1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
|
/* Target-dependent code for the x86-64 for GDB, the GNU debugger.
Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
Contributed by Jiri Smid, SuSE Labs.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "arch-utils.h"
#include "block.h"
#include "dummy-frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "regcache.h"
#include "symfile.h"
#include "gdb_assert.h"
#include "x86-64-tdep.h"
#include "i387-tdep.h"
/* Register numbers of various important registers. */
#define X86_64_RAX_REGNUM 0 /* %rax */
#define X86_64_RDX_REGNUM 3 /* %rdx */
#define X86_64_RDI_REGNUM 5 /* %rdi */
#define X86_64_RBP_REGNUM 6 /* %rbp */
#define X86_64_RSP_REGNUM 7 /* %rsp */
#define X86_64_RIP_REGNUM 16 /* %rip */
#define X86_64_EFLAGS_REGNUM 17 /* %eflags */
#define X86_64_ST0_REGNUM 22 /* %st0 */
#define X86_64_XMM0_REGNUM 38 /* %xmm0 */
#define X86_64_XMM1_REGNUM 39 /* %xmm1 */
struct x86_64_register_info
{
char *name;
struct type **type;
};
static struct x86_64_register_info x86_64_register_info[] =
{
{ "rax", &builtin_type_int64 },
{ "rbx", &builtin_type_int64 },
{ "rcx", &builtin_type_int64 },
{ "rdx", &builtin_type_int64 },
{ "rsi", &builtin_type_int64 },
{ "rdi", &builtin_type_int64 },
{ "rbp", &builtin_type_void_data_ptr },
{ "rsp", &builtin_type_void_data_ptr },
/* %r8 is indeed register number 8. */
{ "r8", &builtin_type_int64 },
{ "r9", &builtin_type_int64 },
{ "r10", &builtin_type_int64 },
{ "r11", &builtin_type_int64 },
{ "r12", &builtin_type_int64 },
{ "r13", &builtin_type_int64 },
{ "r14", &builtin_type_int64 },
{ "r15", &builtin_type_int64 },
{ "rip", &builtin_type_void_func_ptr },
{ "eflags", &builtin_type_int32 },
{ "ds", &builtin_type_int32 },
{ "es", &builtin_type_int32 },
{ "fs", &builtin_type_int32 },
{ "gs", &builtin_type_int32 },
/* %st0 is register number 22. */
{ "st0", &builtin_type_i387_ext },
{ "st1", &builtin_type_i387_ext },
{ "st2", &builtin_type_i387_ext },
{ "st3", &builtin_type_i387_ext },
{ "st4", &builtin_type_i387_ext },
{ "st5", &builtin_type_i387_ext },
{ "st6", &builtin_type_i387_ext },
{ "st7", &builtin_type_i387_ext },
{ "fctrl", &builtin_type_int32 },
{ "fstat", &builtin_type_int32 },
{ "ftag", &builtin_type_int32 },
{ "fiseg", &builtin_type_int32 },
{ "fioff", &builtin_type_int32 },
{ "foseg", &builtin_type_int32 },
{ "fooff", &builtin_type_int32 },
{ "fop", &builtin_type_int32 },
/* %xmm0 is register number 38. */
{ "xmm0", &builtin_type_v4sf },
{ "xmm1", &builtin_type_v4sf },
{ "xmm2", &builtin_type_v4sf },
{ "xmm3", &builtin_type_v4sf },
{ "xmm4", &builtin_type_v4sf },
{ "xmm5", &builtin_type_v4sf },
{ "xmm6", &builtin_type_v4sf },
{ "xmm7", &builtin_type_v4sf },
{ "xmm8", &builtin_type_v4sf },
{ "xmm9", &builtin_type_v4sf },
{ "xmm10", &builtin_type_v4sf },
{ "xmm11", &builtin_type_v4sf },
{ "xmm12", &builtin_type_v4sf },
{ "xmm13", &builtin_type_v4sf },
{ "xmm14", &builtin_type_v4sf },
{ "xmm15", &builtin_type_v4sf },
{ "mxcsr", &builtin_type_int32 }
};
/* Total number of registers. */
#define X86_64_NUM_REGS \
(sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0]))
/* Return the name of register REGNUM. */
static const char *
x86_64_register_name (int regnum)
{
if (regnum >= 0 && regnum < X86_64_NUM_REGS)
return x86_64_register_info[regnum].name;
return NULL;
}
/* Return the GDB type object for the "standard" data type of data in
register REGNUM. */
static struct type *
x86_64_register_type (struct gdbarch *gdbarch, int regnum)
{
gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS);
return *x86_64_register_info[regnum].type;
}
/* DWARF Register Number Mapping as defined in the System V psABI,
section 3.6. */
static int x86_64_dwarf_regmap[] =
{
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 3, 2,
4, X86_64_RDI_REGNUM,
/* Frame Pointer Register RBP. */
X86_64_RBP_REGNUM,
/* Stack Pointer Register RSP. */
X86_64_RSP_REGNUM,
/* Extended Integer Registers 8 - 15. */
8, 9, 10, 11, 12, 13, 14, 15,
/* Return Address RA. Not mapped. */
-1,
/* SSE Registers 0 - 7. */
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
/* Extended SSE Registers 8 - 15. */
X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,
/* Floating Point Registers 0-7. */
X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
};
static const int x86_64_dwarf_regmap_len =
(sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0]));
/* Convert DWARF register number REG to the appropriate register
number used by GDB. */
static int
x86_64_dwarf_reg_to_regnum (int reg)
{
int regnum = -1;
if (reg >= 0 || reg < x86_64_dwarf_regmap_len)
regnum = x86_64_dwarf_regmap[reg];
if (regnum == -1)
warning ("Unmapped DWARF Register #%d encountered\n", reg);
return regnum;
}
/* Return nonzero if a value of type TYPE stored in register REGNUM
needs any special handling. */
static int
x86_64_convert_register_p (int regnum, struct type *type)
{
return i386_fp_regnum_p (regnum);
}
/* The returning of values is done according to the special algorithm.
Some types are returned in registers an some (big structures) in
memory. See the System V psABI for details. */
#define MAX_CLASSES 4
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_MEMORY_CLASS
};
/* Return the union class of CLASS1 and CLASS2.
See the System V psABI for details. */
static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
/* Rule (a): If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
is the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is
used as class. */
if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
|| class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule (f): Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument type. CLASSES will be filled by the register
class used to pass each word of the operand. The number of words
is returned. In case the parameter should be passed in memory, 0
is returned. As a special case for zero sized containers,
classes[0] will be NO_CLASS and 1 is returned.
See the System V psABI for details. */
static int
classify_argument (struct type *type,
enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
{
int bytes = TYPE_LENGTH (type);
int words = (bytes + 8 - 1) / 8;
switch (TYPE_CODE (type))
{
case TYPE_CODE_ARRAY:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
{
int i;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* On x86-64 we pass structures larger than 16 bytes on the stack. */
if (bytes > 16)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0
to signalize memory class, so handle it as special case. */
if (!words)
{
classes[0] = X86_64_NO_CLASS;
return 1;
}
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
{
int j;
for (j = 0; j < TYPE_NFIELDS (type); ++j)
{
int num = classify_argument (TYPE_FIELDS (type)[j].type,
subclasses,
(TYPE_FIELDS (type)[j].loc.
bitpos + bit_offset) % 256);
if (!num)
return 0;
for (i = 0; i < num; i++)
{
int pos =
(TYPE_FIELDS (type)[j].loc.bitpos +
bit_offset) / 8 / 8;
classes[i + pos] =
merge_classes (subclasses[i], classes[i + pos]);
}
}
}
break;
case TYPE_CODE_ARRAY:
{
int num;
num = classify_argument (TYPE_TARGET_TYPE (type),
subclasses, bit_offset);
if (!num)
return 0;
/* The partial classes are now full classes. */
if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
subclasses[0] = X86_64_SSE_CLASS;
if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
subclasses[0] = X86_64_INTEGER_CLASS;
for (i = 0; i < words; i++)
classes[i] = subclasses[i % num];
}
break;
case TYPE_CODE_UNION:
{
int j;
{
for (j = 0; j < TYPE_NFIELDS (type); ++j)
{
int num;
num = classify_argument (TYPE_FIELDS (type)[j].type,
subclasses, bit_offset);
if (!num)
return 0;
for (i = 0; i < num; i++)
classes[i] = merge_classes (subclasses[i], classes[i]);
}
}
}
break;
default:
break;
}
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceeded by
X86_64_SSE_CLASS. */
if (classes[i] == X86_64_SSEUP_CLASS
&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
classes[i] = X86_64_SSE_CLASS;
/* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
if (classes[i] == X86_64_X87UP_CLASS
&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
classes[i] = X86_64_SSE_CLASS;
}
return words;
}
break;
case TYPE_CODE_FLT:
switch (bytes)
{
case 4:
if (!(bit_offset % 64))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case 8:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
case 16:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
}
break;
case TYPE_CODE_ENUM:
case TYPE_CODE_REF:
case TYPE_CODE_INT:
case TYPE_CODE_PTR:
switch (bytes)
{
case 1:
case 2:
case 4:
case 8:
if (bytes * 8 + bit_offset <= 32)
classes[0] = X86_64_INTEGERSI_CLASS;
else
classes[0] = X86_64_INTEGER_CLASS;
return 1;
case 16:
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
return 2;
default:
break;
}
case TYPE_CODE_VOID:
return 0;
default: /* Avoid warning. */
break;
}
internal_error (__FILE__, __LINE__,
"classify_argument: unknown argument type");
}
/* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
number of registers required based on the information passed in
CLASSES. Return 0 if parameter should be passed in memory. */
static int
examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
int n, int *int_nregs, int *sse_nregs)
{
*int_nregs = 0;
*sse_nregs = 0;
if (!n)
return 0;
for (n--; n >= 0; n--)
switch (classes[n])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
(*int_nregs)++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
(*sse_nregs)++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
break;
case X86_64_MEMORY_CLASS:
internal_error (__FILE__, __LINE__,
"examine_argument: unexpected memory class");
}
return 1;
}
#define RET_INT_REGS 2
#define RET_SSE_REGS 2
/* Check if the structure in value_type is returned in registers or in
memory. If this function returns 1, GDB will call
STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
static int
x86_64_use_struct_convention (int gcc_p, struct type *value_type)
{
enum x86_64_reg_class class[MAX_CLASSES];
int n = classify_argument (value_type, class, 0);
int needed_intregs;
int needed_sseregs;
return (!n ||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
}
/* Extract from an array REGBUF containing the (raw) register state, a
function return value of TYPE, and copy that, in virtual format,
into VALBUF. */
static void
x86_64_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
enum x86_64_reg_class class[MAX_CLASSES];
int n = classify_argument (type, class, 0);
int needed_intregs;
int needed_sseregs;
int intreg = 0;
int ssereg = 0;
int offset = 0;
int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
if (!n ||
!examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
{ /* memory class */
CORE_ADDR addr;
regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr);
read_memory (addr, valbuf, TYPE_LENGTH (type));
return;
}
else
{
int i;
for (i = 0; i < n; i++)
{
switch (class[i])
{
case X86_64_NO_CLASS:
break;
case X86_64_INTEGER_CLASS:
regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
(char *) valbuf + offset);
offset += 8;
intreg += 2;
break;
case X86_64_INTEGERSI_CLASS:
regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
0, 4, (char *) valbuf + offset);
offset += 8;
intreg++;
break;
case X86_64_SSEDF_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSE_CLASS:
regcache_cooked_read_part (regcache,
ret_sse_r[(ssereg + 1) / 2], 0, 8,
(char *) valbuf + offset);
offset += 8;
ssereg += 2;
break;
case X86_64_SSEUP_CLASS:
regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
0, 8, (char *) valbuf + offset);
offset += 8;
ssereg++;
break;
case X86_64_X87_CLASS:
regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
0, 8, (char *) valbuf + offset);
offset += 8;
break;
case X86_64_X87UP_CLASS:
regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
8, 2, (char *) valbuf + offset);
offset += 8;
break;
case X86_64_MEMORY_CLASS:
default:
internal_error (__FILE__, __LINE__,
"Unexpected argument class");
}
}
}
}
#define INT_REGS 6
#define SSE_REGS 8
static CORE_ADDR
x86_64_push_arguments (struct regcache *regcache, int nargs,
struct value **args, CORE_ADDR sp)
{
int intreg = 0;
int ssereg = 0;
/* For varargs functions we have to pass the total number of SSE arguments
in %rax. So, let's count this number. */
int total_sse_args = 0;
/* Once an SSE/int argument is passed on the stack, all subsequent
arguments are passed there. */
int sse_stack = 0;
int int_stack = 0;
int i;
char buf[8];
static int int_parameter_registers[INT_REGS] =
{
X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */
X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */
8, 9 /* %r8, %r9 */
};
/* %xmm0 - %xmm7 */
static int sse_parameter_registers[SSE_REGS] =
{
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
};
int stack_values_count = 0;
int *stack_values;
stack_values = alloca (nargs * sizeof (int));
for (i = 0; i < nargs; i++)
{
enum x86_64_reg_class class[MAX_CLASSES];
int n = classify_argument (args[i]->type, class, 0);
int needed_intregs;
int needed_sseregs;
if (!n ||
!examine_argument (class, n, &needed_intregs, &needed_sseregs))
{ /* memory class */
stack_values[stack_values_count++] = i;
}
else
{
int j;
int offset = 0;
if (intreg / 2 + needed_intregs > INT_REGS)
int_stack = 1;
if (ssereg / 2 + needed_sseregs > SSE_REGS)
sse_stack = 1;
total_sse_args += needed_sseregs;
for (j = 0; j < n; j++)
{
switch (class[j])
{
case X86_64_NO_CLASS:
break;
case X86_64_INTEGER_CLASS:
if (int_stack)
stack_values[stack_values_count++] = i;
else
{
regcache_cooked_write
(regcache, int_parameter_registers[(intreg + 1) / 2],
VALUE_CONTENTS_ALL (args[i]) + offset);
offset += 8;
intreg += 2;
}
break;
case X86_64_INTEGERSI_CLASS:
if (int_stack)
stack_values[stack_values_count++] = i;
else
{
LONGEST val = extract_signed_integer
(VALUE_CONTENTS_ALL (args[i]) + offset, 4);
regcache_cooked_write_signed
(regcache, int_parameter_registers[intreg / 2], val);
offset += 8;
intreg++;
}
break;
case X86_64_SSEDF_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSE_CLASS:
if (sse_stack)
stack_values[stack_values_count++] = i;
else
{
regcache_cooked_write
(regcache, sse_parameter_registers[(ssereg + 1) / 2],
VALUE_CONTENTS_ALL (args[i]) + offset);
offset += 8;
ssereg += 2;
}
break;
case X86_64_SSEUP_CLASS:
if (sse_stack)
stack_values[stack_values_count++] = i;
else
{
regcache_cooked_write
(regcache, sse_parameter_registers[ssereg / 2],
VALUE_CONTENTS_ALL (args[i]) + offset);
offset += 8;
ssereg++;
}
break;
case X86_64_X87_CLASS:
case X86_64_MEMORY_CLASS:
stack_values[stack_values_count++] = i;
break;
case X86_64_X87UP_CLASS:
break;
default:
internal_error (__FILE__, __LINE__,
"Unexpected argument class");
}
intreg += intreg % 2;
ssereg += ssereg % 2;
}
}
}
/* Push any remaining arguments onto the stack. */
while (--stack_values_count >= 0)
{
struct value *arg = args[stack_values[stack_values_count]];
int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
/* Make sure the stack stays eightbyte-aligned. */
sp -= (len + 7) & ~7;
write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
}
/* Write number of SSE type arguments to RAX to take care of varargs
functions. */
store_unsigned_integer (buf, 8, total_sse_args);
regcache_cooked_write (regcache, X86_64_RAX_REGNUM, buf);
return sp;
}
/* Write into the appropriate registers a function return value stored
in VALBUF of type TYPE, given in virtual format. */
static void
x86_64_store_return_value (struct type *type, struct regcache *regcache,
const void *valbuf)
{
int len = TYPE_LENGTH (type);
/* First handle long doubles. */
if (TYPE_CODE_FLT == TYPE_CODE (type) && len == 16)
{
ULONGEST fstat;
char buf[FPU_REG_RAW_SIZE];
/* Returning floating-point values is a bit tricky. Apart from
storing the return value in %st(0), we have to simulate the
state of the FPU at function return point. */
/* Convert the value found in VALBUF to the extended
floating-point format used by the FPU. This is probably
not exactly how it would happen on the target itself, but
it is the best we can do. */
convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf);
/* Set the top of the floating-point register stack to 7. The
actual value doesn't really matter, but 7 is what a normal
function return would end up with if the program started out
with a freshly initialized FPU. */
regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
fstat |= (7 << 11);
regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
/* Mark %st(1) through %st(7) as empty. Since we set the top of
the floating-point register stack to 7, the appropriate value
for the tag word is 0x3fff. */
regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
}
else if (TYPE_CODE_FLT == TYPE_CODE (type))
{
/* Handle double and float variables. */
regcache_cooked_write (regcache, X86_64_XMM0_REGNUM, valbuf);
}
/* XXX: What about complex floating point types? */
else
{
int low_size = REGISTER_RAW_SIZE (0);
int high_size = REGISTER_RAW_SIZE (1);
if (len <= low_size)
regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
else if (len <= (low_size + high_size))
{
regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
regcache_cooked_write_part (regcache, 1, 0,
len - low_size,
(const char *) valbuf + low_size);
}
else
internal_error (__FILE__, __LINE__,
"Cannot store return value of %d bytes long.", len);
}
}
static CORE_ADDR
x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
char buf[8];
/* Pass arguments. */
sp = x86_64_push_arguments (regcache, nargs, args, sp);
/* Pass "hidden" argument". */
if (struct_return)
{
store_unsigned_integer (buf, 8, struct_addr);
regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
}
/* Store return address. */
sp -= 8;
store_unsigned_integer (buf, 8, bp_addr);
write_memory (sp, buf, 8);
/* Finally, update the stack pointer... */
store_unsigned_integer (buf, 8, sp);
regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);
/* ...and fake a frame pointer. */
regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);
return sp + 16;
}
/* The maximum number of saved registers. This should include %rip. */
#define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS
struct x86_64_frame_cache
{
/* Base address. */
CORE_ADDR base;
CORE_ADDR sp_offset;
CORE_ADDR pc;
/* Saved registers. */
CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS];
CORE_ADDR saved_sp;
/* Do we have a frame? */
int frameless_p;
};
/* Allocate and initialize a frame cache. */
static struct x86_64_frame_cache *
x86_64_alloc_frame_cache (void)
{
struct x86_64_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache);
/* Base address. */
cache->base = 0;
cache->sp_offset = -8;
cache->pc = 0;
/* Saved registers. We initialize these to -1 since zero is a valid
offset (that's where %rbp is supposed to be stored). */
for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
cache->saved_regs[i] = -1;
cache->saved_sp = 0;
/* Frameless until proven otherwise. */
cache->frameless_p = 1;
return cache;
}
/* Do a limited analysis of the prologue at PC and update CACHE
accordingly. Bail out early if CURRENT_PC is reached. Return the
address where the analysis stopped.
We will handle only functions beginning with:
pushq %rbp 0x55
movq %rsp, %rbp 0x48 0x89 0xe5
Any function that doesn't start with this sequence will be assumed
to have no prologue and thus no valid frame pointer in %rbp. */
static CORE_ADDR
x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
struct x86_64_frame_cache *cache)
{
static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
unsigned char buf[3];
unsigned char op;
if (current_pc <= pc)
return current_pc;
op = read_memory_unsigned_integer (pc, 1);
if (op == 0x55) /* pushq %rbp */
{
/* Take into account that we've executed the `pushq %rbp' that
starts this instruction sequence. */
cache->saved_regs[X86_64_RBP_REGNUM] = 0;
cache->sp_offset += 8;
/* If that's all, return now. */
if (current_pc <= pc + 1)
return current_pc;
/* Check for `movq %rsp, %rbp'. */
read_memory (pc + 1, buf, 3);
if (memcmp (buf, proto, 3) != 0)
return pc + 1;
/* OK, we actually have a frame. */
cache->frameless_p = 0;
return pc + 4;
}
return pc;
}
/* Return PC of first real instruction. */
static CORE_ADDR
x86_64_skip_prologue (CORE_ADDR start_pc)
{
struct x86_64_frame_cache cache;
CORE_ADDR pc;
pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
if (cache.frameless_p)
return start_pc;
return pc;
}
/* Normal frames. */
static struct x86_64_frame_cache *
x86_64_frame_cache (struct frame_info *next_frame, void **this_cache)
{
struct x86_64_frame_cache *cache;
char buf[8];
int i;
if (*this_cache)
return *this_cache;
cache = x86_64_alloc_frame_cache ();
*this_cache = cache;
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 8);
if (cache->base == 0)
return cache;
/* For normal frames, %rip is stored at 8(%rbp). */
cache->saved_regs[X86_64_RIP_REGNUM] = 8;
cache->pc = frame_func_unwind (next_frame);
if (cache->pc != 0)
x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
if (cache->frameless_p)
{
/* We didn't find a valid frame, which means that CACHE->base
currently holds the frame pointer for our calling frame. If
we're at the start of a function, or somewhere half-way its
prologue, the function's frame probably hasn't been fully
setup yet. Try to reconstruct the base address for the stack
frame by looking at the stack pointer. For truly "frameless"
functions this might work too. */
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
}
/* Now that we have the base address for the stack frame we can
calculate the value of %rsp in the calling frame. */
cache->saved_sp = cache->base + 16;
/* Adjust all the saved registers such that they contain addresses
instead of offsets. */
for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
if (cache->saved_regs[i] != -1)
cache->saved_regs[i] += cache->base;
return cache;
}
static void
x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct x86_64_frame_cache *cache =
x86_64_frame_cache (next_frame, this_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
}
static void
x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct x86_64_frame_cache *cache =
x86_64_frame_cache (next_frame, this_cache);
gdb_assert (regnum >= 0);
if (regnum == SP_REGNUM && cache->saved_sp)
{
*optimizedp = 0;
*lvalp = not_lval;
*addrp = 0;
*realnump = -1;
if (valuep)
{
/* Store the value. */
store_unsigned_integer (valuep, 8, cache->saved_sp);
}
return;
}
if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
{
*optimizedp = 0;
*lvalp = lval_memory;
*addrp = cache->saved_regs[regnum];
*realnump = -1;
if (valuep)
{
/* Read the value in from memory. */
read_memory (*addrp, valuep,
register_size (current_gdbarch, regnum));
}
return;
}
frame_register_unwind (next_frame, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind x86_64_frame_unwind =
{
NORMAL_FRAME,
x86_64_frame_this_id,
x86_64_frame_prev_register
};
static const struct frame_unwind *
x86_64_frame_p (CORE_ADDR pc)
{
return &x86_64_frame_unwind;
}
/* Signal trampolines. */
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
64-bit variants. This would require using identical frame caches
on both platforms. */
static struct x86_64_frame_cache *
x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
{
struct x86_64_frame_cache *cache;
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
CORE_ADDR addr;
char buf[8];
int i;
if (*this_cache)
return *this_cache;
cache = x86_64_alloc_frame_cache ();
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
cache->base = extract_unsigned_integer (buf, 8) - 8;
addr = tdep->sigcontext_addr (next_frame);
gdb_assert (tdep->sc_reg_offset);
gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS);
for (i = 0; i < tdep->sc_num_regs; i++)
if (tdep->sc_reg_offset[i] != -1)
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
*this_cache = cache;
return cache;
}
static void
x86_64_sigtramp_frame_this_id (struct frame_info *next_frame,
void **this_cache, struct frame_id *this_id)
{
struct x86_64_frame_cache *cache =
x86_64_sigtramp_frame_cache (next_frame, this_cache);
(*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
}
static void
x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
/* Make sure we've initialized the cache. */
x86_64_sigtramp_frame_cache (next_frame, this_cache);
x86_64_frame_prev_register (next_frame, this_cache, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind x86_64_sigtramp_frame_unwind =
{
SIGTRAMP_FRAME,
x86_64_sigtramp_frame_this_id,
x86_64_sigtramp_frame_prev_register
};
static const struct frame_unwind *
x86_64_sigtramp_frame_p (CORE_ADDR pc)
{
char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (PC_IN_SIGTRAMP (pc, name))
{
gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
return &x86_64_sigtramp_frame_unwind;
}
return NULL;
}
static CORE_ADDR
x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
struct x86_64_frame_cache *cache =
x86_64_frame_cache (next_frame, this_cache);
return cache->base;
}
static const struct frame_base x86_64_frame_base =
{
&x86_64_frame_unwind,
x86_64_frame_base_address,
x86_64_frame_base_address,
x86_64_frame_base_address
};
static struct frame_id
x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
char buf[8];
CORE_ADDR fp;
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
fp = extract_unsigned_integer (buf, 8);
return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
}
void
x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* The x86-64 has 16 SSE registers. */
tdep->num_xmm_regs = 16;
/* This is what all the fuss is about. */
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
/* In contrast to the i386, on the x86-64 a `long double' actually
takes up 128 bits, even though it's still based on the i387
extended floating-point format which has only 80 significant bits. */
set_gdbarch_long_double_bit (gdbarch, 128);
set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
set_gdbarch_register_name (gdbarch, x86_64_register_name);
set_gdbarch_register_type (gdbarch, x86_64_register_type);
/* Register numbers of various important registers. */
set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */
/* The "default" register numbering scheme for the x86-64 is
referred to as the "DWARF Register Number Mapping" in the System
V psABI. The preferred debugging format for all known x86-64
targets is actually DWARF2, and GCC doesn't seem to support DWARF
(that is DWARF-1), but we provide the same mapping just in case.
This mapping is also used for stabs, which GCC does support. */
set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
be in use on any of the supported x86-64 targets. */
/* Call dummy code. */
set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call);
set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p);
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
/* Override, since this is handled by x86_64_extract_return_value. */
set_gdbarch_extract_struct_value_address (gdbarch, NULL);
set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
/* Avoid wiring in the MMX registers for now. */
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id);
/* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
since all supported x86-64 targets are ELF, but that might change
in the future. */
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
frame_unwind_append_predicate (gdbarch, x86_64_sigtramp_frame_p);
frame_unwind_append_predicate (gdbarch, x86_64_frame_p);
frame_base_set_default (gdbarch, &x86_64_frame_base);
}
#define I387_FISEG_REGNUM FISEG_REGNUM
#define I387_FOSEG_REGNUM FOSEG_REGNUM
/* The 64-bit FXSAVE format differs from the 32-bit format in the
sense that the instruction pointer and data pointer are simply
64-bit offsets into the code segment and the data segment instead
of a selector offset pair. The functions below store the upper 32
bits of these pointers (instead of just the 16-bits of the segment
selector). */
/* Fill GDB's register array with the floating-point and SSE register
values in *FXSAVE. This function masks off any of the reserved
bits in *FXSAVE. */
void
x86_64_supply_fxsave (char *fxsave)
{
i387_supply_fxsave (fxsave);
if (fxsave)
{
supply_register (I387_FISEG_REGNUM, fxsave + 12);
supply_register (I387_FOSEG_REGNUM, fxsave + 20);
}
}
/* Fill register REGNUM (if it is a floating-point or SSE register) in
*FXSAVE with the value in GDB's register array. If REGNUM is -1, do
this for all registers. This function doesn't touch any of the
reserved bits in *FXSAVE. */
void
x86_64_fill_fxsave (char *fxsave, int regnum)
{
i387_fill_fxsave (fxsave, regnum);
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
}
|