ != NULL)
      this->mips_stubs_->remove_entry(sym);
  }

  // The value to write into got[1] for SVR4 targets, to identify it is
  // a GNU object.  The dynamic linker can then use got[1] to store the
  // module pointer.
  uint64_t
  mips_elf_gnu_got1_mask()
  {
    if (this->is_output_n64())
      return (uint64_t)1 << 63;
    else
      return 1 << 31;
  }

  // Whether the output has microMIPS code.  This is valid only after
  // merge_obj_e_flags() is called.
  bool
  is_output_micromips() const
  {
    gold_assert(this->are_processor_specific_flags_set());
    return elfcpp::is_micromips(this->processor_specific_flags());
  }

  // Whether the output uses N32 ABI.  This is valid only after
  // merge_obj_e_flags() is called.
  bool
  is_output_n32() const
  {
    gold_assert(this->are_processor_specific_flags_set());
    return elfcpp::abi_n32(this->processor_specific_flags());
  }

  // Whether the output uses R6 ISA.  This is valid only after
  // merge_obj_e_flags() is called.
  bool
  is_output_r6() const
  {
    gold_assert(this->are_processor_specific_flags_set());
    return elfcpp::r6_isa(this->processor_specific_flags());
  }

  // Whether the output uses N64 ABI.
  bool
  is_output_n64() const
  { return size == 64; }

  // Whether the output uses NEWABI.  This is valid only after
  // merge_obj_e_flags() is called.
  bool
  is_output_newabi() const
  { return this->is_output_n32() || this->is_output_n64(); }

  // Whether we can only use 32-bit microMIPS instructions.
  bool
  use_32bit_micromips_instructions() const
  { return this->insn32_; }

  // Return the r_sym field from a relocation.
  unsigned int
  get_r_sym(const unsigned char* preloc) const
  {
    // Since REL and RELA relocs share the same structure through
    // the r_info field, we can just use REL here.
    Reltype rel(preloc);
    return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
	get_r_sym(&rel);
  }

 protected:
  // Return the value to use for a dynamic symbol which requires special
  // treatment.  This is how we support equality comparisons of function
  // pointers across shared library boundaries, as described in the
  // processor specific ABI supplement.
  uint64_t
  do_dynsym_value(const Symbol* gsym) const;

  // Make an ELF object.
  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
                     const elfcpp::Ehdr<size, big_endian>& ehdr);

  Object*
  do_make_elf_object(const std::string&, Input_file*, off_t,
                     const elfcpp::Ehdr<size, !big_endian>&)
  { gold_unreachable(); }

  // Make an output section.
  Output_section*
  do_make_output_section(const char* name, elfcpp::Elf_Word type,
                         elfcpp::Elf_Xword flags)
    {
      if (type == elfcpp::SHT_MIPS_OPTIONS)
        return new Mips_output_section_options<size, big_endian>(name, type,
                                                                 flags, this);
      else
        return new Output_section(name, type, flags);
    }

  // Adjust ELF file header.
  void
  do_adjust_elf_header(unsigned char* view, int len);

  // Get the custom dynamic tag value.
  unsigned int
  do_dynamic_tag_custom_value(elfcpp::DT) const;

  // Adjust the value written to the dynamic symbol table.
  virtual void
  do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
  {
    elfcpp::Sym<size, big_endian> isym(view);
    elfcpp::Sym_write<size, big_endian> osym(view);
    const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);

    // Keep dynamic compressed symbols odd.  This allows the dynamic linker
    // to treat compressed symbols like any other.
    Mips_address value = isym.get_st_value();
    if (mips_sym->is_mips16() && value != 0)
      {
        if (!mips_sym->has_mips16_fn_stub())
          value |= 1;
        else
          {
            // If we have a MIPS16 function with a stub, the dynamic symbol
            // must refer to the stub, since only the stub uses the standard
            // calling conventions.  Stub contains MIPS32 code, so don't add +1
            // in this case.

            // There is a code which does this in the method
            // Target_mips::do_dynsym_value, but that code will only be
            // executed if the symbol is from dynobj.
            // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
            // table.

            Mips16_stub_section<size, big_endian>* fn_stub =
              mips_sym->template get_mips16_fn_stub<big_endian>();
            value = fn_stub->output_address();
            osym.put_st_size(fn_stub->section_size());
          }

        osym.put_st_value(value);
        osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
                          mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
      }
    else if ((mips_sym->is_micromips()
              // Stubs are always microMIPS if there is any microMIPS code in
              // the output.
              || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
             && value != 0)
      {
        osym.put_st_value(value | 1);
        osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
                          mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
      }
  }

 private:
  // The class which scans relocations.
  class Scan
  {
   public:
    Scan()
    { }

    static inline int
    get_reference_flags(unsigned int r_type);

    inline void
    local(Symbol_table* symtab, Layout* layout, Target_mips* target,
          Sized_relobj_file<size, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const Reltype& reloc, unsigned int r_type,
          const elfcpp::Sym<size, big_endian>& lsym,
          bool is_discarded);

    inline void
    local(Symbol_table* symtab, Layout* layout, Target_mips* target,
          Sized_relobj_file<size, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const Relatype& reloc, unsigned int r_type,
          const elfcpp::Sym<size, big_endian>& lsym,
          bool is_discarded);

    inline void
    local(Symbol_table* symtab, Layout* layout, Target_mips* target,
          Sized_relobj_file<size, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const Relatype* rela,
          const Reltype* rel,
          unsigned int rel_type,
          unsigned int r_type,
          const elfcpp::Sym<size, big_endian>& lsym,
          bool is_discarded);

    inline void
    global(Symbol_table* symtab, Layout* layout, Target_mips* target,
           Sized_relobj_file<size, big_endian>* object,
           unsigned int data_shndx,
           Output_section* output_section,
           const Reltype& reloc, unsigned int r_type,
           Symbol* gsym);

    inline void
    global(Symbol_table* symtab, Layout* layout, Target_mips* target,
           Sized_relobj_file<size, big_endian>* object,
           unsigned int data_shndx,
           Output_section* output_section,
           const Relatype& reloc, unsigned int r_type,
           Symbol* gsym);

    inline void
    global(Symbol_table* symtab, Layout* layout, Target_mips* target,
           Sized_relobj_file<size, big_endian>* object,
           unsigned int data_shndx,
           Output_section* output_section,
           const Relatype* rela,
           const Reltype* rel,
           unsigned int rel_type,
           unsigned int r_type,
           Symbol* gsym);

    inline bool
    local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
                                        Target_mips*,
                                        Sized_relobj_file<size, big_endian>*,
                                        unsigned int,
                                        Output_section*,
                                        const Reltype&,
                                        unsigned int,
                                        const elfcpp::Sym<size, big_endian>&)
    { return false; }

    inline bool
    global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
                                         Target_mips*,
                                         Sized_relobj_file<size, big_endian>*,
                                         unsigned int,
                                         Output_section*,
                                         const Reltype&,
                                         unsigned int, Symbol*)
    { return false; }

    inline bool
    local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
                                        Target_mips*,
                                        Sized_relobj_file<size, big_endian>*,
                                        unsigned int,
                                        Output_section*,
                                        const Relatype&,
                                        unsigned int,
                                        const elfcpp::Sym<size, big_endian>&)
    { return false; }

    inline bool
    global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
                                         Target_mips*,
                                         Sized_relobj_file<size, big_endian>*,
                                         unsigned int,
                                         Output_section*,
                                         const Relatype&,
                                         unsigned int, Symbol*)
    { return false; }
   private:
    static void
    unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
                            unsigned int r_type);

    static void
    unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
                             unsigned int r_type, Symbol*);
  };

  // The class which implements relocation.
  class Relocate
  {
   public:
    Relocate()
      : calculated_value_(0), calculate_only_(false)
    { }

    ~Relocate()
    { }

    // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
    inline bool
    should_apply_static_reloc(const Mips_symbol<size>* gsym,
                              unsigned int r_type,
                              Output_section* output_section,
                              Target_mips* target);

    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    inline bool
    relocate(const Relocate_info<size, big_endian>*, unsigned int,
	     Target_mips*, Output_section*, size_t, const unsigned char*,
	     const Sized_symbol<size>*, const Symbol_value<size>*,
	     unsigned char*, Mips_address, section_size_type);

   private:
    // Result of the relocation.
    Valtype calculated_value_;
    // Whether we have to calculate relocation instead of applying it.
    bool calculate_only_;
  };

  // This POD class holds the dynamic relocations that should be emitted instead
  // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
  // relocations if it turns out that the symbol does not have static
  // relocations.
  class Dyn_reloc
  {
   public:
    Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
              Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
              Output_section* output_section, Mips_address r_offset)
      : sym_(sym), r_type_(r_type), relobj_(relobj),
        shndx_(shndx), output_section_(output_section),
        r_offset_(r_offset)
    { }

    // Emit this reloc if appropriate.  This is called after we have
    // scanned all the relocations, so we know whether the symbol has
    // static relocations.
    void
    emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
         Symbol_table* symtab)
    {
      if (!this->sym_->has_static_relocs())
        {
          got->record_global_got_symbol(this->sym_, this->relobj_,
                                        this->r_type_, true, false);
          if (!symbol_references_local(this->sym_,
                                this->sym_->should_add_dynsym_entry(symtab)))
            rel_dyn->add_global(this->sym_, this->r_type_,
                                this->output_section_, this->relobj_,
                                this->shndx_, this->r_offset_);
          else
            rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
                                          this->output_section_, this->relobj_,
                                          this->shndx_, this->r_offset_);
        }
    }

   private:
    Mips_symbol<size>* sym_;
    unsigned int r_type_;
    Mips_relobj<size, big_endian>* relobj_;
    unsigned int shndx_;
    Output_section* output_section_;
    Mips_address r_offset_;
  };

  // Adjust TLS relocation type based on the options and whether this
  // is a local symbol.
  static tls::Tls_optimization
  optimize_tls_reloc(bool is_final, int r_type);

  // Return whether there is a GOT section.
  bool
  has_got_section() const
  { return this->got_ != NULL; }

  // Check whether the given ELF header flags describe a 32-bit binary.
  bool
  mips_32bit_flags(elfcpp::Elf_Word);

  enum Mips_mach {
    mach_mips3000             = 3000,
    mach_mips3900             = 3900,
    mach_mips4000             = 4000,
    mach_mips4010             = 4010,
    mach_mips4100             = 4100,
    mach_mips4111             = 4111,
    mach_mips4120             = 4120,
    mach_mips4300             = 4300,
    mach_mips4400             = 4400,
    mach_mips4600             = 4600,
    mach_mips4650             = 4650,
    mach_mips5000             = 5000,
    mach_mips5400             = 5400,
    mach_mips5500             = 5500,
    mach_mips5900             = 5900,
    mach_mips6000             = 6000,
    mach_mips7000             = 7000,
    mach_mips8000             = 8000,
    mach_mips9000             = 9000,
    mach_mips10000            = 10000,
    mach_mips12000            = 12000,
    mach_mips14000            = 14000,
    mach_mips16000            = 16000,
    mach_mips16               = 16,
    mach_mips5                = 5,
    mach_mips_loongson_2e     = 3001,
    mach_mips_loongson_2f     = 3002,
    mach_mips_gs464           = 3003,
    mach_mips_gs464e          = 3004,
    mach_mips_gs264e          = 3005,
    mach_mips_sb1             = 12310201, // octal 'SB', 01
    mach_mips_octeon          = 6501,
    mach_mips_octeonp         = 6601,
    mach_mips_octeon2         = 6502,
    mach_mips_octeon3         = 6503,
    mach_mips_xlr             = 887682,   // decimal 'XLR'
    mach_mipsisa32            = 32,
    mach_mipsisa32r2          = 33,
    mach_mipsisa32r3          = 34,
    mach_mipsisa32r5          = 36,
    mach_mipsisa32r6          = 37,
    mach_mipsisa64            = 64,
    mach_mipsisa64r2          = 65,
    mach_mipsisa64r3          = 66,
    mach_mipsisa64r5          = 68,
    mach_mipsisa64r6          = 69,
    mach_mips_micromips       = 96
  };

  // Return the MACH for a MIPS e_flags value.
  unsigned int
  elf_mips_mach(elfcpp::Elf_Word);

  // Return the MACH for each .MIPS.abiflags ISA Extension.
  unsigned int
  mips_isa_ext_mach(unsigned int);

  // Return the .MIPS.abiflags value representing each ISA Extension.
  unsigned int
  mips_isa_ext(unsigned int);

  // Update the isa_level, isa_rev, isa_ext fields of abiflags.
  void
  update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
                      Mips_abiflags<big_endian>*);

  // Infer the content of the ABI flags based on the elf header.
  void
  infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);

  // Create abiflags from elf header or from .MIPS.abiflags section.
  void
  create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);

  // Return the meaning of fp_abi, or "unknown" if not known.
  const char*
  fp_abi_string(int);

  // Select fp_abi.
  int
  select_fp_abi(const std::string&, int, int);

  // Merge attributes from input object.
  void
  merge_obj_attributes(const std::string&, const Attributes_section_data*);

  // Merge abiflags from input object.
  void
  merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);

  // Check whether machine EXTENSION is an extension of machine BASE.
  bool
  mips_mach_extends(unsigned int, unsigned int);

  // Merge file header flags from input object.
  void
  merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);

  // Encode ISA level and revision as a single value.
  int
  level_rev(unsigned char isa_level, unsigned char isa_rev) const
  { return (isa_level << 3) | isa_rev; }

  // True if we are linking for CPUs that are faster if JAL is converted to BAL.
  static inline bool
  jal_to_bal()
  { return false; }

  // True if we are linking for CPUs that are faster if JALR is converted to
  // BAL.  This should be safe for all architectures.  We enable this predicate
  // for all CPUs.
  static inline bool
  jalr_to_bal()
  { return true; }

  // True if we are linking for CPUs that are faster if JR is converted to B.
  // This should be safe for all architectures.  We enable this predicate for
  // all CPUs.
  static inline bool
  jr_to_b()
  { return true; }

  // Return the size of the GOT section.
  section_size_type
  got_size() const
  {
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
  }

  // Create a PLT entry for a global symbol referenced by r_type relocation.
  void
  make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
                 unsigned int r_type);

  // Get the PLT section.
  Mips_output_data_plt<size, big_endian>*
  plt_section() const
  {
    gold_assert(this->plt_ != NULL);
    return this->plt_;
  }

  // Get the GOT PLT section.
  const Mips_output_data_plt<size, big_endian>*
  got_plt_section() const
  {
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
  }

  // Copy a relocation against a global symbol.
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj_file<size, big_endian>* object,
             unsigned int shndx, Output_section* output_section,
             Symbol* sym, unsigned int r_type, Mips_address r_offset)
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
                                  symtab->get_sized_symbol<size>(sym),
                                  object, shndx, output_section,
                                  r_type, r_offset, 0,
                                  this->rel_dyn_section(layout));
  }

  void
  dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
                Mips_relobj<size, big_endian>* relobj,
                unsigned int shndx, Output_section* output_section,
                Mips_address r_offset)
  {
    this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
                                          output_section, r_offset));
  }

  // Calculate value of _gp symbol.
  void
  set_gp(Layout*, Symbol_table*);

  const char*
  elf_mips_abi_name(elfcpp::Elf_Word e_flags);
  const char*
  elf_mips_mach_name(elfcpp::Elf_Word e_flags);

  // Adds entries that describe how machines relate to one another.  The entries
  // are ordered topologically with MIPS I extensions listed last.  First
  // element is extension, second element is base.
  void
  add_machine_extensions()
  {
    // MIPS64r2 extensions.
    this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
    this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
    this->add_extension(mach_mips_octeonp, mach_mips_octeon);
    this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
    this->add_extension(mach_mips_gs264e, mach_mips_gs464e);
    this->add_extension(mach_mips_gs464e, mach_mips_gs464);
    this->add_extension(mach_mips_gs464, mach_mipsisa64r2);

    // MIPS64 extensions.
    this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
    this->add_extension(mach_mips_sb1, mach_mipsisa64);
    this->add_extension(mach_mips_xlr, mach_mipsisa64);

    // MIPS V extensions.
    this->add_extension(mach_mipsisa64, mach_mips5);

    // R10000 extensions.
    this->add_extension(mach_mips12000, mach_mips10000);
    this->add_extension(mach_mips14000, mach_mips10000);
    this->add_extension(mach_mips16000, mach_mips10000);

    // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
    // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
    // better to allow vr5400 and vr5500 code to be merged anyway, since
    // many libraries will just use the core ISA.  Perhaps we could add
    // some sort of ASE flag if this ever proves a problem.
    this->add_extension(mach_mips5500, mach_mips5400);
    this->add_extension(mach_mips5400, mach_mips5000);

    // MIPS IV extensions.
    this->add_extension(mach_mips5, mach_mips8000);
    this->add_extension(mach_mips10000, mach_mips8000);
    this->add_extension(mach_mips5000, mach_mips8000);
    this->add_extension(mach_mips7000, mach_mips8000);
    this->add_extension(mach_mips9000, mach_mips8000);

    // VR4100 extensions.
    this->add_extension(mach_mips4120, mach_mips4100);
    this->add_extension(mach_mips4111, mach_mips4100);

    // MIPS III extensions.
    this->add_extension(mach_mips_loongson_2e, mach_mips4000);
    this->add_extension(mach_mips_loongson_2f, mach_mips4000);
    this->add_extension(mach_mips8000, mach_mips4000);
    this->add_extension(mach_mips4650, mach_mips4000);
    this->add_extension(mach_mips4600, mach_mips4000);
    this->add_extension(mach_mips4400, mach_mips4000);
    this->add_extension(mach_mips4300, mach_mips4000);
    this->add_extension(mach_mips4100, mach_mips4000);
    this->add_extension(mach_mips4010, mach_mips4000);
    this->add_extension(mach_mips5900, mach_mips4000);

    // MIPS32 extensions.
    this->add_extension(mach_mipsisa32r2, mach_mipsisa32);

    // MIPS II extensions.
    this->add_extension(mach_mips4000, mach_mips6000);
    this->add_extension(mach_mipsisa32, mach_mips6000);

    // MIPS I extensions.
    this->add_extension(mach_mips6000, mach_mips3000);
    this->add_extension(mach_mips3900, mach_mips3000);
  }

  // Add value to MIPS extenstions.
  void
  add_extension(unsigned int base, unsigned int extension)
  {
    std::pair<unsigned int, unsigned int> ext(base, extension);
    this->mips_mach_extensions_.push_back(ext);
  }

  // Return the number of entries in the .dynsym section.
  unsigned int get_dt_mips_symtabno() const
  {
    return ((unsigned int)(this->layout_->dynsym_section()->data_size()
                           / elfcpp::Elf_sizes<size>::sym_size));
    // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
  }

  // Information about this specific target which we pass to the
  // general Target structure.
  static const Target::Target_info mips_info;
  // The GOT section.
  Mips_output_data_got<size, big_endian>* got_;
  // gp symbol.  It has the value of .got + 0x7FF0.
  Sized_symbol<size>* gp_;
  // The PLT section.
  Mips_output_data_plt<size, big_endian>* plt_;
  // The GOT PLT section.
  Output_data_space* got_plt_;
  // The dynamic reloc section.
  Reloc_section* rel_dyn_;
  // The .rld_map section.
  Output_data_zero_fill* rld_map_;
  // Relocs saved to avoid a COPY reloc.
  Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;

  // A list of dyn relocs to be saved.
  std::vector<Dyn_reloc> dyn_relocs_;

  // The LA25 stub section.
  Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
  // Architecture extensions.
  std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
  // .MIPS.stubs
  Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;

  // Attributes section data in output.
  Attributes_section_data* attributes_section_data_;
  // .MIPS.abiflags section data in output.
  Mips_abiflags<big_endian>* abiflags_;

  unsigned int mach_;
  Layout* layout_;

  typename std::list<got16_addend<size, big_endian> > got16_addends_;

  // Whether there is an input .MIPS.abiflags section.
  bool has_abiflags_section_;

  // Whether the entry symbol is mips16 or micromips.
  bool entry_symbol_is_compressed_;

  // Whether we can use only 32-bit microMIPS instructions.
  // TODO(sasa): This should be a linker option.
  bool insn32_;
};

// Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
// It records high part of the relocation pair.

template<int size, bool big_endian>
struct reloc_high
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;

  reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
             const Symbol_value<size>* _psymval, Mips_address _addend,
             unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
             Mips_address _address = 0, bool _gp_disp = false)
    : view(_view), object(_object), psymval(_psymval), addend(_addend),
      r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
      address(_address), gp_disp(_gp_disp)
  { }

  unsigned char* view;
  const Mips_relobj<size, big_endian>* object;
  const Symbol_value<size>* psymval;
  Mips_address addend;
  unsigned int r_type;
  unsigned int r_sym;
  bool extract_addend;
  Mips_address address;
  bool gp_disp;
};

template<int size, bool big_endian>
class Mips_relocate_functions : public Relocate_functions<size, big_endian>
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
  typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
  typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;

 public:
  typedef enum
  {
    STATUS_OKAY,            // No error during relocation.
    STATUS_OVERFLOW,        // Relocation overflow.
    STATUS_BAD_RELOC,       // Relocation cannot be applied.
    STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
  } Status;

 private:
  typedef Relocate_functions<size, big_endian> Base;
  typedef Mips_relocate_functions<size, big_endian> This;

  static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
  static typename std::list<reloc_high<size, big_endian> > got16_relocs;
  static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;

  template<int valsize>
  static inline typename This::Status
  check_overflow(Valtype value)
  {
    if (size == 32)
      return (Bits<valsize>::has_overflow32(value)
              ? This::STATUS_OVERFLOW
              : This::STATUS_OKAY);

    return (Bits<valsize>::has_overflow(value)
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
  }

  static inline bool
  should_shuffle_micromips_reloc(unsigned int r_type)
  {
    return (micromips_reloc(r_type)
            && r_type != elfcpp::R_MICROMIPS_PC7_S1
            && r_type != elfcpp::R_MICROMIPS_PC10_S1);
  }

 public:
  //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
  //   Most mips16 instructions are 16 bits, but these instructions
  //   are 32 bits.
  //
  //   The format of these instructions is:
  //
  //   +--------------+--------------------------------+
  //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
  //   +--------------+--------------------------------+
  //   |                Immediate  15:0                |
  //   +-----------------------------------------------+
  //
  //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
  //   Note that the immediate value in the first word is swapped.
  //
  //   When producing a relocatable object file, R_MIPS16_26 is
  //   handled mostly like R_MIPS_26.  In particular, the addend is
  //   stored as a straight 26-bit value in a 32-bit instruction.
  //   (gas makes life simpler for itself by never adjusting a
  //   R_MIPS16_26 reloc to be against a section, so the addend is
  //   always zero).  However, the 32 bit instruction is stored as 2
  //   16-bit values, rather than a single 32-bit value.  In a
  //   big-endian file, the result is the same; in a little-endian
  //   file, the two 16-bit halves of the 32 bit value are swapped.
  //   This is so that a disassembler can recognize the jal
  //   instruction.
  //
  //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
  //   instruction stored as two 16-bit values.  The addend A is the
  //   contents of the targ26 field.  The calculation is the same as
  //   R_MIPS_26.  When storing the calculated value, reorder the
  //   immediate value as shown above, and don't forget to store the
  //   value as two 16-bit values.
  //
  //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
  //   defined as
  //
  //   big-endian:
  //   +--------+----------------------+
  //   |        |                      |
  //   |        |    targ26-16         |
  //   |31    26|25                   0|
  //   +--------+----------------------+
  //
  //   little-endian:
  //   +----------+------+-------------+
  //   |          |      |             |
  //   |  sub1    |      |     sub2    |
  //   |0        9|10  15|16         31|
  //   +----------+--------------------+
  //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
  //   ((sub1 << 16) | sub2)).
  //
  //   When producing a relocatable object file, the calculation is
  //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
  //   When producing a fully linked file, the calculation is
  //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
  //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
  //
  //   The table below lists the other MIPS16 instruction relocations.
  //   Each one is calculated in the same way as the non-MIPS16 relocation
  //   given on the right, but using the extended MIPS16 layout of 16-bit
  //   immediate fields:
  //
  //      R_MIPS16_GPREL          R_MIPS_GPREL16
  //      R_MIPS16_GOT16          R_MIPS_GOT16
  //      R_MIPS16_CALL16         R_MIPS_CALL16
  //      R_MIPS16_HI16           R_MIPS_HI16
  //      R_MIPS16_LO16           R_MIPS_LO16
  //
  //   A typical instruction will have a format like this:
  //
  //   +--------------+--------------------------------+
  //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
  //   +--------------+--------------------------------+
  //   |    Major     |   rx   |   ry   |   Imm  4:0   |
  //   +--------------+--------------------------------+
  //
  //   EXTEND is the five bit value 11110.  Major is the instruction
  //   opcode.
  //
  //   All we need to do here is shuffle the bits appropriately.
  //   As above, the two 16-bit halves must be swapped on a
  //   little-endian system.

  // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
  // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
  // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.

  static void
  mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
                       bool jal_shuffle)
  {
    if (!mips16_reloc(r_type)
        && !should_shuffle_micromips_reloc(r_type))
      return;

    // Pick up the first and second halfwords of the instruction.
    Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
    Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
    Valtype32 val;

    if (micromips_reloc(r_type)
        || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
      val = first << 16 | second;
    else if (r_type != elfcpp::R_MIPS16_26)
      val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
             | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
    else
      val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
             | ((first & 0x1f) << 21) | second);

    elfcpp::Swap<32, big_endian>::writeval(view, val);
  }

  static void
  mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
  {
    if (!mips16_reloc(r_type)
        && !should_shuffle_micromips_reloc(r_type))
      return;

    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
    Valtype16 first, second;

    if (micromips_reloc(r_type)
        || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
      {
        second = val & 0xffff;
        first = val >> 16;
      }
    else if (r_type != elfcpp::R_MIPS16_26)
      {
        second = ((val >> 11) & 0xffe0) | (val & 0x1f);
        first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
      }
    else
      {
        second = val & 0xffff;
        first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
                 | ((val >> 21) & 0x1f);
      }

    elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
    elfcpp::Swap<16, big_endian>::writeval(view, first);
  }

  // R_MIPS_16: S + sign-extend(A)
  static inline typename This::Status
  rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
        const Symbol_value<size>* psymval, Mips_address addend_a,
        bool extract_addend, bool calculate_only, Valtype* calculated_value)
  {
    Valtype16* wv = reinterpret_cast<Valtype16*>(view);
    Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
                                     : addend_a);

    Valtype x = psymval->value(object, addend);
    val = Bits<16>::bit_select32(val, x, 0xffffU);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<16, big_endian>::writeval(wv, val);

    return check_overflow<16>(x);
  }

  // R_MIPS_32: S + A
  static inline typename This::Status
  rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
        const Symbol_value<size>* psymval, Mips_address addend_a,
        bool extract_addend, bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype addend = (extract_addend
                        ? elfcpp::Swap<32, big_endian>::readval(wv)
                        : addend_a);
    Valtype x = psymval->value(object, addend);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, x);

    return This::STATUS_OKAY;
  }

  // R_MIPS_JALR, R_MICROMIPS_JALR
  static inline typename This::Status
  reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
          unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
          bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype addend = extract_addend ? 0 : addend_a;
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    // Try converting J(AL)R to B(AL), if the target is in range.
    if (r_type == elfcpp::R_MIPS_JALR
        && !cross_mode_jump
        && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
            || (jr_to_b && val == 0x03200008)))   // jr t9
      {
        int offset = psymval->value(object, addend) - (address + 4);
        if (!Bits<18>::has_overflow32(offset))
          {
            if (val == 0x03200008)   // jr t9
              val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
            else
              val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
          }
      }

    if (calculate_only)
      *calculated_value = val;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_PC32: S + A - P
  static inline typename This::Status
  relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype addend = (extract_addend
                        ? elfcpp::Swap<32, big_endian>::readval(wv)
                        : addend_a);
    Valtype x = psymval->value(object, addend) - address;

    if (calculate_only)
       *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, x);

    return This::STATUS_OKAY;
  }

  // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
  static inline typename This::Status
  rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
        const Symbol_value<size>* psymval, Mips_address address,
        bool local, Mips_address addend_a, bool extract_addend,
        const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
        bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend;
    if (extract_addend)
      {
        if (r_type == elfcpp::R_MICROMIPS_26_S1)
          addend = (val & 0x03ffffff) << 1;
        else
          addend = (val & 0x03ffffff) << 2;
      }
    else
      addend = addend_a;

    // Make sure the target of JALX is word-aligned.  Bit 0 must be
    // the correct ISA mode selector and bit 1 must be 0.
    if (!calculate_only && cross_mode_jump
        && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
      {
        gold_warning(_("JALX to a non-word-aligned address"));
        return This::STATUS_BAD_RELOC;
      }

    // Shift is 2, unusually, for microMIPS JALX.
    unsigned int shift =
        (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;

    Valtype x;
    if (local)
      x = addend | ((address + 4) & (0xfc000000 << shift));
    else
      {
        if (shift == 1)
          x = Bits<27>::sign_extend32(addend);
        else
          x = Bits<28>::sign_extend32(addend);
      }
    x = psymval->value(object, x) >> shift;

    if (!calculate_only && !local && !gsym->is_weak_undefined()
        && ((x >> 26) != ((address + 4) >> (26 + shift))))
      return This::STATUS_OVERFLOW;

    val = Bits<32>::bit_select32(val, x, 0x03ffffff);

    // If required, turn JAL into JALX.
    if (cross_mode_jump)
      {
        bool ok;
        Valtype32 opcode = val >> 26;
        Valtype32 jalx_opcode;

        // Check to see if the opcode is already JAL or JALX.
        if (r_type == elfcpp::R_MIPS16_26)
          {
            ok = (opcode == 0x6) || (opcode == 0x7);
            jalx_opcode = 0x7;
          }
        else if (r_type == elfcpp::R_MICROMIPS_26_S1)
          {
            ok = (opcode == 0x3d) || (opcode == 0x3c);
            jalx_opcode = 0x3c;
          }
        else
          {
            ok = (opcode == 0x3) || (opcode == 0x1d);
            jalx_opcode = 0x1d;
          }

        // If the opcode is not JAL or JALX, there's a problem.  We cannot
        // convert J or JALS to JALX.
        if (!calculate_only && !ok)
          {
            gold_error(_("Unsupported jump between ISA modes; consider "
                         "recompiling with interlinking enabled."));
            return This::STATUS_BAD_RELOC;
          }

        // Make this the JALX opcode.
        val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
      }

    // Try converting JAL to BAL, if the target is in range.
    if (!parameters->options().relocatable()
        && !cross_mode_jump
        && ((jal_to_bal
            && r_type == elfcpp::R_MIPS_26
            && (val >> 26) == 0x3)))    // jal addr
      {
        Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
        int offset = dest - (address + 4);
        if (!Bits<18>::has_overflow32(offset))
          {
            if (val == 0x03200008)   // jr t9
              val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
            else
              val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
          }
      }

    if (calculate_only)
      *calculated_value = val;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_PC16
  static inline typename This::Status
  relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<18>::sign_extend32((val & 0xffff) << 2)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<16>::bit_select32(val, x >> 2, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x >> 2;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (psymval->value(object, addend) & 3)
      return This::STATUS_PCREL_UNALIGNED;

    return check_overflow<18>(x);
  }

  // R_MIPS_PC21_S2
  static inline typename This::Status
  relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);

    if (calculate_only)
      {
        *calculated_value = x >> 2;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (psymval->value(object, addend) & 3)
      return This::STATUS_PCREL_UNALIGNED;

    return check_overflow<23>(x);
  }

  // R_MIPS_PC26_S2
  static inline typename This::Status
  relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);

    if (calculate_only)
      {
        *calculated_value = x >> 2;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (psymval->value(object, addend) & 3)
      return This::STATUS_PCREL_UNALIGNED;

    return check_overflow<28>(x);
  }

  // R_MIPS_PC18_S3
  static inline typename This::Status
  relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
    val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);

    if (calculate_only)
      {
        *calculated_value = x >> 3;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (psymval->value(object, addend) & 7)
      return This::STATUS_PCREL_UNALIGNED;

    return check_overflow<21>(x);
  }

  // R_MIPS_PC19_S2
  static inline typename This::Status
  relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address address,
          Mips_address addend_a, bool extract_addend, bool calculate_only,
          Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);

    if (calculate_only)
      {
        *calculated_value = x >> 2;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (psymval->value(object, addend) & 3)
      return This::STATUS_PCREL_UNALIGNED;

    return check_overflow<21>(x);
  }

  // R_MIPS_PCHI16
  static inline typename This::Status
  relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
            const Symbol_value<size>* psymval, Mips_address addend,
            Mips_address address, unsigned int r_sym, bool extract_addend)
  {
    // Record the relocation.  It will be resolved when we find pclo16 part.
    pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
                            addend, 0, r_sym, extract_addend, address));
    return This::STATUS_OKAY;
  }

  // R_MIPS_PCHI16
  static inline typename This::Status
  do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address addend_hi,
             Mips_address address, bool extract_addend, Valtype32 addend_lo,
             bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
                                       : addend_hi);

    Valtype value = psymval->value(object, addend) - address;
    Valtype x = ((value + 0x8000) >> 16) & 0xffff;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_PCLO16
  static inline typename This::Status
  relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
            const Symbol_value<size>* psymval, Mips_address addend_a,
            bool extract_addend, Mips_address address, unsigned int r_sym,
            unsigned int rel_type, bool calculate_only,
            Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
                                     : addend_a);

    if (rel_type == elfcpp::SHT_REL)
      {
        // Resolve pending R_MIPS_PCHI16 relocations.
        typename std::list<reloc_high<size, big_endian> >::iterator it =
            pchi16_relocs.begin();
        while (it != pchi16_relocs.end())
          {
            reloc_high<size, big_endian> pchi16 = *it;
            if (pchi16.r_sym == r_sym)
              {
                do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
                             pchi16.addend, pchi16.address,
                             pchi16.extract_addend, addend, calculate_only,
                             calculated_value);
                it = pchi16_relocs.erase(it);
              }
            else
              ++it;
          }
      }

    // Resolve R_MIPS_PCLO16 relocation.
    Valtype x = psymval->value(object, addend) - address;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MICROMIPS_PC7_S1
  static inline typename This::Status
  relmicromips_pc7_s1(unsigned char* view,
                      const Mips_relobj<size, big_endian>* object,
                      const Symbol_value<size>* psymval, Mips_address address,
                      Mips_address addend_a, bool extract_addend,
                      bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
                                    : addend_a;

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<16>::bit_select32(val, x >> 1, 0x7f);

    if (calculate_only)
      {
        *calculated_value = x >> 1;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<8>(x);
  }

  // R_MICROMIPS_PC10_S1
  static inline typename This::Status
  relmicromips_pc10_s1(unsigned char* view,
                       const Mips_relobj<size, big_endian>* object,
                       const Symbol_value<size>* psymval, Mips_address address,
                       Mips_address addend_a, bool extract_addend,
                       bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);

    if (calculate_only)
      {
        *calculated_value = x >> 1;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<11>(x);
  }

  // R_MICROMIPS_PC16_S1
  static inline typename This::Status
  relmicromips_pc16_s1(unsigned char* view,
                       const Mips_relobj<size, big_endian>* object,
                       const Symbol_value<size>* psymval, Mips_address address,
                       Mips_address addend_a, bool extract_addend,
                       bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend
                      ? Bits<17>::sign_extend32((val & 0xffff) << 1)
                      : addend_a);

    Valtype x = psymval->value(object, addend) - address;
    val = Bits<16>::bit_select32(val, x >> 1, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x >> 1;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<17>(x);
  }

  // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
  static inline typename This::Status
  relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address addend,
          Mips_address address, bool gp_disp, unsigned int r_type,
          unsigned int r_sym, bool extract_addend)
  {
    // Record the relocation.  It will be resolved when we find lo16 part.
    hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
                          addend, r_type, r_sym, extract_addend, address,
                          gp_disp));
    return This::STATUS_OKAY;
  }

  // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
  static inline typename This::Status
  do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address addend_hi,
             Mips_address address, bool is_gp_disp, unsigned int r_type,
             bool extract_addend, Valtype32 addend_lo,
             Target_mips<size, big_endian>* target, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
                                       : addend_hi);

    Valtype32 value;
    if (!is_gp_disp)
      value = psymval->value(object, addend);
    else
      {
        // For MIPS16 ABI code we generate this sequence
        //    0: li      $v0,%hi(_gp_disp)
        //    4: addiupc $v1,%lo(_gp_disp)
        //    8: sll     $v0,16
        //   12: addu    $v0,$v1
        //   14: move    $gp,$v0
        // So the offsets of hi and lo relocs are the same, but the
        // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
        // ADDIUPC clears the low two bits of the instruction address,
        // so the base is ($t9 + 4) & ~3.
        Valtype32 gp_disp;
        if (r_type == elfcpp::R_MIPS16_HI16)
          gp_disp = (target->adjusted_gp_value(object)
                     - ((address + 4) & ~0x3));
        // The microMIPS .cpload sequence uses the same assembly
        // instructions as the traditional psABI version, but the
        // incoming $t9 has the low bit set.
        else if (r_type == elfcpp::R_MICROMIPS_HI16)
          gp_disp = target->adjusted_gp_value(object) - address - 1;
        else
          gp_disp = target->adjusted_gp_value(object) - address;
        value = gp_disp + addend;
      }
    Valtype x = ((value + 0x8000) >> 16) & 0xffff;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return (is_gp_disp ? check_overflow<16>(x)
                       : This::STATUS_OKAY);
  }

  // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
  static inline typename This::Status
  relgot16_local(unsigned char* view,
                 const Mips_relobj<size, big_endian>* object,
                 const Symbol_value<size>* psymval, Mips_address addend_a,
                 bool extract_addend, unsigned int r_type, unsigned int r_sym)
  {
    // Record the relocation.  It will be resolved when we find lo16 part.
    got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
                           addend_a, r_type, r_sym, extract_addend));
    return This::STATUS_OKAY;
  }

  // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
  static inline typename This::Status
  do_relgot16_local(unsigned char* view,
                    const Mips_relobj<size, big_endian>* object,
                    const Symbol_value<size>* psymval, Mips_address addend_hi,
                    bool extract_addend, Valtype32 addend_lo,
                    Target_mips<size, big_endian>* target, bool calculate_only,
                    Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
                                       : addend_hi);

    // Find GOT page entry.
    Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
                          & 0xffff;
    value <<= 16;
    unsigned int got_offset =
      target->got_section()->get_got_page_offset(value, object);

    // Resolve the relocation.
    Valtype x = target->got_section()->gp_offset(got_offset, object);
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<16>(x);
  }

  // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
  static inline typename This::Status
  rello16(Target_mips<size, big_endian>* target, unsigned char* view,
          const Mips_relobj<size, big_endian>* object,
          const Symbol_value<size>* psymval, Mips_address addend_a,
          bool extract_addend, Mips_address address, bool is_gp_disp,
          unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
          bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
                                     : addend_a);

    if (rel_type == elfcpp::SHT_REL)
      {
        typename This::Status reloc_status = This::STATUS_OKAY;
        // Resolve pending R_MIPS_HI16 relocations.
        typename std::list<reloc_high<size, big_endian> >::iterator it =
          hi16_relocs.begin();
        while (it != hi16_relocs.end())
          {
            reloc_high<size, big_endian> hi16 = *it;
            if (hi16.r_sym == r_sym
                && is_matching_lo16_reloc(hi16.r_type, r_type))
              {
                mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
                reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
                                       hi16.addend, hi16.address, hi16.gp_disp,
                                       hi16.r_type, hi16.extract_addend, addend,
                                       target, calculate_only, calculated_value);
                mips_reloc_shuffle(hi16.view, hi16.r_type, false);
                if (reloc_status == This::STATUS_OVERFLOW)
                  return This::STATUS_OVERFLOW;
                it = hi16_relocs.erase(it);
              }
            else
              ++it;
          }

        // Resolve pending local R_MIPS_GOT16 relocations.
        typename std::list<reloc_high<size, big_endian> >::iterator it2 =
          got16_relocs.begin();
        while (it2 != got16_relocs.end())
          {
            reloc_high<size, big_endian> got16 = *it2;
            if (got16.r_sym == r_sym
                && is_matching_lo16_reloc(got16.r_type, r_type))
              {
                mips_reloc_unshuffle(got16.view, got16.r_type, false);

                reloc_status = do_relgot16_local(got16.view, got16.object,
                                     got16.psymval, got16.addend,
                                     got16.extract_addend, addend, target,
                                     calculate_only, calculated_value);

                mips_reloc_shuffle(got16.view, got16.r_type, false);
                if (reloc_status == This::STATUS_OVERFLOW)
                  return This::STATUS_OVERFLOW;
                it2 = got16_relocs.erase(it2);
              }
            else
              ++it2;
          }
      }

    // Resolve R_MIPS_LO16 relocation.
    Valtype x;
    if (!is_gp_disp)
      x = psymval->value(object, addend);
    else
      {
        // See the comment for R_MIPS16_HI16 above for the reason
        // for this conditional.
        Valtype32 gp_disp;
        if (r_type == elfcpp::R_MIPS16_LO16)
          gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
        else if (r_type == elfcpp::R_MICROMIPS_LO16
                 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
          gp_disp = target->adjusted_gp_value(object) - address + 3;
        else
          gp_disp = target->adjusted_gp_value(object) - address + 4;
        // The MIPS ABI requires checking the R_MIPS_LO16 relocation
        // for overflow.  Relocations against _gp_disp are normally
        // generated from the .cpload pseudo-op.  It generates code
        // that normally looks like this:

        //   lui    $gp,%hi(_gp_disp)
        //   addiu  $gp,$gp,%lo(_gp_disp)
        //   addu   $gp,$gp,$t9

        // Here $t9 holds the address of the function being called,
        // as required by the MIPS ELF ABI.  The R_MIPS_LO16
        // relocation can easily overflow in this situation, but the
        // R_MIPS_HI16 relocation will handle the overflow.
        // Therefore, we consider this a bug in the MIPS ABI, and do
        // not check for overflow here.
        x = gp_disp + addend;
      }
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
  // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
  // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
  // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
  // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
  // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
  static inline typename This::Status
  relgot(unsigned char* view, int gp_offset, bool calculate_only,
         Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = gp_offset;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<16>(x);
  }

  // R_MIPS_EH
  static inline typename This::Status
  releh(unsigned char* view, int gp_offset, bool calculate_only,
        Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype x = gp_offset;

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, x);

    return check_overflow<32>(x);
  }

  // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
  static inline typename This::Status
  relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
             const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address addend_a,
             bool extract_addend, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
    Valtype addend = extract_addend ? val & 0xffff : addend_a;

    // Find a GOT page entry that points to within 32KB of symbol + addend.
    Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
    unsigned int  got_offset =
      target->got_section()->get_got_page_offset(value, object);

    Valtype x = target->got_section()->gp_offset(got_offset, object);
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<16>(x);
  }

  // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
  static inline typename This::Status
  relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
             const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address addend_a,
             bool extract_addend, bool local, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
    Valtype addend = extract_addend ? val & 0xffff : addend_a;

    // For a local symbol, find a GOT page entry that points to within 32KB of
    // symbol + addend.  Relocation value is the offset of the GOT page entry's
    // value from symbol + addend.
    // For a global symbol, relocation value is addend.
    Valtype x;
    if (local)
      {
        // Find GOT page entry.
        Mips_address value = ((psymval->value(object, addend) + 0x8000)
                              & ~0xffff);
        target->got_section()->get_got_page_offset(value, object);

        x = psymval->value(object, addend) - value;
      }
    else
      x = addend;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return check_overflow<16>(x);
  }

  // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
  // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
  static inline typename This::Status
  relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
              Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = gp_offset;
    x = ((x + 0x8000) >> 16) & 0xffff;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
  // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
  static inline typename This::Status
  relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
              Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype x = gp_offset;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
  // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
  static inline typename This::Status
  relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
           const Symbol_value<size>* psymval, Mips_address gp,
           Mips_address addend_a, bool extract_addend, bool local,
           unsigned int r_type, bool calculate_only,
           Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);

    Valtype addend;
    if (extract_addend)
      {
        if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
          addend = (val & 0x7f) << 2;
        else
          addend = val & 0xffff;
        // Only sign-extend the addend if it was extracted from the
        // instruction.  If the addend was separate, leave it alone,
        // otherwise we may lose significant bits.
        addend = Bits<16>::sign_extend32(addend);
      }
    else
      addend = addend_a;

    Valtype x = psymval->value(object, addend) - gp;

    // If the symbol was local, any earlier relocatable links will
    // have adjusted its addend with the gp offset, so compensate
    // for that now.  Don't do it for symbols forced local in this
    // link, though, since they won't have had the gp offset applied
    // to them before.
    if (local)
      x += object->gp_value();

    if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
      val = Bits<32>::bit_select32(val, x, 0x7f);
    else
      val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      {
        *calculated_value = x;
        return This::STATUS_OKAY;
      }
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
      {
        gold_error(_("small-data section exceeds 64KB; lower small-data size "
                     "limit (see option -G)"));
        return This::STATUS_OVERFLOW;
      }
    return This::STATUS_OKAY;
  }

  // R_MIPS_GPREL32
  static inline typename This::Status
  relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address gp,
             Mips_address addend_a, bool extract_addend, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = extract_addend ? val : addend_a;

    // R_MIPS_GPREL32 relocations are defined for local symbols only.
    Valtype x = psymval->value(object, addend) + object->gp_value() - gp;

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, x);

    return This::STATUS_OKAY;
 }

  // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
  // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
  // R_MICROMIPS_TLS_DTPREL_HI16
  static inline typename This::Status
  tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Valtype32 tp_offset,
             Mips_address addend_a, bool extract_addend, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = extract_addend ? val & 0xffff : addend_a;

    // tls symbol values are relative to tls_segment()->vaddr()
    Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
  // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
  // R_MICROMIPS_TLS_DTPREL_LO16,
  static inline typename This::Status
  tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Valtype32 tp_offset,
             Mips_address addend_a, bool extract_addend, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = extract_addend ? val & 0xffff : addend_a;

    // tls symbol values are relative to tls_segment()->vaddr()
    Valtype x = psymval->value(object, addend) - tp_offset;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
  // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
  static inline typename This::Status
  tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
           const Symbol_value<size>* psymval, Valtype32 tp_offset,
           Mips_address addend_a, bool extract_addend, bool calculate_only,
           Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = extract_addend ? val : addend_a;

    // tls symbol values are relative to tls_segment()->vaddr()
    Valtype x = psymval->value(object, addend) - tp_offset;

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, x);

    return This::STATUS_OKAY;
  }

  // R_MIPS_SUB, R_MICROMIPS_SUB
  static inline typename This::Status
  relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
         const Symbol_value<size>* psymval, Mips_address addend_a,
         bool extract_addend, bool calculate_only, Valtype* calculated_value)
  {
    Valtype64* wv = reinterpret_cast<Valtype64*>(view);
    Valtype64 addend = (extract_addend
                        ? elfcpp::Swap<64, big_endian>::readval(wv)
                        : addend_a);

    Valtype64 x = psymval->value(object, -addend);
    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<64, big_endian>::writeval(wv, x);

    return This::STATUS_OKAY;
  }

  // R_MIPS_64: S + A
  static inline typename This::Status
  rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
        const Symbol_value<size>* psymval, Mips_address addend_a,
        bool extract_addend, bool calculate_only, Valtype* calculated_value,
        bool apply_addend_only)
  {
    Valtype64* wv = reinterpret_cast<Valtype64*>(view);
    Valtype64 addend = (extract_addend
                        ? elfcpp::Swap<64, big_endian>::readval(wv)
                        : addend_a);

    Valtype64 x = psymval->value(object, addend);
    if (calculate_only)
      *calculated_value = x;
    else
      {
        if (apply_addend_only)
          x = addend;
        elfcpp::Swap<64, big_endian>::writeval(wv, x);
      }

    return This::STATUS_OKAY;
  }

  // R_MIPS_HIGHER, R_MICROMIPS_HIGHER
  static inline typename This::Status
  relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
            const Symbol_value<size>* psymval, Mips_address addend_a,
            bool extract_addend, bool calculate_only, Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
                                     : addend_a);

    Valtype x = psymval->value(object, addend);
    x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }

  // R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
  static inline typename This::Status
  relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
             const Symbol_value<size>* psymval, Mips_address addend_a,
             bool extract_addend, bool calculate_only,
             Valtype* calculated_value)
  {
    Valtype32* wv = reinterpret_cast<Valtype32*>(view);
    Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
    Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
                                     : addend_a);

    Valtype x = psymval->value(object, addend);
    x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
    val = Bits<32>::bit_select32(val, x, 0xffff);

    if (calculate_only)
      *calculated_value = x;
    else
      elfcpp::Swap<32, big_endian>::writeval(wv, val);

    return This::STATUS_OKAY;
  }
};

template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
    Mips_relocate_functions<size, big_endian>::hi16_relocs;

template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
    Mips_relocate_functions<size, big_endian>::got16_relocs;

template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
    Mips_relocate_functions<size, big_endian>::pchi16_relocs;

// Mips_got_info methods.

// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_local_got_symbol(
    Mips_relobj<size, big_endian>* object, unsigned int symndx,
    Mips_address addend, unsigned int r_type, unsigned int shndx,
    bool is_section_symbol)
{
  Mips_got_entry<size, big_endian>* entry =
    new Mips_got_entry<size, big_endian>(object, symndx, addend,
                                         mips_elf_reloc_tls_type(r_type),
                                         shndx, is_section_symbol);
  this->record_got_entry(entry, object);
}

// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
// in OBJECT.  FOR_CALL is true if the caller is only interested in
// using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
// relocation.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_global_got_symbol(
    Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
    unsigned int r_type, bool dyn_reloc, bool for_call)
{
  if (!for_call)
    mips_sym->set_got_not_only_for_calls();

  // A global symbol in the GOT must also be in the dynamic symbol table.
  if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
    {
      switch (mips_sym->visibility())
        {
        case elfcpp::STV_INTERNAL:
        case elfcpp::STV_HIDDEN:
          mips_sym->set_is_forced_local();
          break;
        default:
          mips_sym->set_needs_dynsym_entry();
          break;
        }
    }

  unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
  if (tls_type == GOT_TLS_NONE)
    this->global_got_symbols_.insert(mips_sym);

  if (dyn_reloc)
    {
      if (mips_sym->global_got_area() == GGA_NONE)
        mips_sym->set_global_got_area(GGA_RELOC_ONLY);
      return;
    }

  Mips_got_entry<size, big_endian>* entry =
    new Mips_got_entry<size, big_endian>(mips_sym, tls_type);

  this->record_got_entry(entry, object);
}

// Add ENTRY to master GOT and to OBJECT's GOT.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_got_entry(
    Mips_got_entry<size, big_endian>* entry,
    Mips_relobj<size, big_endian>* object)
{
  this->got_entries_.insert(entry);

  // Create the GOT entry for the OBJECT's GOT.
  Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
  Mips_got_entry<size, big_endian>* entry2 =
    new Mips_got_entry<size, big_endian>(*entry);

  g->got_entries_.insert(entry2);
}

// Record that OBJECT has a page relocation against symbol SYMNDX and
// that ADDEND is the addend for that relocation.
// This function creates an upper bound on the number of GOT slots
// required; no attempt is made to combine references to non-overridable
// global symbols across multiple input files.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_got_page_entry(
    Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
{
  struct Got_page_range **range_ptr, *range;
  int old_pages, new_pages;

  // Find the Got_page_entry for this symbol.
  Got_page_entry* entry = new Got_page_entry(object, symndx);
  typename Got_page_entry_set::iterator it =
    this->got_page_entries_.find(entry);
  if (it != this->got_page_entries_.end())
    entry = *it;
  else
    this->got_page_entries_.insert(entry);

  // Get the object's GOT, but we don't need to insert an entry here.
  Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();

  // Skip over ranges whose maximum extent cannot share a page entry
  // with ADDEND.
  range_ptr = &entry->ranges;
  while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
    range_ptr = &(*range_ptr)->next;

  // If we scanned to the end of the list, or found a range whose
  // minimum extent cannot share a page entry with ADDEND, create
  // a new singleton range.
  range = *range_ptr;
  if (!range || addend < range->min_addend - 0xffff)
    {
      range = new Got_page_range();
      range->next = *range_ptr;
      range->min_addend = addend;
      range->max_addend = addend;

      *range_ptr = range;
      ++this->page_gotno_;
      ++g2->page_gotno_;
      return;
    }

  // Remember how many pages the old range contributed.
  old_pages = range->get_max_pages();

  // Update the ranges.
  if (addend < range->min_addend)
    range->min_addend = addend;
  else if (addend > range->max_addend)
    {
      if (range->next && addend >= range->next->min_addend - 0xffff)
        {
          old_pages += range->next->get_max_pages();
          range->max_addend = range->next->max_addend;
          range->next = range->next->next;
        }
      else
        range->max_addend = addend;
    }

  // Record any change in the total estimate.
  new_pages = range->get_max_pages();
  if (old_pages != new_pages)
    {
      this->page_gotno_ += new_pages - old_pages;
      g2->page_gotno_ += new_pages - old_pages;
    }
}

// Create all entries that should be in the local part of the GOT.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_local_entries(
    Target_mips<size, big_endian>* target, Layout* layout)
{
  Mips_output_data_got<size, big_endian>* got = target->got_section();
  // First two GOT entries are reserved.  The first entry will be filled at
  // runtime.  The second entry will be used by some runtime loaders.
  got->add_constant(0);
  got->add_constant(target->mips_elf_gnu_got1_mask());

  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (entry->is_for_local_symbol() && !entry->is_tls_entry())
        {
          got->add_local(entry->object(), entry->symndx(),
                         GOT_TYPE_STANDARD, entry->addend());
          unsigned int got_offset = entry->object()->local_got_offset(
              entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
          if (got->multi_got() && this->index_ > 0
              && parameters->options().output_is_position_independent())
          {
            if (!entry->is_section_symbol())
              target->rel_dyn_section(layout)->add_local(entry->object(),
                  entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
            else
              target->rel_dyn_section(layout)->add_symbolless_local_addend(
                  entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
                  got, got_offset);
          }
        }
    }

  this->add_page_entries(target, layout);

  // Add global entries that should be in the local area.
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (!entry->is_for_global_symbol())
        continue;

      Mips_symbol<size>* mips_sym = entry->sym();
      if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
        {
          unsigned int got_type;
          if (!got->multi_got())
            got_type = GOT_TYPE_STANDARD;
          else
            got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
          if (got->add_global(mips_sym, got_type))
            {
              mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
              if (got->multi_got() && this->index_ > 0
                  && parameters->options().output_is_position_independent())
                target->rel_dyn_section(layout)->add_symbolless_global_addend(
                    mips_sym, elfcpp::R_MIPS_REL32, got,
                    mips_sym->got_offset(got_type));
            }
        }
    }
}

// Create GOT page entries.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_page_entries(
    Target_mips<size, big_endian>* target, Layout* layout)
{
  if (this->page_gotno_ == 0)
    return;

  Mips_output_data_got<size, big_endian>* got = target->got_section();
  this->got_page_offset_start_ = got->add_constant(0);
  if (got->multi_got() && this->index_ > 0
      && parameters->options().output_is_position_independent())
    target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
                                                  this->got_page_offset_start_);
  int num_entries = this->page_gotno_;
  unsigned int prev_offset = this->got_page_offset_start_;
  while (--num_entries > 0)
    {
      unsigned int next_offset = got->add_constant(0);
      if (got->multi_got() && this->index_ > 0
          && parameters->options().output_is_position_independent())
        target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
                                                      next_offset);
      gold_assert(next_offset == prev_offset + size/8);
      prev_offset = next_offset;
    }
  this->got_page_offset_next_ = this->got_page_offset_start_;
}

// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_global_entries(
    Target_mips<size, big_endian>* target, Layout* layout,
    unsigned int non_reloc_only_global_gotno)
{
  Mips_output_data_got<size, big_endian>* got = target->got_section();
  // Add GGA_NORMAL entries.
  unsigned int count = 0;
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (!entry->is_for_global_symbol())
        continue;

      Mips_symbol<size>* mips_sym = entry->sym();
      if (mips_sym->global_got_area() != GGA_NORMAL)
        continue;

      unsigned int got_type;
      if (!got->multi_got())
        got_type = GOT_TYPE_STANDARD;
      else
        // In multi-GOT links, global symbol can be in both primary and
        // secondary GOT(s).  By creating custom GOT type
        // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
        // is added to secondary GOT(s).
        got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
      if (!got->add_global(mips_sym, got_type))
        continue;

      mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
      if (got->multi_got() && this->index_ == 0)
        count++;
      if (got->multi_got() && this->index_ > 0)
        {
          if (parameters->options().output_is_position_independent()
              || (!parameters->doing_static_link()
                  && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
            {
              target->rel_dyn_section(layout)->add_global(
                  mips_sym, elfcpp::R_MIPS_REL32, got,
                  mips_sym->got_offset(got_type));
              got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
                                           elfcpp::R_MIPS_REL32, mips_sym);
            }
        }
    }

  if (!got->multi_got() || this->index_ == 0)
    {
      if (got->multi_got())
        {
          // We need to allocate space in the primary GOT for GGA_NORMAL entries
          // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
          // entries correspond to dynamic symbol indexes.
          while (count < non_reloc_only_global_gotno)
            {
              got->add_constant(0);
              ++count;
            }
        }

      // Add GGA_RELOC_ONLY entries.
      got->add_reloc_only_entries();
    }
}

// Create global GOT entries that should be in the GGA_RELOC_ONLY area.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_reloc_only_entries(
    Mips_output_data_got<size, big_endian>* got)
{
  for (typename Global_got_entry_set::iterator
       p = this->global_got_symbols_.begin();
       p != this->global_got_symbols_.end();
       ++p)
    {
      Mips_symbol<size>* mips_sym = *p;
      if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
        {
          unsigned int got_type;
          if (!got->multi_got())
            got_type = GOT_TYPE_STANDARD;
          else
            got_type = GOT_TYPE_STANDARD_MULTIGOT;
          if (got->add_global(mips_sym, got_type))
            mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
        }
    }
}

// Create TLS GOT entries.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_tls_entries(
    Target_mips<size, big_endian>* target, Layout* layout)
{
  Mips_output_data_got<size, big_endian>* got = target->got_section();
  // Add local tls entries.
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
        continue;

      if (entry->tls_type() == GOT_TLS_GD)
        {
          unsigned int got_type = GOT_TYPE_TLS_PAIR;
          unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
          unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
                                             : elfcpp::R_MIPS_TLS_DTPREL64);

          if (!parameters->doing_static_link())
            {
              got->add_local_pair_with_rel(entry->object(), entry->symndx(),
                                           entry->shndx(), got_type,
                                           target->rel_dyn_section(layout),
                                           r_type1, entry->addend());
              unsigned int got_offset =
                entry->object()->local_got_offset(entry->symndx(), got_type,
                                                  entry->addend());
              got->add_static_reloc(got_offset + size/8, r_type2,
                                    entry->object(), entry->symndx());
            }
          else
            {
              // We are doing a static link.  Mark it as belong to module 1,
              // the executable.
              unsigned int got_offset = got->add_constant(1);
              entry->object()->set_local_got_offset(entry->symndx(), got_type,
                                                    got_offset,
                                                    entry->addend());
              got->add_constant(0);
              got->add_static_reloc(got_offset + size/8, r_type2,
                                    entry->object(), entry->symndx());
            }
        }
      else if (entry->tls_type() == GOT_TLS_IE)
        {
          unsigned int got_type = GOT_TYPE_TLS_OFFSET;
          unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
                                            : elfcpp::R_MIPS_TLS_TPREL64);
          if (!parameters->doing_static_link())
            got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
                                    target->rel_dyn_section(layout), r_type,
                                    entry->addend());
          else
            {
              got->add_local(entry->object(), entry->symndx(), got_type,
                             entry->addend());
              unsigned int got_offset =
                  entry->object()->local_got_offset(entry->symndx(), got_type,
                                                    entry->addend());
              got->add_static_reloc(got_offset, r_type, entry->object(),
                                    entry->symndx());
            }
        }
      else if (entry->tls_type() == GOT_TLS_LDM)
        {
          unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
                                            : elfcpp::R_MIPS_TLS_DTPMOD64);
          unsigned int got_offset;
          if (!parameters->doing_static_link())
            {
              got_offset = got->add_constant(0);
              target->rel_dyn_section(layout)->add_local(
                  entry->object(), 0, r_type, got, got_offset);
            }
          else
            // We are doing a static link.  Just mark it as belong to module 1,
            // the executable.
            got_offset = got->add_constant(1);

          got->add_constant(0);
          got->set_tls_ldm_offset(got_offset, entry->object());
        }
      else
        gold_unreachable();
    }

  // Add global tls entries.
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
        continue;

      Mips_symbol<size>* mips_sym = entry->sym();
      if (entry->tls_type() == GOT_TLS_GD)
        {
          unsigned int got_type;
          if (!got->multi_got())
            got_type = GOT_TYPE_TLS_PAIR;
          else
            got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
          unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
          unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
                                             : elfcpp::R_MIPS_TLS_DTPREL64);
          if (!parameters->doing_static_link())
            got->add_global_pair_with_rel(mips_sym, got_type,
                             target->rel_dyn_section(layout), r_type1, r_type2);
          else
            {
              // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
              // GOT entries.  The first one is initialized to be 1, which is the
              // module index for the main executable and the second one 0.  A
              // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
              // the second GOT entry and will be applied by gold.
              unsigned int got_offset = got->add_constant(1);
              mips_sym->set_got_offset(got_type, got_offset);
              got->add_constant(0);
              got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
            }
        }
      else if (entry->tls_type() == GOT_TLS_IE)
        {
          unsigned int got_type;
          if (!got->multi_got())
            got_type = GOT_TYPE_TLS_OFFSET;
          else
            got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
          unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
                                            : elfcpp::R_MIPS_TLS_TPREL64);
          if (!parameters->doing_static_link())
            got->add_global_with_rel(mips_sym, got_type,
                                     target->rel_dyn_section(layout), r_type);
          else
            {
              got->add_global(mips_sym, got_type);
              unsigned int got_offset = mips_sym->got_offset(got_type);
              got->add_static_reloc(got_offset, r_type, mips_sym);
            }
        }
      else
        gold_unreachable();
    }
}

// Decide whether the symbol needs an entry in the global part of the primary
// GOT, setting global_got_area accordingly.  Count the number of global
// symbols that are in the primary GOT only because they have dynamic
// relocations R_MIPS_REL32 against them (reloc_only_gotno).

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
{
  for (typename Global_got_entry_set::iterator
       p = this->global_got_symbols_.begin();
       p != this->global_got_symbols_.end();
       ++p)
    {
      Mips_symbol<size>* sym = *p;
      // Make a final decision about whether the symbol belongs in the
      // local or global GOT.  Symbols that bind locally can (and in the
      // case of forced-local symbols, must) live in the local GOT.
      // Those that are aren't in the dynamic symbol table must also
      // live in the local GOT.

      if (!sym->should_add_dynsym_entry(symtab)
          || (sym->got_only_for_calls()
              ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
              : symbol_references_local(sym,
                                        sym->should_add_dynsym_entry(symtab))))
        // The symbol belongs in the local GOT.  We no longer need this
        // entry if it was only used for relocations; those relocations
        // will be against the null or section symbol instead.
        sym->set_global_got_area(GGA_NONE);
      else if (sym->global_got_area() == GGA_RELOC_ONLY)
        {
          ++this->reloc_only_gotno_;
          ++this->global_gotno_ ;
        }
    }
}

// Return the offset of GOT page entry for VALUE.  Initialize the entry with
// VALUE if it is not initialized.

template<int size, bool big_endian>
unsigned int
Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
    Mips_output_data_got<size, big_endian>* got)
{
  typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
  if (it != this->got_page_offsets_.end())
    return it->second;

  gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
              + (size/8) * this->page_gotno_);

  unsigned int got_offset = this->got_page_offset_next_;
  this->got_page_offsets_[value] = got_offset;
  this->got_page_offset_next_ += size/8;
  got->update_got_entry(got_offset, value);
  return got_offset;
}

// Remove lazy-binding stubs for global symbols in this GOT.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::remove_lazy_stubs(
    Target_mips<size, big_endian>* target)
{
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (entry->is_for_global_symbol())
        target->remove_lazy_stub_entry(entry->sym());
    }
}

// Count the number of GOT entries required.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_entries()
{
  for (typename Got_entry_set::iterator
       p = this->got_entries_.begin();
       p != this->got_entries_.end();
       ++p)
    {
      this->count_got_entry(*p);
    }
}

// Count the number of GOT entries required by ENTRY.  Accumulate the result.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_entry(
    Mips_got_entry<size, big_endian>* entry)
{
  if (entry->is_tls_entry())
    this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
  else if (entry->is_for_local_symbol()
           || entry->sym()->global_got_area() == GGA_NONE)
    ++this->local_gotno_;
  else
    ++this->global_gotno_;
}

// Add FROM's GOT entries.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_got_entries(
    Mips_got_info<size, big_endian>* from)
{
  for (typename Got_entry_set::iterator
       p = from->got_entries_.begin();
       p != from->got_entries_.end();
       ++p)
    {
      Mips_got_entry<size, big_endian>* entry = *p;
      if (this->got_entries_.find(entry) == this->got_entries_.end())
        {
          Mips_got_entry<size, big_endian>* entry2 =
            new Mips_got_entry<size, big_endian>(*entry);
          this->got_entries_.insert(entry2);
          this->count_got_entry(entry);
        }
    }
}

// Add FROM's GOT page entries.

template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_got_page_count(
    Mips_got_info<size, big_endian>* from)
{
  this->page_gotno_ += from->page_gotno_;
}

// Mips_output_data_got methods.

// Lay out the GOT.  Add local, global and TLS entries.  If GOT is
// larger than 64K, create multi-GOT.

template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
    Symbol_table* symtab, const Input_objects* input_objects)
{
  // Decide which symbols need to go in the global part of the GOT and
  // count the number of reloc-only GOT symbols.
  this->master_got_info_->count_got_symbols(symtab);

  // Count the number of GOT entries.
  this->master_got_info_->count_got_entries();

  unsigned int got_size = this->master_got_info_->got_size();
  if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
    this->lay_out_multi_got(layout, input_objects);
  else
    {
      // Record that all objects use single GOT.
      for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
           p != input_objects->relobj_end();
           ++p)
        {
          Mips_relobj<size, big_endian>* object =
            Mips_relobj<size, big_endian>::as_mips_relobj(*p);
          if (object->get_got_info() != NULL)
            object->set_got_info(this->master_got_info_);
        }

      this->master_got_info_->add_local_entries(this->target_, layout);
      this->master_got_info_->add_global_entries(this->target_, layout,
                                                 /*not used*/-1U);
      this->master_got_info_->add_tls_entries(this->target_, layout);
    }
}

// Create multi-GOT.  For every GOT, add local, global and TLS entries.

template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
    const Input_objects* input_objects)
{
  // Try to merge the GOTs of input objects together, as long as they
  // don't seem to exceed the maximum GOT size, choosing one of them
  // to be the primary GOT.
  this->merge_gots(input_objects);

  // Every symbol that is referenced in a dynamic relocation must be
  // present in the primary GOT.
  this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());

  // Add GOT entries.
  unsigned int i = 0;
  unsigned int offset = 0;
  Mips_got_info<size, big_endian>* g = this->primary_got_;
  do
    {
      g->set_index(i);
      g->set_offset(offset);

      g->add_local_entries(this->target_, layout);
      if (i == 0)
        g->add_global_entries(this->target_, layout,
                              (this->master_got_info_->global_gotno()
                               - this->master_got_info_->reloc_only_gotno()));
      else
        g->add_global_entries(this->target_, layout, /*not used*/-1U);
      g->add_tls_entries(this->target_, layout);

      // Forbid global symbols in every non-primary GOT from having
      // lazy-binding stubs.
      if (i > 0)
        g->remove_lazy_stubs(this->target_);

      ++i;
      offset += g->got_size();
      g = g->next();
    }
  while (g);
}

// Attempt to merge GOTs of different input objects.  Try to use as much as
// possible of the primary GOT, since it doesn't require explicit dynamic
// relocations, but don't use objects that would reference global symbols
// out of the addressable range.  Failing the primary GOT, attempt to merge
// with the current GOT, or finish the current GOT and then make make the new
// GOT current.

template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::merge_gots(
    const Input_objects* input_objects)
{
  gold_assert(this->primary_got_ == NULL);
  Mips_got_info<size, big_endian>* current = NULL;

  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
       p != input_objects->relobj_end();
       ++p)
    {
      Mips_relobj<size, big_endian>* object =
        Mips_relobj<size, big_endian>::as_mips_relobj(*p);

      Mips_got_info<size, big_endian>* g = object->get_got_info();
      if (g == NULL)
        continue;

      g->count_got_entries();

      // Work out the number of page, local and TLS entries.
      unsigned int estimate = this->master_got_info_->page_gotno();
      if (estimate > g->page_gotno())
        estimate = g->page_gotno();
      estimate += g->local_gotno() + g->tls_gotno();

      // We place TLS GOT entries after both locals and globals.  The globals
      // for the primary GOT may overflow the normal GOT size limit, so be
      // sure not to merge a GOT which requires TLS with the primary GOT in that
      // case.  This doesn't affect non-primary GOTs.
      estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
                                      : g->global_gotno());

      unsigned int max_count =
        Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
      if (estimate <= max_count)
        {
          // If we don't have a primary GOT, use it as
          // a starting point for the primary GOT.
          if (!this->primary_got_)
            {
              this->primary_got_ = g;
              continue;
            }

          // Try merging with the primary GOT.
          if (this->merge_got_with(g, object, this->primary_got_))
            continue;
        }

      // If we can merge with the last-created GOT, do it.
      if (current && this->merge_got_with(g, object, current))
        continue;

      // Well, we couldn't merge, so create a new GOT.  Don't check if it
      // fits; if it turns out that it doesn't, we'll get relocation
      // overflows anyway.
      g->set_next(current);
      current = g;
    }

  // If we do not find any suitable primary GOT, create an empty one.
  if (this->primary_got_ == NULL)
    this->primary_got_ = new Mips_got_info<size, big_endian>();

  // Link primary GOT with secondary GOTs.
  this->primary_got_->set_next(current);
}

// Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
// this would lead to overflow, true if they were merged successfully.

template<int size, bool big_endian>
bool
Mips_output_data_got<size, big_endian>::merge_got_with(
    Mips_got_info<size, big_endian>* from,
    Mips_relobj<size, big_endian>* object,
    Mips_got_info<size, big_endian>* to)
{
  // Work out how many page entries we would need for the combined GOT.
  unsigned int estimate = this->master_got_info_->page_gotno();
  if (estimate >= from->page_gotno() + to->page_gotno())
    estimate = from->page_gotno() + to->page_gotno();

  // Conservatively estimate how many local and TLS entries would be needed.
  estimate += from->local_gotno() + to->local_gotno();
  estimate += from->tls_gotno() + to->tls_gotno();

  // If we're merging with the primary got, any TLS relocations will
  // come after the full set of global entries.  Otherwise estimate those
  // conservatively as well.
  if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
    estimate += this->master_got_info_->global_gotno();
  else
    estimate += from->global_gotno() + to->global_gotno();

  // Bail out if the combined GOT might be too big.
  unsigned int max_count =
    Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
  if (estimate > max_count)
    return false;

  // Transfer the object's GOT information from FROM to TO.
  to->add_got_entries(from);
  to->add_got_page_count(from);

  // Record that OBJECT should use output GOT TO.
  object->set_got_info(to);

  return true;
}

// Write out the GOT.

template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
{
  typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
      Mips_stubs_entry_set;

  // Call parent to write out GOT.
  Output_data_got<size, big_endian>::do_write(of);

  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  // Needed for fixing values of .got section.
  this->got_view_ = oview;

  // Write lazy stub addresses.
  for (typename Mips_stubs_entry_set::iterator
       p = this->master_got_info_->global_got_symbols().begin();
       p != this->master_got_info_->global_got_symbols().end();
       ++p)
    {
      Mips_symbol<size>* mips_sym = *p;
      if (mips_sym->has_lazy_stub())
        {
          Valtype* wv = reinterpret_cast<Valtype*>(
            oview + this->get_primary_got_offset(mips_sym));
          Valtype value =
            this->target_->mips_stubs_section()->stub_address(mips_sym);
          elfcpp::Swap<size, big_endian>::writeval(wv, value);
        }
    }

  // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
  for (typename Mips_stubs_entry_set::iterator
       p = this->master_got_info_->global_got_symbols().begin();
       p != this->master_got_info_->global_got_symbols().end();
       ++p)
    {
      Mips_symbol<size>* mips_sym = *p;
      if (!this->multi_got()
          && (mips_sym->is_mips16() || mips_sym->is_micromips())
          && mips_sym->global_got_area() == GGA_NONE
          && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
        {
          Valtype* wv = reinterpret_cast<Valtype*>(
            oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
          Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
          if (value != 0)
            {
              value |= 1;
              elfcpp::Swap<size, big_endian>::writeval(wv, value);
            }
        }
    }

  if (!this->secondary_got_relocs_.empty())
    {
      // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
      // secondary GOT entries with non-zero initial value copy the value
      // to the corresponding primary GOT entry, and set the secondary GOT
      // entry to zero.
      // TODO(sasa): This is workaround.  It needs to be investigated further.

      for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
        {
          Static_reloc& reloc(this->secondary_got_relocs_[i]);
          if (reloc.symbol_is_global())
            {
              Mips_symbol<size>* gsym = reloc.symbol();
              gold_assert(gsym != NULL);

              unsigned got_offset = reloc.got_offset();
              gold_assert(got_offset < oview_size);

              // Find primary GOT entry.
              Valtype* wv_prim = reinterpret_cast<Valtype*>(
                oview + this->get_primary_got_offset(gsym));

              // Find secondary GOT entry.
              Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);

              Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
              if (value != 0)
                {
                  elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
                  elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
                  gsym->set_applied_secondary_got_fixup();
                }
            }
        }

      of->write_output_view(offset, oview_size, oview);
    }

  // We are done if there is no fix up.
  if (this->static_relocs_.empty())
    return;

  Output_segment* tls_segment = this->layout_->tls_segment();
  gold_assert(tls_segment != NULL);

  for (size_t i = 0; i < this->static_relocs_.size(); ++i)
    {
      Static_reloc& reloc(this->static_relocs_[i]);

      Mips_address value;
      if (!reloc.symbol_is_global())
        {
          Sized_relobj_file<size, big_endian>* object = reloc.relobj();
          const Symbol_value<size>* psymval =
            object->local_symbol(reloc.index());

          // We are doing static linking.  Issue an error and skip this
          // relocation if the symbol is undefined or in a discarded_section.
          bool is_ordinary;
          unsigned int shndx = psymval->input_shndx(&is_ordinary);
          if ((shndx == elfcpp::SHN_UNDEF)
              || (is_ordinary
                  && shndx != elfcpp::SHN_UNDEF
                  && !object->is_section_included(shndx)
                  && !this->symbol_table_->is_section_folded(object, shndx)))
            {
              gold_error(_("undefined or discarded local symbol %u from "
                           " object %s in GOT"),
                         reloc.index(), reloc.relobj()->name().c_str());
              continue;
            }

          value = psymval->value(object, 0);
        }
      else
        {
          const Mips_symbol<size>* gsym = reloc.symbol();
          gold_assert(gsym != NULL);

          // We are doing static linking.  Issue an error and skip this
          // relocation if the symbol is undefined or in a discarded_section
          // unless it is a weakly_undefined symbol.
          if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
              && !gsym->is_weak_undefined())
            {
              gold_error(_("undefined or discarded symbol %s in GOT"),
                         gsym->name());
              continue;
            }

          if (!gsym->is_weak_undefined())
            value = gsym->value();
          else
            value = 0;
        }

      unsigned got_offset = reloc.got_offset();
      gold_assert(got_offset < oview_size);

      Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
      Valtype x;

      switch (reloc.r_type())
        {
        case elfcpp::R_MIPS_TLS_DTPMOD32:
        case elfcpp::R_MIPS_TLS_DTPMOD64:
          x = value;
          break;
        case elfcpp::R_MIPS_TLS_DTPREL32:
        case elfcpp::R_MIPS_TLS_DTPREL64:
          x = value - elfcpp::DTP_OFFSET;
          break;
        case elfcpp::R_MIPS_TLS_TPREL32:
        case elfcpp::R_MIPS_TLS_TPREL64:
          x = value - elfcpp::TP_OFFSET;
          break;
        default:
          gold_unreachable();
          break;
        }

      elfcpp::Swap<size, big_endian>::writeval(wv, x);
    }

  of->write_output_view(offset, oview_size, oview);
}

// Mips_relobj methods.

// Count the local symbols.  The Mips backend needs to know if a symbol
// is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
// because the Symbol object keeps the ELF symbol type and st_other field.
// For local symbol it is harder because we cannot access this information.
// So we override the do_count_local_symbol in parent and scan local symbols to
// mark MIPS16 and microMIPS functions.  This is not the most efficient way but
// I do not want to slow down other ports by calling a per symbol target hook
// inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.

template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::do_count_local_symbols(
    Stringpool_template<char>* pool,
    Stringpool_template<char>* dynpool)
{
  // Ask parent to count the local symbols.
  Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
  const unsigned int loccount = this->local_symbol_count();
  if (loccount == 0)
    return;

  // Initialize the mips16 and micromips function bit-vector.
  this->local_symbol_is_mips16_.resize(loccount, false);
  this->local_symbol_is_micromips_.resize(loccount, false);

  // Read the symbol table section header.
  const unsigned int symtab_shndx = this->symtab_shndx();
  elfcpp::Shdr<size, big_endian>
    symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

  // Read the local symbols.
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  gold_assert(loccount == symtabshdr.get_sh_info());
  off_t locsize = loccount * sym_size;
  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                              locsize, true, true);

  // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.

  // Skip the first dummy symbol.
  psyms += sym_size;
  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
    {
      elfcpp::Sym<size, big_endian> sym(psyms);
      unsigned char st_other = sym.get_st_other();
      this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
      this->local_symbol_is_micromips_[i] =
        elfcpp::elf_st_is_micromips(st_other);
    }
}

// Read the symbol information.

template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
  // Call parent class to read symbol information.
  this->base_read_symbols(sd);

  // If this input file is a binary file, it has no processor
  // specific data.
  Input_file::Format format = this->input_file()->format();
  if (format != Input_file::FORMAT_ELF)
    {
      gold_assert(format == Input_file::FORMAT_BINARY);
      this->merge_processor_specific_data_ = false;
      return;
    }

  // Read processor-specific flags in ELF file header.
  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
                                            elfcpp::Elf_sizes<size>::ehdr_size,
                                            true, false);
  elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
  this->processor_specific_flags_ = ehdr.get_e_flags();

  // Get the section names.
  const unsigned char* pnamesu = sd->section_names->data();
  const char* pnames = reinterpret_cast<const char*>(pnamesu);

  // Initialize the mips16 stub section bit-vectors.
  this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
  this->section_is_mips16_call_stub_.resize(this->shnum(), false);
  this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);

  const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
  const unsigned char* pshdrs = sd->section_headers->data();
  const unsigned char* ps = pshdrs + shdr_size;
  bool must_merge_processor_specific_data = false;
  for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
    {
      elfcpp::Shdr<size, big_endian> shdr(ps);

      // Sometimes an object has no contents except the section name string
      // table and an empty symbol table with the undefined symbol.  We
      // don't want to merge processor-specific data from such an object.
      if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
        {
          // Symbol table is not empty.
          const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
            elfcpp::Elf_sizes<size>::sym_size;
          if (shdr.get_sh_size() > sym_size)
            must_merge_processor_specific_data = true;
        }
      else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
        // If this is neither an empty symbol table nor a string table,
        // be conservative.
        must_merge_processor_specific_data = true;

      if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
        {
          this->has_reginfo_section_ = true;
          // Read the gp value that was used to create this object.  We need the
          // gp value while processing relocs.  The .reginfo section is not used
          // in the 64-bit MIPS ELF ABI.
          section_offset_type section_offset = shdr.get_sh_offset();
          section_size_type section_size =
            convert_to_section_size_type(shdr.get_sh_size());
          const unsigned char* view =
             this->get_view(section_offset, section_size, true, false);

          this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);

          // Read the rest of .reginfo.
          this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
          this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
          this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
          this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
          this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
        }

      if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
        {
          gold_assert(this->attributes_section_data_ == NULL);
          section_offset_type section_offset = shdr.get_sh_offset();
          section_size_type section_size =
            convert_to_section_size_type(shdr.get_sh_size());
          const unsigned char* view =
            this->get_view(section_offset, section_size, true, false);
          this->attributes_section_data_ =
            new Attributes_section_data(view, section_size);
        }

      if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
        {
          gold_assert(this->abiflags_ == NULL);
          section_offset_type section_offset = shdr.get_sh_offset();
          section_size_type section_size =
            convert_to_section_size_type(shdr.get_sh_size());
          const unsigned char* view =
            this->get_view(section_offset, section_size, true, false);
          this->abiflags_ = new Mips_abiflags<big_endian>();

          this->abiflags_->version =
            elfcpp::Swap<16, big_endian>::readval(view);
          if (this->abiflags_->version != 0)
            {
              gold_error(_("%s: .MIPS.abiflags section has "
                           "unsupported version %u"),
                         this->name().c_str(),
                         this->abiflags_->version);
              break;
            }
          this->abiflags_->isa_level =
            elfcpp::Swap<8, big_endian>::readval(view + 2);
          this->abiflags_->isa_rev =
            elfcpp::Swap<8, big_endian>::readval(view + 3);
          this->abiflags_->gpr_size =
            elfcpp::Swap<8, big_endian>::readval(view + 4);
          this->abiflags_->cpr1_size =
            elfcpp::Swap<8, big_endian>::readval(view + 5);
          this->abiflags_->cpr2_size =
            elfcpp::Swap<8, big_endian>::readval(view + 6);
          this->abiflags_->fp_abi =
            elfcpp::Swap<8, big_endian>::readval(view + 7);
          this->abiflags_->isa_ext =
            elfcpp::Swap<32, big_endian>::readval(view + 8);
          this->abiflags_->ases =
            elfcpp::Swap<32, big_endian>::readval(view + 12);
          this->abiflags_->flags1 =
            elfcpp::Swap<32, big_endian>::readval(view + 16);
          this->abiflags_->flags2 =
            elfcpp::Swap<32, big_endian>::readval(view + 20);
        }

      // In the 64-bit ABI, .MIPS.options section holds register information.
      // A SHT_MIPS_OPTIONS section contains a series of options, each of which
      // starts with this header:
      //
      // typedef struct
      // {
      //   // Type of option.
      //   unsigned char kind[1];
      //   // Size of option descriptor, including header.
      //   unsigned char size[1];
      //   // Section index of affected section, or 0 for global option.
      //   unsigned char section[2];
      //   // Information specific to this kind of option.
      //   unsigned char info[4];
      // };
      //
      // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
      // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
      // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.

      if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
        {
          section_offset_type section_offset = shdr.get_sh_offset();
          section_size_type section_size =
            convert_to_section_size_type(shdr.get_sh_size());
          const unsigned char* view =
             this->get_view(section_offset, section_size, true, false);
          const unsigned char* end = view + section_size;

          while (view + 8 <= end)
            {
              unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
              unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
              if (sz < 8)
                {
                  gold_error(_("%s: Warning: bad `%s' option size %u smaller "
                               "than its header"),
                             this->name().c_str(),
                             this->mips_elf_options_section_name(), sz);
                  break;
                }

              if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
                {
                  // In the 64 bit ABI, an ODK_REGINFO option is the following
                  // structure.  The info field of the options header is not
                  // used.
                  //
                  // typedef struct
                  // {
                  //   // Mask of general purpose registers used.
                  //   unsigned char ri_gprmask[4];
                  //   // Padding.
                  //   unsigned char ri_pad[4];
                  //   // Mask of co-processor registers used.
                  //   unsigned char ri_cprmask[4][4];
                  //   // GP register value for this object file.
                  //   unsigned char ri_gp_value[8];
                  // };

                  this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
                                                                      + 32);
                }
              else if (kind == elfcpp::ODK_REGINFO)
                {
                  // In the 32 bit ABI, an ODK_REGINFO option is the following
                  // structure.  The info field of the options header is not
                  // used.  The same structure is used in .reginfo section.
                  //
                  // typedef struct
                  // {
                  //   unsigned char ri_gprmask[4];
                  //   unsigned char ri_cprmask[4][4];
                  //   unsigned char ri_gp_value[4];
                  // };

                  this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
                                                                      + 28);
                }
              view += sz;
            }
        }

      const char* name = pnames + shdr.get_sh_name();
      this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
      this->section_is_mips16_call_stub_[i] =
        is_prefix_of(".mips16.call.", name);
      this->section_is_mips16_call_fp_stub_[i] =
        is_prefix_of(".mips16.call.fp.", name);

      if (strcmp(name, ".pdr") == 0)
        {
          gold_assert(this->pdr_shndx_ == -1U);
          this->pdr_shndx_ = i;
        }
    }

  // This is rare.
  if (!must_merge_processor_specific_data)
    this->merge_processor_specific_data_ = false;
}

// Discard MIPS16 stub secions that are not needed.

template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
{
  for (typename Mips16_stubs_int_map::const_iterator
       it = this->mips16_stub_sections_.begin();
       it != this->mips16_stub_sections_.end(); ++it)
    {
      Mips16_stub_section<size, big_endian>* stub_section = it->second;
      if (!stub_section->is_target_found())
        {
          gold_error(_("no relocation found in mips16 stub section '%s'"),
                     stub_section->object()
                       ->section_name(stub_section->shndx()).c_str());
        }

      bool discard = false;
      if (stub_section->is_for_local_function())
        {
          if (stub_section->is_fn_stub())
            {
              // This stub is for a local symbol.  This stub will only
              // be needed if there is some relocation in this object,
              // other than a 16 bit function call, which refers to this
              // symbol.
              if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
                discard = true;
              else
                this->add_local_mips16_fn_stub(stub_section);
            }
          else
            {
              // This stub is for a local symbol.  This stub will only
              // be needed if there is some relocation (R_MIPS16_26) in
              // this object that refers to this symbol.
              gold_assert(stub_section->is_call_stub()
                          || stub_section->is_call_fp_stub());
              if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
                discard = true;
              else
                this->add_local_mips16_call_stub(stub_section);
            }
        }
      else
        {
          Mips_symbol<size>* gsym = stub_section->gsym();
          if (stub_section->is_fn_stub())
            {
              if (gsym->has_mips16_fn_stub())
                // We already have a stub for this function.
                discard = true;
              else
                {
                  gsym->set_mips16_fn_stub(stub_section);
                  if (gsym->should_add_dynsym_entry(symtab))
                    {
                      // If we have a MIPS16 function with a stub, the
                      // dynamic symbol must refer to the stub, since only
                      // the stub uses the standard calling conventions.
                      gsym->set_need_fn_stub();
                      if (gsym->is_from_dynobj())
                        gsym->set_needs_dynsym_value();
                    }
                }
              if (!gsym->need_fn_stub())
                discard = true;
            }
          else if (stub_section->is_call_stub())
            {
              if (gsym->is_mips16())
                // We don't need the call_stub; this is a 16 bit
                // function, so calls from other 16 bit functions are
                // OK.
                discard = true;
              else if (gsym->has_mips16_call_stub())
                // We already have a stub for this function.
                discard = true;
              else
                gsym->set_mips16_call_stub(stub_section);
            }
          else
            {
              gold_assert(stub_section->is_call_fp_stub());
              if (gsym->is_mips16())
                // We don't need the call_stub; this is a 16 bit
                // function, so calls from other 16 bit functions are
                // OK.
                discard = true;
              else if (gsym->has_mips16_call_fp_stub())
                // We already have a stub for this function.
                discard = true;
              else
                gsym->set_mips16_call_fp_stub(stub_section);
            }
        }
      if (discard)
        this->set_output_section(stub_section->shndx(), NULL);
   }
}

// Mips_output_data_la25_stub methods.

// Template for standard LA25 stub.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
{
  0x3c190000,           // lui $25,%hi(func)
  0x08000000,           // j func
  0x27390000,           // add $25,$25,%lo(func)
  0x00000000            // nop
};

// Template for microMIPS LA25 stub.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
{
  0x41b9, 0x0000,       // lui t9,%hi(func)
  0xd400, 0x0000,       // j func
  0x3339, 0x0000,       // addiu t9,t9,%lo(func)
  0x0000, 0x0000        // nop
};

// Create la25 stub for a symbol.

template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
    Symbol_table* symtab, Target_mips<size, big_endian>* target,
    Mips_symbol<size>* gsym)
{
  if (!gsym->has_la25_stub())
    {
      gsym->set_la25_stub_offset(this->symbols_.size() * 16);
      this->symbols_.push_back(gsym);
      this->create_stub_symbol(gsym, symtab, target, 16);
    }
}

// Create a symbol for SYM stub's value and size, to help make the disassembly
// easier to read.

template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
    Mips_symbol<size>* sym, Symbol_table* symtab,
    Target_mips<size, big_endian>* target, uint64_t symsize)
{
  std::string name(".pic.");
  name += sym->name();

  unsigned int offset = sym->la25_stub_offset();
  if (sym->is_micromips())
    offset |= 1;

  // Make it a local function.
  Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
                                      Symbol_table::PREDEFINED,
                                      target->la25_stub_section(),
                                      offset, symsize, elfcpp::STT_FUNC,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_DEFAULT, 0,
                                      false, false);
  new_sym->set_is_forced_local();
}

// Write out la25 stubs.  This uses the hand-coded instructions above,
// and adjusts them as needed.

template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  for (typename std::vector<Mips_symbol<size>*>::iterator
       p = this->symbols_.begin();
       p != this->symbols_.end();
       ++p)
    {
      Mips_symbol<size>* sym = *p;
      unsigned char* pov = oview + sym->la25_stub_offset();

      Mips_address target = sym->value();
      if (!sym->is_micromips())
        {
          elfcpp::Swap<32, big_endian>::writeval(pov,
              la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
          elfcpp::Swap<32, big_endian>::writeval(pov + 4,
              la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
          elfcpp::Swap<32, big_endian>::writeval(pov + 8,
              la25_stub_entry[2] | (target & 0xffff));
          elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
        }
      else
        {
          target |= 1;
          // First stub instruction.  Paste high 16-bits of the target.
          elfcpp::Swap<16, big_endian>::writeval(pov,
                                                 la25_stub_micromips_entry[0]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 2,
              ((target + 0x8000) >> 16) & 0xffff);
          // Second stub instruction.  Paste low 26-bits of the target, shifted
          // right by 1.
          elfcpp::Swap<16, big_endian>::writeval(pov + 4,
              la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
          elfcpp::Swap<16, big_endian>::writeval(pov + 6,
              la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
          // Third stub instruction.  Paste low 16-bits of the target.
          elfcpp::Swap<16, big_endian>::writeval(pov + 8,
                                                 la25_stub_micromips_entry[4]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
          // Fourth stub instruction.
          elfcpp::Swap<16, big_endian>::writeval(pov + 12,
                                                 la25_stub_micromips_entry[6]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 14,
                                                 la25_stub_micromips_entry[7]);
        }
    }

  of->write_output_view(offset, oview_size, oview);
}

// Mips_output_data_plt methods.

// The format of the first PLT entry in an O32 executable.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
{
  0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
  0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
  0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
  0x031cc023,         // subu $24, $24, $28
  0x03e07825,         // or $15, $31, zero
  0x0018c082,         // srl $24, $24, 2
  0x0320f809,         // jalr $25
  0x2718fffe          // subu $24, $24, 2
};

// The format of the first PLT entry in an N32 executable.  Different
// because gp ($28) is not available; we use t2 ($14) instead.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
{
  0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
  0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
  0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
  0x030ec023,         // subu $24, $24, $14
  0x03e07825,         // or $15, $31, zero
  0x0018c082,         // srl $24, $24, 2
  0x0320f809,         // jalr $25
  0x2718fffe          // subu $24, $24, 2
};

// The format of the first PLT entry in an N64 executable.  Different
// from N32 because of the increased size of GOT entries.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
{
  0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
  0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
  0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
  0x030ec023,         // subu $24, $24, $14
  0x03e07825,         // or $15, $31, zero
  0x0018c0c2,         // srl $24, $24, 3
  0x0320f809,         // jalr $25
  0x2718fffe          // subu $24, $24, 2
};

// The format of the microMIPS first PLT entry in an O32 executable.
// We rely on v0 ($2) rather than t8 ($24) to contain the address
// of the GOTPLT entry handled, so this stub may only be used when
// all the subsequent PLT entries are microMIPS code too.
//
// The trailing NOP is for alignment and correct disassembly only.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt0_entry_micromips_o32[] =
{
  0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
  0xff23, 0x0000,      // lw $25, 0($3)
  0x0535,              // subu $2, $2, $3
  0x2525,              // srl $2, $2, 2
  0x3302, 0xfffe,      // subu $24, $2, 2
  0x0dff,              // move $15, $31
  0x45f9,              // jalrs $25
  0x0f83,              // move $28, $3
  0x0c00               // nop
};

// The format of the microMIPS first PLT entry in an O32 executable
// in the insn32 mode.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt0_entry_micromips32_o32[] =
{
  0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
  0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
  0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
  0x0398, 0xc1d0,      // subu $24, $24, $28
  0x001f, 0x7a90,      // or $15, $31, zero
  0x0318, 0x1040,      // srl $24, $24, 2
  0x03f9, 0x0f3c,      // jalr $25
  0x3318, 0xfffe       // subu $24, $24, 2
};

// The format of subsequent standard entries in the PLT.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
{
  0x3c0f0000,           // lui $15, %hi(.got.plt entry)
  0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
  0x03200008,           // jr $25
  0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
};

// The format of subsequent R6 PLT entries.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
{
  0x3c0f0000,           // lui $15, %hi(.got.plt entry)
  0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
  0x03200009,           // jr $25
  0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
};

// The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
// temporary because t8 ($24) and t9 ($25) are not directly addressable.
// Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
// We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
// target function address in register v0.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
{
  0xb303,              // lw $3, 12($pc)
  0x651b,              // move $24, $3
  0x9b60,              // lw $3, 0($3)
  0xeb00,              // jr $3
  0x653b,              // move $25, $3
  0x6500,              // nop
  0x0000, 0x0000       // .word (.got.plt entry)
};

// The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
// as a temporary because t8 ($24) is not addressable with ADDIUPC.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt_entry_micromips_o32[] =
{
  0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
  0xff22, 0x0000,      // lw $25, 0($2)
  0x4599,              // jr $25
  0x0f02               // move $24, $2
};

// The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt_entry_micromips32_o32[] =
{
  0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
  0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
  0x0019, 0x0f3c,      // jr $25
  0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
};

// Add an entry to the PLT for a symbol referenced by r_type relocation.

template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
                                                  unsigned int r_type)
{
  gold_assert(!gsym->has_plt_offset());

  // Final PLT offset for a symbol will be set in method set_plt_offsets().
  gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
                       + sizeof(plt0_entry_o32));
  this->symbols_.push_back(gsym);

  // Record whether the relocation requires a standard MIPS
  // or a compressed code entry.
  if (jal_reloc(r_type))
   {
     if (r_type == elfcpp::R_MIPS_26)
       gsym->set_needs_mips_plt(true);
     else
       gsym->set_needs_comp_plt(true);
   }

  section_offset_type got_offset = this->got_plt_->current_data_size();

  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry (this will be changed by the dynamic linker, normally
  // lazily when the function is called).
  this->got_plt_->set_current_data_size(got_offset + size/8);

  gsym->set_needs_dynsym_entry();
  this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
                         got_offset);
}

// Set final PLT offsets.  For each symbol, determine whether standard or
// compressed (MIPS16 or microMIPS) PLT entry is used.

template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::set_plt_offsets()
{
  // The sizes of individual PLT entries.
  unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
  unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
                                      ? this->compressed_plt_entry_size() : 0);

  for (typename std::vector<Mips_symbol<size>*>::const_iterator
       p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
    {
      Mips_symbol<size>* mips_sym = *p;

      // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
      // so always use a standard entry there.
      //
      // If the symbol has a MIPS16 call stub and gets a PLT entry, then
      // all MIPS16 calls will go via that stub, and there is no benefit
      // to having a MIPS16 entry.  And in the case of call_stub a
      // standard entry actually has to be used as the stub ends with a J
      // instruction.
      if (this->target_->is_output_newabi()
          || mips_sym->has_mips16_call_stub()
          || mips_sym->has_mips16_call_fp_stub())
        {
          mips_sym->set_needs_mips_plt(true);
          mips_sym->set_needs_comp_plt(false);
        }

      // Otherwise, if there are no direct calls to the function, we
      // have a free choice of whether to use standard or compressed
      // entries.  Prefer microMIPS entries if the object is known to
      // contain microMIPS code, so that it becomes possible to create
      // pure microMIPS binaries.  Prefer standard entries otherwise,
      // because MIPS16 ones are no smaller and are usually slower.
      if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
        {
          if (this->target_->is_output_micromips())
            mips_sym->set_needs_comp_plt(true);
          else
            mips_sym->set_needs_mips_plt(true);
        }

      if (mips_sym->needs_mips_plt())
        {
          mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
          this->plt_mips_offset_ += plt_mips_entry_size;
        }
      if (mips_sym->needs_comp_plt())
        {
          mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
          this->plt_comp_offset_ += plt_comp_entry_size;
        }
    }

    // Figure out the size of the PLT header if we know that we are using it.
    if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
      this->plt_header_size_ = this->get_plt_header_size();
}

// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.

template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  const off_t gotplt_file_offset = this->got_plt_->offset();
  const section_size_type gotplt_size =
    convert_to_section_size_type(this->got_plt_->data_size());
  unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
                                                         gotplt_size);
  unsigned char* pov = oview;

  Mips_address plt_address = this->address();

  // Calculate the address of .got.plt.
  Mips_address gotplt_addr = this->got_plt_->address();
  Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
  Mips_address gotplt_addr_low = gotplt_addr & 0xffff;

  // The PLT sequence is not safe for N64 if .got.plt's address can
  // not be loaded in two instructions.
  gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
              || ~(gotplt_addr | 0x7fffffff) == 0);

  // Write the PLT header.
  const uint32_t* plt0_entry = this->get_plt_header_entry();
  if (plt0_entry == plt0_entry_micromips_o32)
    {
      // Write microMIPS PLT header.
      gold_assert(gotplt_addr % 4 == 0);

      Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);

      // ADDIUPC has a span of +/-16MB, check we're in range.
      if (gotpc_offset + 0x1000000 >= 0x2000000)
       {
         gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
                    "ADDIUPC"), (long)gotpc_offset);
         return;
       }

      elfcpp::Swap<16, big_endian>::writeval(pov,
                 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
      elfcpp::Swap<16, big_endian>::writeval(pov + 2,
                                             (gotpc_offset >> 2) & 0xffff);
      pov += 4;
      for (unsigned int i = 2;
           i < (sizeof(plt0_entry_micromips_o32)
                / sizeof(plt0_entry_micromips_o32[0]));
           i++)
        {
          elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
          pov += 2;
        }
    }
  else if (plt0_entry == plt0_entry_micromips32_o32)
    {
      // Write microMIPS PLT header in insn32 mode.
      elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
      elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
      elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
      elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
      elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
      elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
      pov += 12;
      for (unsigned int i = 6;
           i < (sizeof(plt0_entry_micromips32_o32)
                / sizeof(plt0_entry_micromips32_o32[0]));
           i++)
        {
          elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
          pov += 2;
        }
    }
  else
    {
      // Write standard PLT header.
      elfcpp::Swap<32, big_endian>::writeval(pov,
                                             plt0_entry[0] | gotplt_addr_high);
      elfcpp::Swap<32, big_endian>::writeval(pov + 4,
                                             plt0_entry[1] | gotplt_addr_low);
      elfcpp::Swap<32, big_endian>::writeval(pov + 8,
                                             plt0_entry[2] | gotplt_addr_low);
      pov += 12;
      for (int i = 3; i < 8; i++)
        {
          elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
          pov += 4;
        }
    }


  unsigned char* gotplt_pov = gotplt_view;
  unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE

  // The first two entries in .got.plt are reserved.
  elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
  elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);

  unsigned int gotplt_offset = 2 * got_entry_size;
  gotplt_pov += 2 * got_entry_size;

  // Calculate the address of the PLT header.
  Mips_address header_address = (plt_address
                                 + (this->is_plt_header_compressed() ? 1 : 0));

  // Initialize compressed PLT area view.
  unsigned char* pov2 = pov + this->plt_mips_offset_;

  // Write the PLT entries.
  for (typename std::vector<Mips_symbol<size>*>::const_iterator
       p = this->symbols_.begin();
       p != this->symbols_.end();
       ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
    {
      Mips_symbol<size>* mips_sym = *p;

      // Calculate the address of the .got.plt entry.
      uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
      uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
                                       & 0xffff);
      uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;

      // Initially point the .got.plt entry at the PLT header.
      if (this->target_->is_output_n64())
        elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
      else
        elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);

      // Now handle the PLT itself.  First the standard entry.
      if (mips_sym->has_mips_plt_offset())
        {
          // Pick the load opcode (LW or LD).
          uint64_t load = this->target_->is_output_n64() ? 0xdc000000
                                                         : 0x8c000000;

          const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
                                                                : plt_entry;

          // Fill in the PLT entry itself.
          elfcpp::Swap<32, big_endian>::writeval(pov,
              entry[0] | gotplt_entry_addr_hi);
          elfcpp::Swap<32, big_endian>::writeval(pov + 4,
              entry[1] | gotplt_entry_addr_lo | load);
          elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
          elfcpp::Swap<32, big_endian>::writeval(pov + 12,
              entry[3] | gotplt_entry_addr_lo);
          pov += 16;
        }

      // Now the compressed entry.  They come after any standard ones.
      if (mips_sym->has_comp_plt_offset())
        {
          if (!this->target_->is_output_micromips())
            {
              // Write MIPS16 PLT entry.
              const uint32_t* plt_entry = plt_entry_mips16_o32;

              elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
              elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
                                                     gotplt_entry_addr);
              pov2 += 16;
            }
          else if (this->target_->use_32bit_micromips_instructions())
            {
              // Write microMIPS PLT entry in insn32 mode.
              const uint32_t* plt_entry = plt_entry_micromips32_o32;

              elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
                                                     gotplt_entry_addr_hi);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
                                                     gotplt_entry_addr_lo);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
                                                     gotplt_entry_addr_lo);
              pov2 += 16;
            }
          else
            {
              // Write microMIPS PLT entry.
              const uint32_t* plt_entry = plt_entry_micromips_o32;

              gold_assert(gotplt_entry_addr % 4 == 0);

              Mips_address loc_address = plt_address + pov2 - oview;
              int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);

              // ADDIUPC has a span of +/-16MB, check we're in range.
              if (gotpc_offset + 0x1000000 >= 0x2000000)
                {
                  gold_error(_(".got.plt offset of %ld from .plt beyond the "
                             "range of ADDIUPC"), (long)gotpc_offset);
                  return;
                }

              elfcpp::Swap<16, big_endian>::writeval(pov2,
                          plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
              elfcpp::Swap<16, big_endian>::writeval(
                  pov2 + 2, (gotpc_offset >> 2) & 0xffff);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
              elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
              pov2 += 12;
            }
        }
    }

  // Check the number of bytes written for standard entries.
  gold_assert(static_cast<section_size_type>(
      pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
  // Check the number of bytes written for compressed entries.
  gold_assert((static_cast<section_size_type>(pov2 - pov)
               == this->plt_comp_offset_));
  // Check the total number of bytes written.
  gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);

  gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
              == gotplt_size);

  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
}

// Mips_output_data_mips_stubs methods.

// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is less than 32K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
{
  0x8f998010,         // lw t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x0320f809,         // jalr t9,ra
  0x24180000          // addiu t8,zero,DYN_INDEX sign extended
};

// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is less than 32K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
{
  0xdf998010,         // ld t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x0320f809,         // jalr t9,ra
  0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
};

// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
{
  0x8f998010,         // lw t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x0320f809,         // jalr t9,ra
  0x34180000          // ori t8,zero,DYN_INDEX unsigned
};

// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
{
  0xdf998010,         // ld t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x0320f809,         // jalr t9,ra
  0x34180000          // ori t8,zero,DYN_INDEX unsigned
};

// The format of the lazy binding stub when dynamic symbol count is greater than
// 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
{
  0x8f998010,         // lw t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x3c180000,         // lui t8,DYN_INDEX
  0x0320f809,         // jalr t9,ra
  0x37180000          // ori t8,t8,DYN_INDEX
};

// The format of the lazy binding stub when dynamic symbol count is greater than
// 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
{
  0xdf998010,         // ld t9,0x8010(gp)
  0x03e07825,         // or t7,ra,zero
  0x3c180000,         // lui t8,DYN_INDEX
  0x0320f809,         // jalr t9,ra
  0x37180000          // ori t8,t8,DYN_INDEX
};

// microMIPS stubs.

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x45d9,             // jalr t9
  0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips_normal_1_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x45d9,             // jalr t9
  0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
};

// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x45d9,             // jalr t9
  0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
};

// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips_normal_2_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x45d9,             // jalr t9
  0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x41b8, 0x0000,     // lui t8,DYN_INDEX
  0x45d9,             // jalr t9
  0x5318, 0x0000      // ori t8,t8,DYN_INDEX
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x0dff,             // move t7,ra
  0x41b8, 0x0000,     // lui t8,DYN_INDEX
  0x45d9,             // jalr t9
  0x5318, 0x0000      // ori t8,t8,DYN_INDEX
};

// 32-bit microMIPS stubs.

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
// can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_1[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
// use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_1_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
};

// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// ABI is not N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_2[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
};

// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// ABI is N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_2_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
{
  0xff3c, 0x8010,     // lw t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x41b8, 0x0000,     // lui t8,DYN_INDEX
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x5318, 0x0000      // ori t8,t8,DYN_INDEX
};

// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, ABI is N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
{
  0xdf3c, 0x8010,     // ld t9,0x8010(gp)
  0x001f, 0x7a90,     // or t7,ra,zero
  0x41b8, 0x0000,     // lui t8,DYN_INDEX
  0x03f9, 0x0f3c,     // jalr ra,t9
  0x5318, 0x0000      // ori t8,t8,DYN_INDEX
};

// Create entry for a symbol.

template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::make_entry(
    Mips_symbol<size>* gsym)
{
  if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
    {
      this->symbols_.insert(gsym);
      gsym->set_has_lazy_stub(true);
    }
}

// Remove entry for a symbol.

template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
    Mips_symbol<size>* gsym)
{
  if (gsym->has_lazy_stub())
    {
      this->symbols_.erase(gsym);
      gsym->set_has_lazy_stub(false);
    }
}

// Set stub offsets for symbols.  This method expects that the number of
// entries in dynamic symbol table is set.

template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
{
  gold_assert(this->dynsym_count_ != -1U);

  if (this->stub_offsets_are_set_)
    return;

  unsigned int stub_size = this->stub_size();
  unsigned int offset = 0;
  for (typename Mips_stubs_entry_set::const_iterator
       p = this->symbols_.begin();
       p != this->symbols_.end();
       ++p, offset += stub_size)
    {
      Mips_symbol<size>* mips_sym = *p;
      mips_sym->set_lazy_stub_offset(offset);
    }
  this->stub_offsets_are_set_ = true;
}

template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
{
  for (typename Mips_stubs_entry_set::const_iterator
       p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
    {
      Mips_symbol<size>* sym = *p;
      if (sym->is_from_dynobj())
        sym->set_needs_dynsym_value();
    }
}

// Write out the .MIPS.stubs.  This uses the hand-coded instructions and
// adjusts them as needed.

template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
{
  const off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);

  bool big_stub = this->dynsym_count_ > 0x10000;

  unsigned char* pov = oview;
  for (typename Mips_stubs_entry_set::const_iterator
       p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
    {
      Mips_symbol<size>* sym = *p;
      const uint32_t* lazy_stub;
      bool n64 = this->target_->is_output_n64();

      if (!this->target_->is_output_micromips())
        {
          // Write standard (non-microMIPS) stub.
          if (!big_stub)
            {
              if (sym->dynsym_index() & ~0x7fff)
                // Dynsym index is between 32K and 64K.
                lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
              else
                // Dynsym index is less than 32K.
                lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
            }
          else
            lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;

          unsigned int i = 0;
          elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
          elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
          pov += 8;

          i += 2;
          if (big_stub)
            {
              // LUI instruction of the big stub.  Paste high 16 bits of the
              // dynsym index.
              elfcpp::Swap<32, big_endian>::writeval(pov,
                  lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
              pov += 4;
              i += 1;
            }
          elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
          // Last stub instruction.  Paste low 16 bits of the dynsym index.
          elfcpp::Swap<32, big_endian>::writeval(pov + 4,
              lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
          pov += 8;
        }
      else if (this->target_->use_32bit_micromips_instructions())
        {
          // Write microMIPS stub in insn32 mode.
          if (!big_stub)
            {
              if (sym->dynsym_index() & ~0x7fff)
                // Dynsym index is between 32K and 64K.
                lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
                                : lazy_stub_micromips32_normal_2;
              else
                // Dynsym index is less than 32K.
                lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
                                : lazy_stub_micromips32_normal_1;
            }
          else
            lazy_stub = n64 ? lazy_stub_micromips32_big_n64
                            : lazy_stub_micromips32_big;

          unsigned int i = 0;
          // First stub instruction.  We emit 32-bit microMIPS instructions by
          // emitting two 16-bit parts because on microMIPS the 16-bit part of
          // the instruction where the opcode is must always come first, for
          // both little and big endian.
          elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
          // Second stub instruction.
          elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
          pov += 8;
          i += 4;
          if (big_stub)
            {
              // LUI instruction of the big stub.  Paste high 16 bits of the
              // dynsym index.
              elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
              elfcpp::Swap<16, big_endian>::writeval(pov + 2,
                  (sym->dynsym_index() >> 16) & 0x7fff);
              pov += 4;
              i += 2;
            }
          elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
          // Last stub instruction.  Paste low 16 bits of the dynsym index.
          elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 6,
              sym->dynsym_index() & 0xffff);
          pov += 8;
        }
      else
        {
          // Write microMIPS stub.
          if (!big_stub)
            {
              if (sym->dynsym_index() & ~0x7fff)
                // Dynsym index is between 32K and 64K.
                lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
                                : lazy_stub_micromips_normal_2;
              else
                // Dynsym index is less than 32K.
                lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
                                : lazy_stub_micromips_normal_1;
            }
          else
            lazy_stub = n64 ? lazy_stub_micromips_big_n64
                            : lazy_stub_micromips_big;

          unsigned int i = 0;
          // First stub instruction.  We emit 32-bit microMIPS instructions by
          // emitting two 16-bit parts because on microMIPS the 16-bit part of
          // the instruction where the opcode is must always come first, for
          // both little and big endian.
          elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
          // Second stub instruction.
          elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
          pov += 6;
          i += 3;
          if (big_stub)
            {
              // LUI instruction of the big stub.  Paste high 16 bits of the
              // dynsym index.
              elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
              elfcpp::Swap<16, big_endian>::writeval(pov + 2,
                  (sym->dynsym_index() >> 16) & 0x7fff);
              pov += 4;
              i += 2;
            }
          elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
          // Last stub instruction.  Paste low 16 bits of the dynsym index.
          elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
          elfcpp::Swap<16, big_endian>::writeval(pov + 4,
              sym->dynsym_index() & 0xffff);
          pov += 6;
        }
    }

  // We always allocate 20 bytes for every stub, because final dynsym count is
  // not known in method do_finalize_sections.  There are 4 unused bytes per
  // stub if final dynsym count is less than 0x10000.
  unsigned int used = pov - oview;
  unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
  gold_assert(static_cast<section_size_type>(used + unused) == oview_size);

  // Fill the unused space with zeroes.
  // TODO(sasa): Can we strip unused bytes during the relaxation?
  if (unused > 0)
    memset(pov, 0, unused);

  of->write_output_view(offset, oview_size, oview);
}

// Mips_output_section_reginfo methods.

template<int size, bool big_endian>
void
Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
{
  off_t offset = this->offset();
  off_t data_size = this->data_size();

  unsigned char* view = of->get_output_view(offset, data_size);
  elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
  elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
  elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
  elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
  elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
  // Write the gp value.
  elfcpp::Swap<size, big_endian>::writeval(view + 20,
                                           this->target_->gp_value());

  of->write_output_view(offset, data_size, view);
}

// Mips_output_section_options methods.

template<int size, bool big_endian>
void
Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
{
  off_t offset = this->offset();
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
  unsigned char* view = of->get_output_view(offset, oview_size);
  const unsigned char* end = view + oview_size;

  while (view + 8 <= end)
    {
      unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
      unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
      if (sz < 8)
        {
          gold_error(_("Warning: bad `%s' option size %u smaller "
                       "than its header in output section"),
                     this->name(), sz);
          break;
        }

      // Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
      if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
        elfcpp::Swap<size, big_endian>::writeval(view + 32,
                                                 this->target_->gp_value());
      else if (kind == elfcpp::ODK_REGINFO)
        elfcpp::Swap<size, big_endian>::writeval(view + 28,
                                                 this->target_->gp_value());

      view += sz;
    }

  of->write_output_view(offset, oview_size, view);
}

// Mips_output_section_abiflags methods.

template<int size, bool big_endian>
void
Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
{
  off_t offset = this->offset();
  off_t data_size = this->data_size();

  unsigned char* view = of->get_output_view(offset, data_size);
  elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
  elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
  elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
  elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
  elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
  elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
  elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
  elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
  elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
  elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
  elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);

  of->write_output_view(offset, data_size, view);
}

// Mips_copy_relocs methods.

// Emit any saved relocs.

template<int sh_type, int size, bool big_endian>
void
Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
    Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
    Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
{
  for (typename Copy_relocs<sh_type, size, big_endian>::
       Copy_reloc_entries::iterator p = this->entries_.begin();
       p != this->entries_.end();
       ++p)
    emit_entry(*p, reloc_section, symtab, layout, target);

  // We no longer need the saved information.
  this->entries_.clear();
}

// Emit the reloc if appropriate.

template<int sh_type, int size, bool big_endian>
void
Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
    Copy_reloc_entry& entry,
    Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
    Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
{
  // If the symbol is no longer defined in a dynamic object, then we
  // emitted a COPY relocation, and we do not want to emit this
  // dynamic relocation.
  if (!entry.sym_->is_from_dynobj())
    return;

  bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
                           || entry.reloc_type_ == elfcpp::R_MIPS_REL32
                           || entry.reloc_type_ == elfcpp::R_MIPS_64);

  Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
  if (can_make_dynamic && !sym->has_static_relocs())
    {
      Mips_relobj<size, big_endian>* object =
        Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
      target->got_section(symtab, layout)->record_global_got_symbol(
                          sym, object, entry.reloc_type_, true, false);
      if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
        target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
            entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
      else
        target->rel_dyn_section(layout)->add_symbolless_global_addend(
            sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
            entry.shndx_, entry.address_);
    }
  else
    this->make_copy_reloc(symtab, layout,
                          static_cast<Sized_symbol<size>*>(entry.sym_),
                          entry.relobj_,
                          reloc_section);
}

// Target_mips methods.

// Return the value to use for a dynamic symbol which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<int size, bool big_endian>
uint64_t
Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
  uint64_t value = 0;
  const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);

  if (!mips_sym->has_lazy_stub())
    {
      if (mips_sym->has_plt_offset())
        {
          // We distinguish between PLT entries and lazy-binding stubs by
          // giving the former an st_other value of STO_MIPS_PLT.  Set the
          // value to the stub address if there are any relocations in the
          // binary where pointer equality matters.
          if (mips_sym->pointer_equality_needed())
            {
              // Prefer a standard MIPS PLT entry.
              if (mips_sym->has_mips_plt_offset())
                value = this->plt_section()->mips_entry_address(mips_sym);
              else
                value = this->plt_section()->comp_entry_address(mips_sym) + 1;
            }
          else
            value = 0;
        }
    }
  else
    {
      // First, set stub offsets for symbols.  This method expects that the
      // number of entries in dynamic symbol table is set.
      this->mips_stubs_section()->set_lazy_stub_offsets();

      // The run-time linker uses the st_value field of the symbol
      // to reset the global offset table entry for this external
      // to its stub address when unlinking a shared object.
      value = this->mips_stubs_section()->stub_address(mips_sym);
    }

  if (mips_sym->has_mips16_fn_stub())
    {
      // If we have a MIPS16 function with a stub, the dynamic symbol must
      // refer to the stub, since only the stub uses the standard calling
      // conventions.
      value = mips_sym->template
              get_mips16_fn_stub<big_endian>()->output_address();
    }

  return value;
}

// Get the dynamic reloc section, creating it if necessary.  It's always
// .rel.dyn, even for MIPS64.

template<int size, bool big_endian>
typename Target_mips<size, big_endian>::Reloc_section*
Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
{
  if (this->rel_dyn_ == NULL)
    {
      gold_assert(layout != NULL);
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->rel_dyn_,
                                      ORDER_DYNAMIC_RELOCS, false);

      // First entry in .rel.dyn has to be null.
      // This is hack - we define dummy output data and set its address to 0,
      // and define absolute R_MIPS_NONE relocation with offset 0 against it.
      // This ensures that the entry is null.
      Output_data* od = new Output_data_zero_fill(0, 0);
      od->set_address(0);
      this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
    }
  return this->rel_dyn_;
}

// Get the GOT section, creating it if necessary.

template<int size, bool big_endian>
Mips_output_data_got<size, big_endian>*
Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
                                           Layout* layout)
{
  if (this->got_ == NULL)
    {
      gold_assert(symtab != NULL && layout != NULL);

      this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
                                                              layout);
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
                                      elfcpp::SHF_MIPS_GPREL),
                                      this->got_, ORDER_DATA, false);

      // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
      symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                    Symbol_table::PREDEFINED,
                                    this->got_,
                                    0, 0, elfcpp::STT_OBJECT,
                                    elfcpp::STB_GLOBAL,
                                    elfcpp::STV_HIDDEN, 0,
                                    false, false);
    }

  return this->got_;
}

// Calculate value of _gp symbol.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
{
  gold_assert(this->gp_ == NULL);

  Sized_symbol<size>* gp =
    static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));

  // Set _gp symbol if the linker script hasn't created it.
  if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
    {
      // If there is no .got section, gp should be based on .sdata.
      Output_data* gp_section = (this->got_ != NULL
                                 ? this->got_->output_section()
                                 : layout->find_output_section(".sdata"));

      if (gp_section != NULL)
        gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
                                          "_gp", NULL, Symbol_table::PREDEFINED,
                                          gp_section, MIPS_GP_OFFSET, 0,
                                          elfcpp::STT_NOTYPE,
                                          elfcpp::STB_LOCAL,
                                          elfcpp::STV_DEFAULT,
                                          0, false, false));
    }

  this->gp_ = gp;
}

// Set the dynamic symbol indexes.  INDEX is the index of the first
// global dynamic symbol.  Pointers to the symbols are stored into the
// vector SYMS.  The names are added to DYNPOOL.  This returns an
// updated dynamic symbol index.

template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::do_set_dynsym_indexes(
    std::vector<Symbol*>* dyn_symbols, unsigned int index,
    std::vector<Symbol*>* syms, Stringpool* dynpool,
    Versions* versions, Symbol_table* symtab) const
{
  std::vector<Symbol*> non_got_symbols;
  std::vector<Symbol*> got_symbols;

  reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
                                        &got_symbols);

  for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
       p != non_got_symbols.end();
       ++p)
    {
      Symbol* sym = *p;

      // Note that SYM may already have a dynamic symbol index, since
      // some symbols appear more than once in the symbol table, with
      // and without a version.

      if (!sym->has_dynsym_index())
        {
          sym->set_dynsym_index(index);
          ++index;
          syms->push_back(sym);
          dynpool->add(sym->name(), false, NULL);

          // Record any version information.
          if (sym->version() != NULL)
            versions->record_version(symtab, dynpool, sym);

          // If the symbol is defined in a dynamic object and is
          // referenced in a regular object, then mark the dynamic
          // object as needed.  This is used to implement --as-needed.
          if (sym->is_from_dynobj() && sym->in_reg())
            sym->object()->set_is_needed();
        }
    }

  for (std::vector<Symbol*>::iterator p = got_symbols.begin();
       p != got_symbols.end();
       ++p)
    {
      Symbol* sym = *p;
      if (!sym->has_dynsym_index())
        {
          // Record any version information.
          if (sym->version() != NULL)
            versions->record_version(symtab, dynpool, sym);
        }
    }

  index = versions->finalize(symtab, index, syms);

  int got_sym_count = 0;
  for (std::vector<Symbol*>::iterator p = got_symbols.begin();
       p != got_symbols.end();
       ++p)
    {
      Symbol* sym = *p;

      if (!sym->has_dynsym_index())
        {
          ++got_sym_count;
          sym->set_dynsym_index(index);
          ++index;
          syms->push_back(sym);
          dynpool->add(sym->name(), false, NULL);

          // If the symbol is defined in a dynamic object and is
          // referenced in a regular object, then mark the dynamic
          // object as needed.  This is used to implement --as-needed.
          if (sym->is_from_dynobj() && sym->in_reg())
            sym->object()->set_is_needed();
        }
    }

  // Set index of the first symbol that has .got entry.
  this->got_->set_first_global_got_dynsym_index(
    got_sym_count > 0 ? index - got_sym_count : -1U);

  if (this->mips_stubs_ != NULL)
    this->mips_stubs_->set_dynsym_count(index);

  return index;
}

// Create a PLT entry for a global symbol referenced by r_type relocation.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
                                              Layout* layout,
                                              Mips_symbol<size>* gsym,
                                              unsigned int r_type)
{
  if (gsym->has_lazy_stub() || gsym->has_plt_offset())
    return;

  if (this->plt_ == NULL)
    {
      // Create the GOT section first.
      this->got_section(symtab, layout);

      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                      this->got_plt_, ORDER_DATA, false);

      // The first two entries are reserved.
      this->got_plt_->set_current_data_size(2 * size/8);

      this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
                                                              this->got_plt_,
                                                              this);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                      this->plt_, ORDER_PLT, false);

      // Make the sh_info field of .rel.plt point to .plt.
      Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
      rel_plt_os->set_info_section(this->plt_->output_section());
    }

  this->plt_->add_entry(gsym, r_type);
}


// Get the .MIPS.stubs section, creating it if necessary.

template<int size, bool big_endian>
Mips_output_data_mips_stubs<size, big_endian>*
Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
{
  if (this->mips_stubs_ == NULL)
    {
      this->mips_stubs_ =
        new Mips_output_data_mips_stubs<size, big_endian>(this);
      layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                      this->mips_stubs_, ORDER_PLT, false);
    }
  return this->mips_stubs_;
}

// Get the LA25 stub section, creating it if necessary.

template<int size, bool big_endian>
Mips_output_data_la25_stub<size, big_endian>*
Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
{
  if (this->la25_stub_ == NULL)
    {
      this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
      layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                      this->la25_stub_, ORDER_TEXT, false);
    }
  return this->la25_stub_;
}

// Process the relocations to determine unreferenced sections for
// garbage collection.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::gc_process_relocs(
                        Symbol_table* symtab,
                        Layout* layout,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        unsigned int sh_type,
                        const unsigned char* prelocs,
                        size_t reloc_count,
                        Output_section* output_section,
                        bool needs_special_offset_handling,
                        size_t local_symbol_count,
                        const unsigned char* plocal_symbols)
{
  typedef Target_mips<size, big_endian> Mips;

  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
          Classify_reloc;

      gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
        symtab,
        layout,
        this,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_symbols);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
          Classify_reloc;

      gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
        symtab,
        layout,
        this,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_symbols);
    }
  else
    gold_unreachable();
}

// Scan relocations for a section.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::scan_relocs(
                        Symbol_table* symtab,
                        Layout* layout,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        unsigned int sh_type,
                        const unsigned char* prelocs,
                        size_t reloc_count,
                        Output_section* output_section,
                        bool needs_special_offset_handling,
                        size_t local_symbol_count,
                        const unsigned char* plocal_symbols)
{
  typedef Target_mips<size, big_endian> Mips;

  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
	  Classify_reloc;

      gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
	symtab,
	layout,
	this,
	object,
	data_shndx,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	local_symbol_count,
	plocal_symbols);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
	  Classify_reloc;

      gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
	symtab,
	layout,
	this,
	object,
	data_shndx,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	local_symbol_count,
	plocal_symbols);
    }
}

template<int size, bool big_endian>
bool
Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
{
  return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
          || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
          || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
          || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
          || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
          || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
          || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
          || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
}

// Return the MACH for a MIPS e_flags value.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
{
  switch (flags & elfcpp::EF_MIPS_MACH)
    {
    case elfcpp::E_MIPS_MACH_3900:
      return mach_mips3900;

    case elfcpp::E_MIPS_MACH_4010:
      return mach_mips4010;

    case elfcpp::E_MIPS_MACH_4100:
      return mach_mips4100;

    case elfcpp::E_MIPS_MACH_4111:
      return mach_mips4111;

    case elfcpp::E_MIPS_MACH_4120:
      return mach_mips4120;

    case elfcpp::E_MIPS_MACH_4650:
      return mach_mips4650;

    case elfcpp::E_MIPS_MACH_5400:
      return mach_mips5400;

    case elfcpp::E_MIPS_MACH_5500:
      return mach_mips5500;

    case elfcpp::E_MIPS_MACH_5900:
      return mach_mips5900;

    case elfcpp::E_MIPS_MACH_9000:
      return mach_mips9000;

    case elfcpp::E_MIPS_MACH_SB1:
      return mach_mips_sb1;

    case elfcpp::E_MIPS_MACH_LS2E:
      return mach_mips_loongson_2e;

    case elfcpp::E_MIPS_MACH_LS2F:
      return mach_mips_loongson_2f;

    case elfcpp::E_MIPS_MACH_GS464:
      return mach_mips_gs464;

    case elfcpp::E_MIPS_MACH_GS464E:
      return mach_mips_gs464e;

    case elfcpp::E_MIPS_MACH_GS264E:
      return mach_mips_gs264e;

    case elfcpp::E_MIPS_MACH_OCTEON3:
      return mach_mips_octeon3;

    case elfcpp::E_MIPS_MACH_OCTEON2:
      return mach_mips_octeon2;

    case elfcpp::E_MIPS_MACH_OCTEON:
      return mach_mips_octeon;

    case elfcpp::E_MIPS_MACH_XLR:
      return mach_mips_xlr;

    default:
      switch (flags & elfcpp::EF_MIPS_ARCH)
        {
        default:
        case elfcpp::E_MIPS_ARCH_1:
          return mach_mips3000;

        case elfcpp::E_MIPS_ARCH_2:
          return mach_mips6000;

        case elfcpp::E_MIPS_ARCH_3:
          return mach_mips4000;

        case elfcpp::E_MIPS_ARCH_4:
          return mach_mips8000;

        case elfcpp::E_MIPS_ARCH_5:
          return mach_mips5;

        case elfcpp::E_MIPS_ARCH_32:
          return mach_mipsisa32;

        case elfcpp::E_MIPS_ARCH_64:
          return mach_mipsisa64;

        case elfcpp::E_MIPS_ARCH_32R2:
          return mach_mipsisa32r2;

        case elfcpp::E_MIPS_ARCH_32R6:
          return mach_mipsisa32r6;

        case elfcpp::E_MIPS_ARCH_64R2:
          return mach_mipsisa64r2;

        case elfcpp::E_MIPS_ARCH_64R6:
          return mach_mipsisa64r6;
        }
    }

  return 0;
}

// Return the MACH for each .MIPS.abiflags ISA Extension.

template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
{
  switch (isa_ext)
    {
    case elfcpp::AFL_EXT_3900:
      return mach_mips3900;

    case elfcpp::AFL_EXT_4010:
      return mach_mips4010;

    case elfcpp::AFL_EXT_4100:
      return mach_mips4100;

    case elfcpp::AFL_EXT_4111:
      return mach_mips4111;

    case elfcpp::AFL_EXT_4120:
      return mach_mips4120;

    case elfcpp::AFL_EXT_4650:
      return mach_mips4650;

    case elfcpp::AFL_EXT_5400:
      return mach_mips5400;

    case elfcpp::AFL_EXT_5500:
      return mach_mips5500;

    case elfcpp::AFL_EXT_5900:
      return mach_mips5900;

    case elfcpp::AFL_EXT_10000:
      return mach_mips10000;

    case elfcpp::AFL_EXT_LOONGSON_2E:
      return mach_mips_loongson_2e;

    case elfcpp::AFL_EXT_LOONGSON_2F:
      return mach_mips_loongson_2f;

    case elfcpp::AFL_EXT_SB1:
      return mach_mips_sb1;

    case elfcpp::AFL_EXT_OCTEON:
      return mach_mips_octeon;

    case elfcpp::AFL_EXT_OCTEONP:
      return mach_mips_octeonp;

    case elfcpp::AFL_EXT_OCTEON2:
      return mach_mips_octeon2;

    case elfcpp::AFL_EXT_XLR:
      return mach_mips_xlr;

    default:
      return mach_mips3000;
    }
}

// Return the .MIPS.abiflags value representing each ISA Extension.

template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
{
  switch (mips_mach)
    {
    case mach_mips3900:
      return elfcpp::AFL_EXT_3900;

    case mach_mips4010:
      return elfcpp::AFL_EXT_4010;

    case mach_mips4100:
      return elfcpp::AFL_EXT_4100;

    case mach_mips4111:
      return elfcpp::AFL_EXT_4111;

    case mach_mips4120:
      return elfcpp::AFL_EXT_4120;

    case mach_mips4650:
      return elfcpp::AFL_EXT_4650;

    case mach_mips5400:
      return elfcpp::AFL_EXT_5400;

    case mach_mips5500:
      return elfcpp::AFL_EXT_5500;

    case mach_mips5900:
      return elfcpp::AFL_EXT_5900;

    case mach_mips10000:
      return elfcpp::AFL_EXT_10000;

    case mach_mips_loongson_2e:
      return elfcpp::AFL_EXT_LOONGSON_2E;

    case mach_mips_loongson_2f:
      return elfcpp::AFL_EXT_LOONGSON_2F;

    case mach_mips_sb1:
      return elfcpp::AFL_EXT_SB1;

    case mach_mips_octeon:
      return elfcpp::AFL_EXT_OCTEON;

    case mach_mips_octeonp:
      return elfcpp::AFL_EXT_OCTEONP;

    case mach_mips_octeon3:
      return elfcpp::AFL_EXT_OCTEON3;

    case mach_mips_octeon2:
      return elfcpp::AFL_EXT_OCTEON2;

    case mach_mips_xlr:
      return elfcpp::AFL_EXT_XLR;

    default:
      return 0;
    }
}

// Update the isa_level, isa_rev, isa_ext fields of abiflags.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
    elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
{
  int new_isa = 0;
  switch (e_flags & elfcpp::EF_MIPS_ARCH)
    {
    case elfcpp::E_MIPS_ARCH_1:
      new_isa = this->level_rev(1, 0);
      break;
    case elfcpp::E_MIPS_ARCH_2:
      new_isa = this->level_rev(2, 0);
      break;
    case elfcpp::E_MIPS_ARCH_3:
      new_isa = this->level_rev(3, 0);
      break;
    case elfcpp::E_MIPS_ARCH_4:
      new_isa = this->level_rev(4, 0);
      break;
    case elfcpp::E_MIPS_ARCH_5:
      new_isa = this->level_rev(5, 0);
      break;
    case elfcpp::E_MIPS_ARCH_32:
      new_isa = this->level_rev(32, 1);
      break;
    case elfcpp::E_MIPS_ARCH_32R2:
      new_isa = this->level_rev(32, 2);
      break;
    case elfcpp::E_MIPS_ARCH_32R6:
      new_isa = this->level_rev(32, 6);
      break;
    case elfcpp::E_MIPS_ARCH_64:
      new_isa = this->level_rev(64, 1);
      break;
    case elfcpp::E_MIPS_ARCH_64R2:
      new_isa = this->level_rev(64, 2);
      break;
    case elfcpp::E_MIPS_ARCH_64R6:
      new_isa = this->level_rev(64, 6);
      break;
    default:
      gold_error(_("%s: Unknown architecture %s"), name.c_str(),
                 this->elf_mips_mach_name(e_flags));
    }

  if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
    {
      // Decode a single value into level and revision.
      abiflags->isa_level = new_isa >> 3;
      abiflags->isa_rev = new_isa & 0x7;
    }

  // Update the isa_ext if needed.
  if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
      this->elf_mips_mach(e_flags)))
    abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
}

// Infer the content of the ABI flags based on the elf header.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::infer_abiflags(
    Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
{
  const Attributes_section_data* pasd = relobj->attributes_section_data();
  int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
  elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();

  this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
  if (pasd != NULL)
    {
      // Read fp_abi from the .gnu.attribute section.
      const Object_attribute* attr =
        pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
      attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
    }

  abiflags->fp_abi = attr_fp_abi;
  abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
  abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
  abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
                                                       : elfcpp::AFL_REG_64;

  if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
      || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
      || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
      && abiflags->gpr_size == elfcpp::AFL_REG_32))
    abiflags->cpr1_size = elfcpp::AFL_REG_32;
  else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
           || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
           || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
    abiflags->cpr1_size = elfcpp::AFL_REG_64;

  if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
    abiflags->ases |= elfcpp::AFL_ASE_MDMX;
  if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
    abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
  if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
    abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;

  if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
      && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
      && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
      && abiflags->isa_level >= 32
      && abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT)
    abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
}

// Create abiflags from elf header or from .MIPS.abiflags section.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::create_abiflags(
    Mips_relobj<size, big_endian>* relobj,
    Mips_abiflags<big_endian>* abiflags)
{
  Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
  Mips_abiflags<big_endian> header_abiflags;

  this->infer_abiflags(relobj, &header_abiflags);

  if (sec_abiflags == NULL)
    {
      // If there is no input .MIPS.abiflags section, use abiflags created
      // from elf header.
      *abiflags = header_abiflags;
      return;
    }

  this->has_abiflags_section_ = true;

  // It is not possible to infer the correct ISA revision for R3 or R5
  // so drop down to R2 for the checks.
  unsigned char isa_rev = sec_abiflags->isa_rev;
  if (isa_rev == 3 || isa_rev == 5)
    isa_rev = 2;

  // Check compatibility between abiflags created from elf header
  // and abiflags from .MIPS.abiflags section in this object file.
  if (this->level_rev(sec_abiflags->isa_level, isa_rev)
      < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
    gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
                 relobj->name().c_str());
  if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
      && sec_abiflags->fp_abi != header_abiflags.fp_abi)
    gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
                   ".MIPS.abiflags"), relobj->name().c_str());
  if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
    gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
                 relobj->name().c_str());
  // The isa_ext is allowed to be an extension of what can be inferred
  // from e_flags.
  if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
                               this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
    gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
                   ".MIPS.abiflags"), relobj->name().c_str());
  if (sec_abiflags->flags2 != 0)
    gold_warning(_("%s: Unexpected flag in the flags2 field of "
                   ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
                                             sec_abiflags->flags2);
  // Use abiflags from .MIPS.abiflags section.
  *abiflags = *sec_abiflags;
}

// Return the meaning of fp_abi, or "unknown" if not known.

template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::fp_abi_string(int fp)
{
  switch (fp)
    {
    case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
      return "-mdouble-float";
    case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
      return "-msingle-float";
    case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
      return "-msoft-float";
    case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
      return _("-mips32r2 -mfp64 (12 callee-saved)");
    case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
      return "-mfpxx";
    case elfcpp::Val_GNU_MIPS_ABI_FP_64:
      return "-mgp32 -mfp64";
    case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
      return "-mgp32 -mfp64 -mno-odd-spreg";
    default:
      return "unknown";
    }
}

// Select fp_abi.

template<int size, bool big_endian>
int
Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
                                             int out_fp)
{
  if (in_fp == out_fp)
    return out_fp;

  if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
    return in_fp;
  else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
           && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
               || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
               || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
    return in_fp;
  else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
           && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
               || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
               || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
    return out_fp; // Keep the current setting.
  else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
           && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
    return in_fp;
  else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
           && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
    return out_fp; // Keep the current setting.
  else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
    gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
                 fp_abi_string(in_fp), fp_abi_string(out_fp));
  return out_fp;
}

// Merge attributes from input object.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
    const Attributes_section_data* pasd)
{
  // Return if there is no attributes section data.
  if (pasd == NULL)
    return;

  // If output has no object attributes, just copy.
  if (this->attributes_section_data_ == NULL)
    {
      this->attributes_section_data_ = new Attributes_section_data(*pasd);
      return;
    }

  Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
      Object_attribute::OBJ_ATTR_GNU);

  out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
  out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);

  // Merge Tag_compatibility attributes and any common GNU ones.
  this->attributes_section_data_->merge(name.c_str(), pasd);
}

// Merge abiflags from input object.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
    Mips_abiflags<big_endian>* in_abiflags)
{
  // If output has no abiflags, just copy.
  if (this->abiflags_ == NULL)
  {
    this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
    return;
  }

  this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
                                                this->abiflags_->fp_abi);

  // Merge abiflags.
  this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
                                        in_abiflags->isa_level);
  this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
                                      in_abiflags->isa_rev);
  this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
                                       in_abiflags->gpr_size);
  this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
                                        in_abiflags->cpr1_size);
  this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
                                        in_abiflags->cpr2_size);
  this->abiflags_->ases |= in_abiflags->ases;
  this->abiflags_->flags1 |= in_abiflags->flags1;
}

// Check whether machine EXTENSION is an extension of machine BASE.
template<int size, bool big_endian>
bool
Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
                                                 unsigned int extension)
{
  if (extension == base)
    return true;

  if ((base == mach_mipsisa32)
      && this->mips_mach_extends(mach_mipsisa64, extension))
    return true;

  if ((base == mach_mipsisa32r2)
      && this->mips_mach_extends(mach_mipsisa64r2, extension))
    return true;

  for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
    if (extension == this->mips_mach_extensions_[i].first)
      {
        extension = this->mips_mach_extensions_[i].second;
        if (extension == base)
          return true;
      }

  return false;
}

// Merge file header flags from input object.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
                                                 elfcpp::Elf_Word in_flags)
{
  // If flags are not set yet, just copy them.
  if (!this->are_processor_specific_flags_set())
    {
      this->set_processor_specific_flags(in_flags);
      this->mach_ = this->elf_mips_mach(in_flags);
      return;
    }

  elfcpp::Elf_Word new_flags = in_flags;
  elfcpp::Elf_Word old_flags = this->processor_specific_flags();
  elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
  merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;

  // Check flag compatibility.
  new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
  old_flags &= ~elfcpp::EF_MIPS_NOREORDER;

  // Some IRIX 6 BSD-compatibility objects have this bit set.  It
  // doesn't seem to matter.
  new_flags &= ~elfcpp::EF_MIPS_XGOT;
  old_flags &= ~elfcpp::EF_MIPS_XGOT;

  // MIPSpro generates ucode info in n64 objects.  Again, we should
  // just be able to ignore this.
  new_flags &= ~elfcpp::EF_MIPS_UCODE;
  old_flags &= ~elfcpp::EF_MIPS_UCODE;

  if (new_flags == old_flags)
    {
      this->set_processor_specific_flags(merged_flags);
      return;
    }

  if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
      != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
    gold_warning(_("%s: linking abicalls files with non-abicalls files"),
                 name.c_str());

  if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
    merged_flags |= elfcpp::EF_MIPS_CPIC;
  if (!(new_flags & elfcpp::EF_MIPS_PIC))
    merged_flags &= ~elfcpp::EF_MIPS_PIC;

  new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
  old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);

  // Compare the ISAs.
  if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
    gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
  else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
    {
      // Output ISA isn't the same as, or an extension of, input ISA.
      if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
        {
          // Copy the architecture info from input object to output.  Also copy
          // the 32-bit flag (if set) so that we continue to recognise
          // output as a 32-bit binary.
          this->mach_ = this->elf_mips_mach(in_flags);
          merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
          merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
                           | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));

          // Update the ABI flags isa_level, isa_rev, isa_ext fields.
          this->update_abiflags_isa(name, merged_flags, this->abiflags_);

          // Copy across the ABI flags if output doesn't use them
          // and if that was what caused us to treat input object as 32-bit.
          if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
              && this->mips_32bit_flags(new_flags)
              && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
            merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
        }
      else
        // The ISAs aren't compatible.
        gold_error(_("%s: linking %s module with previous %s modules"),
                   name.c_str(), this->elf_mips_mach_name(in_flags),
                   this->elf_mips_mach_name(merged_flags));
    }

  new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
                | elfcpp::EF_MIPS_32BITMODE));
  old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
                | elfcpp::EF_MIPS_32BITMODE));

  // Compare ABIs.
  if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
    {
      // Only error if both are set (to different values).
      if ((new_flags & elfcpp::EF_MIPS_ABI)
           && (old_flags & elfcpp::EF_MIPS_ABI))
        gold_error(_("%s: ABI mismatch: linking %s module with "
                     "previous %s modules"), name.c_str(),
                   this->elf_mips_abi_name(in_flags),
                   this->elf_mips_abi_name(merged_flags));

      new_flags &= ~elfcpp::EF_MIPS_ABI;
      old_flags &= ~elfcpp::EF_MIPS_ABI;
    }

  // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
  // and allow arbitrary mixing of the remaining ASEs (retain the union).
  if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
      != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
    {
      int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
      int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
      int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
      int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
      int micro_mis = old_m16 && new_micro;
      int m16_mis = old_micro && new_m16;

      if (m16_mis || micro_mis)
        gold_error(_("%s: ASE mismatch: linking %s module with "
                     "previous %s modules"), name.c_str(),
                   m16_mis ? "MIPS16" : "microMIPS",
                   m16_mis ? "microMIPS" : "MIPS16");

      merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;

      new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
      old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
    }

  // Compare NaN encodings.
  if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
    {
      gold_error(_("%s: linking %s module with previous %s modules"),
                 name.c_str(),
                 (new_flags & elfcpp::EF_MIPS_NAN2008
                  ? "-mnan=2008" : "-mnan=legacy"),
                 (old_flags & elfcpp::EF_MIPS_NAN2008
                  ? "-mnan=2008" : "-mnan=legacy"));

      new_flags &= ~elfcpp::EF_MIPS_NAN2008;
      old_flags &= ~elfcpp::EF_MIPS_NAN2008;
    }

  // Compare FP64 state.
  if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
    {
      gold_error(_("%s: linking %s module with previous %s modules"),
                 name.c_str(),
                 (new_flags & elfcpp::EF_MIPS_FP64
                  ? "-mfp64" : "-mfp32"),
                 (old_flags & elfcpp::EF_MIPS_FP64
                  ? "-mfp64" : "-mfp32"));

      new_flags &= ~elfcpp::EF_MIPS_FP64;
      old_flags &= ~elfcpp::EF_MIPS_FP64;
    }

  // Warn about any other mismatches.
  if (new_flags != old_flags)
    gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
                 "modules (0x%x)"), name.c_str(), new_flags, old_flags);

  this->set_processor_specific_flags(merged_flags);
}

// Adjust ELF file header.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::do_adjust_elf_header(
    unsigned char* view,
    int len)
{
  gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);

  elfcpp::Ehdr<size, big_endian> ehdr(view);
  unsigned char e_ident[elfcpp::EI_NIDENT];
  elfcpp::Elf_Word flags = this->processor_specific_flags();
  memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);

  unsigned char ei_abiversion = 0;
  elfcpp::Elf_Half type = ehdr.get_e_type();
  if (type == elfcpp::ET_EXEC
      && parameters->options().copyreloc()
      && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
          == elfcpp::EF_MIPS_CPIC)
    ei_abiversion = 1;

  if (this->abiflags_ != NULL
      && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
          || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
    ei_abiversion = 3;

  e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
  elfcpp::Ehdr_write<size, big_endian> oehdr(view);
  oehdr.put_e_ident(e_ident);

  if (this->entry_symbol_is_compressed_)
    oehdr.put_e_entry(ehdr.get_e_entry() + 1);
}

// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<size, big_endian> to store Mips specific information.
// Hence we need to have our own ELF object creation.

template<int size, bool big_endian>
Object*
Target_mips<size, big_endian>::do_make_elf_object(
    const std::string& name,
    Input_file* input_file,
    off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
  int et = ehdr.get_e_type();
  // ET_EXEC files are valid input for --just-symbols/-R,
  // and we treat them as relocatable objects.
  if (et == elfcpp::ET_REL
      || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
    {
      Mips_relobj<size, big_endian>* obj =
        new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
      obj->setup();
      return obj;
    }
  else if (et == elfcpp::ET_DYN)
    {
      // TODO(sasa): Should we create Mips_dynobj?
      return Target::do_make_elf_object(name, input_file, offset, ehdr);
    }
  else
    {
      gold_error(_("%s: unsupported ELF file type %d"),
                 name.c_str(), et);
      return NULL;
    }
}

// Finalize the sections.

template <int size, bool big_endian>
void
Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
                                        const Input_objects* input_objects,
                                        Symbol_table* symtab)
{
  const bool relocatable = parameters->options().relocatable();

  // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
  // DT_FINI have correct values.
  Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
      symtab->lookup(parameters->options().init()));
  if (init != NULL && (init->is_mips16() || init->is_micromips()))
    init->set_value(init->value() | 1);
  Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
      symtab->lookup(parameters->options().fini()));
  if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
    fini->set_value(fini->value() | 1);

  // Check whether the entry symbol is mips16 or micromips.  This is needed to
  // adjust entry address in ELF header.
  Mips_symbol<size>* entry =
    static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
  this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
                                       || entry->is_micromips()));

  if (!parameters->doing_static_link()
      && (strcmp(parameters->options().hash_style(), "gnu") == 0
          || strcmp(parameters->options().hash_style(), "both") == 0))
    {
      // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
      // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
      // MIPS ABI requires a mapping between the GOT and the symbol table.
      gold_error(".gnu.hash is incompatible with the MIPS ABI");
    }

  // Check whether the final section that was scanned has HI16 or GOT16
  // relocations without the corresponding LO16 part.
  if (this->got16_addends_.size() > 0)
      gold_error("Can't find matching LO16 reloc");

  Valtype gprmask = 0;
  Valtype cprmask1 = 0;
  Valtype cprmask2 = 0;
  Valtype cprmask3 = 0;
  Valtype cprmask4 = 0;
  bool has_reginfo_section = false;

  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
       p != input_objects->relobj_end();
       ++p)
    {
      Mips_relobj<size, big_endian>* relobj =
        Mips_relobj<size, big_endian>::as_mips_relobj(*p);

      // Check for any mips16 stub sections that we can discard.
      if (!relocatable)
        relobj->discard_mips16_stub_sections(symtab);

      if (!relobj->merge_processor_specific_data())
        continue;

      // Merge .reginfo contents of input objects.
      if (relobj->has_reginfo_section())
        {
          has_reginfo_section = true;
          gprmask |= relobj->gprmask();
          cprmask1 |= relobj->cprmask1();
          cprmask2 |= relobj->cprmask2();
          cprmask3 |= relobj->cprmask3();
          cprmask4 |= relobj->cprmask4();
        }

      // Merge processor specific flags.
      Mips_abiflags<big_endian> in_abiflags;

      this->create_abiflags(relobj, &in_abiflags);
      this->merge_obj_e_flags(relobj->name(),
                              relobj->processor_specific_flags());
      this->merge_obj_abiflags(relobj->name(), &in_abiflags);
      this->merge_obj_attributes(relobj->name(),
                                 relobj->attributes_section_data());
    }

  // Create a .gnu.attributes section if we have merged any attributes
  // from inputs.
  if (this->attributes_section_data_ != NULL)
    {
      Output_attributes_section_data* attributes_section =
        new Output_attributes_section_data(*this->attributes_section_data_);
      layout->add_output_section_data(".gnu.attributes",
                                      elfcpp::SHT_GNU_ATTRIBUTES, 0,
                                      attributes_section, ORDER_INVALID, false);
    }

  // Create .MIPS.abiflags output section if there is an input section.
  if (this->has_abiflags_section_)
    {
      Mips_output_section_abiflags<size, big_endian>* abiflags_section =
        new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);

      Output_section* os =
        layout->add_output_section_data(".MIPS.abiflags",
                                        elfcpp::SHT_MIPS_ABIFLAGS,
                                        elfcpp::SHF_ALLOC,
                                        abiflags_section, ORDER_INVALID, false);

      if (!relocatable && os != NULL)
        {
          Output_segment* abiflags_segment =
            layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
          abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
        }
    }

  if (has_reginfo_section && !parameters->options().gc_sections())
    {
      // Create .reginfo output section.
      Mips_output_section_reginfo<size, big_endian>* reginfo_section =
        new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
                                                          cprmask1, cprmask2,
                                                          cprmask3, cprmask4);

      Output_section* os =
        layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
                                        elfcpp::SHF_ALLOC, reginfo_section,
                                        ORDER_INVALID, false);

      if (!relocatable && os != NULL)
        {
          Output_segment* reginfo_segment =
            layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
                                        elfcpp::PF_R);
          reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
        }
    }

  if (this->plt_ != NULL)
    {
      // Set final PLT offsets for symbols.
      this->plt_section()->set_plt_offsets();

      // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
      // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
      // there are no standard PLT entries present.
      unsigned char nonvis = 0;
      if (this->is_output_micromips()
          && !this->plt_section()->has_standard_entries())
        nonvis = elfcpp::STO_MICROMIPS >> 2;
      symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
                                    Symbol_table::PREDEFINED,
                                    this->plt_,
                                    0, 0, elfcpp::STT_FUNC,
                                    elfcpp::STB_LOCAL,
                                    elfcpp::STV_DEFAULT, nonvis,
                                    false, false);
    }

  if (this->mips_stubs_ != NULL)
    {
      // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
      unsigned char nonvis = 0;
      if (this->is_output_micromips())
        nonvis = elfcpp::STO_MICROMIPS >> 2;
      symtab->define_in_output_data("_MIPS_STUBS_", NULL,
                                    Symbol_table::PREDEFINED,
                                    this->mips_stubs_,
                                    0, 0, elfcpp::STT_FUNC,
                                    elfcpp::STB_LOCAL,
                                    elfcpp::STV_DEFAULT, nonvis,
                                    false, false);
    }

  if (!relocatable && !parameters->doing_static_link())
    // In case there is no .got section, create one.
    this->got_section(symtab, layout);

  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
                                 this);

  // Set _gp value.
  this->set_gp(layout, symtab);

  // Emit dynamic relocs.
  for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
       p != this->dyn_relocs_.end();
       ++p)
    p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);

  if (this->has_got_section())
    this->got_section()->lay_out_got(layout, symtab, input_objects);

  if (this->mips_stubs_ != NULL)
    this->mips_stubs_->set_needs_dynsym_value();

  // Check for functions that might need $25 to be valid on entry.
  // TODO(sasa): Can we do this without iterating over all symbols?
  typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
  symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
                                                               symtab));

  // Add NULL segment.
  if (!relocatable)
    layout->make_output_segment(elfcpp::PT_NULL, 0);

  // Fill in some more dynamic tags.
  // TODO(sasa): Add more dynamic tags.
  const Reloc_section* rel_plt = (this->plt_ == NULL
                                  ? NULL : this->plt_->rel_plt());
  layout->add_target_dynamic_tags(true, this->got_, rel_plt,
                                  this->rel_dyn_, true, false);

  Output_data_dynamic* const odyn = layout->dynamic_data();
  if (odyn != NULL
      && !relocatable
      && !parameters->doing_static_link())
  {
    unsigned int d_val;
    // This element holds a 32-bit version id for the Runtime
    // Linker Interface.  This will start at integer value 1.
    d_val = 0x01;
    odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);

    // Dynamic flags
    d_val = elfcpp::RHF_NOTPOT;
    odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);

    // Save layout for using when emitting custom dynamic tags.
    this->layout_ = layout;

    // This member holds the base address of the segment.
    odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);

    // This member holds the number of entries in the .dynsym section.
    odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);

    // This member holds the index of the first dynamic symbol
    // table entry that corresponds to an entry in the global offset table.
    odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);

    // This member holds the number of local GOT entries.
    odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
                       this->got_->get_local_gotno());

    if (this->plt_ != NULL)
      // DT_MIPS_PLTGOT dynamic tag
      odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);

    if (!parameters->options().shared())
      {
        this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);

        layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
                                        (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                        this->rld_map_, ORDER_INVALID, false);

        // __RLD_MAP will be filled in by the runtime loader to contain
        // a pointer to the _r_debug structure.
        Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
                                            Symbol_table::PREDEFINED,
                                            this->rld_map_,
                                            0, 0, elfcpp::STT_OBJECT,
                                            elfcpp::STB_GLOBAL,
                                            elfcpp::STV_DEFAULT, 0,
                                            false, false);

        if (!rld_map->is_forced_local())
          rld_map->set_needs_dynsym_entry();

        if (!parameters->options().pie())
          // This member holds the absolute address of the debug pointer.
          odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
        else
          // This member holds the offset to the debug pointer,
          // relative to the address of the tag.
          odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
      }
  }
}

// Get the custom dynamic tag value.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
{
  switch (tag)
    {
    case elfcpp::DT_MIPS_BASE_ADDRESS:
      {
        // The base address of the segment.
        // At this point, the segment list has been sorted into final order,
        // so just return vaddr of the first readable PT_LOAD segment.
        Output_segment* seg =
          this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
        gold_assert(seg != NULL);
        return seg->vaddr();
      }

    case elfcpp::DT_MIPS_SYMTABNO:
      // The number of entries in the .dynsym section.
      return this->get_dt_mips_symtabno();

    case elfcpp::DT_MIPS_GOTSYM:
      {
        // The index of the first dynamic symbol table entry that corresponds
        // to an entry in the GOT.
        if (this->got_->first_global_got_dynsym_index() != -1U)
          return this->got_->first_global_got_dynsym_index();
        else
          // In case if we don't have global GOT symbols we default to setting
          // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
          return this->get_dt_mips_symtabno();
      }

    case elfcpp::DT_MIPS_RLD_MAP_REL:
      {
        // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
        // relative to the address of the tag.
        Output_data_dynamic* const odyn = this->layout_->dynamic_data();
        unsigned int entry_offset =
          odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
        gold_assert(entry_offset != -1U);
        return this->rld_map_->address() - (odyn->address() + entry_offset);
      }
    default:
      gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
    }

  return (unsigned int)-1;
}

// Relocate section data.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_section(
                        const Relocate_info<size, big_endian>* relinfo,
                        unsigned int sh_type,
                        const unsigned char* prelocs,
                        size_t reloc_count,
                        Output_section* output_section,
                        bool needs_special_offset_handling,
                        unsigned char* view,
                        Mips_address address,
                        section_size_type view_size,
                        const Reloc_symbol_changes* reloc_symbol_changes)
{
  typedef Target_mips<size, big_endian> Mips;
  typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;

  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
	  Classify_reloc;

      gold::relocate_section<size, big_endian, Mips, Mips_relocate,
			     gold::Default_comdat_behavior, Classify_reloc>(
	relinfo,
	this,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	view,
	address,
	view_size,
	reloc_symbol_changes);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
	  Classify_reloc;

      gold::relocate_section<size, big_endian, Mips, Mips_relocate,
			     gold::Default_comdat_behavior, Classify_reloc>(
	relinfo,
	this,
	prelocs,
	reloc_count,
	output_section,
	needs_special_offset_handling,
	view,
	address,
	view_size,
	reloc_symbol_changes);
    }
}

// Return the size of a relocation while scanning during a relocatable
// link.

unsigned int
mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
{
  switch (r_type)
    {
    case elfcpp::R_MIPS_NONE:
    case elfcpp::R_MIPS_TLS_DTPMOD64:
    case elfcpp::R_MIPS_TLS_DTPREL64:
    case elfcpp::R_MIPS_TLS_TPREL64:
      return 0;

    case elfcpp::R_MIPS_32:
    case elfcpp::R_MIPS_TLS_DTPMOD32:
    case elfcpp::R_MIPS_TLS_DTPREL32:
    case elfcpp::R_MIPS_TLS_TPREL32:
    case elfcpp::R_MIPS_REL32:
    case elfcpp::R_MIPS_PC32:
    case elfcpp::R_MIPS_GPREL32:
    case elfcpp::R_MIPS_JALR:
    case elfcpp::R_MIPS_EH:
      return 4;

    case elfcpp::R_MIPS_16:
    case elfcpp::R_MIPS_HI16:
    case elfcpp::R_MIPS_LO16:
    case elfcpp::R_MIPS_HIGHER:
    case elfcpp::R_MIPS_HIGHEST:
    case elfcpp::R_MIPS_GPREL16:
    case elfcpp::R_MIPS16_HI16:
    case elfcpp::R_MIPS16_LO16:
    case elfcpp::R_MIPS_PC16:
    case elfcpp::R_MIPS_PCHI16:
    case elfcpp::R_MIPS_PCLO16:
    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MIPS_TLS_DTPREL_HI16:
    case elfcpp::R_MIPS_TLS_DTPREL_LO16:
    case elfcpp::R_MIPS_TLS_TPREL_HI16:
    case elfcpp::R_MIPS_TLS_TPREL_LO16:
    case elfcpp::R_MIPS16_GPREL:
    case elfcpp::R_MIPS_GOT_DISP:
    case elfcpp::R_MIPS_LITERAL:
    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MIPS_GOT_OFST:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS_TLS_GOTTPREL:
      return 2;

    // These relocations are not byte sized
    case elfcpp::R_MIPS_26:
    case elfcpp::R_MIPS16_26:
    case elfcpp::R_MIPS_PC21_S2:
    case elfcpp::R_MIPS_PC26_S2:
    case elfcpp::R_MIPS_PC18_S3:
    case elfcpp::R_MIPS_PC19_S2:
      return 4;

    case elfcpp::R_MIPS_COPY:
    case elfcpp::R_MIPS_JUMP_SLOT:
      object->error(_("unexpected reloc %u in object file"), r_type);
      return 0;

    default:
      object->error(_("unsupported reloc %u in object file"), r_type);
      return 0;
  }
}

// Scan the relocs during a relocatable link.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::scan_relocatable_relocs(
                        Symbol_table* symtab,
                        Layout* layout,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        unsigned int sh_type,
                        const unsigned char* prelocs,
                        size_t reloc_count,
                        Output_section* output_section,
                        bool needs_special_offset_handling,
                        size_t local_symbol_count,
                        const unsigned char* plocal_symbols,
                        Relocatable_relocs* rr)
{
  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
          Classify_reloc;
      typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
          Scan_relocatable_relocs;

      gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
        symtab,
        layout,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_symbols,
        rr);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
          Classify_reloc;
      typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
          Scan_relocatable_relocs;

      gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
        symtab,
        layout,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_symbols,
        rr);
    }
  else
    gold_unreachable();
}

// Scan the relocs for --emit-relocs.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::emit_relocs_scan(
    Symbol_table* symtab,
    Layout* layout,
    Sized_relobj_file<size, big_endian>* object,
    unsigned int data_shndx,
    unsigned int sh_type,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_syms,
    Relocatable_relocs* rr)
{
  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
          Classify_reloc;
      typedef gold::Default_emit_relocs_strategy<Classify_reloc>
          Emit_relocs_strategy;

      gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
        symtab,
        layout,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_syms,
        rr);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
          Classify_reloc;
      typedef gold::Default_emit_relocs_strategy<Classify_reloc>
          Emit_relocs_strategy;

      gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
        symtab,
        layout,
        object,
        data_shndx,
        prelocs,
        reloc_count,
        output_section,
        needs_special_offset_handling,
        local_symbol_count,
        plocal_syms,
        rr);
    }
  else
    gold_unreachable();
}

// Emit relocations for a section.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_relocs(
                        const Relocate_info<size, big_endian>* relinfo,
                        unsigned int sh_type,
                        const unsigned char* prelocs,
                        size_t reloc_count,
                        Output_section* output_section,
                        typename elfcpp::Elf_types<size>::Elf_Off
                          offset_in_output_section,
                        unsigned char* view,
                        Mips_address view_address,
                        section_size_type view_size,
                        unsigned char* reloc_view,
                        section_size_type reloc_view_size)
{
  if (sh_type == elfcpp::SHT_REL)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
          Classify_reloc;

      gold::relocate_relocs<size, big_endian, Classify_reloc>(
        relinfo,
        prelocs,
        reloc_count,
        output_section,
        offset_in_output_section,
        view,
        view_address,
        view_size,
        reloc_view,
        reloc_view_size);
    }
  else if (sh_type == elfcpp::SHT_RELA)
    {
      typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
          Classify_reloc;

      gold::relocate_relocs<size, big_endian, Classify_reloc>(
        relinfo,
        prelocs,
        reloc_count,
        output_section,
        offset_in_output_section,
        view,
        view_address,
        view_size,
        reloc_view,
        reloc_view_size);
    }
  else
    gold_unreachable();
}

// Perform target-specific processing in a relocatable link.  This is
// only used if we use the relocation strategy RELOC_SPECIAL.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_special_relocatable(
    const Relocate_info<size, big_endian>* relinfo,
    unsigned int sh_type,
    const unsigned char* preloc_in,
    size_t relnum,
    Output_section* output_section,
    typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
    unsigned char* view,
    Mips_address view_address,
    section_size_type,
    unsigned char* preloc_out)
{
  // We can only handle REL type relocation sections.
  gold_assert(sh_type == elfcpp::SHT_REL);

  typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
    Reltype;
  typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
    Reltype_write;

  typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;

  const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;

  Mips_relobj<size, big_endian>* object =
    Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
  const unsigned int local_count = object->local_symbol_count();

  Reltype reloc(preloc_in);
  Reltype_write reloc_write(preloc_out);

  elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
  const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
  const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

  // Get the new symbol index.
  // We only use RELOC_SPECIAL strategy in local relocations.
  gold_assert(r_sym < local_count);

  // We are adjusting a section symbol.  We need to find
  // the symbol table index of the section symbol for
  // the output section corresponding to input section
  // in which this symbol is defined.
  bool is_ordinary;
  unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
  gold_assert(is_ordinary);
  Output_section* os = object->output_section(shndx);
  gold_assert(os != NULL);
  gold_assert(os->needs_symtab_index());
  unsigned int new_symndx = os->symtab_index();

  // Get the new offset--the location in the output section where
  // this relocation should be applied.

  Mips_address offset = reloc.get_r_offset();
  Mips_address new_offset;
  if (offset_in_output_section != invalid_address)
    new_offset = offset + offset_in_output_section;
  else
    {
      section_offset_type sot_offset =
        convert_types<section_offset_type, Mips_address>(offset);
      section_offset_type new_sot_offset =
        output_section->output_offset(object, relinfo->data_shndx,
                                      sot_offset);
      gold_assert(new_sot_offset != -1);
      new_offset = new_sot_offset;
    }

  // In an object file, r_offset is an offset within the section.
  // In an executable or dynamic object, generated by
  // --emit-relocs, r_offset is an absolute address.
  if (!parameters->options().relocatable())
    {
      new_offset += view_address;
      if (offset_in_output_section != invalid_address)
        new_offset -= offset_in_output_section;
    }

  reloc_write.put_r_offset(new_offset);
  reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));

  // Handle the reloc addend.
  // The relocation uses a section symbol in the input file.
  // We are adjusting it to use a section symbol in the output
  // file.  The input section symbol refers to some address in
  // the input section.  We need the relocation in the output
  // file to refer to that same address.  This adjustment to
  // the addend is the same calculation we use for a simple
  // absolute relocation for the input section symbol.
  Valtype calculated_value = 0;
  const Symbol_value<size>* psymval = object->local_symbol(r_sym);

  unsigned char* paddend = view + offset;
  typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
  switch (r_type)
    {
    case elfcpp::R_MIPS_26:
      reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
          offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
          false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
          false, &calculated_value);
      break;

    default:
      gold_unreachable();
    }

  // Report any errors.
  switch (reloc_status)
    {
    case Reloc_funcs::STATUS_OKAY:
      break;
    case Reloc_funcs::STATUS_OVERFLOW:
      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
			     _("relocation overflow: "
			       "%u against local symbol %u in %s"),
			     r_type, r_sym, object->name().c_str());
      break;
    case Reloc_funcs::STATUS_BAD_RELOC:
      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
        _("unexpected opcode while processing relocation"));
      break;
    default:
      gold_unreachable();
    }
}

// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.

template<int size, bool big_endian>
tls::Tls_optimization
Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
{
  // FIXME: Currently we do not do any TLS optimization.
  return tls::TLSOPT_NONE;
}

// Scan a relocation for a local symbol.

template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
                        Symbol_table* symtab,
                        Layout* layout,
                        Target_mips<size, big_endian>* target,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        Output_section* output_section,
                        const Relatype* rela,
                        const Reltype* rel,
                        unsigned int rel_type,
                        unsigned int r_type,
                        const elfcpp::Sym<size, big_endian>& lsym,
                        bool is_discarded)
{
  if (is_discarded)
    return;

  Mips_address r_offset;
  unsigned int r_sym;
  typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;

  if (rel_type == elfcpp::SHT_RELA)
    {
      r_offset = rela->get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
	  get_r_sym(rela);
      r_addend = rela->get_r_addend();
    }
  else
    {
      r_offset = rel->get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
	  get_r_sym(rel);
      r_addend = 0;
    }

  Mips_relobj<size, big_endian>* mips_obj =
    Mips_relobj<size, big_endian>::as_mips_relobj(object);

  if (mips_obj->is_mips16_stub_section(data_shndx))
    {
      mips_obj->get_mips16_stub_section(data_shndx)
              ->new_local_reloc_found(r_type, r_sym);
    }

  if (r_type == elfcpp::R_MIPS_NONE)
    // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
    // mips16 stub.
    return;

  if (!mips16_call_reloc(r_type)
      && !mips_obj->section_allows_mips16_refs(data_shndx))
    // This reloc would need to refer to a MIPS16 hard-float stub, if
    // there is one.  We ignore MIPS16 stub sections and .pdr section when
    // looking for relocs that would need to refer to MIPS16 stubs.
    mips_obj->add_local_non_16bit_call(r_sym);

  if (r_type == elfcpp::R_MIPS16_26
      && !mips_obj->section_allows_mips16_refs(data_shndx))
    mips_obj->add_local_16bit_call(r_sym);

  switch (r_type)
    {
    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MIPS_GOT_OFST:
    case elfcpp::R_MIPS_GOT_DISP:
    case elfcpp::R_MIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MIPS16_TLS_LDM:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_GOT_PAGE:
    case elfcpp::R_MICROMIPS_GOT_OFST:
    case elfcpp::R_MICROMIPS_GOT_DISP:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_LDM:
    case elfcpp::R_MIPS_EH:
      // We need a GOT section.
      target->got_section(symtab, layout);
      break;

    default:
      break;
    }

  if (call_lo16_reloc(r_type)
      || got_lo16_reloc(r_type)
      || got_disp_reloc(r_type)
      || eh_reloc(r_type))
    {
      // We may need a local GOT entry for this relocation.  We
      // don't count R_MIPS_GOT_PAGE because we can estimate the
      // maximum number of pages needed by looking at the size of
      // the segment.  Similar comments apply to R_MIPS*_GOT16 and
      // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
      // R_MIPS_CALL_HI16 because these are always followed by an
      // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
      Mips_output_data_got<size, big_endian>* got =
        target->got_section(symtab, layout);
      bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
      got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
                                   is_section_symbol);
    }

  switch (r_type)
    {
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MICROMIPS_CALL16:
      gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
                 (unsigned long)r_offset);
      return;

    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MICROMIPS_GOT_PAGE:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
      {
        // This relocation needs a page entry in the GOT.
        // Get the section contents.
        section_size_type view_size = 0;
        const unsigned char* view = object->section_contents(data_shndx,
                                                             &view_size, false);
        view += r_offset;

        Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
        Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
                                                        : r_addend);

        if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
          target->got16_addends_.push_back(got16_addend<size, big_endian>(
              object, data_shndx, r_type, r_sym, addend));
        else
          target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
        break;
      }

    case elfcpp::R_MIPS_HI16:
    case elfcpp::R_MIPS_PCHI16:
    case elfcpp::R_MIPS16_HI16:
    case elfcpp::R_MICROMIPS_HI16:
      // Record the reloc so that we can check whether the corresponding LO16
      // part exists.
      if (rel_type == elfcpp::SHT_REL)
        target->got16_addends_.push_back(got16_addend<size, big_endian>(
            object, data_shndx, r_type, r_sym, 0));
      break;

    case elfcpp::R_MIPS_LO16:
    case elfcpp::R_MIPS_PCLO16:
    case elfcpp::R_MIPS16_LO16:
    case elfcpp::R_MICROMIPS_LO16:
      {
        if (rel_type != elfcpp::SHT_REL)
          break;

        // Find corresponding GOT16/HI16 relocation.

        // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
        // be immediately following.  However, for the IRIX6 ABI, the next
        // relocation may be a composed relocation consisting of several
        // relocations for the same address.  In that case, the R_MIPS_LO16
        // relocation may occur as one of these.  We permit a similar
        // extension in general, as that is useful for GCC.

        // In some cases GCC dead code elimination removes the LO16 but
        // keeps the corresponding HI16.  This is strictly speaking a
        // violation of the ABI but not immediately harmful.

        typename std::list<got16_addend<size, big_endian> >::iterator it =
          target->got16_addends_.begin();
        while (it != target->got16_addends_.end())
          {
            got16_addend<size, big_endian> _got16_addend = *it;

            // TODO(sasa): Split got16_addends_ list into two lists - one for
            // GOT16 relocs and the other for HI16 relocs.

            // Report an error if we find HI16 or GOT16 reloc from the
            // previous section without the matching LO16 part.
            if (_got16_addend.object != object
                || _got16_addend.shndx != data_shndx)
              {
                gold_error("Can't find matching LO16 reloc");
                break;
              }

            if (_got16_addend.r_sym != r_sym
                || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
              {
                ++it;
                continue;
              }

            // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
            // For GOT16, we need to calculate combined addend and record GOT page
            // entry.
            if (got16_reloc(_got16_addend.r_type))
              {

                section_size_type view_size = 0;
                const unsigned char* view = object->section_contents(data_shndx,
                                                                     &view_size,
                                                                     false);
                view += r_offset;

                Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
                int32_t addend = Bits<16>::sign_extend32(val & 0xffff);

                addend = (_got16_addend.addend << 16) + addend;
                target->got_section()->record_got_page_entry(mips_obj, r_sym,
                                                             addend);
              }

            it = target->got16_addends_.erase(it);
          }
        break;
      }
    }

  switch (r_type)
    {
    case elfcpp::R_MIPS_32:
    case elfcpp::R_MIPS_REL32:
    case elfcpp::R_MIPS_64:
      {
        if (parameters->options().output_is_position_independent())
          {
            // If building a shared library (or a position-independent
            // executable), we need to create a dynamic relocation for
            // this location.
            if (is_readonly_section(output_section))
              break;
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
            rel_dyn->add_symbolless_local_addend(object, r_sym,
                                                 elfcpp::R_MIPS_REL32,
                                                 output_section, data_shndx,
                                                 r_offset);
          }
        break;
      }

    case elfcpp::R_MIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS16_TLS_LDM:
    case elfcpp::R_MICROMIPS_TLS_LDM:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_GD:
      {
        bool output_is_shared = parameters->options().shared();
        const tls::Tls_optimization optimized_type
            = Target_mips<size, big_endian>::optimize_tls_reloc(
                                             !output_is_shared, r_type);
        switch (r_type)
          {
          case elfcpp::R_MIPS_TLS_GD:
          case elfcpp::R_MIPS16_TLS_GD:
          case elfcpp::R_MICROMIPS_TLS_GD:
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                Mips_output_data_got<size, big_endian>* got =
                  target->got_section(symtab, layout);
                unsigned int shndx = lsym.get_st_shndx();
                bool is_ordinary;
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
                if (!is_ordinary)
                  {
                    object->error(_("local symbol %u has bad shndx %u"),
                                  r_sym, shndx);
                    break;
                  }
                got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
                                             shndx, false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;

          case elfcpp::R_MIPS_TLS_LDM:
          case elfcpp::R_MIPS16_TLS_LDM:
          case elfcpp::R_MICROMIPS_TLS_LDM:
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // We always record LDM symbols as local with index 0.
                target->got_section()->record_local_got_symbol(mips_obj, 0,
                                                               r_addend, r_type,
                                                               -1U, false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;
          case elfcpp::R_MIPS_TLS_GOTTPREL:
          case elfcpp::R_MIPS16_TLS_GOTTPREL:
          case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // Create a GOT entry for the tp-relative offset.
                Mips_output_data_got<size, big_endian>* got =
                  target->got_section(symtab, layout);
                got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
                                             -1U, false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;

          default:
            gold_unreachable();
        }
      }
      break;

    default:
      break;
    }

  // Refuse some position-dependent relocations when creating a
  // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
  // not PIC, but we can create dynamic relocations and the result
  // will be fine.  Also do not refuse R_MIPS_LO16, which can be
  // combined with R_MIPS_GOT16.
  if (parameters->options().shared())
    {
      switch (r_type)
        {
        case elfcpp::R_MIPS16_HI16:
        case elfcpp::R_MIPS_HI16:
        case elfcpp::R_MIPS_HIGHER:
        case elfcpp::R_MIPS_HIGHEST:
        case elfcpp::R_MICROMIPS_HI16:
        case elfcpp::R_MICROMIPS_HIGHER:
        case elfcpp::R_MICROMIPS_HIGHEST:
          // Don't refuse a high part relocation if it's against
          // no symbol (e.g. part of a compound relocation).
          if (r_sym == 0)
            break;
	  // Fall through.

        case elfcpp::R_MIPS16_26:
        case elfcpp::R_MIPS_26:
        case elfcpp::R_MICROMIPS_26_S1:
          gold_error(_("%s: relocation %u against `%s' can not be used when "
                       "making a shared object; recompile with -fPIC"),
                     object->name().c_str(), r_type, "a local symbol");
        default:
          break;
        }
    }
}

template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
                        Symbol_table* symtab,
                        Layout* layout,
                        Target_mips<size, big_endian>* target,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        Output_section* output_section,
                        const Reltype& reloc,
                        unsigned int r_type,
                        const elfcpp::Sym<size, big_endian>& lsym,
                        bool is_discarded)
{
  if (is_discarded)
    return;

  local(
    symtab,
    layout,
    target,
    object,
    data_shndx,
    output_section,
    (const Relatype*) NULL,
    &reloc,
    elfcpp::SHT_REL,
    r_type,
    lsym, is_discarded);
}


template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
                        Symbol_table* symtab,
                        Layout* layout,
                        Target_mips<size, big_endian>* target,
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int data_shndx,
                        Output_section* output_section,
                        const Relatype& reloc,
                        unsigned int r_type,
                        const elfcpp::Sym<size, big_endian>& lsym,
                        bool is_discarded)
{
  if (is_discarded)
    return;

  local(
    symtab,
    layout,
    target,
    object,
    data_shndx,
    output_section,
    &reloc,
    (const Reltype*) NULL,
    elfcpp::SHT_RELA,
    r_type,
    lsym, is_discarded);
}

// Scan a relocation for a global symbol.

template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
                                Symbol_table* symtab,
                                Layout* layout,
                                Target_mips<size, big_endian>* target,
                                Sized_relobj_file<size, big_endian>* object,
                                unsigned int data_shndx,
                                Output_section* output_section,
                                const Relatype* rela,
                                const Reltype* rel,
                                unsigned int rel_type,
                                unsigned int r_type,
                                Symbol* gsym)
{
  Mips_address r_offset;
  unsigned int r_sym;
  typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;

  if (rel_type == elfcpp::SHT_RELA)
    {
      r_offset = rela->get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
	  get_r_sym(rela);
      r_addend = rela->get_r_addend();
    }
  else
    {
      r_offset = rel->get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
	  get_r_sym(rel);
      r_addend = 0;
    }

  Mips_relobj<size, big_endian>* mips_obj =
    Mips_relobj<size, big_endian>::as_mips_relobj(object);
  Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);

  if (mips_obj->is_mips16_stub_section(data_shndx))
    {
      mips_obj->get_mips16_stub_section(data_shndx)
              ->new_global_reloc_found(r_type, mips_sym);
    }

  if (r_type == elfcpp::R_MIPS_NONE)
    // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
    // mips16 stub.
    return;

  if (!mips16_call_reloc(r_type)
      && !mips_obj->section_allows_mips16_refs(data_shndx))
    // This reloc would need to refer to a MIPS16 hard-float stub, if
    // there is one.  We ignore MIPS16 stub sections and .pdr section when
    // looking for relocs that would need to refer to MIPS16 stubs.
    mips_sym->set_need_fn_stub();

  // We need PLT entries if there are static-only relocations against
  // an externally-defined function.  This can technically occur for
  // shared libraries if there are branches to the symbol, although it
  // is unlikely that this will be used in practice due to the short
  // ranges involved.  It can occur for any relative or absolute relocation
  // in executables; in that case, the PLT entry becomes the function's
  // canonical address.
  bool static_reloc = false;

  // Set CAN_MAKE_DYNAMIC to true if we can convert this
  // relocation into a dynamic one.
  bool can_make_dynamic = false;
  switch (r_type)
    {
    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MIPS_GOT_OFST:
    case elfcpp::R_MIPS_GOT_DISP:
    case elfcpp::R_MIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MIPS16_TLS_LDM:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_GOT_PAGE:
    case elfcpp::R_MICROMIPS_GOT_OFST:
    case elfcpp::R_MICROMIPS_GOT_DISP:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_LDM:
    case elfcpp::R_MIPS_EH:
      // We need a GOT section.
      target->got_section(symtab, layout);
      break;

    // This is just a hint; it can safely be ignored.  Don't set
    // has_static_relocs for the corresponding symbol.
    case elfcpp::R_MIPS_JALR:
    case elfcpp::R_MICROMIPS_JALR:
      break;

    case elfcpp::R_MIPS_GPREL16:
    case elfcpp::R_MIPS_GPREL32:
    case elfcpp::R_MIPS16_GPREL:
    case elfcpp::R_MICROMIPS_GPREL16:
      // TODO(sasa)
      // GP-relative relocations always resolve to a definition in a
      // regular input file, ignoring the one-definition rule.  This is
      // important for the GP setup sequence in NewABI code, which
      // always resolves to a local function even if other relocations
      // against the symbol wouldn't.
      //constrain_symbol_p = FALSE;
      break;

    case elfcpp::R_MIPS_32:
    case elfcpp::R_MIPS_REL32:
    case elfcpp::R_MIPS_64:
      if ((parameters->options().shared()
          || (strcmp(gsym->name(), "__gnu_local_gp") != 0
          && (!is_readonly_section(output_section)
          || mips_obj->is_pic())))
          && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
        {
          if (r_type != elfcpp::R_MIPS_REL32)
            mips_sym->set_pointer_equality_needed();
          can_make_dynamic = true;
          break;
        }
      // Fall through.

    default:
      // Most static relocations require pointer equality, except
      // for branches.
      mips_sym->set_pointer_equality_needed();
      // Fall through.

    case elfcpp::R_MIPS_26:
    case elfcpp::R_MIPS_PC16:
    case elfcpp::R_MIPS_PC21_S2:
    case elfcpp::R_MIPS_PC26_S2:
    case elfcpp::R_MIPS16_26:
    case elfcpp::R_MICROMIPS_26_S1:
    case elfcpp::R_MICROMIPS_PC7_S1:
    case elfcpp::R_MICROMIPS_PC10_S1:
    case elfcpp::R_MICROMIPS_PC16_S1:
    case elfcpp::R_MICROMIPS_PC23_S2:
      static_reloc = true;
      mips_sym->set_has_static_relocs();
      break;
    }

  // If there are call relocations against an externally-defined symbol,
  // see whether we can create a MIPS lazy-binding stub for it.  We can
  // only do this if all references to the function are through call
  // relocations, and in that case, the traditional lazy-binding stubs
  // are much more efficient than PLT entries.
  switch (r_type)
    {
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MIPS_JALR:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
    case elfcpp::R_MICROMIPS_JALR:
      if (!mips_sym->no_lazy_stub())
        {
          if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
              // Calls from shared objects to undefined symbols of type
              // STT_NOTYPE need lazy-binding stub.
              || (mips_sym->is_undefined() && parameters->options().shared()))
            target->mips_stubs_section(layout)->make_entry(mips_sym);
        }
      break;
    default:
      {
        // We must not create a stub for a symbol that has relocations
        // related to taking the function's address.
        mips_sym->set_no_lazy_stub();
        target->remove_lazy_stub_entry(mips_sym);
        break;
      }
  }

  if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
                                                   mips_sym->is_mips16()))
    mips_sym->set_has_nonpic_branches();

  // R_MIPS_HI16 against _gp_disp is used for $gp setup,
  // and has a special meaning.
  bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
                               && strcmp(gsym->name(), "_gp_disp") == 0
                               && (hi16_reloc(r_type) || lo16_reloc(r_type)));
  if (static_reloc && gsym->needs_plt_entry())
    {
      target->make_plt_entry(symtab, layout, mips_sym, r_type);

      // Since this is not a PC-relative relocation, we may be
      // taking the address of a function.  In that case we need to
      // set the entry in the dynamic symbol table to the address of
      // the PLT entry.
      if (gsym->is_from_dynobj() && !parameters->options().shared())
        {
          gsym->set_needs_dynsym_value();
          // We distinguish between PLT entries and lazy-binding stubs by
          // giving the former an st_other value of STO_MIPS_PLT.  Set the
          // flag if there are any relocations in the binary where pointer
          // equality matters.
          if (mips_sym->pointer_equality_needed())
            mips_sym->set_mips_plt();
        }
    }
  if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
    {
      // Absolute addressing relocations.
      // Make a dynamic relocation if necessary.
      if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
        {
          if (gsym->may_need_copy_reloc())
            {
              target->copy_reloc(symtab, layout, object, data_shndx,
                                 output_section, gsym, r_type, r_offset);
            }
          else if (can_make_dynamic)
            {
              // Create .rel.dyn section.
              target->rel_dyn_section(layout);
              target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
                                    data_shndx, output_section, r_offset);
            }
          else
            gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
                       gsym->name());
        }
    }

  bool for_call = false;
  switch (r_type)
    {
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
      for_call = true;
      // Fall through.

    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
    case elfcpp::R_MIPS_GOT_DISP:
    case elfcpp::R_MICROMIPS_GOT_DISP:
    case elfcpp::R_MIPS_EH:
      {
        // The symbol requires a GOT entry.
        Mips_output_data_got<size, big_endian>* got =
          target->got_section(symtab, layout);
        got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
                                      for_call);
        mips_sym->set_global_got_area(GGA_NORMAL);
      }
      break;

    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MICROMIPS_GOT_PAGE:
      {
        // This relocation needs a page entry in the GOT.
        // Get the section contents.
        section_size_type view_size = 0;
        const unsigned char* view =
          object->section_contents(data_shndx, &view_size, false);
        view += r_offset;

        Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
        Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
                                                        : r_addend);
        Mips_output_data_got<size, big_endian>* got =
          target->got_section(symtab, layout);
        got->record_got_page_entry(mips_obj, r_sym, addend);

        // If this is a global, overridable symbol, GOT_PAGE will
        // decay to GOT_DISP, so we'll need a GOT entry for it.
        bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
                            && !mips_sym->object()->is_dynamic()
                            && !mips_sym->is_undefined());
        if (!def_regular
            || (parameters->options().output_is_position_independent()
                && !parameters->options().Bsymbolic()
                && !mips_sym->is_forced_local()))
          {
            got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
                                          for_call);
            mips_sym->set_global_got_area(GGA_NORMAL);
          }
      }
      break;

    case elfcpp::R_MIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS16_TLS_LDM:
    case elfcpp::R_MICROMIPS_TLS_LDM:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_GD:
      {
        const bool is_final = gsym->final_value_is_known();
        const tls::Tls_optimization optimized_type =
          Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);

        switch (r_type)
          {
          case elfcpp::R_MIPS_TLS_GD:
          case elfcpp::R_MIPS16_TLS_GD:
          case elfcpp::R_MICROMIPS_TLS_GD:
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                Mips_output_data_got<size, big_endian>* got =
                  target->got_section(symtab, layout);
                got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
                                              false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;

          case elfcpp::R_MIPS_TLS_LDM:
          case elfcpp::R_MIPS16_TLS_LDM:
          case elfcpp::R_MICROMIPS_TLS_LDM:
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // We always record LDM symbols as local with index 0.
                target->got_section()->record_local_got_symbol(mips_obj, 0,
                                                               r_addend, r_type,
                                                               -1U, false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;
          case elfcpp::R_MIPS_TLS_GOTTPREL:
          case elfcpp::R_MIPS16_TLS_GOTTPREL:
          case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
              {
                // Create a GOT entry for the tp-relative offset.
                Mips_output_data_got<size, big_endian>* got =
                  target->got_section(symtab, layout);
                got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
                                              false);
              }
            else
              {
                // FIXME: TLS optimization not supported yet.
                gold_unreachable();
              }
            break;

          default:
            gold_unreachable();
        }
      }
      break;
    case elfcpp::R_MIPS_COPY:
    case elfcpp::R_MIPS_JUMP_SLOT:
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
      break;

    default:
      break;
    }

  // Refuse some position-dependent relocations when creating a
  // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
  // not PIC, but we can create dynamic relocations and the result
  // will be fine.  Also do not refuse R_MIPS_LO16, which can be
  // combined with R_MIPS_GOT16.
  if (parameters->options().shared())
    {
      switch (r_type)
        {
        case elfcpp::R_MIPS16_HI16:
        case elfcpp::R_MIPS_HI16:
        case elfcpp::R_MIPS_HIGHER:
        case elfcpp::R_MIPS_HIGHEST:
        case elfcpp::R_MICROMIPS_HI16:
        case elfcpp::R_MICROMIPS_HIGHER:
        case elfcpp::R_MICROMIPS_HIGHEST:
          // Don't refuse a high part relocation if it's against
          // no symbol (e.g. part of a compound relocation).
          if (r_sym == 0)
            break;

          // R_MIPS_HI16 against _gp_disp is used for $gp setup,
          // and has a special meaning.
          if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
            break;
	  // Fall through.

        case elfcpp::R_MIPS16_26:
        case elfcpp::R_MIPS_26:
        case elfcpp::R_MICROMIPS_26_S1:
          gold_error(_("%s: relocation %u against `%s' can not be used when "
                       "making a shared object; recompile with -fPIC"),
                     object->name().c_str(), r_type, gsym->name());
        default:
          break;
        }
    }
}

template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
                                Symbol_table* symtab,
                                Layout* layout,
                                Target_mips<size, big_endian>* target,
                                Sized_relobj_file<size, big_endian>* object,
                                unsigned int data_shndx,
                                Output_section* output_section,
                                const Relatype& reloc,
                                unsigned int r_type,
                                Symbol* gsym)
{
  global(
    symtab,
    layout,
    target,
    object,
    data_shndx,
    output_section,
    &reloc,
    (const Reltype*) NULL,
    elfcpp::SHT_RELA,
    r_type,
    gsym);
}

template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
                                Symbol_table* symtab,
                                Layout* layout,
                                Target_mips<size, big_endian>* target,
                                Sized_relobj_file<size, big_endian>* object,
                                unsigned int data_shndx,
                                Output_section* output_section,
                                const Reltype& reloc,
                                unsigned int r_type,
                                Symbol* gsym)
{
  global(
    symtab,
    layout,
    target,
    object,
    data_shndx,
    output_section,
    (const Relatype*) NULL,
    &reloc,
    elfcpp::SHT_REL,
    r_type,
    gsym);
}

// Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation, the addend of the relocation is carried
// in the data, and we must not apply the static relocation.

template<int size, bool big_endian>
inline bool
Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
    const Mips_symbol<size>* gsym,
    unsigned int r_type,
    Output_section* output_section,
    Target_mips* target)
{
  // If the output section is not allocated, then we didn't call
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // the reloc here.
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
      return true;

  if (gsym == NULL)
    return true;
  else
    {
      // For global symbols, we use the same helper routines used in the
      // scan pass.
      if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
          && !gsym->may_need_copy_reloc())
        {
          // We have generated dynamic reloc (R_MIPS_REL32).

          bool multi_got = false;
          if (target->has_got_section())
            multi_got = target->got_section()->multi_got();
          bool has_got_offset;
          if (!multi_got)
            has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
          else
            has_got_offset = gsym->global_gotoffset() != -1U;
          if (!has_got_offset)
            return true;
          else
            // Apply the relocation only if the symbol is in the local got.
            // Do not apply the relocation if the symbol is in the global
            // got.
            return symbol_references_local(gsym, gsym->has_dynsym_index());
        }
      else
        // We have not generated dynamic reloc.
        return true;
    }
}

// Perform a relocation.

template<int size, bool big_endian>
inline bool
Target_mips<size, big_endian>::Relocate::relocate(
                        const Relocate_info<size, big_endian>* relinfo,
                        unsigned int rel_type,
                        Target_mips* target,
                        Output_section* output_section,
                        size_t relnum,
                        const unsigned char* preloc,
                        const Sized_symbol<size>* gsym,
                        const Symbol_value<size>* psymval,
                        unsigned char* view,
                        Mips_address address,
                        section_size_type)
{
  Mips_address r_offset;
  unsigned int r_sym;
  unsigned int r_type;
  unsigned int r_type2;
  unsigned int r_type3;
  unsigned char r_ssym;
  typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
  // r_offset and r_type of the next relocation is needed for resolving multiple
  // consecutive relocations with the same offset.
  Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
  unsigned int next_r_type = elfcpp::R_MIPS_NONE;

  elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
  size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();

  if (rel_type == elfcpp::SHT_RELA)
    {
      const Relatype rela(preloc);
      r_offset = rela.get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
	  get_r_sym(&rela);
      r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
	  get_r_type(&rela);
      r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
          get_r_type2(&rela);
      r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
          get_r_type3(&rela);
      r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
          get_r_ssym(&rela);
      r_addend = rela.get_r_addend();
      // If this is not last relocation, get r_offset and r_type of the next
      // relocation.
      if (relnum + 1 < reloc_count)
        {
          const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
          const Relatype next_rela(preloc + reloc_size);
          next_r_offset = next_rela.get_r_offset();
          next_r_type =
            Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
              get_r_type(&next_rela);
        }
    }
  else
    {
      const Reltype rel(preloc);
      r_offset = rel.get_r_offset();
      r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
	  get_r_sym(&rel);
      r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
	  get_r_type(&rel);
      r_ssym = 0;
      r_type2 = elfcpp::R_MIPS_NONE;
      r_type3 = elfcpp::R_MIPS_NONE;
      r_addend = 0;
      // If this is not last relocation, get r_offset and r_type of the next
      // relocation.
      if (relnum + 1 < reloc_count)
        {
          const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
          const Reltype next_rel(preloc + reloc_size);
          next_r_offset = next_rel.get_r_offset();
          next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
            get_r_type(&next_rel);
        }
    }

  typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
  typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;

  Mips_relobj<size, big_endian>* object =
      Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);

  bool target_is_16_bit_code = false;
  bool target_is_micromips_code = false;
  bool cross_mode_jump;

  Symbol_value<size> symval;

  const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);

  bool changed_symbol_value = false;
  if (gsym == NULL)
    {
      target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
      target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
      if (target_is_16_bit_code || target_is_micromips_code)
        {
          // MIPS16/microMIPS text labels should be treated as odd.
          symval.set_output_value(psymval->value(object, 1));
          psymval = &symval;
          changed_symbol_value = true;
        }
    }
  else
    {
      target_is_16_bit_code = mips_sym->is_mips16();
      target_is_micromips_code = mips_sym->is_micromips();

      // If this is a mips16/microMIPS text symbol, add 1 to the value to make
      // it odd.  This will cause something like .word SYM to come up with
      // the right value when it is loaded into the PC.

      if ((mips_sym->is_mips16() || mips_sym->is_micromips())
          && psymval->value(object, 0) != 0)
        {
          symval.set_output_value(psymval->value(object, 0) | 1);
          psymval = &symval;
          changed_symbol_value = true;
        }

      // Pick the value to use for symbols defined in shared objects.
      if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
          || mips_sym->has_lazy_stub())
        {
          Mips_address value;
          if (!mips_sym->has_lazy_stub())
            {
              // Prefer a standard MIPS PLT entry.
              if (mips_sym->has_mips_plt_offset())
                {
                  value = target->plt_section()->mips_entry_address(mips_sym);
                  target_is_micromips_code = false;
                  target_is_16_bit_code = false;
                }
              else
                {
                  value = (target->plt_section()->comp_entry_address(mips_sym)
                           + 1);
                  if (target->is_output_micromips())
                    target_is_micromips_code = true;
                  else
                    target_is_16_bit_code = true;
                }
            }
          else
            value = target->mips_stubs_section()->stub_address(mips_sym);

          symval.set_output_value(value);
          psymval = &symval;
        }
    }

  // TRUE if the symbol referred to by this relocation is "_gp_disp".
  // Note that such a symbol must always be a global symbol.
  bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
                  && !object->is_newabi());

  // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
  // Note that such a symbol must always be a global symbol.
  bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);


  if (gp_disp)
    {
      if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
        gold_error_at_location(relinfo, relnum, r_offset,
          _("relocations against _gp_disp are permitted only"
            " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
    }
  else if (gnu_local_gp)
    {
      // __gnu_local_gp is _gp symbol.
      symval.set_output_value(target->adjusted_gp_value(object));
      psymval = &symval;
    }

  // If this is a reference to a 16-bit function with a stub, we need
  // to redirect the relocation to the stub unless:
  //
  // (a) the relocation is for a MIPS16 JAL;
  //
  // (b) the relocation is for a MIPS16 PIC call, and there are no
  //     non-MIPS16 uses of the GOT slot; or
  //
  // (c) the section allows direct references to MIPS16 functions.
  if (r_type != elfcpp::R_MIPS16_26
      && ((mips_sym != NULL
           && mips_sym->has_mips16_fn_stub()
           && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
          || (mips_sym == NULL
              && object->get_local_mips16_fn_stub(r_sym) != NULL))
      && !object->section_allows_mips16_refs(relinfo->data_shndx))
    {
      // This is a 32- or 64-bit call to a 16-bit function.  We should
      // have already noticed that we were going to need the
      // stub.
      Mips_address value;
      if (mips_sym == NULL)
        value = object->get_local_mips16_fn_stub(r_sym)->output_address();
      else
        {
          gold_assert(mips_sym->need_fn_stub());
          if (mips_sym->has_la25_stub())
            value = target->la25_stub_section()->stub_address(mips_sym);
          else
            {
              value = mips_sym->template
                      get_mips16_fn_stub<big_endian>()->output_address();
            }
          }
      symval.set_output_value(value);
      psymval = &symval;
      changed_symbol_value = true;

      // The target is 16-bit, but the stub isn't.
      target_is_16_bit_code = false;
    }
  // If this is a MIPS16 call with a stub, that is made through the PLT or
  // to a standard MIPS function, we need to redirect the call to the stub.
  // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
  // indirect calls should use an indirect stub instead.
  else if (r_type == elfcpp::R_MIPS16_26
           && ((mips_sym != NULL
                && (mips_sym->has_mips16_call_stub()
                    || mips_sym->has_mips16_call_fp_stub()))
               || (mips_sym == NULL
                   && object->get_local_mips16_call_stub(r_sym) != NULL))
           && ((mips_sym != NULL && mips_sym->has_plt_offset())
               || !target_is_16_bit_code))
    {
      Mips16_stub_section<size, big_endian>* call_stub;
      if (mips_sym == NULL)
        call_stub = object->get_local_mips16_call_stub(r_sym);
      else
        {
          // If both call_stub and call_fp_stub are defined, we can figure
          // out which one to use by checking which one appears in the input
          // file.
          if (mips_sym->has_mips16_call_stub()
              && mips_sym->has_mips16_call_fp_stub())
            {
              call_stub = NULL;
              for (unsigned int i = 1; i < object->shnum(); ++i)
                {
                  if (object->is_mips16_call_fp_stub_section(i))
                    {
                      call_stub = mips_sym->template
                                  get_mips16_call_fp_stub<big_endian>();
                      break;
                    }

                }
              if (call_stub == NULL)
                call_stub =
                  mips_sym->template get_mips16_call_stub<big_endian>();
            }
          else if (mips_sym->has_mips16_call_stub())
            call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
          else
            call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
        }

      symval.set_output_value(call_stub->output_address());
      psymval = &symval;
      changed_symbol_value = true;
    }
  // If this is a direct call to a PIC function, redirect to the
  // non-PIC stub.
  else if (mips_sym != NULL
           && mips_sym->has_la25_stub()
           && relocation_needs_la25_stub<size, big_endian>(
                                       object, r_type, target_is_16_bit_code))
    {
      Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
      if (mips_sym->is_micromips())
        value += 1;
      symval.set_output_value(value);
      psymval = &symval;
    }
  // For direct MIPS16 and microMIPS calls make sure the compressed PLT
  // entry is used if a standard PLT entry has also been made.
  else if ((r_type == elfcpp::R_MIPS16_26
            || r_type == elfcpp::R_MICROMIPS_26_S1)
          && mips_sym != NULL
          && mips_sym->has_plt_offset()
          && mips_sym->has_comp_plt_offset()
          && mips_sym->has_mips_plt_offset())
    {
      Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
                            + 1);
      symval.set_output_value(value);
      psymval = &symval;

      target_is_16_bit_code = !target->is_output_micromips();
      target_is_micromips_code = target->is_output_micromips();
    }

  // Make sure MIPS16 and microMIPS are not used together.
  if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
      || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
   {
      gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
   }

  // Calls from 16-bit code to 32-bit code and vice versa require the
  // mode change.  However, we can ignore calls to undefined weak symbols,
  // which should never be executed at runtime.  This exception is important
  // because the assembly writer may have "known" that any definition of the
  // symbol would be 16-bit code, and that direct jumps were therefore
  // acceptable.
  cross_mode_jump =
    (!(gsym != NULL && gsym->is_weak_undefined())
     && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
         || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
         || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
             && (target_is_16_bit_code || target_is_micromips_code))));

  bool local = (mips_sym == NULL
                || (mips_sym->got_only_for_calls()
                    ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
                    : symbol_references_local(mips_sym,
                                              mips_sym->has_dynsym_index())));

  // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
  // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
  // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
  if (got_page_reloc(r_type) && !local)
    r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
                                      : elfcpp::R_MIPS_GOT_DISP);

  unsigned int got_offset = 0;
  int gp_offset = 0;

  // Whether we have to extract addend from instruction.
  bool extract_addend = rel_type == elfcpp::SHT_REL;
  unsigned int r_types[3] = { r_type, r_type2, r_type3 };

  Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);

  // For Mips64 N64 ABI, there may be up to three operations specified per
  // record, by the fields r_type, r_type2, and r_type3. The first operation
  // takes its addend from the relocation record. Each subsequent operation
  // takes as its addend the result of the previous operation.
  // The first operation in a record which references a symbol uses the symbol
  // implied by r_sym. The next operation in a record which references a symbol
  // uses the special symbol value given by the r_ssym field. A third operation
  // in a record which references a symbol will assume a NULL symbol,
  // i.e. value zero.

  // TODO(Vladimir)
  // Check if a record references to a symbol.
  for (unsigned int i = 0; i < 3; ++i)
    {
      if (r_types[i] == elfcpp::R_MIPS_NONE)
        break;

      // If we didn't apply previous relocation, use its result as addend
      // for current.
      if (this->calculate_only_)
        {
          r_addend = this->calculated_value_;
          extract_addend = false;
        }

      // In the N32 and 64-bit ABIs there may be multiple consecutive
      // relocations for the same offset.  In that case we are
      // supposed to treat the output of each relocation as the addend
      // for the next.  For N64 ABI, we are checking offsets only in a
      // third operation in a record (r_type3).
      this->calculate_only_ =
        (object->is_n64() && i < 2
         ? r_types[i+1] != elfcpp::R_MIPS_NONE
         : (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));

      if (object->is_n64())
        {
          if (i == 1)
            {
              // Handle special symbol for r_type2 relocation type.
              switch (r_ssym)
                {
                case RSS_UNDEF:
                  symval.set_output_value(0);
                  break;
                case RSS_GP:
                  symval.set_output_value(target->gp_value());
                  break;
                case RSS_GP0:
                  symval.set_output_value(object->gp_value());
                  break;
                case RSS_LOC:
                  symval.set_output_value(address);
                  break;
                default:
                  gold_unreachable();
                }
              psymval = &symval;
            }
          else if (i == 2)
           {
            // For r_type3 symbol value is 0.
            symval.set_output_value(0);
           }
        }

      bool update_got_entry = false;
      switch (r_types[i])
        {
        case elfcpp::R_MIPS_NONE:
          break;
        case elfcpp::R_MIPS_16:
          reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
                                            extract_addend,
                                            this->calculate_only_,
                                            &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_32:
          if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
                                        target))
            reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
                                              extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          if (mips_sym != NULL
              && (mips_sym->is_mips16() || mips_sym->is_micromips())
              && mips_sym->global_got_area() == GGA_RELOC_ONLY)
            {
              // If mips_sym->has_mips16_fn_stub() is false, symbol value is
              // already updated by adding +1.
              if (mips_sym->has_mips16_fn_stub())
                {
                  gold_assert(mips_sym->need_fn_stub());
                  Mips16_stub_section<size, big_endian>* fn_stub =
                    mips_sym->template get_mips16_fn_stub<big_endian>();

                  symval.set_output_value(fn_stub->output_address());
                  psymval = &symval;
                }
              got_offset = mips_sym->global_gotoffset();
              update_got_entry = true;
            }
          break;

        case elfcpp::R_MIPS_64:
          if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
                                        target))
            reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
                                              extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_, false);
          else if (target->is_output_n64() && r_addend != 0)
            // Only apply the addend.  The static relocation was RELA, but the
            // dynamic relocation is REL, so we need to apply the addend.
            reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
                                              extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_, true);
          break;
        case elfcpp::R_MIPS_REL32:
          gold_unreachable();

        case elfcpp::R_MIPS_PC32:
          reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS16_26:
          // The calculation for R_MIPS16_26 is just the same as for an
          // R_MIPS_26.  It's only the storage of the relocated field into
          // the output file that's different.  So, we just fall through to the
          // R_MIPS_26 case here.
        case elfcpp::R_MIPS_26:
        case elfcpp::R_MICROMIPS_26_S1:
          reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
              gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
              r_types[i], target->jal_to_bal(), this->calculate_only_,
              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_HI16:
        case elfcpp::R_MIPS16_HI16:
        case elfcpp::R_MICROMIPS_HI16:
          if (rel_type == elfcpp::SHT_RELA)
            reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
                                                   r_addend, address,
                                                   gp_disp, r_types[i],
                                                   extract_addend, 0,
                                                   target,
                                                   this->calculate_only_,
                                                   &this->calculated_value_);
          else if (rel_type == elfcpp::SHT_REL)
            reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
                                                address, gp_disp, r_types[i],
                                                r_sym, extract_addend);
          else
            gold_unreachable();
          break;

        case elfcpp::R_MIPS_LO16:
        case elfcpp::R_MIPS16_LO16:
        case elfcpp::R_MICROMIPS_LO16:
        case elfcpp::R_MICROMIPS_HI0_LO16:
          reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
                                              r_addend, extract_addend, address,
                                              gp_disp, r_types[i], r_sym,
                                              rel_type, this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_LITERAL:
        case elfcpp::R_MICROMIPS_LITERAL:
          // Because we don't merge literal sections, we can handle this
          // just like R_MIPS_GPREL16.  In the long run, we should merge
          // shared literals, and then we will need to additional work
          // here.

          // Fall through.

        case elfcpp::R_MIPS_GPREL16:
        case elfcpp::R_MIPS16_GPREL:
        case elfcpp::R_MICROMIPS_GPREL7_S2:
        case elfcpp::R_MICROMIPS_GPREL16:
          reloc_status = Reloc_funcs::relgprel(view, object, psymval,
                                             target->adjusted_gp_value(object),
                                             r_addend, extract_addend,
                                             gsym == NULL, r_types[i],
                                             this->calculate_only_,
                                             &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PC16:
          reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PC21_S2:
          reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PC26_S2:
          reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PC18_S3:
          reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PC19_S2:
          reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_PCHI16:
          if (rel_type == elfcpp::SHT_RELA)
            reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
                                                     r_addend, address,
                                                     extract_addend, 0,
                                                     this->calculate_only_,
                                                     &this->calculated_value_);
          else if (rel_type == elfcpp::SHT_REL)
            reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
                                                  r_addend, address, r_sym,
                                                  extract_addend);
          else
            gold_unreachable();
          break;

        case elfcpp::R_MIPS_PCLO16:
          reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
                                                extract_addend, address, r_sym,
                                                rel_type, this->calculate_only_,
                                                &this->calculated_value_);
          break;
        case elfcpp::R_MICROMIPS_PC7_S1:
          reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
                                                      address, r_addend,
                                                      extract_addend,
                                                      this->calculate_only_,
                                                      &this->calculated_value_);
          break;
        case elfcpp::R_MICROMIPS_PC10_S1:
          reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
                                                      psymval, address,
                                                      r_addend, extract_addend,
                                                      this->calculate_only_,
                                                      &this->calculated_value_);
          break;
        case elfcpp::R_MICROMIPS_PC16_S1:
          reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
                                                      psymval, address,
                                                      r_addend, extract_addend,
                                                      this->calculate_only_,
                                                      &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_GPREL32:
          reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
                                              target->adjusted_gp_value(object),
                                              r_addend, extract_addend,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_GOT_HI16:
        case elfcpp::R_MIPS_CALL_HI16:
        case elfcpp::R_MICROMIPS_GOT_HI16:
        case elfcpp::R_MICROMIPS_CALL_HI16:
          if (gsym != NULL)
            got_offset = target->got_section()->got_offset(gsym,
                                                           GOT_TYPE_STANDARD,
                                                           object);
          else
            got_offset = target->got_section()->got_offset(r_sym,
                                                           GOT_TYPE_STANDARD,
                                                           object, r_addend);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
                                                  this->calculate_only_,
                                                  &this->calculated_value_);
          update_got_entry = changed_symbol_value;
          break;

        case elfcpp::R_MIPS_GOT_LO16:
        case elfcpp::R_MIPS_CALL_LO16:
        case elfcpp::R_MICROMIPS_GOT_LO16:
        case elfcpp::R_MICROMIPS_CALL_LO16:
          if (gsym != NULL)
            got_offset = target->got_section()->got_offset(gsym,
                                                           GOT_TYPE_STANDARD,
                                                           object);
          else
            got_offset = target->got_section()->got_offset(r_sym,
                                                           GOT_TYPE_STANDARD,
                                                           object, r_addend);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
                                                  this->calculate_only_,
                                                  &this->calculated_value_);
          update_got_entry = changed_symbol_value;
          break;

        case elfcpp::R_MIPS_GOT_DISP:
        case elfcpp::R_MICROMIPS_GOT_DISP:
        case elfcpp::R_MIPS_EH:
          if (gsym != NULL)
            got_offset = target->got_section()->got_offset(gsym,
                                                           GOT_TYPE_STANDARD,
                                                           object);
          else
            got_offset = target->got_section()->got_offset(r_sym,
                                                           GOT_TYPE_STANDARD,
                                                           object, r_addend);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          if (eh_reloc(r_types[i]))
            reloc_status = Reloc_funcs::releh(view, gp_offset,
                                              this->calculate_only_,
                                              &this->calculated_value_);
          else
            reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                               this->calculate_only_,
                                               &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_CALL16:
        case elfcpp::R_MIPS16_CALL16:
        case elfcpp::R_MICROMIPS_CALL16:
          gold_assert(gsym != NULL);
          got_offset = target->got_section()->got_offset(gsym,
                                                         GOT_TYPE_STANDARD,
                                                         object);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                             this->calculate_only_,
                                             &this->calculated_value_);
          // TODO(sasa): We should also initialize update_got_entry
          // in other place swhere relgot is called.
          update_got_entry = changed_symbol_value;
          break;

        case elfcpp::R_MIPS_GOT16:
        case elfcpp::R_MIPS16_GOT16:
        case elfcpp::R_MICROMIPS_GOT16:
          if (gsym != NULL)
            {
              got_offset = target->got_section()->got_offset(gsym,
                                                             GOT_TYPE_STANDARD,
                                                             object);
              gp_offset = target->got_section()->gp_offset(got_offset, object);
              reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
            }
          else
            {
              if (rel_type == elfcpp::SHT_RELA)
                reloc_status = Reloc_funcs::do_relgot16_local(view, object,
                                                      psymval, r_addend,
                                                      extract_addend, 0,
                                                      target,
                                                      this->calculate_only_,
                                                      &this->calculated_value_);
              else if (rel_type == elfcpp::SHT_REL)
                reloc_status = Reloc_funcs::relgot16_local(view, object,
                                                           psymval, r_addend,
                                                           extract_addend,
                                                           r_types[i], r_sym);
              else
                gold_unreachable();
            }
          update_got_entry = changed_symbol_value;
          break;

        case elfcpp::R_MIPS_TLS_GD:
        case elfcpp::R_MIPS16_TLS_GD:
        case elfcpp::R_MICROMIPS_TLS_GD:
          if (gsym != NULL)
            got_offset = target->got_section()->got_offset(gsym,
                                                           GOT_TYPE_TLS_PAIR,
                                                           object);
          else
            got_offset = target->got_section()->got_offset(r_sym,
                                                           GOT_TYPE_TLS_PAIR,
                                                           object, r_addend);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                             this->calculate_only_,
                                             &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_TLS_GOTTPREL:
        case elfcpp::R_MIPS16_TLS_GOTTPREL:
        case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
          if (gsym != NULL)
            got_offset = target->got_section()->got_offset(gsym,
                                                           GOT_TYPE_TLS_OFFSET,
                                                           object);
          else
            got_offset = target->got_section()->got_offset(r_sym,
                                                           GOT_TYPE_TLS_OFFSET,
                                                           object, r_addend);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                             this->calculate_only_,
                                             &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_TLS_LDM:
        case elfcpp::R_MIPS16_TLS_LDM:
        case elfcpp::R_MICROMIPS_TLS_LDM:
          // Relocate the field with the offset of the GOT entry for
          // the module index.
          got_offset = target->got_section()->tls_ldm_offset(object);
          gp_offset = target->got_section()->gp_offset(got_offset, object);
          reloc_status = Reloc_funcs::relgot(view, gp_offset,
                                             this->calculate_only_,
                                             &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_GOT_PAGE:
        case elfcpp::R_MICROMIPS_GOT_PAGE:
          reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
                                                 r_addend, extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_GOT_OFST:
        case elfcpp::R_MICROMIPS_GOT_OFST:
          reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
                                                 r_addend, extract_addend,
                                                 local, this->calculate_only_,
                                                 &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_JALR:
        case elfcpp::R_MICROMIPS_JALR:
          // This relocation is only a hint.  In some cases, we optimize
          // it into a bal instruction.  But we don't try to optimize
          // when the symbol does not resolve locally.
          if (gsym == NULL
              || symbol_calls_local(gsym, gsym->has_dynsym_index()))
            reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
                                                r_addend, extract_addend,
                                                cross_mode_jump, r_types[i],
                                                target->jalr_to_bal(),
                                                target->jr_to_b(),
                                                this->calculate_only_,
                                                &this->calculated_value_);
          break;

        case elfcpp::R_MIPS_TLS_DTPREL_HI16:
        case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
        case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
          reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
                                                 elfcpp::DTP_OFFSET, r_addend,
                                                 extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_TLS_DTPREL_LO16:
        case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
        case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
          reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
                                                 elfcpp::DTP_OFFSET, r_addend,
                                                 extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_TLS_DTPREL32:
        case elfcpp::R_MIPS_TLS_DTPREL64:
          reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
                                               elfcpp::DTP_OFFSET, r_addend,
                                               extract_addend,
                                               this->calculate_only_,
                                               &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_TLS_TPREL_HI16:
        case elfcpp::R_MIPS16_TLS_TPREL_HI16:
        case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
          reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
                                                 elfcpp::TP_OFFSET, r_addend,
                                                 extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_TLS_TPREL_LO16:
        case elfcpp::R_MIPS16_TLS_TPREL_LO16:
        case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
          reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
                                                 elfcpp::TP_OFFSET, r_addend,
                                                 extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_TLS_TPREL32:
        case elfcpp::R_MIPS_TLS_TPREL64:
          reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
                                               elfcpp::TP_OFFSET, r_addend,
                                               extract_addend,
                                               this->calculate_only_,
                                               &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_SUB:
        case elfcpp::R_MICROMIPS_SUB:
          reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
                                             extract_addend,
                                             this->calculate_only_,
                                             &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_HIGHER:
        case elfcpp::R_MICROMIPS_HIGHER:
          reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
                                                extract_addend,
                                                this->calculate_only_,
                                                &this->calculated_value_);
          break;
        case elfcpp::R_MIPS_HIGHEST:
        case elfcpp::R_MICROMIPS_HIGHEST:
          reloc_status = Reloc_funcs::relhighest(view, object, psymval,
                                                 r_addend, extract_addend,
                                                 this->calculate_only_,
                                                 &this->calculated_value_);
          break;
        default:
          gold_error_at_location(relinfo, relnum, r_offset,
                                 _("unsupported reloc %u"), r_types[i]);
          break;
        }

      if (update_got_entry)
        {
          Mips_output_data_got<size, big_endian>* got = target->got_section();
          if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
            got->update_got_entry(got->get_primary_got_offset(mips_sym),
                                  psymval->value(object, 0));
          else
            got->update_got_entry(got_offset, psymval->value(object, 0));
        }
    }

  bool jal_shuffle = jal_reloc(r_type);
  Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);

  // Report any errors.
  switch (reloc_status)
    {
    case Reloc_funcs::STATUS_OKAY:
      break;
    case Reloc_funcs::STATUS_OVERFLOW:
      if (gsym == NULL)
        gold_error_at_location(relinfo, relnum, r_offset,
                               _("relocation overflow: "
                                 "%u against local symbol %u in %s"),
                               r_type, r_sym, object->name().c_str());
      else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
        gold_error_at_location(relinfo, relnum, r_offset,
                               _("relocation overflow: "
                                 "%u against '%s' defined in %s"),
                               r_type, gsym->demangled_name().c_str(),
                               gsym->object()->name().c_str());
      else
        gold_error_at_location(relinfo, relnum, r_offset,
                               _("relocation overflow: %u against '%s'"),
                               r_type, gsym->demangled_name().c_str());
      break;
    case Reloc_funcs::STATUS_BAD_RELOC:
      gold_error_at_location(relinfo, relnum, r_offset,
        _("unexpected opcode while processing relocation"));
      break;
    case Reloc_funcs::STATUS_PCREL_UNALIGNED:
      gold_error_at_location(relinfo, relnum, r_offset,
        _("unaligned PC-relative relocation"));
      break;
    default:
      gold_unreachable();
    }

  return true;
}

// Get the Reference_flags for a particular relocation.

template<int size, bool big_endian>
int
Target_mips<size, big_endian>::Scan::get_reference_flags(
                       unsigned int r_type)
{
  switch (r_type)
    {
    case elfcpp::R_MIPS_NONE:
      // No symbol reference.
      return 0;

    case elfcpp::R_MIPS_16:
    case elfcpp::R_MIPS_32:
    case elfcpp::R_MIPS_64:
    case elfcpp::R_MIPS_HI16:
    case elfcpp::R_MIPS_LO16:
    case elfcpp::R_MIPS_HIGHER:
    case elfcpp::R_MIPS_HIGHEST:
    case elfcpp::R_MIPS16_HI16:
    case elfcpp::R_MIPS16_LO16:
    case elfcpp::R_MICROMIPS_HI16:
    case elfcpp::R_MICROMIPS_LO16:
    case elfcpp::R_MICROMIPS_HIGHER:
    case elfcpp::R_MICROMIPS_HIGHEST:
      return Symbol::ABSOLUTE_REF;

    case elfcpp::R_MIPS_26:
    case elfcpp::R_MIPS16_26:
    case elfcpp::R_MICROMIPS_26_S1:
      return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;

    case elfcpp::R_MIPS_PC18_S3:
    case elfcpp::R_MIPS_PC19_S2:
    case elfcpp::R_MIPS_PCHI16:
    case elfcpp::R_MIPS_PCLO16:
    case elfcpp::R_MIPS_GPREL32:
    case elfcpp::R_MIPS_GPREL16:
    case elfcpp::R_MIPS_REL32:
    case elfcpp::R_MIPS16_GPREL:
      return Symbol::RELATIVE_REF;

    case elfcpp::R_MIPS_PC16:
    case elfcpp::R_MIPS_PC32:
    case elfcpp::R_MIPS_PC21_S2:
    case elfcpp::R_MIPS_PC26_S2:
    case elfcpp::R_MIPS_JALR:
    case elfcpp::R_MICROMIPS_JALR:
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;

    case elfcpp::R_MIPS_GOT16:
    case elfcpp::R_MIPS_CALL16:
    case elfcpp::R_MIPS_GOT_DISP:
    case elfcpp::R_MIPS_GOT_HI16:
    case elfcpp::R_MIPS_GOT_LO16:
    case elfcpp::R_MIPS_CALL_HI16:
    case elfcpp::R_MIPS_CALL_LO16:
    case elfcpp::R_MIPS_LITERAL:
    case elfcpp::R_MIPS_GOT_PAGE:
    case elfcpp::R_MIPS_GOT_OFST:
    case elfcpp::R_MIPS16_GOT16:
    case elfcpp::R_MIPS16_CALL16:
    case elfcpp::R_MICROMIPS_GOT16:
    case elfcpp::R_MICROMIPS_CALL16:
    case elfcpp::R_MICROMIPS_GOT_HI16:
    case elfcpp::R_MICROMIPS_GOT_LO16:
    case elfcpp::R_MICROMIPS_CALL_HI16:
    case elfcpp::R_MICROMIPS_CALL_LO16:
    case elfcpp::R_MIPS_EH:
      // Absolute in GOT.
      return Symbol::RELATIVE_REF;

    case elfcpp::R_MIPS_TLS_DTPMOD32:
    case elfcpp::R_MIPS_TLS_DTPREL32:
    case elfcpp::R_MIPS_TLS_DTPMOD64:
    case elfcpp::R_MIPS_TLS_DTPREL64:
    case elfcpp::R_MIPS_TLS_GD:
    case elfcpp::R_MIPS_TLS_LDM:
    case elfcpp::R_MIPS_TLS_DTPREL_HI16:
    case elfcpp::R_MIPS_TLS_DTPREL_LO16:
    case elfcpp::R_MIPS_TLS_GOTTPREL:
    case elfcpp::R_MIPS_TLS_TPREL32:
    case elfcpp::R_MIPS_TLS_TPREL64:
    case elfcpp::R_MIPS_TLS_TPREL_HI16:
    case elfcpp::R_MIPS_TLS_TPREL_LO16:
    case elfcpp::R_MIPS16_TLS_GD:
    case elfcpp::R_MIPS16_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_GD:
    case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
    case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
    case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
      return Symbol::TLS_REF;

    case elfcpp::R_MIPS_COPY:
    case elfcpp::R_MIPS_JUMP_SLOT:
    default:
      // Not expected.  We will give an error later.
      return 0;
    }
}

// Report an unsupported relocation against a local symbol.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int r_type)
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
             object->name().c_str(), r_type);
}

// Report an unsupported relocation against a global symbol.

template<int size, bool big_endian>
void
Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
                        Sized_relobj_file<size, big_endian>* object,
                        unsigned int r_type,
                        Symbol* gsym)
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

// Return printable name for ABI.
template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
{
  switch (e_flags & elfcpp::EF_MIPS_ABI)
    {
    case 0:
      if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
        return "N32";
      else if (size == 64)
        return "64";
      else
        return "none";
    case elfcpp::E_MIPS_ABI_O32:
      return "O32";
    case elfcpp::E_MIPS_ABI_O64:
      return "O64";
    case elfcpp::E_MIPS_ABI_EABI32:
      return "EABI32";
    case elfcpp::E_MIPS_ABI_EABI64:
      return "EABI64";
    default:
      return "unknown abi";
    }
}

template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
{
  switch (e_flags & elfcpp::EF_MIPS_MACH)
    {
    case elfcpp::E_MIPS_MACH_3900:
      return "mips:3900";
    case elfcpp::E_MIPS_MACH_4010:
      return "mips:4010";
    case elfcpp::E_MIPS_MACH_4100:
      return "mips:4100";
    case elfcpp::E_MIPS_MACH_4111:
      return "mips:4111";
    case elfcpp::E_MIPS_MACH_4120:
      return "mips:4120";
    case elfcpp::E_MIPS_MACH_4650:
      return "mips:4650";
    case elfcpp::E_MIPS_MACH_5400:
      return "mips:5400";
    case elfcpp::E_MIPS_MACH_5500:
      return "mips:5500";
    case elfcpp::E_MIPS_MACH_5900:
      return "mips:5900";
    case elfcpp::E_MIPS_MACH_SB1:
      return "mips:sb1";
    case elfcpp::E_MIPS_MACH_9000:
      return "mips:9000";
    case elfcpp::E_MIPS_MACH_LS2E:
      return "mips:loongson_2e";
    case elfcpp::E_MIPS_MACH_LS2F:
      return "mips:loongson_2f";
    case elfcpp::E_MIPS_MACH_GS464:
      return "mips:gs464";
    case elfcpp::E_MIPS_MACH_GS464E:
      return "mips:gs464e";
    case elfcpp::E_MIPS_MACH_GS264E:
      return "mips:gs264e";
    case elfcpp::E_MIPS_MACH_OCTEON:
      return "mips:octeon";
    case elfcpp::E_MIPS_MACH_OCTEON2:
      return "mips:octeon2";
    case elfcpp::E_MIPS_MACH_OCTEON3:
      return "mips:octeon3";
    case elfcpp::E_MIPS_MACH_XLR:
      return "mips:xlr";
    default:
      switch (e_flags & elfcpp::EF_MIPS_ARCH)
        {
        default:
        case elfcpp::E_MIPS_ARCH_1:
          return "mips:3000";

        case elfcpp::E_MIPS_ARCH_2:
          return "mips:6000";

        case elfcpp::E_MIPS_ARCH_3:
          return "mips:4000";

        case elfcpp::E_MIPS_ARCH_4:
          return "mips:8000";

        case elfcpp::E_MIPS_ARCH_5:
          return "mips:mips5";

        case elfcpp::E_MIPS_ARCH_32:
          return "mips:isa32";

        case elfcpp::E_MIPS_ARCH_64:
          return "mips:isa64";

        case elfcpp::E_MIPS_ARCH_32R2:
          return "mips:isa32r2";

        case elfcpp::E_MIPS_ARCH_32R6:
          return "mips:isa32r6";

        case elfcpp::E_MIPS_ARCH_64R2:
          return "mips:isa64r2";

        case elfcpp::E_MIPS_ARCH_64R6:
          return "mips:isa64r6";
        }
    }
    return "unknown CPU";
}

template<int size, bool big_endian>
const Target::Target_info Target_mips<size, big_endian>::mips_info =
{
  size,                 // size
  big_endian,           // is_big_endian
  elfcpp::EM_MIPS,      // machine_code
  true,                 // has_make_symbol
  false,                // has_resolve
  false,                // has_code_fill
  true,                 // is_default_stack_executable
  false,                // can_icf_inline_merge_sections
  '\0',                 // wrap_char
  size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
  0x400000,             // default_text_segment_address
  64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
  4 * 1024,             // common_pagesize (overridable by -z common-page-size)
  false,                // isolate_execinstr
  0,                    // rosegment_gap
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  0,                    // small_common_section_flags
  0,                    // large_common_section_flags
  NULL,                 // attributes_section
  NULL,                 // attributes_vendor
  "__start",		// entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_PROGBITS,	// unwind_section_type
};

template<int size, bool big_endian>
class Target_mips_nacl : public Target_mips<size, big_endian>
{
 public:
  Target_mips_nacl()
    : Target_mips<size, big_endian>(&mips_nacl_info)
  { }

 private:
  static const Target::Target_info mips_nacl_info;
};

template<int size, bool big_endian>
const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
{
  size,                 // size
  big_endian,           // is_big_endian
  elfcpp::EM_MIPS,      // machine_code
  true,                 // has_make_symbol
  false,                // has_resolve
  false,                // has_code_fill
  true,                 // is_default_stack_executable
  false,                // can_icf_inline_merge_sections
  '\0',                 // wrap_char
  "/lib/ld.so.1",       // dynamic_linker
  0x20000,              // default_text_segment_address
  0x10000,              // abi_pagesize (overridable by -z max-page-size)
  0x10000,              // common_pagesize (overridable by -z common-page-size)
  true,                 // isolate_execinstr
  0x10000000,           // rosegment_gap
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  0,                    // small_common_section_flags
  0,                    // large_common_section_flags
  NULL,                 // attributes_section
  NULL,                 // attributes_vendor
  "_start",             // entry_symbol_name
  32,			// hash_entry_size
  elfcpp::SHT_PROGBITS,	// unwind_section_type
};

// Target selector for Mips.  Note this is never instantiated directly.
// It's only used in Target_selector_mips_nacl, below.

template<int size, bool big_endian>
class Target_selector_mips : public Target_selector
{
public:
  Target_selector_mips()
    : Target_selector(elfcpp::EM_MIPS, size, big_endian,
                (size == 64 ?
                  (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
                  (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
                (size == 64 ?
                  (big_endian ? "elf64btsmip" : "elf64ltsmip") :
                  (big_endian ? "elf32btsmip" : "elf32ltsmip")))
  { }

  Target* do_instantiate_target()
  { return new Target_mips<size, big_endian>(); }
};

template<int size, bool big_endian>
class Target_selector_mips_nacl
  : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
                                Target_mips_nacl<size, big_endian> >
{
 public:
  Target_selector_mips_nacl()
    : Target_selector_nacl<Target_selector_mips<size, big_endian>,
                           Target_mips_nacl<size, big_endian> >(
        // NaCl currently supports only MIPS32 little-endian.
        "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
  { }
};

Target_selector_mips_nacl<32, true> target_selector_mips32;
Target_selector_mips_nacl<32, false> target_selector_mips32el;
Target_selector_mips_nacl<64, true> target_selector_mips64;
Target_selector_mips_nacl<64, false> target_selector_mips64el;

} // End anonymous namespace.