aboutsummaryrefslogtreecommitdiff
path: root/gdb/valops.c
blob: ea9d9b38e7438ea18ac0414d7da604175d8abf38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
/* Perform non-arithmetic operations on values, for GDB.

   Copyright (C) 1986-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "demangle.h"
#include "language.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "cp-abi.h"
#include "block.h"
#include "infcall.h"
#include "dictionary.h"
#include "cp-support.h"
#include "target-float.h"
#include "tracepoint.h"
#include "observable.h"
#include "objfiles.h"
#include "extension.h"
#include "gdbtypes.h"
#include "gdbsupport/byte-vector.h"
#include "typeprint.h"

/* Local functions.  */

static int typecmp (bool staticp, bool varargs, int nargs,
		    struct field t1[], const gdb::array_view<value *> t2);

static struct value *search_struct_field (const char *, struct value *, 
					  struct type *, int);

static struct value *search_struct_method (const char *, struct value **,
					   gdb::optional<gdb::array_view<value *>>,
					   LONGEST, int *, struct type *);

static int find_oload_champ_namespace (gdb::array_view<value *> args,
				       const char *, const char *,
				       std::vector<symbol *> *oload_syms,
				       badness_vector *,
				       const int no_adl);

static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
					    const char *, const char *,
					    int, std::vector<symbol *> *oload_syms,
					    badness_vector *, int *,
					    const int no_adl);

static int find_oload_champ (gdb::array_view<value *> args,
			     size_t num_fns,
			     fn_field *methods,
			     xmethod_worker_up *xmethods,
			     symbol **functions,
			     badness_vector *oload_champ_bv);

static int oload_method_static_p (struct fn_field *, int);

enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };

static enum oload_classification classify_oload_match
  (const badness_vector &, int, int);

static struct value *value_struct_elt_for_reference (struct type *,
						     int, struct type *,
						     const char *,
						     struct type *,
						     int, enum noside);

static struct value *value_namespace_elt (const struct type *,
					  const char *, int , enum noside);

static struct value *value_maybe_namespace_elt (const struct type *,
						const char *, int,
						enum noside);

static CORE_ADDR allocate_space_in_inferior (int);

static struct value *cast_into_complex (struct type *, struct value *);

bool overload_resolution = false;
static void
show_overload_resolution (struct ui_file *file, int from_tty,
			  struct cmd_list_element *c, 
			  const char *value)
{
  gdb_printf (file, _("Overload resolution in evaluating "
		      "C++ functions is %s.\n"),
	      value);
}

/* Find the address of function name NAME in the inferior.  If OBJF_P
   is non-NULL, *OBJF_P will be set to the OBJFILE where the function
   is defined.  */

struct value *
find_function_in_inferior (const char *name, struct objfile **objf_p)
{
  struct block_symbol sym;

  sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
  if (sym.symbol != NULL)
    {
      if (sym.symbol->aclass () != LOC_BLOCK)
	{
	  error (_("\"%s\" exists in this program but is not a function."),
		 name);
	}

      if (objf_p)
	*objf_p = sym.symbol->objfile ();

      return value_of_variable (sym.symbol, sym.block);
    }
  else
    {
      struct bound_minimal_symbol msymbol = 
	lookup_bound_minimal_symbol (name);

      if (msymbol.minsym != NULL)
	{
	  struct objfile *objfile = msymbol.objfile;
	  struct gdbarch *gdbarch = objfile->arch ();

	  struct type *type;
	  CORE_ADDR maddr;
	  type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
	  type = lookup_function_type (type);
	  type = lookup_pointer_type (type);
	  maddr = msymbol.value_address ();

	  if (objf_p)
	    *objf_p = objfile;

	  return value_from_pointer (type, maddr);
	}
      else
	{
	  if (!target_has_execution ())
	    error (_("evaluation of this expression "
		     "requires the target program to be active"));
	  else
	    error (_("evaluation of this expression requires the "
		     "program to have a function \"%s\"."),
		   name);
	}
    }
}

/* Allocate NBYTES of space in the inferior using the inferior's
   malloc and return a value that is a pointer to the allocated
   space.  */

struct value *
value_allocate_space_in_inferior (int len)
{
  struct objfile *objf;
  struct value *val = find_function_in_inferior ("malloc", &objf);
  struct gdbarch *gdbarch = objf->arch ();
  struct value *blocklen;

  blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
  val = call_function_by_hand (val, NULL, blocklen);
  if (value_logical_not (val))
    {
      if (!target_has_execution ())
	error (_("No memory available to program now: "
		 "you need to start the target first"));
      else
	error (_("No memory available to program: call to malloc failed"));
    }
  return val;
}

static CORE_ADDR
allocate_space_in_inferior (int len)
{
  return value_as_long (value_allocate_space_in_inferior (len));
}

/* Cast struct value VAL to type TYPE and return as a value.
   Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
   for this to work.  Typedef to one of the codes is permitted.
   Returns NULL if the cast is neither an upcast nor a downcast.  */

static struct value *
value_cast_structs (struct type *type, struct value *v2)
{
  struct type *t1;
  struct type *t2;
  struct value *v;

  gdb_assert (type != NULL && v2 != NULL);

  t1 = check_typedef (type);
  t2 = check_typedef (v2->type ());

  /* Check preconditions.  */
  gdb_assert ((t1->code () == TYPE_CODE_STRUCT
	       || t1->code () == TYPE_CODE_UNION)
	      && !!"Precondition is that type is of STRUCT or UNION kind.");
  gdb_assert ((t2->code () == TYPE_CODE_STRUCT
	       || t2->code () == TYPE_CODE_UNION)
	      && !!"Precondition is that value is of STRUCT or UNION kind");

  if (t1->name () != NULL
      && t2->name () != NULL
      && !strcmp (t1->name (), t2->name ()))
    return NULL;

  /* Upcasting: look in the type of the source to see if it contains the
     type of the target as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
  if (t1->name () != NULL)
    {
      v = search_struct_field (t1->name (),
			       v2, t2, 1);
      if (v)
	return v;
    }

  /* Downcasting: look in the type of the target to see if it contains the
     type of the source as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
  if (t2->name () != NULL)
    {
      /* Try downcasting using the run-time type of the value.  */
      int full, using_enc;
      LONGEST top;
      struct type *real_type;

      real_type = value_rtti_type (v2, &full, &top, &using_enc);
      if (real_type)
	{
	  v = value_full_object (v2, real_type, full, top, using_enc);
	  v = value_at_lazy (real_type, v->address ());
	  real_type = v->type ();

	  /* We might be trying to cast to the outermost enclosing
	     type, in which case search_struct_field won't work.  */
	  if (real_type->name () != NULL
	      && !strcmp (real_type->name (), t1->name ()))
	    return v;

	  v = search_struct_field (t2->name (), v, real_type, 1);
	  if (v)
	    return v;
	}

      /* Try downcasting using information from the destination type
	 T2.  This wouldn't work properly for classes with virtual
	 bases, but those were handled above.  */
      v = search_struct_field (t2->name (),
			       value::zero (t1, not_lval), t1, 1);
      if (v)
	{
	  /* Downcasting is possible (t1 is superclass of v2).  */
	  CORE_ADDR addr2 = v2->address () + v2->embedded_offset ();

	  addr2 -= v->address () + v->embedded_offset ();
	  return value_at (type, addr2);
	}
    }

  return NULL;
}

/* Cast one pointer or reference type to another.  Both TYPE and
   the type of ARG2 should be pointer types, or else both should be
   reference types.  If SUBCLASS_CHECK is non-zero, this will force a
   check to see whether TYPE is a superclass of ARG2's type.  If
   SUBCLASS_CHECK is zero, then the subclass check is done only when
   ARG2 is itself non-zero.  Returns the new pointer or reference.  */

struct value *
value_cast_pointers (struct type *type, struct value *arg2,
		     int subclass_check)
{
  struct type *type1 = check_typedef (type);
  struct type *type2 = check_typedef (arg2->type ());
  struct type *t1 = check_typedef (type1->target_type ());
  struct type *t2 = check_typedef (type2->target_type ());

  if (t1->code () == TYPE_CODE_STRUCT
      && t2->code () == TYPE_CODE_STRUCT
      && (subclass_check || !value_logical_not (arg2)))
    {
      struct value *v2;

      if (TYPE_IS_REFERENCE (type2))
	v2 = coerce_ref (arg2);
      else
	v2 = value_ind (arg2);
      gdb_assert (check_typedef (v2->type ())->code ()
		  == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
      v2 = value_cast_structs (t1, v2);
      /* At this point we have what we can have, un-dereference if needed.  */
      if (v2)
	{
	  struct value *v = value_addr (v2);

	  v->deprecated_set_type (type);
	  return v;
	}
    }

  /* No superclass found, just change the pointer type.  */
  arg2 = arg2->copy ();
  arg2->deprecated_set_type (type);
  arg2->set_enclosing_type (type);
  arg2->set_pointed_to_offset (0);	/* pai: chk_val */
  return arg2;
}

/* See value.h.  */

gdb_mpq
value_to_gdb_mpq (struct value *value)
{
  struct type *type = check_typedef (value->type ());

  gdb_mpq result;
  if (is_floating_type (type))
    result = target_float_to_host_double (value->contents ().data (), type);
  else
    {
      gdb_assert (is_integral_type (type)
		  || is_fixed_point_type (type));

      gdb_mpz vz;
      vz.read (value->contents (), type_byte_order (type),
	       type->is_unsigned ());
      result = vz;

      if (is_fixed_point_type (type))
	result *= type->fixed_point_scaling_factor ();
    }

  return result;
}

/* Assuming that TO_TYPE is a fixed point type, return a value
   corresponding to the cast of FROM_VAL to that type.  */

static struct value *
value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
{
  struct type *from_type = from_val->type ();

  if (from_type == to_type)
    return from_val;

  if (!is_floating_type (from_type)
      && !is_integral_type (from_type)
      && !is_fixed_point_type (from_type))
    error (_("Invalid conversion from type %s to fixed point type %s"),
	   from_type->name (), to_type->name ());

  gdb_mpq vq = value_to_gdb_mpq (from_val);

  /* Divide that value by the scaling factor to obtain the unscaled
     value, first in rational form, and then in integer form.  */

  vq /= to_type->fixed_point_scaling_factor ();
  gdb_mpz unscaled = vq.get_rounded ();

  /* Finally, create the result value, and pack the unscaled value
     in it.  */
  struct value *result = value::allocate (to_type);
  unscaled.write (result->contents_raw (),
		  type_byte_order (to_type),
		  to_type->is_unsigned ());

  return result;
}

/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */

struct value *
value_cast (struct type *type, struct value *arg2)
{
  enum type_code code1;
  enum type_code code2;
  int scalar;
  struct type *type2;

  int convert_to_boolean = 0;

  /* TYPE might be equal in meaning to the existing type of ARG2, but for
     many reasons, might be a different type object (e.g. TYPE might be a
     gdbarch owned type, while ARG2->type () could be an objfile owned
     type).

     In this case we want to preserve the LVAL of ARG2 as this allows the
     resulting value to be used in more places.  We do this by calling
     VALUE_COPY if appropriate.  */
  if (types_deeply_equal (arg2->type (), type))
    {
      /* If the types are exactly equal then we can avoid creating a new
	 value completely.  */
      if (arg2->type () != type)
	{
	  arg2 = arg2->copy ();
	  arg2->deprecated_set_type (type);
	}
      return arg2;
    }

  if (is_fixed_point_type (type))
    return value_cast_to_fixed_point (type, arg2);

  /* Check if we are casting struct reference to struct reference.  */
  if (TYPE_IS_REFERENCE (check_typedef (type)))
    {
      /* We dereference type; then we recurse and finally
	 we generate value of the given reference.  Nothing wrong with 
	 that.  */
      struct type *t1 = check_typedef (type);
      struct type *dereftype = check_typedef (t1->target_type ());
      struct value *val = value_cast (dereftype, arg2);

      return value_ref (val, t1->code ());
    }

  if (TYPE_IS_REFERENCE (check_typedef (arg2->type ())))
    /* We deref the value and then do the cast.  */
    return value_cast (type, coerce_ref (arg2)); 

  /* Strip typedefs / resolve stubs in order to get at the type's
     code/length, but remember the original type, to use as the
     resulting type of the cast, in case it was a typedef.  */
  struct type *to_type = type;

  type = check_typedef (type);
  code1 = type->code ();
  arg2 = coerce_ref (arg2);
  type2 = check_typedef (arg2->type ());

  /* You can't cast to a reference type.  See value_cast_pointers
     instead.  */
  gdb_assert (!TYPE_IS_REFERENCE (type));

  /* A cast to an undetermined-length array_type, such as 
     (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE).  */
  if (code1 == TYPE_CODE_ARRAY)
    {
      struct type *element_type = type->target_type ();
      unsigned element_length = check_typedef (element_type)->length ();

      if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
	{
	  struct type *range_type = type->index_type ();
	  int val_length = type2->length ();
	  LONGEST low_bound, high_bound, new_length;

	  if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
	    low_bound = 0, high_bound = 0;
	  new_length = val_length / element_length;
	  if (val_length % element_length != 0)
	    warning (_("array element type size does not "
		       "divide object size in cast"));
	  /* FIXME-type-allocation: need a way to free this type when
	     we are done with it.  */
	  type_allocator alloc (range_type->target_type ());
	  range_type = create_static_range_type (alloc,
						 range_type->target_type (),
						 low_bound,
						 new_length + low_bound - 1);
	  arg2->deprecated_set_type (create_array_type (alloc,
							element_type, 
							range_type));
	  return arg2;
	}
    }

  if (current_language->c_style_arrays_p ()
      && type2->code () == TYPE_CODE_ARRAY
      && !type2->is_vector ())
    arg2 = value_coerce_array (arg2);

  if (type2->code () == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);

  type2 = check_typedef (arg2->type ());
  code2 = type2->code ();

  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (to_type, arg2);
  if (code1 == TYPE_CODE_BOOL)
    {
      code1 = TYPE_CODE_INT;
      convert_to_boolean = 1;
    }
  if (code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT;
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;

  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
	    || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
	    || code2 == TYPE_CODE_RANGE
	    || is_fixed_point_type (type2));

  if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
      && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
      && type->name () != 0)
    {
      struct value *v = value_cast_structs (to_type, arg2);

      if (v)
	return v;
    }

  if (is_floating_type (type) && scalar)
    {
      if (is_floating_value (arg2))
	{
	  struct value *v = value::allocate (to_type);
	  target_float_convert (arg2->contents ().data (), type2,
				v->contents_raw ().data (), type);
	  return v;
	}
      else if (is_fixed_point_type (type2))
	{
	  gdb_mpq fp_val;

	  fp_val.read_fixed_point (arg2->contents (),
				   type_byte_order (type2),
				   type2->is_unsigned (),
				   type2->fixed_point_scaling_factor ());

	  struct value *v = value::allocate (to_type);
	  target_float_from_host_double (v->contents_raw ().data (),
					 to_type, fp_val.as_double ());
	  return v;
	}

      /* The only option left is an integral type.  */
      if (type2->is_unsigned ())
	return value_from_ulongest (to_type, value_as_long (arg2));
      else
	return value_from_longest (to_type, value_as_long (arg2));
    }
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
	    || code1 == TYPE_CODE_RANGE)
	   && (scalar || code2 == TYPE_CODE_PTR
	       || code2 == TYPE_CODE_MEMBERPTR))
    {
      gdb_mpz longest;

      /* When we cast pointers to integers, we mustn't use
	 gdbarch_pointer_to_address to find the address the pointer
	 represents, as value_as_long would.  GDB should evaluate
	 expressions just as the compiler would --- and the compiler
	 sees a cast as a simple reinterpretation of the pointer's
	 bits.  */
      if (code2 == TYPE_CODE_PTR)
	longest = extract_unsigned_integer (arg2->contents (),
					    type_byte_order (type2));
      else
	longest = value_as_mpz (arg2);
      if (convert_to_boolean)
	longest = bool (longest);

      return value_from_mpz (to_type, longest);
    }
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT  
				      || code2 == TYPE_CODE_ENUM 
				      || code2 == TYPE_CODE_RANGE))
    {
      /* type->length () is the length of a pointer, but we really
	 want the length of an address! -- we are really dealing with
	 addresses (i.e., gdb representations) not pointers (i.e.,
	 target representations) here.

	 This allows things like "print *(int *)0x01000234" to work
	 without printing a misleading message -- which would
	 otherwise occur when dealing with a target having two byte
	 pointers and four byte addresses.  */

      int addr_bit = gdbarch_addr_bit (type2->arch ());
      LONGEST longest = value_as_long (arg2);

      if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
	{
	  if (longest >= ((LONGEST) 1 << addr_bit)
	      || longest <= -((LONGEST) 1 << addr_bit))
	    warning (_("value truncated"));
	}
      return value_from_longest (to_type, longest);
    }
  else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
	   && value_as_long (arg2) == 0)
    {
      struct value *result = value::allocate (to_type);

      cplus_make_method_ptr (to_type,
			     result->contents_writeable ().data (), 0, 0);
      return result;
    }
  else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
	   && value_as_long (arg2) == 0)
    {
      /* The Itanium C++ ABI represents NULL pointers to members as
	 minus one, instead of biasing the normal case.  */
      return value_from_longest (to_type, -1);
    }
  else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
	   && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
	   && type->length () != type2->length ())
    error (_("Cannot convert between vector values of different sizes"));
  else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
	   && type->length () != type2->length ())
    error (_("can only cast scalar to vector of same size"));
  else if (code1 == TYPE_CODE_VOID)
    {
      return value::zero (to_type, not_lval);
    }
  else if (type->length () == type2->length ())
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
	return value_cast_pointers (to_type, arg2, 0);

      arg2 = arg2->copy ();
      arg2->deprecated_set_type (to_type);
      arg2->set_enclosing_type (to_type);
      arg2->set_pointed_to_offset (0);	/* pai: chk_val */
      return arg2;
    }
  else if (arg2->lval () == lval_memory)
    return value_at_lazy (to_type, arg2->address ());
  else
    {
      if (current_language->la_language == language_ada)
	error (_("Invalid type conversion."));
      error (_("Invalid cast."));
    }
}

/* The C++ reinterpret_cast operator.  */

struct value *
value_reinterpret_cast (struct type *type, struct value *arg)
{
  struct value *result;
  struct type *real_type = check_typedef (type);
  struct type *arg_type, *dest_type;
  int is_ref = 0;
  enum type_code dest_code, arg_code;

  /* Do reference, function, and array conversion.  */
  arg = coerce_array (arg);

  /* Attempt to preserve the type the user asked for.  */
  dest_type = type;

  /* If we are casting to a reference type, transform
     reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V).  */
  if (TYPE_IS_REFERENCE (real_type))
    {
      is_ref = 1;
      arg = value_addr (arg);
      dest_type = lookup_pointer_type (dest_type->target_type ());
      real_type = lookup_pointer_type (real_type);
    }

  arg_type = arg->type ();

  dest_code = real_type->code ();
  arg_code = arg_type->code ();

  /* We can convert pointer types, or any pointer type to int, or int
     type to pointer.  */
  if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
      || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
      || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
      || (dest_code == arg_code
	  && (dest_code == TYPE_CODE_PTR
	      || dest_code == TYPE_CODE_METHODPTR
	      || dest_code == TYPE_CODE_MEMBERPTR)))
    result = value_cast (dest_type, arg);
  else
    error (_("Invalid reinterpret_cast"));

  if (is_ref)
    result = value_cast (type, value_ref (value_ind (result),
					  type->code ()));

  return result;
}

/* A helper for value_dynamic_cast.  This implements the first of two
   runtime checks: we iterate over all the base classes of the value's
   class which are equal to the desired class; if only one of these
   holds the value, then it is the answer.  */

static int
dynamic_cast_check_1 (struct type *desired_type,
		      const gdb_byte *valaddr,
		      LONGEST embedded_offset,
		      CORE_ADDR address,
		      struct value *val,
		      struct type *search_type,
		      CORE_ADDR arg_addr,
		      struct type *arg_type,
		      struct value **result)
{
  int i, result_count = 0;

  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
      LONGEST offset = baseclass_offset (search_type, i, valaddr,
					 embedded_offset,
					 address, val);

      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
	{
	  if (address + embedded_offset + offset >= arg_addr
	      && address + embedded_offset + offset < arg_addr + arg_type->length ())
	    {
	      ++result_count;
	      if (!*result)
		*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
					 address + embedded_offset + offset);
	    }
	}
      else
	result_count += dynamic_cast_check_1 (desired_type,
					      valaddr,
					      embedded_offset + offset,
					      address, val,
					      TYPE_BASECLASS (search_type, i),
					      arg_addr,
					      arg_type,
					      result);
    }

  return result_count;
}

/* A helper for value_dynamic_cast.  This implements the second of two
   runtime checks: we look for a unique public sibling class of the
   argument's declared class.  */

static int
dynamic_cast_check_2 (struct type *desired_type,
		      const gdb_byte *valaddr,
		      LONGEST embedded_offset,
		      CORE_ADDR address,
		      struct value *val,
		      struct type *search_type,
		      struct value **result)
{
  int i, result_count = 0;

  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
      LONGEST offset;

      if (! BASETYPE_VIA_PUBLIC (search_type, i))
	continue;

      offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
				 address, val);
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
	{
	  ++result_count;
	  if (*result == NULL)
	    *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
				     address + embedded_offset + offset);
	}
      else
	result_count += dynamic_cast_check_2 (desired_type,
					      valaddr,
					      embedded_offset + offset,
					      address, val,
					      TYPE_BASECLASS (search_type, i),
					      result);
    }

  return result_count;
}

/* The C++ dynamic_cast operator.  */

struct value *
value_dynamic_cast (struct type *type, struct value *arg)
{
  int full, using_enc;
  LONGEST top;
  struct type *resolved_type = check_typedef (type);
  struct type *arg_type = check_typedef (arg->type ());
  struct type *class_type, *rtti_type;
  struct value *result, *tem, *original_arg = arg;
  CORE_ADDR addr;
  int is_ref = TYPE_IS_REFERENCE (resolved_type);

  if (resolved_type->code () != TYPE_CODE_PTR
      && !TYPE_IS_REFERENCE (resolved_type))
    error (_("Argument to dynamic_cast must be a pointer or reference type"));
  if (resolved_type->target_type ()->code () != TYPE_CODE_VOID
      && resolved_type->target_type ()->code () != TYPE_CODE_STRUCT)
    error (_("Argument to dynamic_cast must be pointer to class or `void *'"));

  class_type = check_typedef (resolved_type->target_type ());
  if (resolved_type->code () == TYPE_CODE_PTR)
    {
      if (arg_type->code () != TYPE_CODE_PTR
	  && ! (arg_type->code () == TYPE_CODE_INT
		&& value_as_long (arg) == 0))
	error (_("Argument to dynamic_cast does not have pointer type"));
      if (arg_type->code () == TYPE_CODE_PTR)
	{
	  arg_type = check_typedef (arg_type->target_type ());
	  if (arg_type->code () != TYPE_CODE_STRUCT)
	    error (_("Argument to dynamic_cast does "
		     "not have pointer to class type"));
	}

      /* Handle NULL pointers.  */
      if (value_as_long (arg) == 0)
	return value::zero (type, not_lval);

      arg = value_ind (arg);
    }
  else
    {
      if (arg_type->code () != TYPE_CODE_STRUCT)
	error (_("Argument to dynamic_cast does not have class type"));
    }

  /* If the classes are the same, just return the argument.  */
  if (class_types_same_p (class_type, arg_type))
    return value_cast (type, arg);

  /* If the target type is a unique base class of the argument's
     declared type, just cast it.  */
  if (is_ancestor (class_type, arg_type))
    {
      if (is_unique_ancestor (class_type, arg))
	return value_cast (type, original_arg);
      error (_("Ambiguous dynamic_cast"));
    }

  rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
  if (! rtti_type)
    error (_("Couldn't determine value's most derived type for dynamic_cast"));

  /* Compute the most derived object's address.  */
  addr = arg->address ();
  if (full)
    {
      /* Done.  */
    }
  else if (using_enc)
    addr += top;
  else
    addr += top + arg->embedded_offset ();

  /* dynamic_cast<void *> means to return a pointer to the
     most-derived object.  */
  if (resolved_type->code () == TYPE_CODE_PTR
      && resolved_type->target_type ()->code () == TYPE_CODE_VOID)
    return value_at_lazy (type, addr);

  tem = value_at (type, addr);
  type = tem->type ();

  /* The first dynamic check specified in 5.2.7.  */
  if (is_public_ancestor (arg_type, resolved_type->target_type ()))
    {
      if (class_types_same_p (rtti_type, resolved_type->target_type ()))
	return tem;
      result = NULL;
      if (dynamic_cast_check_1 (resolved_type->target_type (),
				tem->contents_for_printing ().data (),
				tem->embedded_offset (),
				tem->address (), tem,
				rtti_type, addr,
				arg_type,
				&result) == 1)
	return value_cast (type,
			   is_ref
			   ? value_ref (result, resolved_type->code ())
			   : value_addr (result));
    }

  /* The second dynamic check specified in 5.2.7.  */
  result = NULL;
  if (is_public_ancestor (arg_type, rtti_type)
      && dynamic_cast_check_2 (resolved_type->target_type (),
			       tem->contents_for_printing ().data (),
			       tem->embedded_offset (),
			       tem->address (), tem,
			       rtti_type, &result) == 1)
    return value_cast (type,
		       is_ref
		       ? value_ref (result, resolved_type->code ())
		       : value_addr (result));

  if (resolved_type->code () == TYPE_CODE_PTR)
    return value::zero (type, not_lval);

  error (_("dynamic_cast failed"));
}

/* Create a not_lval value of numeric type TYPE that is one, and return it.  */

struct value *
value_one (struct type *type)
{
  struct type *type1 = check_typedef (type);
  struct value *val;

  if (is_integral_type (type1) || is_floating_type (type1))
    {
      val = value_from_longest (type, (LONGEST) 1);
    }
  else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
    {
      struct type *eltype = check_typedef (type1->target_type ());
      int i;
      LONGEST low_bound, high_bound;

      if (!get_array_bounds (type1, &low_bound, &high_bound))
	error (_("Could not determine the vector bounds"));

      val = value::allocate (type);
      gdb::array_view<gdb_byte> val_contents = val->contents_writeable ();
      int elt_len = eltype->length ();

      for (i = 0; i < high_bound - low_bound + 1; i++)
	{
	  value *tmp = value_one (eltype);
	  copy (tmp->contents_all (),
		val_contents.slice (i * elt_len, elt_len));
	}
    }
  else
    {
      error (_("Not a numeric type."));
    }

  /* value_one result is never used for assignments to.  */
  gdb_assert (val->lval () == not_lval);

  return val;
}

/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
   The type of the created value may differ from the passed type TYPE.
   Make sure to retrieve the returned values's new type after this call
   e.g. in case the type is a variable length array.  */

static struct value *
get_value_at (struct type *type, CORE_ADDR addr, frame_info_ptr frame,
	      int lazy)
{
  struct value *val;

  if (check_typedef (type)->code () == TYPE_CODE_VOID)
    error (_("Attempt to dereference a generic pointer."));

  val = value_from_contents_and_address (type, NULL, addr, frame);

  if (!lazy)
    val->fetch_lazy ();

  return val;
}

/* Return a value with type TYPE located at ADDR.

   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   is tested in the value_contents macro, which is used if and when
   the contents are actually required.  The type of the created value
   may differ from the passed type TYPE.  Make sure to retrieve the
   returned values's new type after this call e.g. in case the type
   is a variable length array.

   Note: value_at does *NOT* handle embedded offsets; perform such
   adjustments before or after calling it.  */

struct value *
value_at (struct type *type, CORE_ADDR addr)
{
  return get_value_at (type, addr, nullptr, 0);
}

/* See value.h.  */

struct value *
value_at_non_lval (struct type *type, CORE_ADDR addr)
{
  struct value *result = value_at (type, addr);
  result->set_lval (not_lval);
  return result;
}

/* Return a lazy value with type TYPE located at ADDR (cf. value_at).
   The type of the created value may differ from the passed type TYPE.
   Make sure to retrieve the returned values's new type after this call
   e.g. in case the type is a variable length array.  */

struct value *
value_at_lazy (struct type *type, CORE_ADDR addr, frame_info_ptr frame)
{
  return get_value_at (type, addr, frame, 1);
}

void
read_value_memory (struct value *val, LONGEST bit_offset,
		   bool stack, CORE_ADDR memaddr,
		   gdb_byte *buffer, size_t length)
{
  ULONGEST xfered_total = 0;
  struct gdbarch *arch = val->arch ();
  int unit_size = gdbarch_addressable_memory_unit_size (arch);
  enum target_object object;

  object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;

  while (xfered_total < length)
    {
      enum target_xfer_status status;
      ULONGEST xfered_partial;

      status = target_xfer_partial (current_inferior ()->top_target (),
				    object, NULL,
				    buffer + xfered_total * unit_size, NULL,
				    memaddr + xfered_total,
				    length - xfered_total,
				    &xfered_partial);

      if (status == TARGET_XFER_OK)
	/* nothing */;
      else if (status == TARGET_XFER_UNAVAILABLE)
	val->mark_bits_unavailable ((xfered_total * HOST_CHAR_BIT
				     + bit_offset),
				    xfered_partial * HOST_CHAR_BIT);
      else if (status == TARGET_XFER_EOF)
	memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
      else
	memory_error (status, memaddr + xfered_total);

      xfered_total += xfered_partial;
      QUIT;
    }
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */

struct value *
value_assign (struct value *toval, struct value *fromval)
{
  struct type *type;
  struct value *val;
  struct frame_id old_frame;

  if (!toval->deprecated_modifiable ())
    error (_("Left operand of assignment is not a modifiable lvalue."));

  toval = coerce_ref (toval);

  type = toval->type ();
  if (toval->lval () != lval_internalvar)
    fromval = value_cast (type, fromval);
  else
    {
      /* Coerce arrays and functions to pointers, except for arrays
	 which only live in GDB's storage.  */
      if (!value_must_coerce_to_target (fromval))
	fromval = coerce_array (fromval);
    }

  type = check_typedef (type);

  /* Since modifying a register can trash the frame chain, and
     modifying memory can trash the frame cache, we save the old frame
     and then restore the new frame afterwards.  */
  old_frame = get_frame_id (deprecated_safe_get_selected_frame ());

  switch (toval->lval ())
    {
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      return value_of_internalvar (type->arch (),
				   VALUE_INTERNALVAR (toval));

    case lval_internalvar_component:
      {
	LONGEST offset = toval->offset ();

	/* Are we dealing with a bitfield?

	   It is important to mention that `toval->parent ()' is
	   non-NULL iff `toval->bitsize ()' is non-zero.  */
	if (toval->bitsize ())
	  {
	    /* VALUE_INTERNALVAR below refers to the parent value, while
	       the offset is relative to this parent value.  */
	    gdb_assert (toval->parent ()->parent () == NULL);
	    offset += toval->parent ()->offset ();
	  }

	set_internalvar_component (VALUE_INTERNALVAR (toval),
				   offset,
				   toval->bitpos (),
				   toval->bitsize (),
				   fromval);
      }
      break;

    case lval_memory:
      {
	const gdb_byte *dest_buffer;
	CORE_ADDR changed_addr;
	int changed_len;
	gdb_byte buffer[sizeof (LONGEST)];

	if (toval->bitsize ())
	  {
	    struct value *parent = toval->parent ();

	    changed_addr = parent->address () + toval->offset ();
	    changed_len = (toval->bitpos ()
			   + toval->bitsize ()
			   + HOST_CHAR_BIT - 1)
	      / HOST_CHAR_BIT;

	    /* If we can read-modify-write exactly the size of the
	       containing type (e.g. short or int) then do so.  This
	       is safer for volatile bitfields mapped to hardware
	       registers.  */
	    if (changed_len < type->length ()
		&& type->length () <= (int) sizeof (LONGEST)
		&& ((LONGEST) changed_addr % type->length ()) == 0)
	      changed_len = type->length ();

	    if (changed_len > (int) sizeof (LONGEST))
	      error (_("Can't handle bitfields which "
		       "don't fit in a %d bit word."),
		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);

	    read_memory (changed_addr, buffer, changed_len);
	    modify_field (type, buffer, value_as_long (fromval),
			  toval->bitpos (), toval->bitsize ());
	    dest_buffer = buffer;
	  }
	else
	  {
	    changed_addr = toval->address ();
	    changed_len = type_length_units (type);
	    dest_buffer = fromval->contents ().data ();
	  }

	write_memory_with_notification (changed_addr, dest_buffer, changed_len);
      }
      break;

    case lval_register:
      {
	frame_info_ptr frame;
	struct gdbarch *gdbarch;
	int value_reg;

	/* Figure out which frame this register value is in.  The value
	   holds the frame_id for the next frame, that is the frame this
	   register value was unwound from.

	   Below we will call put_frame_register_bytes which requires that
	   we pass it the actual frame in which the register value is
	   valid, i.e. not the next frame.  */
	frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
	frame = get_prev_frame_always (frame);

	value_reg = VALUE_REGNUM (toval);

	if (!frame)
	  error (_("Value being assigned to is no longer active."));

	gdbarch = get_frame_arch (frame);

	if (toval->bitsize ())
	  {
	    struct value *parent = toval->parent ();
	    LONGEST offset = parent->offset () + toval->offset ();
	    size_t changed_len;
	    gdb_byte buffer[sizeof (LONGEST)];
	    int optim, unavail;

	    changed_len = (toval->bitpos ()
			   + toval->bitsize ()
			   + HOST_CHAR_BIT - 1)
			  / HOST_CHAR_BIT;

	    if (changed_len > sizeof (LONGEST))
	      error (_("Can't handle bitfields which "
		       "don't fit in a %d bit word."),
		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);

	    if (!get_frame_register_bytes (frame, value_reg, offset,
					   {buffer, changed_len},
					   &optim, &unavail))
	      {
		if (optim)
		  throw_error (OPTIMIZED_OUT_ERROR,
			       _("value has been optimized out"));
		if (unavail)
		  throw_error (NOT_AVAILABLE_ERROR,
			       _("value is not available"));
	      }

	    modify_field (type, buffer, value_as_long (fromval),
			  toval->bitpos (), toval->bitsize ());

	    put_frame_register_bytes (frame, value_reg, offset,
				      {buffer, changed_len});
	  }
	else
	  {
	    if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
					    type))
	      {
		/* If TOVAL is a special machine register requiring
		   conversion of program values to a special raw
		   format.  */
		gdbarch_value_to_register (gdbarch, frame,
					   VALUE_REGNUM (toval), type,
					   fromval->contents ().data ());
	      }
	    else
	      put_frame_register_bytes (frame, value_reg,
					toval->offset (),
					fromval->contents ());
	  }

	gdb::observers::register_changed.notify (frame, value_reg);
	break;
      }

    case lval_computed:
      {
	const struct lval_funcs *funcs = toval->computed_funcs ();

	if (funcs->write != NULL)
	  {
	    funcs->write (toval, fromval);
	    break;
	  }
      }
      /* Fall through.  */

    default:
      error (_("Left operand of assignment is not an lvalue."));
    }

  /* Assigning to the stack pointer, frame pointer, and other
     (architecture and calling convention specific) registers may
     cause the frame cache and regcache to be out of date.  Assigning to memory
     also can.  We just do this on all assignments to registers or
     memory, for simplicity's sake; I doubt the slowdown matters.  */
  switch (toval->lval ())
    {
    case lval_memory:
    case lval_register:
    case lval_computed:

      gdb::observers::target_changed.notify
	(current_inferior ()->top_target ());

      /* Having destroyed the frame cache, restore the selected
	 frame.  */

      /* FIXME: cagney/2002-11-02: There has to be a better way of
	 doing this.  Instead of constantly saving/restoring the
	 frame.  Why not create a get_selected_frame() function that,
	 having saved the selected frame's ID can automatically
	 re-find the previously selected frame automatically.  */

      {
	frame_info_ptr fi = frame_find_by_id (old_frame);

	if (fi != NULL)
	  select_frame (fi);
      }

      break;
    default:
      break;
    }
  
  /* If the field does not entirely fill a LONGEST, then zero the sign
     bits.  If the field is signed, and is negative, then sign
     extend.  */
  if ((toval->bitsize () > 0)
      && (toval->bitsize () < 8 * (int) sizeof (LONGEST)))
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << toval->bitsize ()) - 1;

      fieldval &= valmask;
      if (!type->is_unsigned () 
	  && (fieldval & (valmask ^ (valmask >> 1))))
	fieldval |= ~valmask;

      fromval = value_from_longest (type, fieldval);
    }

  /* The return value is a copy of TOVAL so it shares its location
     information, but its contents are updated from FROMVAL.  This
     implies the returned value is not lazy, even if TOVAL was.  */
  val = toval->copy ();
  val->set_lazy (false);
  copy (fromval->contents (), val->contents_raw ());

  /* We copy over the enclosing type and pointed-to offset from FROMVAL
     in the case of pointer types.  For object types, the enclosing type
     and embedded offset must *not* be copied: the target object referred
     to by TOVAL retains its original dynamic type after assignment.  */
  if (type->code () == TYPE_CODE_PTR)
    {
      val->set_enclosing_type (fromval->enclosing_type ());
      val->set_pointed_to_offset (fromval->pointed_to_offset ());
    }

  return val;
}

/* Extend a value ARG1 to COUNT repetitions of its type.  */

struct value *
value_repeat (struct value *arg1, int count)
{
  struct value *val;

  if (arg1->lval () != lval_memory)
    error (_("Only values in memory can be extended with '@'."));
  if (count < 1)
    error (_("Invalid number %d of repetitions."), count);

  val = allocate_repeat_value (arg1->enclosing_type (), count);

  val->set_lval (lval_memory);
  val->set_address (arg1->address ());

  read_value_memory (val, 0, val->stack (), val->address (),
		     val->contents_all_raw ().data (),
		     type_length_units (val->enclosing_type ()));

  return val;
}

struct value *
value_of_variable (struct symbol *var, const struct block *b)
{
  frame_info_ptr frame = NULL;

  if (symbol_read_needs_frame (var))
    frame = get_selected_frame (_("No frame selected."));

  return read_var_value (var, b, frame);
}

struct value *
address_of_variable (struct symbol *var, const struct block *b)
{
  struct type *type = var->type ();
  struct value *val;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here.  */

  val = value_of_variable (var, b);
  type = val->type ();

  if ((val->lval () == lval_memory && val->lazy ())
      || type->code () == TYPE_CODE_FUNC)
    {
      CORE_ADDR addr = val->address ();

      return value_from_pointer (lookup_pointer_type (type), addr);
    }

  /* Not a memory address; check what the problem was.  */
  switch (val->lval ())
    {
    case lval_register:
      {
	frame_info_ptr frame;
	const char *regname;

	frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
	gdb_assert (frame);

	regname = gdbarch_register_name (get_frame_arch (frame),
					 VALUE_REGNUM (val));
	gdb_assert (regname != nullptr && *regname != '\0');

	error (_("Address requested for identifier "
		 "\"%s\" which is in register $%s"),
	       var->print_name (), regname);
	break;
      }

    default:
      error (_("Can't take address of \"%s\" which isn't an lvalue."),
	     var->print_name ());
      break;
    }

  return val;
}

/* See value.h.  */

bool
value_must_coerce_to_target (struct value *val)
{
  struct type *valtype;

  /* The only lval kinds which do not live in target memory.  */
  if (val->lval () != not_lval
      && val->lval () != lval_internalvar
      && val->lval () != lval_xcallable)
    return false;

  valtype = check_typedef (val->type ());

  switch (valtype->code ())
    {
    case TYPE_CODE_ARRAY:
      return valtype->is_vector () ? 0 : 1;
    case TYPE_CODE_STRING:
      return true;
    default:
      return false;
    }
}

/* Make sure that VAL lives in target memory if it's supposed to.  For
   instance, strings are constructed as character arrays in GDB's
   storage, and this function copies them to the target.  */

struct value *
value_coerce_to_target (struct value *val)
{
  LONGEST length;
  CORE_ADDR addr;

  if (!value_must_coerce_to_target (val))
    return val;

  length = check_typedef (val->type ())->length ();
  addr = allocate_space_in_inferior (length);
  write_memory (addr, val->contents ().data (), length);
  return value_at_lazy (val->type (), addr);
}

/* Given a value which is an array, return a value which is a pointer
   to its first element, regardless of whether or not the array has a
   nonzero lower bound.

   FIXME: A previous comment here indicated that this routine should
   be substracting the array's lower bound.  It's not clear to me that
   this is correct.  Given an array subscripting operation, it would
   certainly work to do the adjustment here, essentially computing:

   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])

   However I believe a more appropriate and logical place to account
   for the lower bound is to do so in value_subscript, essentially
   computing:

   (&array[0] + ((index - lowerbound) * sizeof array[0]))

   As further evidence consider what would happen with operations
   other than array subscripting, where the caller would get back a
   value that had an address somewhere before the actual first element
   of the array, and the information about the lower bound would be
   lost because of the coercion to pointer type.  */

struct value *
value_coerce_array (struct value *arg1)
{
  struct type *type = check_typedef (arg1->type ());

  /* If the user tries to do something requiring a pointer with an
     array that has not yet been pushed to the target, then this would
     be a good time to do so.  */
  arg1 = value_coerce_to_target (arg1);

  if (arg1->lval () != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  return value_from_pointer (lookup_pointer_type (type->target_type ()),
			     arg1->address ());
}

/* Given a value which is a function, return a value which is a pointer
   to it.  */

struct value *
value_coerce_function (struct value *arg1)
{
  struct value *retval;

  if (arg1->lval () != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  retval = value_from_pointer (lookup_pointer_type (arg1->type ()),
			       arg1->address ());
  return retval;
}

/* Return a pointer value for the object for which ARG1 is the
   contents.  */

struct value *
value_addr (struct value *arg1)
{
  struct value *arg2;
  struct type *type = check_typedef (arg1->type ());

  if (TYPE_IS_REFERENCE (type))
    {
      if (arg1->bits_synthetic_pointer (arg1->embedded_offset (),
					TARGET_CHAR_BIT * type->length ()))
	arg1 = coerce_ref (arg1);
      else
	{
	  /* Copy the value, but change the type from (T&) to (T*).  We
	     keep the same location information, which is efficient, and
	     allows &(&X) to get the location containing the reference.
	     Do the same to its enclosing type for consistency.  */
	  struct type *type_ptr
	    = lookup_pointer_type (type->target_type ());
	  struct type *enclosing_type
	    = check_typedef (arg1->enclosing_type ());
	  struct type *enclosing_type_ptr
	    = lookup_pointer_type (enclosing_type->target_type ());

	  arg2 = arg1->copy ();
	  arg2->deprecated_set_type (type_ptr);
	  arg2->set_enclosing_type (enclosing_type_ptr);

	  return arg2;
	}
    }
  if (type->code () == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);

  /* If this is an array that has not yet been pushed to the target,
     then this would be a good time to force it to memory.  */
  arg1 = value_coerce_to_target (arg1);

  if (arg1->lval () != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  /* Get target memory address.  */
  arg2 = value_from_pointer (lookup_pointer_type (arg1->type ()),
			     (arg1->address ()
			      + arg1->embedded_offset ()));

  /* This may be a pointer to a base subobject; so remember the
     full derived object's type ...  */
  arg2->set_enclosing_type (lookup_pointer_type (arg1->enclosing_type ()));
  /* ... and also the relative position of the subobject in the full
     object.  */
  arg2->set_pointed_to_offset (arg1->embedded_offset ());
  return arg2;
}

/* Return a reference value for the object for which ARG1 is the
   contents.  */

struct value *
value_ref (struct value *arg1, enum type_code refcode)
{
  struct value *arg2;
  struct type *type = check_typedef (arg1->type ());

  gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);

  if ((type->code () == TYPE_CODE_REF
       || type->code () == TYPE_CODE_RVALUE_REF)
      && type->code () == refcode)
    return arg1;

  arg2 = value_addr (arg1);
  arg2->deprecated_set_type (lookup_reference_type (type, refcode));
  return arg2;
}

/* Given a value of a pointer type, apply the C unary * operator to
   it.  */

struct value *
value_ind (struct value *arg1)
{
  struct type *base_type;
  struct value *arg2;

  arg1 = coerce_array (arg1);

  base_type = check_typedef (arg1->type ());

  if (arg1->lval () == lval_computed)
    {
      const struct lval_funcs *funcs = arg1->computed_funcs ();

      if (funcs->indirect)
	{
	  struct value *result = funcs->indirect (arg1);

	  if (result)
	    return result;
	}
    }

  if (base_type->code () == TYPE_CODE_PTR)
    {
      struct type *enc_type;

      /* We may be pointing to something embedded in a larger object.
	 Get the real type of the enclosing object.  */
      enc_type = check_typedef (arg1->enclosing_type ());
      enc_type = enc_type->target_type ();

      CORE_ADDR base_addr;
      if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
	  || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
	{
	  /* For functions, go through find_function_addr, which knows
	     how to handle function descriptors.  */
	  base_addr = find_function_addr (arg1, NULL);
	}
      else
	{
	  /* Retrieve the enclosing object pointed to.  */
	  base_addr = (value_as_address (arg1)
		       - arg1->pointed_to_offset ());
	}
      arg2 = value_at_lazy (enc_type, base_addr);
      enc_type = arg2->type ();
      return readjust_indirect_value_type (arg2, enc_type, base_type,
					   arg1, base_addr);
    }

  error (_("Attempt to take contents of a non-pointer value."));
}

/* Create a value for an array by allocating space in GDB, copying the
   data into that space, and then setting up an array value.

   The array bounds are set from LOWBOUND and HIGHBOUND, and the array
   is populated from the values passed in ELEMVEC.

   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types).  */

struct value *
value_array (int lowbound, int highbound, struct value **elemvec)
{
  int nelem;
  int idx;
  ULONGEST typelength;
  struct value *val;
  struct type *arraytype;

  /* Validate that the bounds are reasonable and that each of the
     elements have the same size.  */

  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
    {
      error (_("bad array bounds (%d, %d)"), lowbound, highbound);
    }
  typelength = type_length_units (elemvec[0]->enclosing_type ());
  for (idx = 1; idx < nelem; idx++)
    {
      if (type_length_units (elemvec[idx]->enclosing_type ())
	  != typelength)
	{
	  error (_("array elements must all be the same size"));
	}
    }

  arraytype = lookup_array_range_type (elemvec[0]->enclosing_type (),
				       lowbound, highbound);

  if (!current_language->c_style_arrays_p ())
    {
      val = value::allocate (arraytype);
      for (idx = 0; idx < nelem; idx++)
	elemvec[idx]->contents_copy (val, idx * typelength, 0, typelength);
      return val;
    }

  /* Allocate space to store the array, and then initialize it by
     copying in each element.  */

  val = value::allocate (arraytype);
  for (idx = 0; idx < nelem; idx++)
    elemvec[idx]->contents_copy (val, idx * typelength, 0, typelength);
  return val;
}

/* See value.h.  */

struct value *
value_cstring (const gdb_byte *ptr, ssize_t count, struct type *char_type)
{
  struct value *val;
  int lowbound = current_language->string_lower_bound ();
  ssize_t highbound = count + 1;
  struct type *stringtype
    = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);

  val = value::allocate (stringtype);
  ssize_t len = count * char_type->length ();
  memcpy (val->contents_raw ().data (), ptr, len);
  /* Write the terminating null-character.  */
  memset (val->contents_raw ().data () + len, 0, char_type->length ());
  return val;
}

/* See value.h.  */

struct value *
value_string (const gdb_byte *ptr, ssize_t count, struct type *char_type)
{
  struct value *val;
  int lowbound = current_language->string_lower_bound ();
  ssize_t highbound = count;
  struct type *stringtype
    = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);

  val = value::allocate (stringtype);
  ssize_t len = count * char_type->length ();
  memcpy (val->contents_raw ().data (), ptr, len);
  return val;
}


/* See if we can pass arguments in T2 to a function which takes arguments
   of types T1.  T1 is a list of NARGS arguments, and T2 is an array_view
   of the values we're trying to pass.  If some arguments need coercion of
   some sort, then the coerced values are written into T2.  Return value is
   0 if the arguments could be matched, or the position at which they
   differ if not.

   STATICP is nonzero if the T1 argument list came from a static
   member function.  T2 must still include the ``this'' pointer, but
   it will be skipped.

   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we
   want to handle calls with objects from derived classes.  This is
   not entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */

static int
typecmp (bool staticp, bool varargs, int nargs,
	 struct field t1[], gdb::array_view<value *> t2)
{
  int i;

  /* Skip ``this'' argument if applicable.  T2 will always include
     THIS.  */
  if (staticp)
    t2 = t2.slice (1);

  for (i = 0;
       (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
       i++)
    {
      struct type *tt1, *tt2;

      if (i == t2.size ())
	return i + 1;

      tt1 = check_typedef (t1[i].type ());
      tt2 = check_typedef (t2[i]->type ());

      if (TYPE_IS_REFERENCE (tt1)
	  /* We should be doing hairy argument matching, as below.  */
	  && (check_typedef (tt1->target_type ())->code ()
	      == tt2->code ()))
	{
	  if (tt2->code () == TYPE_CODE_ARRAY)
	    t2[i] = value_coerce_array (t2[i]);
	  else
	    t2[i] = value_ref (t2[i], tt1->code ());
	  continue;
	}

      /* djb - 20000715 - Until the new type structure is in the
	 place, and we can attempt things like implicit conversions,
	 we need to do this so you can take something like a map<const
	 char *>, and properly access map["hello"], because the
	 argument to [] will be a reference to a pointer to a char,
	 and the argument will be a pointer to a char.  */
      while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
	{
	  tt1 = check_typedef ( tt1->target_type () );
	}
      while (tt2->code () == TYPE_CODE_ARRAY
	     || tt2->code () == TYPE_CODE_PTR
	     || TYPE_IS_REFERENCE (tt2))
	{
	  tt2 = check_typedef (tt2->target_type ());
	}
      if (tt1->code () == tt2->code ())
	continue;
      /* Array to pointer is a `trivial conversion' according to the
	 ARM.  */

      /* We should be doing much hairier argument matching (see
	 section 13.2 of the ARM), but as a quick kludge, just check
	 for the same type code.  */
      if (t1[i].type ()->code () != t2[i]->type ()->code ())
	return i + 1;
    }
  if (varargs || i == t2.size ())
    return 0;
  return i + 1;
}

/* Helper class for search_struct_field that keeps track of found
   results and possibly throws an exception if the search yields
   ambiguous results.  See search_struct_field for description of
   LOOKING_FOR_BASECLASS.  */

struct struct_field_searcher
{
  /* A found field.  */
  struct found_field
  {
    /* Path to the structure where the field was found.  */
    std::vector<struct type *> path;

    /* The field found.  */
    struct value *field_value;
  };

  /* See corresponding fields for description of parameters.  */
  struct_field_searcher (const char *name,
			 struct type *outermost_type,
			 bool looking_for_baseclass)
    : m_name (name),
      m_looking_for_baseclass (looking_for_baseclass),
      m_outermost_type (outermost_type)
  {
  }

  /* The search entry point.  If LOOKING_FOR_BASECLASS is true and the
     base class search yields ambiguous results, this throws an
     exception.  If LOOKING_FOR_BASECLASS is false, the found fields
     are accumulated and the caller (search_struct_field) takes care
     of throwing an error if the field search yields ambiguous
     results.  The latter is done that way so that the error message
     can include a list of all the found candidates.  */
  void search (struct value *arg, LONGEST offset, struct type *type);

  const std::vector<found_field> &fields ()
  {
    return m_fields;
  }

  struct value *baseclass ()
  {
    return m_baseclass;
  }

private:
  /* Update results to include V, a found field/baseclass.  */
  void update_result (struct value *v, LONGEST boffset);

  /* The name of the field/baseclass we're searching for.  */
  const char *m_name;

  /* Whether we're looking for a baseclass, or a field.  */
  const bool m_looking_for_baseclass;

  /* The offset of the baseclass containing the field/baseclass we
     last recorded.  */
  LONGEST m_last_boffset = 0;

  /* If looking for a baseclass, then the result is stored here.  */
  struct value *m_baseclass = nullptr;

  /* When looking for fields, the found candidates are stored
     here.  */
  std::vector<found_field> m_fields;

  /* The type of the initial type passed to search_struct_field; this
     is used for error reporting when the lookup is ambiguous.  */
  struct type *m_outermost_type;

  /* The full path to the struct being inspected.  E.g. for field 'x'
     defined in class B inherited by class A, we have A and B pushed
     on the path.  */
  std::vector <struct type *> m_struct_path;
};

void
struct_field_searcher::update_result (struct value *v, LONGEST boffset)
{
  if (v != NULL)
    {
      if (m_looking_for_baseclass)
	{
	  if (m_baseclass != nullptr
	      /* The result is not ambiguous if all the classes that are
		 found occupy the same space.  */
	      && m_last_boffset != boffset)
	    error (_("base class '%s' is ambiguous in type '%s'"),
		   m_name, TYPE_SAFE_NAME (m_outermost_type));

	  m_baseclass = v;
	  m_last_boffset = boffset;
	}
      else
	{
	  /* The field is not ambiguous if it occupies the same
	     space.  */
	  if (m_fields.empty () || m_last_boffset != boffset)
	    m_fields.push_back ({m_struct_path, v});
	  else
	    {
	    /*Fields can occupy the same space and have the same name (be
	      ambiguous).  This can happen when fields in two different base
	      classes are marked [[no_unique_address]] and have the same name.
	      The C++ standard says that such fields can only occupy the same
	      space if they are of different type, but we don't rely on that in
	      the following code. */
	      bool ambiguous = false, insert = true;
	      for (const found_field &field: m_fields)
		{
		  if(field.path.back () != m_struct_path.back ())
		    {
		    /* Same boffset points to members of different classes.
		       We have found an ambiguity and should record it.  */
		      ambiguous = true;
		    }
		  else
		    {
		    /* We don't need to insert this value again, because a
		       non-ambiguous path already leads to it.  */
		      insert = false;
		      break;
		    }
		}
	      if (ambiguous && insert)
		m_fields.push_back ({m_struct_path, v});
	    }
	}
    }
}

/* A helper for search_struct_field.  This does all the work; most
   arguments are as passed to search_struct_field.  */

void
struct_field_searcher::search (struct value *arg1, LONGEST offset,
			       struct type *type)
{
  int i;
  int nbases;

  m_struct_path.push_back (type);
  SCOPE_EXIT { m_struct_path.pop_back (); };

  type = check_typedef (type);
  nbases = TYPE_N_BASECLASSES (type);

  if (!m_looking_for_baseclass)
    for (i = type->num_fields () - 1; i >= nbases; i--)
      {
	const char *t_field_name = type->field (i).name ();

	if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
	  {
	    struct value *v;

	    if (type->field (i).is_static ())
	      v = value_static_field (type, i);
	    else
	      v = arg1->primitive_field (offset, i, type);

	    update_result (v, offset);
	    return;
	  }

	if (t_field_name
	    && t_field_name[0] == '\0')
	  {
	    struct type *field_type = type->field (i).type ();

	    if (field_type->code () == TYPE_CODE_UNION
		|| field_type->code () == TYPE_CODE_STRUCT)
	      {
		/* Look for a match through the fields of an anonymous
		   union, or anonymous struct.  C++ provides anonymous
		   unions.

		   In the GNU Chill (now deleted from GDB)
		   implementation of variant record types, each
		   <alternative field> has an (anonymous) union type,
		   each member of the union represents a <variant
		   alternative>.  Each <variant alternative> is
		   represented as a struct, with a member for each
		   <variant field>.  */

		LONGEST new_offset = offset;

		/* This is pretty gross.  In G++, the offset in an
		   anonymous union is relative to the beginning of the
		   enclosing struct.  In the GNU Chill (now deleted
		   from GDB) implementation of variant records, the
		   bitpos is zero in an anonymous union field, so we
		   have to add the offset of the union here.  */
		if (field_type->code () == TYPE_CODE_STRUCT
		    || (field_type->num_fields () > 0
			&& field_type->field (0).loc_bitpos () == 0))
		  new_offset += type->field (i).loc_bitpos () / 8;

		search (arg1, new_offset, field_type);
	      }
	  }
      }

  for (i = 0; i < nbases; i++)
    {
      struct value *v = NULL;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when
	 we hit them.  But it could happen that the base part's member
	 name is not yet filled in.  */
      int found_baseclass = (m_looking_for_baseclass
			     && TYPE_BASECLASS_NAME (type, i) != NULL
			     && (strcmp_iw (m_name, basetype->name ()) == 0));
      LONGEST boffset = arg1->embedded_offset () + offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  struct value *v2;

	  boffset = baseclass_offset (type, i,
				      arg1->contents_for_printing ().data (),
				      arg1->embedded_offset () + offset,
				      arg1->address (),
				      arg1);

	  /* The virtual base class pointer might have been clobbered
	     by the user program.  Make sure that it still points to a
	     valid memory location.  */

	  boffset += arg1->embedded_offset () + offset;
	  if (boffset < 0
	      || boffset >= arg1->enclosing_type ()->length ())
	    {
	      CORE_ADDR base_addr;

	      base_addr = arg1->address () + boffset;
	      v2 = value_at_lazy (basetype, base_addr);
	      if (target_read_memory (base_addr, 
				      v2->contents_raw ().data (),
				      v2->type ()->length ()) != 0)
		error (_("virtual baseclass botch"));
	    }
	  else
	    {
	      v2 = arg1->copy ();
	      v2->deprecated_set_type (basetype);
	      v2->set_embedded_offset (boffset);
	    }

	  if (found_baseclass)
	    v = v2;
	  else
	    search (v2, 0, TYPE_BASECLASS (type, i));
	}
      else if (found_baseclass)
	v = arg1->primitive_field (offset, i, type);
      else
	{
	  search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
		  basetype);
	}

      update_result (v, boffset);
    }
}

/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1.  Search in it assuming
   it has (class) type TYPE.  If found, return value, else return NULL.

   If LOOKING_FOR_BASECLASS, then instead of looking for struct
   fields, look for a baseclass named NAME.  */

static struct value *
search_struct_field (const char *name, struct value *arg1,
		     struct type *type, int looking_for_baseclass)
{
  struct_field_searcher searcher (name, type, looking_for_baseclass);

  searcher.search (arg1, 0, type);

  if (!looking_for_baseclass)
    {
      const auto &fields = searcher.fields ();

      if (fields.empty ())
	return nullptr;
      else if (fields.size () == 1)
	return fields[0].field_value;
      else
	{
	  std::string candidates;

	  for (auto &&candidate : fields)
	    {
	      gdb_assert (!candidate.path.empty ());

	      struct type *field_type = candidate.field_value->type ();
	      struct type *struct_type = candidate.path.back ();

	      std::string path;
	      bool first = true;
	      for (struct type *t : candidate.path)
		{
		  if (first)
		    first = false;
		  else
		    path += " -> ";
		  path += t->name ();
		}

	      candidates += string_printf ("\n  '%s %s::%s' (%s)",
					   TYPE_SAFE_NAME (field_type),
					   TYPE_SAFE_NAME (struct_type),
					   name,
					   path.c_str ());
	    }

	  error (_("Request for member '%s' is ambiguous in type '%s'."
		   " Candidates are:%s"),
		 name, TYPE_SAFE_NAME (type),
		 candidates.c_str ());
	}
    }
  else
    return searcher.baseclass ();
}

/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   TYPE.

   ARGS is an optional array of argument values used to help finding NAME.
   The contents of ARGS can be adjusted if type coercion is required in
   order to find a matching NAME.

   If found, return value, else if name matched and args not return
   (value) -1, else return NULL.  */

static struct value *
search_struct_method (const char *name, struct value **arg1p,
		      gdb::optional<gdb::array_view<value *>> args,
		      LONGEST offset, int *static_memfuncp,
		      struct type *type)
{
  int i;
  struct value *v;
  int name_matched = 0;

  type = check_typedef (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
      const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);

      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);

	  name_matched = 1;
	  check_stub_method_group (type, i);
	  if (j > 0 && !args.has_value ())
	    error (_("cannot resolve overloaded method "
		     "`%s': no arguments supplied"), name);
	  else if (j == 0 && !args.has_value ())
	    {
	      v = value_fn_field (arg1p, f, j, type, offset);
	      if (v != NULL)
		return v;
	    }
	  else
	    while (j >= 0)
	      {
		gdb_assert (args.has_value ());
		if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
			      TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
			      TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
			      TYPE_FN_FIELD_ARGS (f, j), *args))
		  {
		    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
		      return value_virtual_fn_field (arg1p, f, j, 
						     type, offset);
		    if (TYPE_FN_FIELD_STATIC_P (f, j) 
			&& static_memfuncp)
		      *static_memfuncp = 1;
		    v = value_fn_field (arg1p, f, j, type, offset);
		    if (v != NULL)
		      return v;       
		  }
		j--;
	      }
	}
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      LONGEST base_offset;
      LONGEST this_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
	  struct value *base_val;
	  const gdb_byte *base_valaddr;

	  /* The virtual base class pointer might have been
	     clobbered by the user program.  Make sure that it
	     still points to a valid memory location.  */

	  if (offset < 0 || offset >= type->length ())
	    {
	      CORE_ADDR address;

	      gdb::byte_vector tmp (baseclass->length ());
	      address = (*arg1p)->address ();

	      if (target_read_memory (address + offset,
				      tmp.data (), baseclass->length ()) != 0)
		error (_("virtual baseclass botch"));

	      base_val = value_from_contents_and_address (baseclass,
							  tmp.data (),
							  address + offset);
	      base_valaddr = base_val->contents_for_printing ().data ();
	      this_offset = 0;
	    }
	  else
	    {
	      base_val = *arg1p;
	      base_valaddr = (*arg1p)->contents_for_printing ().data ();
	      this_offset = offset;
	    }

	  base_offset = baseclass_offset (type, i, base_valaddr,
					  this_offset, base_val->address (),
					  base_val);
	}
      else
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}
      v = search_struct_method (name, arg1p, args, base_offset + offset,
				static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (struct value *) - 1)
	{
	  name_matched = 1;
	}
      else if (v)
	{
	  /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
	  /* *arg1p = arg1_tmp; */
	  return v;
	}
    }
  if (name_matched)
    return (struct value *) - 1;
  else
    return NULL;
}

/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target
   structure/union and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.

   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method.  Also, handle derived types.

   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.

   ERR is an error message to be printed in case the field is not
   found.  */

struct value *
value_struct_elt (struct value **argp,
		  gdb::optional<gdb::array_view<value *>> args,
		  const char *name, int *static_memfuncp, const char *err)
{
  struct type *t;
  struct value *v;

  *argp = coerce_array (*argp);

  t = check_typedef ((*argp)->type ());

  /* Follow pointers until we get to a non-pointer.  */

  while (t->is_pointer_or_reference ())
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef ((*argp)->type ());
    }

  if (t->code () != TYPE_CODE_STRUCT
      && t->code () != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a %s."),
	   err);

  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
    *static_memfuncp = 0;

  if (!args.has_value ())
    {
      /* if there are no arguments ...do this...  */

      /* Try as a field first, because if we succeed, there is less
	 work to be done.  */
      v = search_struct_field (name, *argp, t, 0);
      if (v)
	return v;

      if (current_language->la_language == language_fortran)
	{
	  /* If it is not a field it is the type name of an inherited
	  structure.  */
	  v = search_struct_field (name, *argp, t, 1);
	  if (v)
	    return v;
	}

      /* C++: If it was not found as a data field, then try to
	 return it as a pointer to a method.  */
      v = search_struct_method (name, argp, args, 0,
				static_memfuncp, t);

      if (v == (struct value *) - 1)
	error (_("Cannot take address of method %s."), name);
      else if (v == 0)
	{
	  if (TYPE_NFN_FIELDS (t))
	    error (_("There is no member or method named %s."), name);
	  else
	    error (_("There is no member named %s."), name);
	}
      return v;
    }

  v = search_struct_method (name, argp, args, 0,
			    static_memfuncp, t);

  if (v == (struct value *) - 1)
    {
      error (_("One of the arguments you tried to pass to %s could not "
	       "be converted to what the function wants."), name);
    }
  else if (v == 0)
    {
      /* See if user tried to invoke data as function.  If so, hand it
	 back.  If it's not callable (i.e., a pointer to function),
	 gdb should give an error.  */
      v = search_struct_field (name, *argp, t, 0);
      /* If we found an ordinary field, then it is not a method call.
	 So, treat it as if it were a static member function.  */
      if (v && static_memfuncp)
	*static_memfuncp = 1;
    }

  if (!v)
    throw_error (NOT_FOUND_ERROR,
		 _("Structure has no component named %s."), name);
  return v;
}

/* Given *ARGP, a value of type structure or union, or a pointer/reference
   to a structure or union, extract and return its component (field) of
   type FTYPE at the specified BITPOS.
   Throw an exception on error.  */

struct value *
value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
			 const char *err)
{
  struct type *t;
  int i;

  *argp = coerce_array (*argp);

  t = check_typedef ((*argp)->type ());

  while (t->is_pointer_or_reference ())
    {
      *argp = value_ind (*argp);
      if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef ((*argp)->type ());
    }

  if (t->code () != TYPE_CODE_STRUCT
      && t->code () != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a %s."),
	   err);

  for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
    {
      if (!t->field (i).is_static ()
	  && bitpos == t->field (i).loc_bitpos ()
	  && types_equal (ftype, t->field (i).type ()))
	return (*argp)->primitive_field (0, i, t);
    }

  error (_("No field with matching bitpos and type."));

  /* Never hit.  */
  return NULL;
}

/* Search through the methods of an object (and its bases) to find a
   specified method.  Return a reference to the fn_field list METHODS of
   overloaded instances defined in the source language.  If available
   and matching, a vector of matching xmethods defined in extension
   languages are also returned in XMETHODS.

   Helper function for value_find_oload_list.
   ARGP is a pointer to a pointer to a value (the object).
   METHOD is a string containing the method name.
   OFFSET is the offset within the value.
   TYPE is the assumed type of the object.
   METHODS is a pointer to the matching overloaded instances defined
      in the source language.  Since this is a recursive function,
      *METHODS should be set to NULL when calling this function.
   NUM_FNS is the number of overloaded instances.  *NUM_FNS should be set to
      0 when calling this function.
   XMETHODS is the vector of matching xmethod workers.  *XMETHODS
      should also be set to NULL when calling this function.
   BASETYPE is set to the actual type of the subobject where the
      method is found.
   BOFFSET is the offset of the base subobject where the method is found.  */

static void
find_method_list (struct value **argp, const char *method,
		  LONGEST offset, struct type *type,
		  gdb::array_view<fn_field> *methods,
		  std::vector<xmethod_worker_up> *xmethods,
		  struct type **basetype, LONGEST *boffset)
{
  int i;
  struct fn_field *f = NULL;

  gdb_assert (methods != NULL && xmethods != NULL);
  type = check_typedef (type);

  /* First check in object itself.
     This function is called recursively to search through base classes.
     If there is a source method match found at some stage, then we need not
     look for source methods in consequent recursive calls.  */
  if (methods->empty ())
    {
      for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
	{
	  /* pai: FIXME What about operators and type conversions?  */
	  const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);

	  if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
	    {
	      int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
	      f = TYPE_FN_FIELDLIST1 (type, i);
	      *methods = gdb::make_array_view (f, len);

	      *basetype = type;
	      *boffset = offset;

	      /* Resolve any stub methods.  */
	      check_stub_method_group (type, i);

	      break;
	    }
	}
    }

  /* Unlike source methods, xmethods can be accumulated over successive
     recursive calls.  In other words, an xmethod named 'm' in a class
     will not hide an xmethod named 'm' in its base class(es).  We want
     it to be this way because xmethods are after all convenience functions
     and hence there is no point restricting them with something like method
     hiding.  Moreover, if hiding is done for xmethods as well, then we will
     have to provide a mechanism to un-hide (like the 'using' construct).  */
  get_matching_xmethod_workers (type, method, xmethods);

  /* If source methods are not found in current class, look for them in the
     base classes.  We also have to go through the base classes to gather
     extension methods.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      LONGEST base_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  base_offset = baseclass_offset (type, i,
					  (*argp)->contents_for_printing ().data (),
					  (*argp)->offset () + offset,
					  (*argp)->address (), *argp);
	}
      else /* Non-virtual base, simply use bit position from debug
	      info.  */
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}

      find_method_list (argp, method, base_offset + offset,
			TYPE_BASECLASS (type, i), methods,
			xmethods, basetype, boffset);
    }
}

/* Return the list of overloaded methods of a specified name.  The methods
   could be those GDB finds in the binary, or xmethod.  Methods found in
   the binary are returned in METHODS, and xmethods are returned in
   XMETHODS.

   ARGP is a pointer to a pointer to a value (the object).
   METHOD is the method name.
   OFFSET is the offset within the value contents.
   METHODS is the list of matching overloaded instances defined in
      the source language.
   XMETHODS is the vector of matching xmethod workers defined in
      extension languages.
   BASETYPE is set to the type of the base subobject that defines the
      method.
   BOFFSET is the offset of the base subobject which defines the method.  */

static void
value_find_oload_method_list (struct value **argp, const char *method,
			      LONGEST offset,
			      gdb::array_view<fn_field> *methods,
			      std::vector<xmethod_worker_up> *xmethods,
			      struct type **basetype, LONGEST *boffset)
{
  struct type *t;

  t = check_typedef ((*argp)->type ());

  /* Code snarfed from value_struct_elt.  */
  while (t->is_pointer_or_reference ())
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef ((*argp)->type ());
    }

  if (t->code () != TYPE_CODE_STRUCT
      && t->code () != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a "
	     "value that is not a struct or union"));

  gdb_assert (methods != NULL && xmethods != NULL);

  /* Clear the lists.  */
  *methods = {};
  xmethods->clear ();

  find_method_list (argp, method, 0, t, methods, xmethods,
		    basetype, boffset);
}

/* Helper function for find_overload_match.  If no matches were
   found, this function may generate a hint for the user that some
   of the relevant types are incomplete, so GDB can't evaluate
   type relationships to properly evaluate overloads.

   If no incomplete types are present, an empty string is returned.  */
static std::string
incomplete_type_hint (gdb::array_view<value *> args)
{
  int incomplete_types = 0;
  std::string incomplete_arg_names;
  for (const struct value *arg : args)
    {
      struct type *t = arg->type ();
      while (t->code () == TYPE_CODE_PTR)
	t = t->target_type ();
      if (t->is_stub ())
	{
	  string_file buffer;
	  if (incomplete_types > 0)
	    incomplete_arg_names += ", ";

	  current_language->print_type (arg->type (), "", &buffer,
				       -1, 0, &type_print_raw_options);

	  incomplete_types++;
	  incomplete_arg_names += buffer.string ();
	}
    }
  std::string hint;
  if (incomplete_types > 1)
    hint = string_printf (_("\nThe types: '%s' aren't fully known to GDB."
			    " Please cast them directly to the desired"
			    " typed in the function call."),
			    incomplete_arg_names.c_str ());
  else if (incomplete_types == 1)
    hint = string_printf (_("\nThe type: '%s' isn't fully known to GDB."
			    " Please cast it directly to the desired"
			    " typed in the function call."),
			    incomplete_arg_names.c_str ());
  return hint;
}

/* Given an array of arguments (ARGS) (which includes an entry for
   "this" in the case of C++ methods), the NAME of a function, and
   whether it's a method or not (METHOD), find the best function that
   matches on the argument types according to the overload resolution
   rules.

   METHOD can be one of three values:
     NON_METHOD for non-member functions.
     METHOD: for member functions.
     BOTH: used for overload resolution of operators where the
       candidates are expected to be either member or non member
       functions.  In this case the first argument ARGTYPES
       (representing 'this') is expected to be a reference to the
       target object, and will be dereferenced when attempting the
       non-member search.

   In the case of class methods, the parameter OBJ is an object value
   in which to search for overloaded methods.

   In the case of non-method functions, the parameter FSYM is a symbol
   corresponding to one of the overloaded functions.

   Return value is an integer: 0 -> good match, 10 -> debugger applied
   non-standard coercions, 100 -> incompatible.

   If a method is being searched for, VALP will hold the value.
   If a non-method is being searched for, SYMP will hold the symbol 
   for it.

   If a method is being searched for, and it is a static method,
   then STATICP will point to a non-zero value.

   If NO_ADL argument dependent lookup is disabled.  This is used to prevent
   ADL overload candidates when performing overload resolution for a fully
   qualified name.

   If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
   read while picking the best overload match (it may be all zeroes and thus
   not have a vtable pointer), in which case skip virtual function lookup.
   This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
   the result type.

   Note: This function does *not* check the value of
   overload_resolution.  Caller must check it to see whether overload
   resolution is permitted.  */

int
find_overload_match (gdb::array_view<value *> args,
		     const char *name, enum oload_search_type method,
		     struct value **objp, struct symbol *fsym,
		     struct value **valp, struct symbol **symp, 
		     int *staticp, const int no_adl,
		     const enum noside noside)
{
  struct value *obj = (objp ? *objp : NULL);
  struct type *obj_type = obj ? obj->type () : NULL;
  /* Index of best overloaded function.  */
  int func_oload_champ = -1;
  int method_oload_champ = -1;
  int src_method_oload_champ = -1;
  int ext_method_oload_champ = -1;

  /* The measure for the current best match.  */
  badness_vector method_badness;
  badness_vector func_badness;
  badness_vector ext_method_badness;
  badness_vector src_method_badness;

  struct value *temp = obj;
  /* For methods, the list of overloaded methods.  */
  gdb::array_view<fn_field> methods;
  /* For non-methods, the list of overloaded function symbols.  */
  std::vector<symbol *> functions;
  /* For xmethods, the vector of xmethod workers.  */
  std::vector<xmethod_worker_up> xmethods;
  struct type *basetype = NULL;
  LONGEST boffset;

  const char *obj_type_name = NULL;
  const char *func_name = NULL;
  gdb::unique_xmalloc_ptr<char> temp_func;
  enum oload_classification match_quality;
  enum oload_classification method_match_quality = INCOMPATIBLE;
  enum oload_classification src_method_match_quality = INCOMPATIBLE;
  enum oload_classification ext_method_match_quality = INCOMPATIBLE;
  enum oload_classification func_match_quality = INCOMPATIBLE;

  /* Get the list of overloaded methods or functions.  */
  if (method == METHOD || method == BOTH)
    {
      gdb_assert (obj);

      /* OBJ may be a pointer value rather than the object itself.  */
      obj = coerce_ref (obj);
      while (check_typedef (obj->type ())->code () == TYPE_CODE_PTR)
	obj = coerce_ref (value_ind (obj));
      obj_type_name = obj->type ()->name ();

      /* First check whether this is a data member, e.g. a pointer to
	 a function.  */
      if (check_typedef (obj->type ())->code () == TYPE_CODE_STRUCT)
	{
	  *valp = search_struct_field (name, obj,
				       check_typedef (obj->type ()), 0);
	  if (*valp)
	    {
	      *staticp = 1;
	      return 0;
	    }
	}

      /* Retrieve the list of methods with the name NAME.  */
      value_find_oload_method_list (&temp, name, 0, &methods,
				    &xmethods, &basetype, &boffset);
      /* If this is a method only search, and no methods were found
	 the search has failed.  */
      if (method == METHOD && methods.empty () && xmethods.empty ())
	error (_("Couldn't find method %s%s%s"),
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      /* If we are dealing with stub method types, they should have
	 been resolved by find_method_list via
	 value_find_oload_method_list above.  */
      if (!methods.empty ())
	{
	  gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);

	  src_method_oload_champ
	    = find_oload_champ (args,
				methods.size (),
				methods.data (), NULL, NULL,
				&src_method_badness);

	  src_method_match_quality = classify_oload_match
	    (src_method_badness, args.size (),
	     oload_method_static_p (methods.data (), src_method_oload_champ));
	}

      if (!xmethods.empty ())
	{
	  ext_method_oload_champ
	    = find_oload_champ (args,
				xmethods.size (),
				NULL, xmethods.data (), NULL,
				&ext_method_badness);
	  ext_method_match_quality = classify_oload_match (ext_method_badness,
							   args.size (), 0);
	}

      if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
	{
	  switch (compare_badness (ext_method_badness, src_method_badness))
	    {
	      case 0: /* Src method and xmethod are equally good.  */
		/* If src method and xmethod are equally good, then
		   xmethod should be the winner.  Hence, fall through to the
		   case where a xmethod is better than the source
		   method, except when the xmethod match quality is
		   non-standard.  */
		/* FALLTHROUGH */
	      case 1: /* Src method and ext method are incompatible.  */
		/* If ext method match is not standard, then let source method
		   win.  Otherwise, fallthrough to let xmethod win.  */
		if (ext_method_match_quality != STANDARD)
		  {
		    method_oload_champ = src_method_oload_champ;
		    method_badness = src_method_badness;
		    ext_method_oload_champ = -1;
		    method_match_quality = src_method_match_quality;
		    break;
		  }
		/* FALLTHROUGH */
	      case 2: /* Ext method is champion.  */
		method_oload_champ = ext_method_oload_champ;
		method_badness = ext_method_badness;
		src_method_oload_champ = -1;
		method_match_quality = ext_method_match_quality;
		break;
	      case 3: /* Src method is champion.  */
		method_oload_champ = src_method_oload_champ;
		method_badness = src_method_badness;
		ext_method_oload_champ = -1;
		method_match_quality = src_method_match_quality;
		break;
	      default:
		gdb_assert_not_reached ("Unexpected overload comparison "
					"result");
		break;
	    }
	}
      else if (src_method_oload_champ >= 0)
	{
	  method_oload_champ = src_method_oload_champ;
	  method_badness = src_method_badness;
	  method_match_quality = src_method_match_quality;
	}
      else if (ext_method_oload_champ >= 0)
	{
	  method_oload_champ = ext_method_oload_champ;
	  method_badness = ext_method_badness;
	  method_match_quality = ext_method_match_quality;
	}
    }

  if (method == NON_METHOD || method == BOTH)
    {
      const char *qualified_name = NULL;

      /* If the overload match is being search for both as a method
	 and non member function, the first argument must now be
	 dereferenced.  */
      if (method == BOTH)
	args[0] = value_ind (args[0]);

      if (fsym)
	{
	  qualified_name = fsym->natural_name ();

	  /* If we have a function with a C++ name, try to extract just
	     the function part.  Do not try this for non-functions (e.g.
	     function pointers).  */
	  if (qualified_name
	      && (check_typedef (fsym->type ())->code ()
		  == TYPE_CODE_FUNC))
	    {
	      temp_func = cp_func_name (qualified_name);

	      /* If cp_func_name did not remove anything, the name of the
		 symbol did not include scope or argument types - it was
		 probably a C-style function.  */
	      if (temp_func != nullptr)
		{
		  if (strcmp (temp_func.get (), qualified_name) == 0)
		    func_name = NULL;
		  else
		    func_name = temp_func.get ();
		}
	    }
	}
      else
	{
	  func_name = name;
	  qualified_name = name;
	}

      /* If there was no C++ name, this must be a C-style function or
	 not a function at all.  Just return the same symbol.  Do the
	 same if cp_func_name fails for some reason.  */
      if (func_name == NULL)
	{
	  *symp = fsym;
	  return 0;
	}

      func_oload_champ = find_oload_champ_namespace (args,
						     func_name,
						     qualified_name,
						     &functions,
						     &func_badness,
						     no_adl);

      if (func_oload_champ >= 0)
	func_match_quality = classify_oload_match (func_badness,
						   args.size (), 0);
    }

  /* Did we find a match ?  */
  if (method_oload_champ == -1 && func_oload_champ == -1)
    throw_error (NOT_FOUND_ERROR,
		 _("No symbol \"%s\" in current context."),
		 name);

  /* If we have found both a method match and a function
     match, find out which one is better, and calculate match
     quality.  */
  if (method_oload_champ >= 0 && func_oload_champ >= 0)
    {
      switch (compare_badness (func_badness, method_badness))
	{
	  case 0: /* Top two contenders are equally good.  */
	    /* FIXME: GDB does not support the general ambiguous case.
	     All candidates should be collected and presented the
	     user.  */
	    error (_("Ambiguous overload resolution"));
	    break;
	  case 1: /* Incomparable top contenders.  */
	    /* This is an error incompatible candidates
	       should not have been proposed.  */
	    error (_("Internal error: incompatible "
		     "overload candidates proposed"));
	    break;
	  case 2: /* Function champion.  */
	    method_oload_champ = -1;
	    match_quality = func_match_quality;
	    break;
	  case 3: /* Method champion.  */
	    func_oload_champ = -1;
	    match_quality = method_match_quality;
	    break;
	  default:
	    error (_("Internal error: unexpected overload comparison result"));
	    break;
	}
    }
  else
    {
      /* We have either a method match or a function match.  */
      if (method_oload_champ >= 0)
	match_quality = method_match_quality;
      else
	match_quality = func_match_quality;
    }

  if (match_quality == INCOMPATIBLE)
    {
      std::string hint = incomplete_type_hint (args);
      if (method == METHOD)
	error (_("Cannot resolve method %s%s%s to any overloaded instance%s"),
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name, hint.c_str ());
      else
	error (_("Cannot resolve function %s to any overloaded instance%s"),
	       func_name, hint.c_str ());
    }
  else if (match_quality == NON_STANDARD)
    {
      if (method == METHOD)
	warning (_("Using non-standard conversion to match "
		   "method %s%s%s to supplied arguments"),
		 obj_type_name,
		 (obj_type_name && *obj_type_name) ? "::" : "",
		 name);
      else
	warning (_("Using non-standard conversion to match "
		   "function %s to supplied arguments"),
		 func_name);
    }

  if (staticp != NULL)
    *staticp = oload_method_static_p (methods.data (), method_oload_champ);

  if (method_oload_champ >= 0)
    {
      if (src_method_oload_champ >= 0)
	{
	  if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
	      && noside != EVAL_AVOID_SIDE_EFFECTS)
	    {
	      *valp = value_virtual_fn_field (&temp, methods.data (),
					      method_oload_champ, basetype,
					      boffset);
	    }
	  else
	    *valp = value_fn_field (&temp, methods.data (),
				    method_oload_champ, basetype, boffset);
	}
      else
	*valp = value::from_xmethod
	  (std::move (xmethods[ext_method_oload_champ]));
    }
  else
    *symp = functions[func_oload_champ];

  if (objp)
    {
      struct type *temp_type = check_typedef (temp->type ());
      struct type *objtype = check_typedef (obj_type);

      if (temp_type->code () != TYPE_CODE_PTR
	  && objtype->is_pointer_or_reference ())
	{
	  temp = value_addr (temp);
	}
      *objp = temp;
    }

  switch (match_quality)
    {
    case INCOMPATIBLE:
      return 100;
    case NON_STANDARD:
      return 10;
    default:				/* STANDARD */
      return 0;
    }
}

/* Find the best overload match, searching for FUNC_NAME in namespaces
   contained in QUALIFIED_NAME until it either finds a good match or
   runs out of namespaces.  It stores the overloaded functions in
   *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  If NO_ADL,
   argument dependent lookup is not performed.  */

static int
find_oload_champ_namespace (gdb::array_view<value *> args,
			    const char *func_name,
			    const char *qualified_name,
			    std::vector<symbol *> *oload_syms,
			    badness_vector *oload_champ_bv,
			    const int no_adl)
{
  int oload_champ;

  find_oload_champ_namespace_loop (args,
				   func_name,
				   qualified_name, 0,
				   oload_syms, oload_champ_bv,
				   &oload_champ,
				   no_adl);

  return oload_champ;
}

/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
   how deep we've looked for namespaces, and the champ is stored in
   OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
   if it isn't.  Other arguments are the same as in
   find_oload_champ_namespace.  */

static int
find_oload_champ_namespace_loop (gdb::array_view<value *> args,
				 const char *func_name,
				 const char *qualified_name,
				 int namespace_len,
				 std::vector<symbol *> *oload_syms,
				 badness_vector *oload_champ_bv,
				 int *oload_champ,
				 const int no_adl)
{
  int next_namespace_len = namespace_len;
  int searched_deeper = 0;
  int new_oload_champ;
  char *new_namespace;

  if (next_namespace_len != 0)
    {
      gdb_assert (qualified_name[next_namespace_len] == ':');
      next_namespace_len +=  2;
    }
  next_namespace_len +=
    cp_find_first_component (qualified_name + next_namespace_len);

  /* First, see if we have a deeper namespace we can search in.
     If we get a good match there, use it.  */

  if (qualified_name[next_namespace_len] == ':')
    {
      searched_deeper = 1;

      if (find_oload_champ_namespace_loop (args,
					   func_name, qualified_name,
					   next_namespace_len,
					   oload_syms, oload_champ_bv,
					   oload_champ, no_adl))
	{
	  return 1;
	}
    };

  /* If we reach here, either we're in the deepest namespace or we
     didn't find a good match in a deeper namespace.  But, in the
     latter case, we still have a bad match in a deeper namespace;
     note that we might not find any match at all in the current
     namespace.  (There's always a match in the deepest namespace,
     because this overload mechanism only gets called if there's a
     function symbol to start off with.)  */

  new_namespace = (char *) alloca (namespace_len + 1);
  strncpy (new_namespace, qualified_name, namespace_len);
  new_namespace[namespace_len] = '\0';

  std::vector<symbol *> new_oload_syms
    = make_symbol_overload_list (func_name, new_namespace);

  /* If we have reached the deepest level perform argument
     determined lookup.  */
  if (!searched_deeper && !no_adl)
    {
      int ix;
      struct type **arg_types;

      /* Prepare list of argument types for overload resolution.  */
      arg_types = (struct type **)
	alloca (args.size () * (sizeof (struct type *)));
      for (ix = 0; ix < args.size (); ix++)
	arg_types[ix] = args[ix]->type ();
      add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
				    &new_oload_syms);
    }

  badness_vector new_oload_champ_bv;
  new_oload_champ = find_oload_champ (args,
				      new_oload_syms.size (),
				      NULL, NULL, new_oload_syms.data (),
				      &new_oload_champ_bv);

  /* Case 1: We found a good match.  Free earlier matches (if any),
     and return it.  Case 2: We didn't find a good match, but we're
     not the deepest function.  Then go with the bad match that the
     deeper function found.  Case 3: We found a bad match, and we're
     the deepest function.  Then return what we found, even though
     it's a bad match.  */

  if (new_oload_champ != -1
      && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
    {
      *oload_syms = std::move (new_oload_syms);
      *oload_champ = new_oload_champ;
      *oload_champ_bv = std::move (new_oload_champ_bv);
      return 1;
    }
  else if (searched_deeper)
    {
      return 0;
    }
  else
    {
      *oload_syms = std::move (new_oload_syms);
      *oload_champ = new_oload_champ;
      *oload_champ_bv = std::move (new_oload_champ_bv);
      return 0;
    }
}

/* Look for a function to take ARGS.  Find the best match from among
   the overloaded methods or functions given by METHODS or FUNCTIONS
   or XMETHODS, respectively.  One, and only one of METHODS, FUNCTIONS
   and XMETHODS can be non-NULL.

   NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
   or XMETHODS, whichever is non-NULL.

   Return the index of the best match; store an indication of the
   quality of the match in OLOAD_CHAMP_BV.  */

static int
find_oload_champ (gdb::array_view<value *> args,
		  size_t num_fns,
		  fn_field *methods,
		  xmethod_worker_up *xmethods,
		  symbol **functions,
		  badness_vector *oload_champ_bv)
{
  /* A measure of how good an overloaded instance is.  */
  badness_vector bv;
  /* Index of best overloaded function.  */
  int oload_champ = -1;
  /* Current ambiguity state for overload resolution.  */
  int oload_ambiguous = 0;
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */

  /* A champion can be found among methods alone, or among functions
     alone, or in xmethods alone, but not in more than one of these
     groups.  */
  gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
	      == 1);

  /* Consider each candidate in turn.  */
  for (size_t ix = 0; ix < num_fns; ix++)
    {
      int jj;
      int static_offset = 0;
      std::vector<type *> parm_types;

      if (xmethods != NULL)
	parm_types = xmethods[ix]->get_arg_types ();
      else
	{
	  size_t nparms;

	  if (methods != NULL)
	    {
	      nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
	      static_offset = oload_method_static_p (methods, ix);
	    }
	  else
	    nparms = functions[ix]->type ()->num_fields ();

	  parm_types.reserve (nparms);
	  for (jj = 0; jj < nparms; jj++)
	    {
	      type *t = (methods != NULL
			 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
			 : functions[ix]->type ()->field (jj).type ());
	      parm_types.push_back (t);
	    }
	}

      /* Compare parameter types to supplied argument types.  Skip
	 THIS for static methods.  */
      bv = rank_function (parm_types,
			  args.slice (static_offset));

      if (overload_debug)
	{
	  if (methods != NULL)
	    gdb_printf (gdb_stderr,
			"Overloaded method instance %s, # of parms %d\n",
			methods[ix].physname, (int) parm_types.size ());
	  else if (xmethods != NULL)
	    gdb_printf (gdb_stderr,
			"Xmethod worker, # of parms %d\n",
			(int) parm_types.size ());
	  else
	    gdb_printf (gdb_stderr,
			"Overloaded function instance "
			"%s # of parms %d\n",
			functions[ix]->demangled_name (),
			(int) parm_types.size ());

	  gdb_printf (gdb_stderr,
		      "...Badness of length : {%d, %d}\n",
		      bv[0].rank, bv[0].subrank);

	  for (jj = 1; jj < bv.size (); jj++)
	    gdb_printf (gdb_stderr,
			"...Badness of arg %d : {%d, %d}\n",
			jj, bv[jj].rank, bv[jj].subrank);
	}

      if (oload_champ_bv->empty ())
	{
	  *oload_champ_bv = std::move (bv);
	  oload_champ = 0;
	}
      else /* See whether current candidate is better or worse than
	      previous best.  */
	switch (compare_badness (bv, *oload_champ_bv))
	  {
	  case 0:		/* Top two contenders are equally good.  */
	    oload_ambiguous = 1;
	    break;
	  case 1:		/* Incomparable top contenders.  */
	    oload_ambiguous = 2;
	    break;
	  case 2:		/* New champion, record details.  */
	    *oload_champ_bv = std::move (bv);
	    oload_ambiguous = 0;
	    oload_champ = ix;
	    break;
	  case 3:
	  default:
	    break;
	  }
      if (overload_debug)
	gdb_printf (gdb_stderr, "Overload resolution "
		    "champion is %d, ambiguous? %d\n",
		    oload_champ, oload_ambiguous);
    }

  return oload_champ;
}

/* Return 1 if we're looking at a static method, 0 if we're looking at
   a non-static method or a function that isn't a method.  */

static int
oload_method_static_p (struct fn_field *fns_ptr, int index)
{
  if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
    return 1;
  else
    return 0;
}

/* Check how good an overload match OLOAD_CHAMP_BV represents.  */

static enum oload_classification
classify_oload_match (const badness_vector &oload_champ_bv,
		      int nargs,
		      int static_offset)
{
  int ix;
  enum oload_classification worst = STANDARD;

  for (ix = 1; ix <= nargs - static_offset; ix++)
    {
      /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
	 or worse return INCOMPATIBLE.  */
      if (compare_ranks (oload_champ_bv[ix],
			 INCOMPATIBLE_TYPE_BADNESS) <= 0)
	return INCOMPATIBLE;	/* Truly mismatched types.  */
      /* Otherwise If this conversion is as bad as
	 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD.  */
      else if (compare_ranks (oload_champ_bv[ix],
			      NS_POINTER_CONVERSION_BADNESS) <= 0)
	worst = NON_STANDARD;	/* Non-standard type conversions
				   needed.  */
    }

  /* If no INCOMPATIBLE classification was found, return the worst one
     that was found (if any).  */
  return worst;
}

/* C++: return 1 is NAME is a legitimate name for the destructor of
   type TYPE.  If TYPE does not have a destructor, or if NAME is
   inappropriate for TYPE, an error is signaled.  Parameter TYPE should not yet
   have CHECK_TYPEDEF applied, this function will apply it itself.  */

int
destructor_name_p (const char *name, struct type *type)
{
  if (name[0] == '~')
    {
      const char *dname = type_name_or_error (type);
      const char *cp = strchr (dname, '<');
      unsigned int len;

      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
	len = strlen (dname);
      else
	len = cp - dname;
      if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
	error (_("name of destructor must equal name of class"));
      else
	return 1;
    }
  return 0;
}

/* Find an enum constant named NAME in TYPE.  TYPE must be an "enum
   class".  If the name is found, return a value representing it;
   otherwise throw an exception.  */

static struct value *
enum_constant_from_type (struct type *type, const char *name)
{
  int i;
  int name_len = strlen (name);

  gdb_assert (type->code () == TYPE_CODE_ENUM
	      && type->is_declared_class ());

  for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
    {
      const char *fname = type->field (i).name ();
      int len;

      if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
	  || fname == NULL)
	continue;

      /* Look for the trailing "::NAME", since enum class constant
	 names are qualified here.  */
      len = strlen (fname);
      if (len + 2 >= name_len
	  && fname[len - name_len - 2] == ':'
	  && fname[len - name_len - 1] == ':'
	  && strcmp (&fname[len - name_len], name) == 0)
	return value_from_longest (type, type->field (i).loc_enumval ());
    }

  error (_("no constant named \"%s\" in enum \"%s\""),
	 name, type->name ());
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the appropriate member (or the address of the member, if
   WANT_ADDRESS).  This function is used to resolve user expressions
   of the form "DOMAIN::NAME".  For more details on what happens, see
   the comment before value_struct_elt_for_reference.  */

struct value *
value_aggregate_elt (struct type *curtype, const char *name,
		     struct type *expect_type, int want_address,
		     enum noside noside)
{
  switch (curtype->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      return value_struct_elt_for_reference (curtype, 0, curtype, 
					     name, expect_type,
					     want_address, noside);
    case TYPE_CODE_NAMESPACE:
      return value_namespace_elt (curtype, name, 
				  want_address, noside);

    case TYPE_CODE_ENUM:
      return enum_constant_from_type (curtype, name);

    default:
      internal_error (_("non-aggregate type in value_aggregate_elt"));
    }
}

/* Compares the two method/function types T1 and T2 for "equality" 
   with respect to the methods' parameters.  If the types of the
   two parameter lists are the same, returns 1; 0 otherwise.  This
   comparison may ignore any artificial parameters in T1 if
   SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
   the first artificial parameter in T1, assumed to be a 'this' pointer.

   The type T2 is expected to have come from make_params (in eval.c).  */

static int
compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
{
  int start = 0;

  if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
    ++start;

  /* If skipping artificial fields, find the first real field
     in T1.  */
  if (skip_artificial)
    {
      while (start < t1->num_fields ()
	     && TYPE_FIELD_ARTIFICIAL (t1, start))
	++start;
    }

  /* Now compare parameters.  */

  /* Special case: a method taking void.  T1 will contain no
     non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
  if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
      && t2->field (0).type ()->code () == TYPE_CODE_VOID)
    return 1;

  if ((t1->num_fields () - start) == t2->num_fields ())
    {
      int i;

      for (i = 0; i < t2->num_fields (); ++i)
	{
	  if (compare_ranks (rank_one_type (t1->field (start + i).type (),
					    t2->field (i).type (), NULL),
			     EXACT_MATCH_BADNESS) != 0)
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* C++: Given an aggregate type VT, and a class type CLS, search
   recursively for CLS using value V; If found, store the offset
   which is either fetched from the virtual base pointer if CLS
   is virtual or accumulated offset of its parent classes if
   CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
   is virtual, and return true.  If not found, return false.  */

static bool
get_baseclass_offset (struct type *vt, struct type *cls,
		      struct value *v, int *boffs, bool *isvirt)
{
  for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
    {
      struct type *t = vt->field (i).type ();
      if (types_equal (t, cls))
	{
	  if (BASETYPE_VIA_VIRTUAL (vt, i))
	    {
	      const gdb_byte *adr = v->contents_for_printing ().data ();
	      *boffs = baseclass_offset (vt, i, adr, v->offset (),
					 value_as_long (v), v);
	      *isvirt = true;
	    }
	  else
	    *isvirt = false;
	  return true;
	}

      if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
	{
	  if (*isvirt == false)	/* Add non-virtual base offset.  */
	    {
	      const gdb_byte *adr = v->contents_for_printing ().data ();
	      *boffs += baseclass_offset (vt, i, adr, v->offset (),
					  value_as_long (v), v);
	    }
	  return true;
	}
    }

  return false;
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member" type.
   If INTYPE is non-null, then it will be the type of the member we
   are looking for.  This will help us resolve "pointers to member
   functions".  This function is used to resolve user expressions of
   the form "DOMAIN::NAME".  */

static struct value *
value_struct_elt_for_reference (struct type *domain, int offset,
				struct type *curtype, const char *name,
				struct type *intype, 
				int want_address,
				enum noside noside)
{
  struct type *t = check_typedef (curtype);
  int i;
  struct value *result;

  if (t->code () != TYPE_CODE_STRUCT
      && t->code () != TYPE_CODE_UNION)
    error (_("Internal error: non-aggregate type "
	     "to value_struct_elt_for_reference"));

  for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
      const char *t_field_name = t->field (i).name ();

      if (t_field_name && strcmp (t_field_name, name) == 0)
	{
	  if (t->field (i).is_static ())
	    {
	      struct value *v = value_static_field (t, i);
	      if (want_address)
		v = value_addr (v);
	      return v;
	    }
	  if (TYPE_FIELD_PACKED (t, i))
	    error (_("pointers to bitfield members not allowed"));

	  if (want_address)
	    return value_from_longest
	      (lookup_memberptr_type (t->field (i).type (), domain),
	       offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
	  else if (noside != EVAL_NORMAL)
	    return value::allocate (t->field (i).type ());
	  else
	    {
	      /* Try to evaluate NAME as a qualified name with implicit
		 this pointer.  In this case, attempt to return the
		 equivalent to `this->*(&TYPE::NAME)'.  */
	      struct value *v = value_of_this_silent (current_language);
	      if (v != NULL)
		{
		  struct value *ptr, *this_v = v;
		  long mem_offset;
		  struct type *type, *tmp;

		  ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
		  type = check_typedef (ptr->type ());
		  gdb_assert (type != NULL
			      && type->code () == TYPE_CODE_MEMBERPTR);
		  tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
		  v = value_cast_pointers (tmp, v, 1);
		  mem_offset = value_as_long (ptr);
		  if (domain != curtype)
		    {
		      /* Find class offset of type CURTYPE from either its
			 parent type DOMAIN or the type of implied this.  */
		      int boff = 0;
		      bool isvirt = false;
		      if (get_baseclass_offset (domain, curtype, v, &boff,
						&isvirt))
			mem_offset += boff;
		      else
			{
			  struct type *p = check_typedef (this_v->type ());
			  p = check_typedef (p->target_type ());
			  if (get_baseclass_offset (p, curtype, this_v,
						    &boff, &isvirt))
			    mem_offset += boff;
			}
		    }
		  tmp = lookup_pointer_type (type->target_type ());
		  result = value_from_pointer (tmp,
					       value_as_long (v) + mem_offset);
		  return value_ind (result);
		}

	      error (_("Cannot reference non-static field \"%s\""), name);
	    }
	}
    }

  /* C++: If it was not found as a data field, then try to return it
     as a pointer to a method.  */

  /* Perform all necessary dereferencing.  */
  while (intype && intype->code () == TYPE_CODE_PTR)
    intype = intype->target_type ();

  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
      const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);

      if (t_field_name && strcmp (t_field_name, name) == 0)
	{
	  int j;
	  int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);

	  check_stub_method_group (t, i);

	  if (intype)
	    {
	      for (j = 0; j < len; ++j)
		{
		  if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
		    continue;
		  if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
		    continue;

		  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
		      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
					     intype, 1))
		    break;
		}

	      if (j == len)
		error (_("no member function matches "
			 "that type instantiation"));
	    }
	  else
	    {
	      int ii;

	      j = -1;
	      for (ii = 0; ii < len; ++ii)
		{
		  /* Skip artificial methods.  This is necessary if,
		     for example, the user wants to "print
		     subclass::subclass" with only one user-defined
		     constructor.  There is no ambiguity in this case.
		     We are careful here to allow artificial methods
		     if they are the unique result.  */
		  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
		    {
		      if (j == -1)
			j = ii;
		      continue;
		    }

		  /* Desired method is ambiguous if more than one
		     method is defined.  */
		  if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
		    error (_("non-unique member `%s' requires "
			     "type instantiation"), name);

		  j = ii;
		}

	      if (j == -1)
		error (_("no matching member function"));
	    }

	  if (TYPE_FN_FIELD_STATIC_P (f, j))
	    {
	      struct symbol *s = 
		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
			       0, VAR_DOMAIN, 0).symbol;

	      if (s == NULL)
		return NULL;

	      if (want_address)
		return value_addr (read_var_value (s, 0, 0));
	      else
		return read_var_value (s, 0, 0);
	    }

	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
	    {
	      if (want_address)
		{
		  result = value::allocate
		    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
		  cplus_make_method_ptr (result->type (),
					 result->contents_writeable ().data (),
					 TYPE_FN_FIELD_VOFFSET (f, j), 1);
		}
	      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
		return value::allocate (TYPE_FN_FIELD_TYPE (f, j));
	      else
		error (_("Cannot reference virtual member function \"%s\""),
		       name);
	    }
	  else
	    {
	      struct symbol *s = 
		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
			       0, VAR_DOMAIN, 0).symbol;

	      if (s == NULL)
		return NULL;

	      struct value *v = read_var_value (s, 0, 0);
	      if (!want_address)
		result = v;
	      else
		{
		  result = value::allocate (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
		  cplus_make_method_ptr (result->type (),
					 result->contents_writeable ().data (),
					 v->address (), 0);
		}
	    }
	  return result;
	}
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
      struct value *v;
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (t, i))
	base_offset = 0;
      else
	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
					  offset + base_offset,
					  TYPE_BASECLASS (t, i),
					  name, intype, 
					  want_address, noside);
      if (v)
	return v;
    }

  /* As a last chance, pretend that CURTYPE is a namespace, and look
     it up that way; this (frequently) works for types nested inside
     classes.  */

  return value_maybe_namespace_elt (curtype, name, 
				    want_address, noside);
}

/* C++: Return the member NAME of the namespace given by the type
   CURTYPE.  */

static struct value *
value_namespace_elt (const struct type *curtype,
		     const char *name, int want_address,
		     enum noside noside)
{
  struct value *retval = value_maybe_namespace_elt (curtype, name,
						    want_address, 
						    noside);

  if (retval == NULL)
    error (_("No symbol \"%s\" in namespace \"%s\"."), 
	   name, curtype->name ());

  return retval;
}

/* A helper function used by value_namespace_elt and
   value_struct_elt_for_reference.  It looks up NAME inside the
   context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
   is a class and NAME refers to a type in CURTYPE itself (as opposed
   to, say, some base class of CURTYPE).  */

static struct value *
value_maybe_namespace_elt (const struct type *curtype,
			   const char *name, int want_address,
			   enum noside noside)
{
  const char *namespace_name = curtype->name ();
  struct block_symbol sym;
  struct value *result;

  sym = cp_lookup_symbol_namespace (namespace_name, name,
				    get_selected_block (0), VAR_DOMAIN);

  if (sym.symbol == NULL)
    return NULL;
  else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
	   && (sym.symbol->aclass () == LOC_TYPEDEF))
    result = value::allocate (sym.symbol->type ());
  else
    result = value_of_variable (sym.symbol, sym.block);

  if (want_address)
    result = value_addr (result);

  return result;
}

/* Given a pointer or a reference value V, find its real (RTTI) type.

   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   and refer to the values computed for the object pointed to.  */

struct type *
value_rtti_indirect_type (struct value *v, int *full, 
			  LONGEST *top, int *using_enc)
{
  struct value *target = NULL;
  struct type *type, *real_type, *target_type;

  type = v->type ();
  type = check_typedef (type);
  if (TYPE_IS_REFERENCE (type))
    target = coerce_ref (v);
  else if (type->code () == TYPE_CODE_PTR)
    {

      try
	{
	  target = value_ind (v);
	}
      catch (const gdb_exception_error &except)
	{
	  if (except.error == MEMORY_ERROR)
	    {
	      /* value_ind threw a memory error. The pointer is NULL or
		 contains an uninitialized value: we can't determine any
		 type.  */
	      return NULL;
	    }
	  throw;
	}
    }
  else
    return NULL;

  real_type = value_rtti_type (target, full, top, using_enc);

  if (real_type)
    {
      /* Copy qualifiers to the referenced object.  */
      target_type = target->type ();
      real_type = make_cv_type (TYPE_CONST (target_type),
				TYPE_VOLATILE (target_type), real_type, NULL);
      if (TYPE_IS_REFERENCE (type))
	real_type = lookup_reference_type (real_type, type->code ());
      else if (type->code () == TYPE_CODE_PTR)
	real_type = lookup_pointer_type (real_type);
      else
	internal_error (_("Unexpected value type."));

      /* Copy qualifiers to the pointer/reference.  */
      real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
				real_type, NULL);
    }

  return real_type;
}

/* Given a value pointed to by ARGP, check its real run-time type, and
   if that is different from the enclosing type, create a new value
   using the real run-time type as the enclosing type (and of the same
   type as ARGP) and return it, with the embedded offset adjusted to
   be the correct offset to the enclosed object.  RTYPE is the type,
   and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
   by value_rtti_type().  If these are available, they can be supplied
   and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
   NULL if they're not available.  */

struct value *
value_full_object (struct value *argp, 
		   struct type *rtype, 
		   int xfull, int xtop,
		   int xusing_enc)
{
  struct type *real_type;
  int full = 0;
  LONGEST top = -1;
  int using_enc = 0;
  struct value *new_val;

  if (rtype)
    {
      real_type = rtype;
      full = xfull;
      top = xtop;
      using_enc = xusing_enc;
    }
  else
    real_type = value_rtti_type (argp, &full, &top, &using_enc);

  /* If no RTTI data, or if object is already complete, do nothing.  */
  if (!real_type || real_type == argp->enclosing_type ())
    return argp;

  /* In a destructor we might see a real type that is a superclass of
     the object's type.  In this case it is better to leave the object
     as-is.  */
  if (full
      && real_type->length () < argp->enclosing_type ()->length ())
    return argp;

  /* If we have the full object, but for some reason the enclosing
     type is wrong, set it.  */
  /* pai: FIXME -- sounds iffy */
  if (full)
    {
      argp = argp->copy ();
      argp->set_enclosing_type (real_type);
      return argp;
    }

  /* Check if object is in memory.  */
  if (argp->lval () != lval_memory)
    {
      warning (_("Couldn't retrieve complete object of RTTI "
		 "type %s; object may be in register(s)."), 
	       real_type->name ());

      return argp;
    }

  /* All other cases -- retrieve the complete object.  */
  /* Go back by the computed top_offset from the beginning of the
     object, adjusting for the embedded offset of argp if that's what
     value_rtti_type used for its computation.  */
  new_val = value_at_lazy (real_type, argp->address () - top +
			   (using_enc ? 0 : argp->embedded_offset ()));
  new_val->deprecated_set_type (argp->type ());
  new_val->set_embedded_offset ((using_enc
				 ? top + argp->embedded_offset ()
				 : top));
  return new_val;
}


/* Return the value of the local variable, if one exists.  Throw error
   otherwise, such as if the request is made in an inappropriate context.  */

struct value *
value_of_this (const struct language_defn *lang)
{
  struct block_symbol sym;
  const struct block *b;
  frame_info_ptr frame;

  if (lang->name_of_this () == NULL)
    error (_("no `this' in current language"));

  frame = get_selected_frame (_("no frame selected"));

  b = get_frame_block (frame, NULL);

  sym = lookup_language_this (lang, b);
  if (sym.symbol == NULL)
    error (_("current stack frame does not contain a variable named `%s'"),
	   lang->name_of_this ());

  return read_var_value (sym.symbol, sym.block, frame);
}

/* Return the value of the local variable, if one exists.  Return NULL
   otherwise.  Never throw error.  */

struct value *
value_of_this_silent (const struct language_defn *lang)
{
  struct value *ret = NULL;

  try
    {
      ret = value_of_this (lang);
    }
  catch (const gdb_exception_error &except)
    {
    }

  return ret;
}

/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
   elements long, starting at LOWBOUND.  The result has the same lower
   bound as the original ARRAY.  */

struct value *
value_slice (struct value *array, int lowbound, int length)
{
  struct type *slice_range_type, *slice_type, *range_type;
  LONGEST lowerbound, upperbound;
  struct value *slice;
  struct type *array_type;

  array_type = check_typedef (array->type ());
  if (array_type->code () != TYPE_CODE_ARRAY
      && array_type->code () != TYPE_CODE_STRING)
    error (_("cannot take slice of non-array"));

  if (type_not_allocated (array_type))
    error (_("array not allocated"));
  if (type_not_associated (array_type))
    error (_("array not associated"));

  range_type = array_type->index_type ();
  if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
    error (_("slice from bad array or bitstring"));

  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound)
    error (_("slice out of range"));

  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  type_allocator alloc (range_type->target_type ());
  slice_range_type = create_static_range_type (alloc,
					       range_type->target_type (),
					       lowbound,
					       lowbound + length - 1);

  {
    struct type *element_type = array_type->target_type ();
    LONGEST offset
      = (lowbound - lowerbound) * check_typedef (element_type)->length ();

    slice_type = create_array_type (alloc,
				    element_type,
				    slice_range_type);
    slice_type->set_code (array_type->code ());

    if (array->lval () == lval_memory && array->lazy ())
      slice = value::allocate_lazy (slice_type);
    else
      {
	slice = value::allocate (slice_type);
	array->contents_copy (slice, 0, offset,
			      type_length_units (slice_type));
      }

    slice->set_component_location (array);
    slice->set_offset (array->offset () + offset);
  }

  return slice;
}

/* See value.h.  */

struct value *
value_literal_complex (struct value *arg1,
		       struct value *arg2,
		       struct type *type)
{
  struct value *val;
  struct type *real_type = type->target_type ();

  val = value::allocate (type);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);

  int len = real_type->length ();

  copy (arg1->contents (),
	val->contents_raw ().slice (0, len));
  copy (arg2->contents (),
	val->contents_raw ().slice (len, len));

  return val;
}

/* See value.h.  */

struct value *
value_real_part (struct value *value)
{
  struct type *type = check_typedef (value->type ());
  struct type *ttype = type->target_type ();

  gdb_assert (type->code () == TYPE_CODE_COMPLEX);
  return value_from_component (value, ttype, 0);
}

/* See value.h.  */

struct value *
value_imaginary_part (struct value *value)
{
  struct type *type = check_typedef (value->type ());
  struct type *ttype = type->target_type ();

  gdb_assert (type->code () == TYPE_CODE_COMPLEX);
  return value_from_component (value, ttype,
			       check_typedef (ttype)->length ());
}

/* Cast a value into the appropriate complex data type.  */

static struct value *
cast_into_complex (struct type *type, struct value *val)
{
  struct type *real_type = type->target_type ();

  if (val->type ()->code () == TYPE_CODE_COMPLEX)
    {
      struct type *val_real_type = val->type ()->target_type ();
      struct value *re_val = value::allocate (val_real_type);
      struct value *im_val = value::allocate (val_real_type);
      int len = val_real_type->length ();

      copy (val->contents ().slice (0, len),
	    re_val->contents_raw ());
      copy (val->contents ().slice (len, len),
	    im_val->contents_raw ());

      return value_literal_complex (re_val, im_val, type);
    }
  else if (val->type ()->code () == TYPE_CODE_FLT
	   || val->type ()->code () == TYPE_CODE_INT)
    return value_literal_complex (val, 
				  value::zero (real_type, not_lval), 
				  type);
  else
    error (_("cannot cast non-number to complex"));
}

void _initialize_valops ();
void
_initialize_valops ()
{
  add_setshow_boolean_cmd ("overload-resolution", class_support,
			   &overload_resolution, _("\
Set overload resolution in evaluating C++ functions."), _("\
Show overload resolution in evaluating C++ functions."), 
			   NULL, NULL,
			   show_overload_resolution,
			   &setlist, &showlist);
  overload_resolution = 1;
}